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On the use of a complex (Quaternion)
velocity potential in three dimensions

By Aran Rosg, Manchester

The following investigations concern the use of a stream-function
which can be defined for any three-dimensional motion. It appears that
in the case of motion which is axially symmetrical, if we take a set of
rectangular axes OX, 0Y, OZ and an imaginary fourth axis OW per-
pendicular to the other three, then in terms of the velocity-potential
@ and the stream-function ¥ we can define a function

O+ 1V, + ¥+ kY,

which is a right-regular quaternion function of w + iz 4+ jy + k=z.
The theory is used to determine the effect of placing a point-source on
the axis of symmetry of an arbitrary solid of revolution.

Definition : We define the stream-function ¥(x, y,z, &, 7, () of the
pair of points A(x, y,z2), B(x+ &,y + 1,2+ ) to be the rate of
flow of fluid across the triangle formed by these two points and the origin.
We make the sign convention that if when an observer views the triangle
OAB with AB appearing horizontal, O below AB, B to the right of 4,

and the plane of the triangle appearing vertical the flow is towards the
observer, then ¥ is positive.

Y

>

positive
flow A(z,y,2)

Bz+ &, y+n.2+()
X
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Velocity at the point (x,y,z) in terms of ¥

We make the convention that all partial derivatives are considered to
be evaluated at (x,y,2,&,7,() = (x,¥,2,0,0,0).

Lemma: Since we can regard the point (x,y,z2) as the point
(x+ & — &,y,2) we have

yj(xa ?/,2,5,0,0)—"—‘ - Yl(x—l"&: Y, 2, —'5, 030) .

Hence, by Taylor’s Theorem, since for all z,y,z Y(z, y,2,0, 0, 0)=0

v LY v N AN L
E‘é“g"f'%f —-a’éz—‘—"f'g'g‘—l”%f e “EW—O(E) .
Hence, proceeding to the limit & —~ 0 we have

>*Y 1Y

- 082  Qdx o0&

Similarly
Y Y
o dyoy

and
Y ¥
9tz o0zof

Let the components of velocity in directions parallel to OX, 0Y, OZ be
respectively v,, vy, v,.

We consider the inward rates of flow across the faces of the tetrahedron
ABCO where the coordinates of A, B, C are (x,y,2), (x,y + 7,2),
(x, y,2 + ) respectively. Since the algebraic sum of these rates of flow
is zero, we have

Y(x,y +n,2,0, —,0) + ¥(2,y,2,0,0,0) + ¥Y(x,y,2 4+ {,0,9, —{)

— rate of flow across 4 BC in positive direction of O0X = 0.
Hence we have by Taylor’s Theorem

P N ) 4 oY , 2P 14 , 2V

"77‘5;7*—1—%77 o n —W+C~5C~+%C ~—ac—2+77'“3;7“+%77 Ea
TR AL S N 2y

— 5 TECGm T gar ~ S aar T Gy T+ terms of degree 3

or more in 7, { = rate of flow across A B(C in positive direction of OX.
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Hence, by the lemma

B(z,y+n,z2)

A(z,y,2)

VA

iy 4 2Y
Flow across ABC = n{ (az oy o C) + terms of degree 3 or more
in 5, ¢. Hence, dividing by %7 ¢ and proceeding to the limit 7, { — 0,

we have . _2(8251’ 3
== “\ozonp anac) '

Similarly, by considering outward rates of flow, we have

. #_2(a2¥1__~ rY
- = dy oC anac)

o — Y v
®7 9zop  Oyol

Hence, by addition

If we take the velocity potential convention that

v= —grad @
we have "
0 e 4 4
ox " aog  ayat 0
Similarl
ey L S
oy 0xdf  0z0&
and

o Y Y
5 T dyoE oxony 0
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Since all functions occurring so far are independent of w, all partial

derivatives with respect to w are zero. Hence, if we define ¥, = L

2w oW o
Y, = o Y, = 2 the last three of the four conditions for @ + ¥,

+ 7%, + k¥, to be a right-regular function of w + ta + jy + kz are
satisfied.

Y
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A~ [ H
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plioy =G
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Axially symmetrical motion, the fourth regularity condition

We define the vector ¥ to be the vector whose components at any
point (z, y, z) in directions parallel to OX, OY, OZ respectively, are
oY ¥ oY
0t’ on’ 9

Since the motion is axially symmetrical, the stream-function of any
pair of points in an axial plane is zero. Hence the vector ¥ at any point
will be perpendicular to the axial plane through that point. Also, in view
of the axial symmetry, ¥ will have the same value at any two points
whose cylindrical coordinates differ only in the value of the angular coor-
dinate. We now consider the integral j' j Y. ndS where n is the unit
normal vector over the surface A BCDEFGH , where ABCD, EFGH are
portions of axial planes and BOGF, ADHE are portions of the surfaces
of cylinders whose axes are coincident with the axis of symmetry of the
motion. In view of what we have proved about the direction of ¥, the
contributions of all parts of the surface other than A BCD and EFGH
will be zero, and in view of our result about cylindrical coordinates the
contributions of these two faces to the integral will be equal and opposite.
Hence the integral |{ ¥'-ndS over the surface is zero. Hence the
integral of div. ¥ over the volume of the interior of the surface will be

the values of

at that point.
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zero by Green’s Theorem. Since this is true for all bodies ABCDEFGH
of this type, wherever situated and however small, the value of div. ¥

. . 0D
will be zero everywhere. But since 55 18 Zero everywhere, we have

0P  o¥, o¥, aY¥,
ow dx oy 0z

= 0,

which is the remaining condition required for @ + 1 ¥, + j ¥, + k ¥,
to be a right-regular function of w + 12 + jy + k=.

The Stream-funection of a Uniform Stream

We consider a uniform stream moving with velocity V in the positive
direction of the z-axis. The area of the triangle formed by the origin and
the points (x,y,2), (x + &,y + 7,2+ {) expressed vectorially is

— Y@, y,2)AN@+Ey+n,24+ 0

“%(x’ y,z)/\(é, n, C) %

Hence the stream-function is the scalar product of this vector with the
vector (V,0,0), so that we have

Y =3V(—Cy+ n2)

The complex potential of the motion will therefore be
Vi—x+ $jz — L ky) .

The condition that f(x,y,z, &, v, {) be a stream-function

Let the pseudo-velocity corresponding to f(x, v,2,&,7%,{) have
components v,, v,, v,, and let the actual stream-function of this motion
be Y(x,y,2,&,n,(). Then

2P —f) _ *¥—f _ _
BT R T
PP —f) _ 2P—f _

—0 ¥ —-fH ¥/ _
ox o¢ 0z 0 ’

dy 0§ ox on

0.
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From now on we will choose our axes so that OX is the axis of sym-
metry. Since the stream vector (¥) of any point is perpendicular to the
axial plane through that point, we have

o _, ¥ ¥ = =z
0§ * o o y
Hence, in view of the axial symmetry?)
W —f) _ =) _
oy T A@ YA, = (@, gt o+ )

so that, writing g for ¥ — f, and R for 2% y? we have

oy oy 4 dy
2 2 nms= —
X+ 2z aR+x+2y aR-—O, ya = 0 so that x+RdR 0

whence

2@, y* + 2%) = k[ (y* + 2*)

where k is a constant. Hence
ky

y? +22"— T

V=f+g=f+

It is usually possible to determine k£ by considering the value of ¥ at
infinity.

The stream-funetion of a unit point source at the point (a, 0, 0)

In view of the axial symmetry, we have from the above that ¥ must
be of the form
(nz — Cy) 2 (=, y* + 2%) .

Since the velocity vector at (x, y, 2) is

x—a y 2
(((x —apty )t (@—ap+yr+e)” T (@—aP+yit zz)”’ﬂ)
we have

_a_?ﬁ_ — Y _ —r+4+a i
Yo T (@t P @) (e— otk )"
+ 1y +2)

1) We are assuming here that f is also of this form, otherwise it is obviously not a stream-
function.

140




where f is an arbitrary function, so that a value of ¥ which on differentia-
tion yields correct values for the y- and z-components of velocity is

(r—tn)(—z+a)
(9 + 2°) ((x — a)* + y2 + )"

By differentiation it is readily seen that in this way this value of ¥ also
yields the correct value for the x-component of velocity. Hence for some
value of k the correct value of the stream-function is

(—nz+ Cy) (x —a)
(1 +2) (F—ar+ 92 +2)" g2tz

(nz — Cy) .

The value of k£ depends upon whether a is greater or less than 0. We con-
sider the tetrahedron formed by the origin, the points (z, y,2) and

(@ + & y+7,2+ ¢), and the point (z,0, 0).

B(x+f,y+7],2 +C)

A(x,y.2)
source
F
C(z,0,0) 0 (a,0,0)

We consider the case a>0, and consider A BCO for large negative x.
Since the source is outside the tetrahedron, the algebraic sum of the
rates of flow across the faces of A BCO is zero. Since ACO, BCO are por-
tions of axial planes, the rates of flow across these faces are zero. Hence
Y(z,y,z, &, 1, is equal to the rate of flow across the face A BC. But
if we let x—>—oo while ¥ and 2z remain finite, the area of 4 BC will re-
main finite and the velocity at points of 4 BC will tend to zero. Hence
¥ will tend to zero. Now as x—>—oo the above value of ¥ tends to

(nz — Cy)(A + k)
yE + 22

Hence k= —1. Thus

y? + 22 ((x — a)? + y* + 2?) /2
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Similarly when a >0

w_ (—12+ 2y z—a _.1)
- v+2 \(E—af+ ¥+ 2)h '

When a =0 we have a singularity at the origin and so this method
cannot be used. This difficulty can be overcome, however, by an
e -method similar to that of the next two sections.

The stream-function corresponding to the velocity potential »~"=! P, (6)

Since the motion is axially symmetrical ¥ will be of the form

(nz — Cy) x(x, y* + 2%) .

We consider the figure formed by an isosceles triangle whose equal sides
are equally inclined to the z-axis, the circular arcs, centre O, joining the
extremities of these sides to the z-axis and the portion of spherical sur-
face determined by them, and the plane portions determined by these
two sides, the arcs and the z-axis.

A

D ¢

We first consider a velocity potential of the form (r — a)—"1P, (0)
where a is small and positive and take (a, 0, 0) as centre of the sphere
while leaving O as a vertex.

Since -

{ B,(6)sin 6d6 .
0

is zero, the algebraic sum of the rates of flow across the faces of 0ABC
is zero, and since OAC, OBC are portions of axial planes the rates of
flow across these are zero. When A and B are near together we can iden-
tify the surface A BO with the triangle ABO, so that ¥(z,y,2,&,7,{)
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is equal to the rate of flow across the spherical surface 4 BC'. Now since
OA and OB are equal in length and equally inclined to OX, the spherical
angle ACB is equal to

nz — ¢y
¥+
Hence the rate of flow across 4 BC is?)
tan-3 (12 +20)

i LY@ —ap + v + )
0

) (— 2 cos 0)
Slno‘/((x —a)® + y* + zz)dﬁ ((93 —a):+ y2 4 zz)’/a
_nz—1Ly 1 ( x* 1
v +22 (& —a)2+ y®+ zz)‘/z x? + y? + 22 ) )

Thus
_ nz — ¢y
(@ —ap + g2 + 29"

Similarly this holds if @ is a little less than 0. However this method
does not apply when a = 0, since in this case we have a singularity
at the origin. If, however we take the point (e,0,0), where ¢ #a,a #0
instead of the origin, as a vertex of the triangle associated with the
definition of ¥, the value of ¥ for @ = (r — a)~2 B, () will be the same
as before.

C(x+§&,
Yy+n,2+0)
C(z+&, y+’l],2+C)
J B
(z,y,2) \
B
(%,y,2)
X X
A 0 o A
(€,0,0) (€,0,0)

%) for n = 1; for other values the method is similar.
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For since € #~a, the algebraic sum of the rate of outward flow of
fluid across the faces of the tetrahedron O A BC is zero.3)

£ outward (L. H. Diagram)
inward (R.H. Diagram)

inward (L. H. Diagram)
outward (R. H. Diagram)

across ABC, so that the value of ¥ is unaltered if we replace O by A.
Hence when a £ 0 we have that if ¢e40 and € 4a, then

But as the motion is axially symmetrical the rate o

flow across OBC is equal to the rate of flow

[V /- 7?2“5?/ o
(& —oF + v + 2

and by continuity, if ¢ = 0 then

_ nz—1ly
(@® + g2 + 2"

The boundary conditions satisfied on the surface of an obstacle
containing the origin

(x+ &, y+7, (x+ &,y +1.
z+{) z+ ()

(x,y.z)

Since the stream-function of a pair of points on the surface of the
obstacle is small compared with &, » and ¢ when &, » and { are small
(and is in fact zero when the body is convex), the tangential components
of the stream-vector are zero. (This boundary condition does not apply
to bodies for which lines can be drawn through the origin meeting the
body more than twice.) Hence the stream-vector is either the null-vector
or else it is along the normal to the surface at the point under considera-
tion. But we have already shown that the stream-vector is either the
null-vector or else it is perpendicular to the axial plane through the point
under consideration. Hence the stream-vector is the null-vector, i. e. the
boundary conditions are

o¥ oV o¥
w0 T T

(x,Y,2)

3) There may be a singularity at an interior point of 04, but this will have no

™
effect since an (0) sin 6d0 =0 .
0

144



Regular functions associated with motion symmetrical about OX

It has been shown that if f(z) is an analytic function of the quaternion
variable z, then A(f(z)) is a right- and left-regular function of z.

Corresponding to « 4 ¢y in two variables, we have in four variables
the first degree regular polynomial A4(z%), i.e. —4Bw + tx + jy
+ kz).

For axially symmetrical motions we need functions in which the coef-
ficients of j and k are in the ratio z:—y, and the coefficient of 7 is zero.
As the highest coefficients in the two above cases are 1 and 3 respectively,
and the other coefficients are all 1, this suggests that a corresponding
function for three real variables may be

22 —jz + ky .

This can easily be shown to be, in fact, right-regular.

Corresponding to (x 4 ty)~! or :2:_?’ yy2 in two variables we have in

four variables A4(z~1) or
—4(w —1x — jy — k2)
(w? + 2* + y* + 2%)?
Since the numerators both have 1 for the first coefficient and — 1 for

all others, and the denominators are of degree 2 and 4 respectively, this
suggests as a corresponding function in three variables

x+jz — ky
(22 + ¥ + zz)’/z
and this can easily be verified to be right-regular.
These stream-functions are in fact the complex potentials evaluated

above for a uniform stream of velocity (—2, 0, 0) and for the velocity
potential r—2 P, (0).

Determination of the effect on a uniform stream of a spherical obstacle,
by a method analogous to the complex-variable method for the cylinder 4)

We consider the sphere x2 + y2 + 22 =1 in a stream of velocity
(—2, 0, 0). In the cylindrical case we find that by transforming
'y

into A4 u

%) We are here considering the case |e|(|a| —]|€|)>0.
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the cylinder is transformed into a plane surface of finite width. Taking
the corresponding functions of three variables, we find that by trans-
forming

. x4+ jz—ky . .
2¢ — 9z + k s— into 24— v+ k
BTN eyt I

the sphere 22 4 y* 4 22 = 1 is transformed into that part of the x-axis
for which — $<x <$. For,when 224 y24 22 =1,

iz — k .
22 — jz + k e RY g, 9a— ku .
R e I

Y

_%_1 ___% 0 % ] gX

The boundary conditions are preserved for the same reasons as in the
two dimensional case :

Since the needle-shaped body does not disturb the motion for the new
system of coordinates, we have that the complex potential is
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: 22 — jz+ ky x4+ jz—ky
24 — k
Jv + kp or ! + (@ £ g+ )"

so that the velocity potential is

2x + (x2-}-yf+z2)"’ or 2(rcosf + 4 r2cosf) .

Determination of the effect of placing a point source on the axis of sym-
metry of an arbitrary solid of revolution which can be made to satisty the
' boundary conditions

We choose the axes so that the axis of symmetry is the z-axis and that
the origin is inside the body. We consider only bodies for which this can
be done in such a way that any line through the origin meets the body
exactly twice.

We consider the domain bounded by the hyper-cylinders 4 and B,
where the axes of the cylinders are the w-axis and their sections by the
prime w = 0 are the body and the sphere 22 4 y? 4 22 = r? respec-
tively, and r is chosen so that A and B have no point in common.

Let the equation of the surface of the body be %2 + 22 = f(x), and
the source be of strength m at the point (a, 0, 0).

In view of the boundary conditions, the imaginary parts of the com-
plex potential at points on the boundary of the obstacle are zero.

We define the complex potential at (x, y, z, w) to be the same as at
(x,y,2,0), thus making the complex potential right-regular at all
points outside the body except (a, 0,0, w). On the surface of 4 the
real part of the complex potential can be regarded as a function of z
only, since it is independent of w and the motion is axially symmetrical.

Thus we can express @ as a Fourier series in . We assume that all sin
terms after the first n and all cos terms after the first » can be neglected.
If the result obtained does not confirm this, we must start again, taking
a larger value for n.

We consider the domain determined by 4 and B in the case when the
w-coordinates of the plane faces of the ends of the cylinders all four tend
to infinity, one tending to -+ oo and one to —oo for each cylinder. We
remove from the domain a small hyper-cylinder C whose ends form, part
of the same planes as the ends of the other cylinders, and whose axis
has the equations: x=a, y =0, 2= 0. Using Fueter’s second Integ-
ral Theorem we calculate the complex potential at all points of the do-
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main and express its value on the surface of A as a Fourier series in « to n
sine terms and n cosine terms. Equating the » sine coefficients and the »
cosine coefficients to the original values, we have 2n homogeneous equa-
tions in the 27 original unknown coefficients. These can therefore be solv-
ed to within a constant factor. This factor can then be determined by
taking into consideration the boundary conditions. The integrals required
for the application of the second Integral Theorem can be evaluated as
follows. The complex potential tends to zero as the distance from the
body of the point under consideration tends to infinity, so that as the
plane ends of the outermost cylinder are of finite area, their contribution
to the integral tends to zero. The contribution of the surface 4 can be
evaluated in terms of the original unknown coefficients. Since the disturb-
ing terms of the complex potential will be right-regular outside 4, we
have by Integral Theorems 1 and 2 that the contribution of that part of
the value on B relating to the undisturbed motion and the contribution
of C will together be the complex-potential of the undisturbed source.
To find the effect of the rest of B’s contribution, we consider the domain
determined by B and a coaxial cylinder of large radius. As before, we let
the lengths of the axes of the cylinders tend to infinity. Let us denote the
outer surface by D. By the first Integral Theorem, the contribution of B
is the same as that of D would have been. But since the disturbing terms
must be of degree less than — 1 in «, y and 2, the contribution of D tends
to zero as its radius tends to infinity. Hence the contribution of B is zero.

I should like to express my gratitude to Dr. K. Mahler and Prof. Dr.
R. Fueter for two important suggestions relating to the earlier and latter
parts of this paper respectively.
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