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Eulersche Zalileu
und groBer Fermat'scher Satz

Von Max Gut, Zurich

1. Inhaltsangabe
D. Mirimanoff hat im Jahre 1905 in einer Arbeit f4]x) gezeigt, daB

die Gleichung& xl + yl zl (1.1)

wo l eine ungerade Primzahl bedeutet, keine Lôsung in ganzen rationalen,
zu l teilerfremden Zahlen x, y und z hat, wenn wenigstens eine der
Bernoullischen Zahlen Bt_z, Bt_5, Bl_1 und jBz_9 nicht durch l teilbar ist.

In einer weiteren Arbeit, auf die mich Herr Professor H. S. Vandiver
in freundlichster Weise aufmerksam machte, wurde dièse Aussage von
T. Morishima [5] im Jahre 1932 auf Bt_lx und unter der Voraussetzung,
da8 20579903- 75571 =|= 0 (mod. l) ist, weiter auf JSl-13 ausgedehnt.

Bekanntlich hat aber B. Rosser [7] im Jahre 1939 gezeigt, da8 der
erste Fall des groBen Fermatschen Satzes nur môglich ist, wenn l ^
8332403 und in einer weiteren Arbeit [8] schon 1940, wenn Z>41000000
ist, so dafi die Restriktion bezuglich Bt_13 bei der eben erwâhnten Arbeit
von T. Morishima dahinfàllt.

Weiter zeigten D. H. Lehmer und Emma Lehmer [3] im Jahre 1941,
daB der erste Fall des groBen Fermatschen Satzes nur môglich ist, wenn
l> 253 747 889 ist.

Mit Riicksicht auf den engen Zusammenhang zwischen den Bernoullischen

und den Eulerschen Zahlen kann man sich fragen, welche Bedeu-

tung die letzteren fur den groBen Fermatschen Satz haben. Im folgenden
zeige ich, daB wenn die Gleichung

X*l+ Y2l Z21 (1.2)

eine Lôsung in ganzen rationalen zu l teilerfremden Zahlen hat, zu den

Kummer-Mirimanoffschen Kongruenzen in einer der drei Formen2)

x) Vergleiche die entsprechenden Nummem im Literaturverzeiehnis am Ende der vor-
Hegenden Arbeit.

a) Vergleiche die Formeln in der vorliegenden Arbeit in Abschnitt 9 und 10.
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(9.4) bzw. (9.5) und (9.6) bzw. (10.1) ganz analoge Kongruenzen treten,
nâmMch (9.8) bzw. (9.7) bzw. (10.2), wobei in den beiden ersten Formen
analog die Eulerschen an Stelle der Bernoullischen Zahlen auftreten.

Ferner beweise ich den zum erwâhnten Satze von Mirimanoff analogen
Satz : Die Gleichung (1.2) hat keine Lôsung in ganzen rationalen zu l
teilerfremden Zahlen X, Y und Z, wenn wenigstens eine der Eulerschen
Zahlen El^z> E^, E%-i, Et_9 und Et_u nicht durch l teilbar ist.

In bezug auf die Teilbarkeit der Zahlen X, Y und Z durch 2 beachte

man, daB wenn fur (1.2) eine Lôsung in nicht verschwindenden ganzen
rationalen zueinander teilerfremden Zahlen existiert, notwendigerweise
eine der beiden Zahlen X und Y gerade, die andere und ubrigens auchiï
ungerade sind.

Zu unserem Satze sind aber sofort zwei Bemerkungen zu macben.
Erstens hat E. E. Kummer [2] in einer im Oktober 1835 geschriebenen

und im Jahre 1837 publizierten Arbeit schon gezeigt, daB der erste Fall
bei der Gleichung (1.2) hôchstens dann môglich ist, wenn l 1 (mod 8)
ist. Ich werde aber im folgenden von dieser Erkenntnis Kummers keinen
Gebrauch machen, d. h. l soll in der vorliegenden Arbeit eine beliebige
ungerade Primzahl bedeuten durfen, da sich mir eine Fallunterscheidung
nicht aufdrângte, und eine Reihe von Relationen an sich von Interesse
und vielleicht bei anderen Untersuchungen von Nutzen sind, wo man
nicht wunscht, die erwâhnte Restriktion fur l vorauszusetzen.

Zweitens hat H. S. Vandiver [11] im Jahre 1940 schon gezeigt, daB

sogar die Gleichung (1.1) keine Lôsung in ganzen rationalen Zahlen

x, y, z, mit xyzé^O (modZ) haben kann, wenn El_z nicht durch l
teilbar ist.

2. Bezeichnungen

In der ganzen vorliegenden Arbeit bedeute immer l eine beliebige un-
2 ni

gerade Primzahl, k0 den Kôrper der rationalen Zahlen, £ e l die

primitive Z-te Einheitswurzel und k &0(C) den Kôrper der Z-ten Ein-
heitswurzeln. Die Zahlen von k bezeichne ich mit griechischenMinuskeln,
die Idéale von k mit Frakturminuskeln. Ferner bedeute r eine Primitiv-
zahl mod. l, 8 den erzeugenden Automorphismus von k, also Çs £r,
A 1 — C den Primteiler von l in k und I das Primideal von k, das l
teilt, so daB 1 V"1.

Den erzeugenden Automorphismus des GauBschen Zahlkôrpers ko(i)
bezeichne ich mit S, also i2 — i, das Kompositum von k und ko(i)
mit K k(i) ko(i, £). Die Zahlen von K seien durch griechische Ma-
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juskeln, die Idéale von K durch Frakturmajuskeln angedeutet. Im Palle
l 1 (mod. 4) seien fix und fi2 die voneinander verschiedenen Prim-
ideale von K, die I teilen, so daB I 21'£2y im Falle l 3 (mod 4)
sei fi das Primideal von K, das I teilt, so daB I fi.

Ist M eine zum Idéal 3 bzw. // eine zum Idéal {teilerfremde Zahl, wo

(3, ï) (j, ï) 1 ist, so bedeute (-^—\ den Z-ten Potenzcharakter in K,

(-V) den Z-ten Potenzcharakter in k. Fur beliebiges 3 bzw. \ sei das

IN M\Hilbertsche Normenrestsymbol in K mit I—~—I das Hilbertsche
\ 3 I*

Normenrestsymbol in k mit (—^-) bezeichnet.
\ I /*

3. Die Takagische Form
des Beziprozitatsgesetzes der f-ten Potenzreste in K

Fur zu l teilerfremde Zahlen M, N bzw. ju, v sei

{M N}E ^^ tl^L falls l 1 (mod 4)

IN M\ ' { '
{M, N}K (^jf^) ' falls l 3 (mod 4)

Fehlt bei einer geschweiften Klammer der Index, so ist inxmer das Symbol

in K gemeint:
{M,N}={M,N}K

Dann gelten, vergleiche generell Takagi [9], die Rechenregeln :

{M,M}K=1 (3.2)

{M,N}K {^,if}^
{ifIf', N}K {M, N}K- {M', N}K
{M,NN>}K {M,N}K-{M,N'}K

Fût zwei zueinander und zu l teilerfremde Zahlen M, N von K bzw.

fi, v von k ist weiter
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endlieh gemâB Satz 10, Takagi [9], S. 24, fur zueinander und zu l teiler-
fremde Zahlenpaare M, N bzw. M', N':

{Mf, N% {M, N}K falls { ^ Z ^ (mod. A1)

Analog zu Takagi [10], S. 231, fuhren wir die 2(1 — 1) BasisgrôBen
fur die Restklassen mod X1 von K :

Ku 1 — Xu (mod Xu+1) Z£-fW 1 (mod X1)

und

Z* 1 - iAw (mod X»*1), Zf"""
1 (mod X1)

ein, die zum Beispiel durch

KU=E(1- Aw) 5-f
(mod A') u 1, 2, l — 1

gegeben werden kônnen, wobei man fur u 1 direkt Kl C und fur
t* Z — 1 direkt if^ 1 + l und ifjL^ 1 + il nehmen darf. Da
dièse BasisgrôBen nur mod. X1 bestimmt sind, kann man immer erreichen,
daB sie je zu zweit zueinander teilerfremd sind; ubrigens sind sie mod X1

eindeutig bestimmt.
Wir bestimmen nun zunachst unter Anwendung der eben angegebenen

Reehenregeln fur das Symbol {M, N}K den Wert dièses Symbols fur je
zwei BasisgrôBen.

Sind u und v zwei beliebige Zahlen der Reihe 1, 2,..., l — 1, so ist
{Ku, KV}K 1, wenn u v ist. Fur u ^ v ist gemâB den Definitio-
nen (3.3) und (3.4) und Satz 5 oder 6, S.9—10, Takagi [9], falls man
Ku und Kv in k wâhlt :
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Mithin gilt allgemein, vergleiche Pormeln (6) und (7), Takagi [10], S. 231 :

U,v= 1,2,...,Z— 1 (3.5)
{KU9KV}K=1 ,u + v^l)

Fur beliebiges ^ und v aus der Reihe 1, 2,..., l — 1 wird weiter :

mithin ist dièses Symbol gleich 1, wenn u + v ^ l ist.

Ferner ist, da man Ku in h annehmen darf :

K

Da man, wie eben bemerkt, annehmen darf, daB Ku in k liegt, kann
dièses Symbol gemâB (3.5) hôchstens dann einen von 1 verschiedenen
Wert haben, wenn fur nicht négatives ganzes rationales x die Gleichung
besteht :

u+ 21 — 2u + x 1

Das bedeutet aber x u — l, welche Gleichung nicht erfiillt ist.
Folglich ist

{K K*} (K K*2} Œ K*1+S\ (K K*1"2} il
fur beliebiges u,v 1,2 l — 1. J

Ferner ist

so daB

{ Z* K*V}K 1, wenn tt + t; ^ Z ist. (3.7)

Es ist mithin nur noch der Wert dièses Symbols fur u + v 1 zu
bestimmen.

Wir bestimmen zuerst {K^, K*_1}K. Um die Betrachtungen weiter
unten nicht unterbrechen zu mùssen, schicken wir folgende Bemerkungen
voraus.
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Es sei zur Abkurzung
Z-3 J-5

und

gesetzt, so daB u{x) und g(x) ganzrationalzahlige Polynôme sind. Daim
hat das normierte ganzrationalzahlige Polynom :

[(x- l)~*~ + l-g(x- l)]*-{x- l)[l-u(x- l)]2

vom Grade l — 1 die Nullstelle £ 1 + 1 + (1 — £)2.
In der Tat wird

g(X*) + Al ¦ u{X')] [X'-1 + l ¦ gr(A2) -XI-
+ M ¦: «OT] [^ + AZ • g(X*) -XH. «(A2)]

und hier ist der zweite Faktor gleich 0.
Bedeutet daher n die absolute Norm in k, so wird

n(S) n(l + A2) [(- l)-«r + Z. ?(- 1)]* + [Z. w(-
also

i—i
n(l + p) i 4- 2(— 1) 2 z. g(-1) (mod Z2)

und daher

Folglich wird wegen:

l-l
(-l) 2
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Wir betrachten die echte Erweiterung von K zu K(\/l — A + il).
i

Bedeutet N die Relativnorm, von K (y 1 — A + i l) zu K, so wird

i
N(l - i1 + i1 • Vl - A + il) (1 - tO1 + *(1 - A + ^)

- i - il ~ i + [(i - iiy - i + q
oder

i
V (3.10)

mit ganzen rationalen A und B.
Hierbei interessiert uns nur der Wert von A. Es ist

21A (1 — i1)1 - 1 + i + (1 + i1)1 - 1 - i
also

2

GemaB Formel (3.8) wird
i-i

7 A — / 1 \ .1V xjL l il I

mithin

so dalî sich (3.9) mit Hilfe der in (3.10) definierten ganzen rationalen
Zahl A so schreiben lâBt :

Aus (3.10) und dem allgemeinen Reziprozitâtsgesetz folgt :

{1 - A + il 1 - iX - l + (A + Bi) 1}K 1

und daraus Ia8t sich jetzt vermoge (3.11) leicht der Wert von
bestimmen3). In der Tat folgt unter Benutzung der schon hergeleiteten
Formeln (3.5), (3.6) und (3.7):

8) Vergleiche zur letzten Formel und dem folgenden die Ausfuhrungen bei Takagi [10].
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Al){\
also

Aï)(l + Bil)}K x

X {K*^, (1 - ÎX){1 - l)(l +Al)(l + Bil)}K 1

d.h.

oder

Folglich wird wegen Satz 5, S. 9—10, Takagi [9]

also vermôge (3.11):

/ ïT* W* \ /"2 f'—2(J—1) /o i cy\|Aj jfi.^ j jK— ' S • \** * *")

Aus dieser Formel erhâlt man jetzt aber sofort denWert von {K^K^^k
fur jeden Wert von u.

Es sei zunâchst im folgenden l<u<~, u + v= l, also~<v<l— 1

Es sei ferner A eine beliebige ganze Zahl von K mit der Eigenschaft

A A (mod A2)

und wir betrachten die echteKôrpererweiterung von K zu K ([/1 — iA).
i

Bedeutet N die Relativnorm von K(\/1 —i A) zu K, so wird

i
und daher ist die Zahl (1 — l/l — iA)1, falls l 1 (mod 4) ist, genau
durch £t und £2, falls Z 3 (mod. 4) ist, genau durch S und dureh
keine hôhere Potenz dieser Idéale teilbar. Es wird mithin :

J\T(1 - t«i-t»(i - VT^ÏAy) 1 - i'<i-«> Z - i/l» (mod A1)

Folglich wird :

{1 - iA 1 — i"1-*» Z — %AV}K 1 (3.13)
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Insbesondere wird erstens fur A A :

{1 — t'A 1 - ikv - ilil~v) l}K=l (3.14)

Zweitens wird fur ein durch

1 - %A (1 - i A) K*u (mod A')

bestimmtes ganzzahliges A :

1 - %A (1 - i A)(l - iAw) (mod A-+1)

also
1 — iA 1 — i A — t A« (mod Aw+1)

folglich
(mod

mithin fiir geeignetes ganzes F aus K :

A A(l + Aw-X + TA") (mod A1)

Daher wird

^1* Av(l + vlu-x) Av + ^A'-1 Av - vï (mod A')

Folglich wird nach (3.13):

{(l-tA)JC*, l-tA^-t^-^ï + tvI^ =1,
also

{(1 - i A) Kl (1 - t A* - •™-*> ï) (1 + »vO}« 1 •

Wegen (3.14) wird:

{1 — iA, l + ivl}K{K*u, i-Uv-iiti-v)l}K{K*u, l + ivl}K
und weiter :

{1 - i A, #:_i}£ {Kl 1 - t A^z «, 1 - •'«-> Z}£ «, JCÎ^}i

Wegen (3.6) und (3.7) wird

und mithin wegen (3.12):

6 Commentarii Mathematici Helvetici °x



Da also

{Kl, K*V}K Ç"2v fur 1 <£ m < - u + v l

ist auch

{K*v, Kl)K C2V ftir | < v ^ ï — 1 u + v l

Mithin ist

l* }U V
1

u, v= 1,2, l- 1 (3.15)

Ist allgemein fur zu l teilerfremdes M :

(3.16)

so erhâlt auf Grund der Formeln (3.5), (3.6) und (3.15) das Reziprozi-
tâtsgesetz, falls N zu M und zu l teilerfremd ist, die Form :

i—i i-i ^ +-2 2 wGw(M)Gi-w(N) + 2 S ™Ow(M)Gl_w(N)
{M,N}K Ç "-* "-* (3.17)

Wie man sofort erkennt, wird weiter

i-i* i-i*

und hiebei ist

l—l* l-l*
g, ^* (3.18)

MM2, NN*\ =C w=1 (3.19)

C w=1 (3.20)
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4. Die Kummer sche Form

fur das Reziprozitâtsgesetz der /-ton Potenzreste in K
Es sei M eine ganze Zahl von K, die der Kongruenz M 1 (mod A)

geniigt. Setzt man

if - c0 + Cl f + c2 C2 + • • •+ cM C<-2

wo die cu, te 0,l,2,...,Z — 2, ganze Zahlen des GauBschen Zahl-
kôrpers sind, so ist also

c0 + cx + c2 H h Cj_2 1 (mod l)

Setzt man daher

x (+
so gilt fur dièses ganzzahlige Polynom des GauBschen Zahlkôrpers vom
Grade l — 1, dessen freie Variable wir mit | bezeichnen, um in spâteren
Formeln eine Verwechslung mit der GrôBe x der Gleichung (1.1) zu ver-
meiden :

Jf (1) 1 M(C) M M2(l) 1 M*(Ç) M2

Fur réelles v fiihren wir die beiden reellen Funktionen4)

F {M ; v) \ log M (e") M*(e")
und

-F*(M ; v) arctg
ein, so daB

log if (ev) ^(if ;v) + iF*(M;v)

und setzen fur w =• 1,2,...,Z— 1 :

Die ersten l — 1 GrôBen sind ganze rationale Zahlen, die zweiten l — 1

GrôBen sind von der Form : i multipliziert mit einer ganzen rationalen
Zahl.

4) Die zweite dieser Funktionen ist zwar unendlich vieldeutig, aber wir brauehen im
folgenden ûberall nur ihre Ableitungen nach v,

83



Sind die Koeffizienten von v9 v2,..., v1"1 der beiden Potenzreihen
F(v) und G(v) Zahlen des GauBschen Zahlkôrpers mit zu l teilerfremden
Nennern, und ist jeder der Koeffizienten von v, v2,..., vl~x der einen
Reihe je kongruent mod. l zu dem entsprechenden der andern Reihe, so

sehreiben wir

Wird die ganze Zahl M von K mit der Kongruenzeigenschaft M 1

(mod. X) auf irgendeine Weise in die Gestalt

M a0 + ax f + a% C2 +• • •+ at V

gebracht, wo a0, al9 az,..., at ganze Zahlen des GauBschen Zahlkôrpers
sind, so wird im allgemeinen das Polynom

M (f a0 + at | + a212 +... + atV

nicht mehr der Gleichung

genûgen, aber jedenfalls der Kongruenz

^(1) 1 (mod. I)
und es ist

wo Q(ic) ein Polynom von x ist, dessen Koeffizienten ganze Zahlen des

GauBschen Zahlkôrpers sind.
Mithin wird

und

log M (ev) ^ log M (ev) -[
V

Fûhrt man analog die beiden reellen Funktionen

F(M ; v) | log M (ev) ~MZ (ev)

und
\ aïs /

ein, so daB
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Jog M («•) F (M ; v) + »**(lf ; v)

so folgt fur w 1, 2,..., l — 2 :

und

îff(l)-^^(1)

Fur Jf iV^ 1 (mod. A) und w?= 1, 2,..., Z — 1 erkennt man
leicht :

1. Ist M N (mod. A1), so ist

log M(ev)o±logN(ev)
und daher

l l (modZ).

2. Es ist log M(ev)N(ev) ^ log M (e«) + log JV(e»), falls

und daher

; L*w(MN) L*w(M) + L*w(N) (mod l) •)

3. Fur m 1,2,..., Z — 2 wird :

r«« LJM) ; ^ (Jfs") r»« L;(lf) (mod I)

Da, wie man auf iibliche Weise nachrechnet, fur «=1,2,...,/— 1,
u>= l,2,...,l- 1:

LW(KU) L*w (Ku) LW(K*U) L*JK*U) 0 (mod I), u^w
femer

L*JKW) LW(K*) 0 (mod l)

5) Auf Gnind der letzten beiden Forrneln sind die Kummer&chen Exponenten LW(M)
und L1w (M) (mod. l) defîniert fur irgendeine ganze oder gebrochene Zahl M des Strahles
M 1 (mod A).
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dagegen :

LW(KW) (- l)-1 w L*(K*W) *(- l)-1 w (mod l)

so wird, vergleiche Formel (3.16) ftir M 1 (mod A) :

\w-i
OW(M) ~l J LW(M) (?;(if) - i{ J L*W{M) (mod l)

(4.1)

Folglich wird, vergleiche Formeln (3.19) und (3.20), fur zueinander
teilerfremde if, iV mit M N l (mod X) :

2 S (-l)wLto(M)
| MM*,NN*\ =f —i

und

MM2, NNH

if ^i^r-ySi~1)W L*w{M)L*Lw{M)L~»i

und damit wegen (3.18):

i—x i—i * *
2 JS (-l)tt;XM,(M)l<î_w,(^) + 2 S {~l)w L (M)L (N)

5. Das Symbol {M9N} fur Einheiten und l-te Idealpotenzen von K

Sind if und N Einheiten,

oder eine der beiden GrôBen eine Einheit und die andere eine zu l
teilerfremde l-te Idealpotenz,

oder if und N zu l teilerfremde l-te Idealpotenzen und die absolute
Norm von M zur Relativnorm von N in bezug auf k teilerfremd,

oder M N eine zu l teilerfremde Z-te Idealpotenz und die von
MMS verschiedenen zu MM2 absolut konjugierten GrôBen zu MM2
teilerfremd,

so wird gemâB (3.3) und (3.2):

f ^^.^-li.-O.!,» 1-2.
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Nun ist entsprechend den Definitionen fur Ku und K*u und Formel
(3.16):

Msn Ml2sn Krn°l(M) Kr%

folglich wird gemâB (3.19) und (3.20):

0 (mod l)

0 (mod l)

1

(M)
(modA'),

i—i

Da die Déterminante

1 1

r r2

T2 f4

[/-!) (/-2)

=|=0 (modZ)

ist, so wird

also auch fiir M N 1 (mod X) gemâB (4.1):

LW(M) Lt_w(N) 0 (mod 0|
(5.1)

Speziell wird fiir Jf JV 1 (mod X) mit der fur diesen Fall oben
erwâhnten Beschrânkung fiir M :

w= 1,2, .,1 — 1 (5.2)

Im ûbrigen ist klar, daB wenn M eine Einheit oder eine zu l teiler-
fremde Z-te Idealpotenz ist, gemâB (3.3)
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also flH(I) 0 (modl), und falls M 1 (mod A) ist :

O (modZ) (5.3)
ist.

6. Die Kummer schen Exponenten fiir die Einheit H
Wir schicken voraus, daB wir Vorzeichen und Indexbezeichnung der

Bernoullischen und Eulerschen Zahlen so wâhlen, daB

so daB also auBer Bt ^ aile Bm mit ungeradem Index m gleich 0

sind, dagegen Bo 1, 2?2 ^, J54 — ~, usw. Aus Gleichung (6.1)
folgt ûbrigens nach Division durch v und Intégration nach v sofort, daB

Ferner sei

so daB aile Em mit ungeradem Index m gleich 0 sind, dagegen EQ 1,
E2 — 1, J74 5, jE6 — 61 usw. Durch Differentiation nach v er-
kennt man die Richtigkeit der Formel

(oo
vm jj. \

2 Em-i—r + — (6.4)
w i w! 2 /

bei geeigneter Wahl der Détermination der auf der linken Seite dieser
Gleichung stehenden Funktion, wo unter log(l + e2v) der Hauptwert
verstanden sein soll.

Fur die Einheit6)

6) Fiir den zweiten Faktor vergleiche Basse fl], p. 112/113.
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also

und

log H(ev) 2(i!2 - 1) log (1 - ie 2 +

+ (P - 1) 2 log (1 +6» + e2v + • • • + ég~1)v)
0=3

Es wird auf Grund der Formel (6.4)

1 — 1 pQV 1 oo /7-i-l\M> i)Ws- 21ogT--log(l + e<!+1") + ii;£1,/41 .1-
H=3 ^ — 1

M> 1 \ " I W *

oder

iog + i2e» - 1 se«-lT,,t 2" w

mithin unter Benutzung der Formel (6.2):

Daher ist fur m> 1, 2,..., l — 2 :

und, vergleiche die Bemerkung am Ende von Abschnitt 5

£i-i(#) 0 .(mod. l)

ferner fur tu 1,2,..., £ — 1 :

7) Will man eine Einheit haben, bei welcher bei der Kummerschen Entwicklung nur die

Eulerschen Zahlen erscheinen, so kann man zum Beispiel nehmen.
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7. Die erste Form der Kummer sehen Exponenten fur die Idealpotenz^

Wenn die Gleichung (1.2) eine Lôsung in ganzen rationalen nicht ver-
schwindenden Zahlen X, Y, Z hat, so hat sie auch immer eine solche

Lôsung, fiir welche X, Y und Z je zu zweit zueinander teilerfremd sind.
Wir nehmen daher in der Folge zum indirekten Beweise unseres Satzes
in Abschnitt 1 an, da8 die Gleichung (1.2) eine Lôsung besitzt, fur welche
die ganzen rationalen Zahlen X, Y, Z je zu zweit zueinander teilerfremd
und (erster Fall des groBen Fermatschen Satzes aile drei zu l
teilerfremd sind. Dann sind auch aile 21 Faktoren der linken Seite der
Gleichung

fl(X + iÇ™ Y) II(X - iÇ*Y) X*1 + Y*' Z21

zueinander teilerfremd, mithin zueinander und zu l teilerfremde l-te
Idealpotenzen von K. Denn wenn ein Primideal ^J von K in zwei ver-
schiedenen dieser 21 Faktoren aufgehen wiirde, so wâre zunachst ^î ein
Teiler von Z. Von den beiden Zahlen X und Y ist eine gerade, die andere
ungerade und Z ungerade. Also wûrde S$ jedenfalls weder Teiler von 2

noch von l sein. S$ wûrde auch die Differenz der beiden Faktoren, mithin
auch Y, und daher auch X teilen, was einen Widerspruch ergibt.

Insbesondere ist auch
+ iÇYA X + iY

eine l-te Idealpotenz von K, deren Zâhler und Nenner zu l teilerfremd
sind.

Es wird X 4- i£Y

ferner

also
dF(Â; v)

dv X2 + 72 e2*

und mithin fur w l, 2,.. .,1 — 1:

f dwF(J; v)

(7.1)
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wo Pw(i;rj) ein homogènes Polynom vom Grade w in £ und rj mit
ganzen rationalen Zahlkoeffizienten ist. Die Bezeichnung fur dièse
Polynôme stimmt genau ûberein mit der von Mirimanoff [4], S. 46—47.

Fur w 1, 2,..., Z — 1 ist folglich :

Pw (X2 Y2)
LW(A) 2"-* ,vl 'va^ (mod l)

Weiter wird

F*ÇÂ] v)

also
dF*(Z";v) XF

dv ~ X2e-+F2e» ' (7'2)

Vertauscht man im Ausdrucke auf der rechten Seite der Gleichung
(7.2) X und F und gleichzeitig v mit — v, so ândert er sich nicht. Mithin
ist filr ungerades w die GrôBe

(7.3)

das Produkt von AT und eines homogenen Polynoms in £ X2 und

rj Y2, das in £ und r\ vom Grade w; — 1 und in £ und 77 symmetrisch
ist. Fur gerades w ist der Ausdruck (7.3) das Produkt von XY(X2 — F2)
und eines homogenen Polynoms in £ X2 und rj F2, das in £ und rç

vom Grade w — 2 und in £ und 77 symmetrisch ist.
Setzt man fur w — 1,2,...,Z — 1 :

W*(Z;*;)1 X QW(X2,Y2)

und

so ist q __ ^2M7q /j ^
Setzt man weiter ^

so ist ftir w 1,2,...,Z— 1:

X Ql(t)
Y

und

(mod Z)
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Qn(t) ist ein ganzrationalzahliges Polynom vom Grade w in t. Fur un-

gerades w ist Q%,(t) durch t teilbar und —-— ist ein symmetrisches

Polynom in t vom Grade w -— 1. Fur gerades w ist Q^(t) durch e(l — t)

teilbar und —~—— ein symmetrisches Polynom in t vom Grade w — 2
t (1 — î)

Die Rechnung liefert

Q*(t) t(l-t) (1 -236« + 1 446«2 - 236e3 +t*)

Q*(t) t(l—t) (1-2 178^+58 479e2-201 244^ + 58 479J4-2 I78t5 +t«)

QxQ{t) t(l-~t) (1-19672^+1 736 668e2-19 971 304*3 +

+ 49 441 990e4 -19 971 304«5 + 1736 668e6-19 672e7 +e8)

8. Die zweite Form ier Kummer sehen Exponenten fiir die Idealpotenz A

In A —^"i—^v~ se^zen w^r iïte die beiden ganzen rationalen und

zu l teilerfremden Zahlen X und Y :

und nehmen in der Folge wesentlich an (erster Fall des groBen Fermat-
schen Satzes da8 î72^ — 1 (mod. l) ist. GemâB den Formeln (7.1)
und (7.2) wird :

Lx (A)
1 + y2

und L\ (A) iyqjyi- (mod ï)

Im folgenden môge daher ti; 2,3,...,Z—l sein.
Zur Abkûrzung setzen wir vorubergehend

iT
~ 1+iT '

so daB

U-l
wird und

A —; =1 ; ; —
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Es wird

und formai8)

log T(e») log [1 - 17(1 - «•) ] - f] — Î7n (1 - e«)n
n=l w

- 2 ¦£¦ 2

Mithin wird fur w=2,3,...,Z — 1:

i W"
,_o „=!

In der Summe iiber m verschwindet der Summand fur m 0
und die innere Sumnie verschwindet fur n> w. Folglich wird ftir

(8.i)

Fur w 2, 3,.. .,1 — 1 betrachten wir den Ausdruck :

(i + Ît)> M(~ir mV^ Tm " (8 '2)

Fûhrt man in ihm die GrôBe U ein, so wird er gleich

i—i

2 mw~1Um(U- l)l-m

m=l

l-l l-m il __ \

Summiert man hier zuerst uber m und dann xiber h, so wird der Aus-
druck (8.2) gleich

A=l w=l \ ^ / m=l

8) Vergleiche zum folgenden die Ausfûhrungen auf S. 116/117 bei Hasse [1].
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Der Koeffizient von Ul verschwindet mod l. Setzt man noch h l — n,
so ist der Ausdruck (8.2) mod. l gleich

Nun ist mod Z

n /Z-mXj^ - m) (l — m — 1) • • • (l — («. — 1))
m \ i — n / m (n — m)

(_ i)«-m
n m{-m + 1) • • • (n - 1)

(-1)»-

m (n — m)

n(n — 1) (n — 2) (m + 1)

(n — m)

Der Ausdruck (8.2) wird mithin modZ

l-l rjn n

Folglich wird gemâB (8.1) und (8.2) fur w 2, 3,..., l — 1 :

(8.3)

Trennt man in der letzten Formel réelles und imaginâres und setzt wie
in Abschnitt 7 y2

/7T2 f

so folgt fur w 2, 3,..., l - 1 :

und

wo

y« W 2 (- i)"1"1 mUI"1 <m (8 • 4>
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die von Mirimanoff [4] S. 57, Formel (12) eingefûhrten Polynôme sind
und j

9?*(£) ^ (—l)m~1(2m -— l)w-1tm (8.5)
ist. m=1

9. Beweis des Hauptsatzes

Aus den im Eingang zum Abschnitt 7 gemachten Annahmen folgt ge-
màfi Abschnitt 5, vergleiche Formeln (5.1) und (5.3), da8 fur w l,
2 i 2 •

LW(A) L^W(H) 0 (modl)
ferner

Ll_1(A) O (modl)

endlich fur w=l,2,...,Z — 1:

O (modl)

Gemàfi Abschnitt 6 sind dièse Kongruenzen, da es immer auf einen zu l
teilerfremden Faktor nicht ankommt, âquivalent zu den folgenden :

Lw(A)-Bt_w O (modl), 10=3,5,...,1-2 (9.1)

iw(i) O (modl), (9.2)

K(A).El^1__w 0 (modl), u;= 2,4,...,ï— 1 (9.3)

Die Kongruenzen (9.1) setzen auf jeden Fall voraus, daB Z>3 ist, was
wir in der Folge immer annehmen.

Beachtet man, daB X2 + Y2 jedenfalls zu l teilerfremd ist, so ergeben
sich aus den Formeln des Abschnittes 7 die zu den Kongruenzen (9.1)
âquivalenten Kongruenzen :

PW(X\ 7*).JB^ O (modZ), w 3, 5,..., l - 2 (9.4)

Die Kongruenzen (9.4) entsprechen genau den Kongruenzen (2), S. 47

in der Arbeit [4] von Mirimanoff.
In der Folge beachte man, daB £e|e 0 (mod l) ist, ferner ist die Kon-

gruenz t — 1 (mod l) nicht môglich, da sonst Z 0 (mod l) wâre

gegen Annahme. Mithin sind die Kongruenzen (9.1) und (9.2) gemâB
Abschnitt 8 âquivalent zu den folgenden :
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Vt* 0 (moàl) «0 3,6,...,*-2, (9.5)

ç>i-i(O 0 (modï) (9.6)

Die Kongruenzen (9.3) sind aquivalent zu den folgenden :

sO (modZ) t*=2,4,...,ï-l (9.7)

Die Polynôme <pw\t) und q>l,{t) sind in den Formeln (8.4) und (8.5)
definiert.

Endlich sind die Kongruenzen (9.3) gemâB Abschnitt 7 aquivalent zu
den folgenden :

Qt(t)'Et^w O (modl), t* 2,4,...,l-l (9.8)

denn X und Y sind nach Annahme zu l teilerfremd.
Der in Abschnitt 1 behauptete Satz wird mithin bewiesen sein, wenn

wir zeigen kônnen, da8 die Kongruenz Q * (t) 0 (mod l) nicht môglich
ist, falls w 2, 4, 6, 8, 10 ist.

Aus den Ausfiihrungen von Mirimanoff [4], S. 48 und 51, geht aber
hervor, da8 mit einer Lôsung t r, t^ 0 (mod l), t ^e — 1 (mod ï)
der Kongruenz

Q*(t) O (mod.I)

dièse Kongruenz notwendigerweise auch die Lôsungen

T> r ' ' 1 + r * r ' 1 + t
haben mu8.

Dièse sechs Wurzeln brauchen mod l nicht notwendigerweise vonein-
ander verschieden zu sein. Man hat folgende drei Fâlle zu untersuchen :

I. Die sechs Wurzeln bilden im ganzen nur zwei mod l inkongruente
Wurzeln, wenn t2 + t + 1 0 (mod l) ist, und dieser Fall kann nur
eintreten, wenn 1 1 (mod 6) ist.

Nun hat Pollaczek [6] gezeigt, daB wenn die Kongruenzen (9.5) und
(9.6) gelten, dieser Fall nicht eintreten kann.

II. Dièse sechs Wurzeln bilden im ganzen genau nur drei mod l
inkongruente Wurzeln, wenn t mod l kongruent einer der drei Zahlen 1,

-2, -\ ist.
Mithin muB t — 2 (mod. l) Wurzel der Kongruenz

0 (mod l)
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sein. Fur w 2 ist nichts zu beweisen. Fur die weiteren Werte von w

hat der Quo

Zerlegung :

hat der Quotient w fiir t — 2 die Primzahlpotenz-Produkt-

w= 4: 72

w 6: 8161

w= 8: 983-2903

w 10: 7-109-173-12959

Aber fiir dièse Primzahlen hat die Gleichung (1.1), also a fortiori (1.2)
inx ersten Falle des grofien Fermatschen Satzes keine Lôsung9).

III. Wenn dièse sechs Wurzeln mod. l inkongruent sind, so muB das

Q*(t)
Polynom —-—- mod l durch ein normiertes Polynom von der Form

t(l —t)

1 + %t + at2 + (2a - 5)*3 + a*4+ 3*5 + t« (9.9)

teilbar sein, wo a ganzrationalzahlig ist und a ^= — f (mod l), ferner,
wenn 1=1 (mod 6), auch a ^= 6 (mod l) ist. Dieser Fall kann hôch-
stens fur w ^ 8 eintreten.

Fiir w 8 wiirde — 2178 3 (mod. l), mithinmiifite, da l 3 zu
verwerfen ist, l 727 sein. Fiir l 727 wiirde a 319 (mod l),
also a =^ — J (mod l) und a ^= 6 (mod l) ; aber die Kongruenz

2 a — 5 135 (mod. 727)
ist nicht erfiillt.

Fiir w— 10 miiBte w aufier einem Faktor von der Form (9.9)t(l — t)
mod. l noch einen Faktor von der Form 1 + b t + t2 mit ganzrational-
zahligem b haben (welcher Faktor dann e|e 0 (mod l) wâre Aus den
Koeffizienten von t und t2 des entstehenden Polynoms vom 8. Grade
in t wiirde aber folgen, daB

b — 19675 (mod l) und a 1795692 (mod l)

9) Dies erkennt man auf Grand bekannter Kriterien entweder sofort direkt oder daim
folgt es jedenfalls aus den Arbeiten von 15. Rosser [7] und [8] und D. H. Lehmer und Emma
Lehmer f3], sowie natûrlich frûherer diesbezûglicher Arbeiten anderer Autoren.

Q7
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Eliminiert man das Produkt ab aus den Koeffizienten von tz und <4, so
mûBte

— 2 a — 56 89384594 (mod l)

sein. Das wûrde aber bedeuten, daB

37-13.340211 =0 (mod l)

Aber fur dièse Primzahlen hat die Gleichung (1.1), also a fortiori (1.2)
im ersten Falle des groBen Fermatschen Satzes keine Lôsung.

Damit ist aber der Beweis unseres Satzes in Abschnitt 1 geleistet.

10. Eine weitere notwendige Bedingung

fur die Lôsbarkeit der Gleichung (1.2)

Mirimanoff hat in seiner Arbeit [4] noch eine weitere notwendige
Bedingung fur die Lôsbarkeit der Gleichung (1.1) im ersten Falle aufge-
stellt. Wir geben zum Schlusse die entsprechenden Bedingungen flir die
Lôsbarkeit der Gleichung (1.2) im ersten Falle an.

Aus den Formeln (5.2) und (5.3) folgt, falls man M A setzt und
die zweite Form der Kummersohen Exponenten fur die Idealpotenz A
gemâB Abschnitt 8 einfûhrt :

j w=2 3 lui
<pl_1 (t) 0 (mod l)

l iVwWvï-wV) ° (mod l) > w= 2,3, .,—-— ^1Q 2j
(p^x(t) 0 (mod l)

Dabei sind die Polynôme <pw(t) und <p^(t) in den Formeln (8.4) und
(8.5) definiert. Um Relationen zwischen diesen Polynomen aufzustellen —

worauf ich hier nicht weiter eingehen will — ist môglicherweise die Relation

(8.3) geeigneter.

(Eingegangen den 17. Juni 1949.)
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