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Eulersche Zahlen

und grofler Fermat’scher Satz

Von Max Gur, Ziirich

1. Inhaltsangabe
D. Mirvmanoff hat im Jahre 1905 in einer Arbeit [4]') gezeigt, daB3
die Gleichung 2t oyl =2l (1.1)

wo [ eine ungerade Primzahl bedeutet, keine Lésung in ganzen rationalen,
zu ! teilerfremden Zahlen z, y und z hat, wenn wenigstens eine der
Bernoullischen Zahlen B, ,, B, ;, B, , und B,_g nicht durch ! teilbar ist.

In einer weiteren Arbeit, auf die mich Herr Professor H. S. Vandiver
in freundlichster Weise aufmerksam machte, wurde diese Aussage von
T. Morishima [5] im Jahre 1932 auf B, ,, und unter der Voraussetzung,
dafl 20579903 - 75571 == 0 (mod. l) ist, weiter auf B,_,; ausgedehnt.

Bekanntlich hat aber B. Rosser [7] im Jahre 1939 gezeigt, dall der
erste Fall des groBen Fermatschen Satzes nur moglich ist, wenn [ =
8332403 und in einer weiteren Arbeit [8] schon 1940, wenn [ > 41000000
ist, so daf} die Restriktion beziiglich B,_,; bei der eben erwéhnten Arbeit
von T'. Morishima dahinféllt.

Weiter zeigten D. H. Lehmer und Emma Lehmer [3] im Jahre 1941,
daBl der erste Fall des groBen Fermatschen Satzes nur moglich ist, wenn
1>253747889 ist.

Mit Riicksicht auf den engen Zusammenhang zwischen den Bernoulli-
schen und den Eulerschen Zahlen kann man sich fragen, welche Bedeu-
tung die letzteren fiir den groflen Fermatschen Satz haben. Im folgenden
zeige ich, dall wenn die Gleichung

X2l 4 Y2l = Z2 (1.2)

eine Losung in ganzen rationalen zu [ teilerfremden Zahlen hat, zu den
Kummer-Mirimanoffschen Kongruenzen in einer der drei Formen?2)

1) Vergleiche die entsprechenden Nummern im Literaturverzeichnis am Ende der vor-
liegenden Arbeit.
%) Vergleiche die Formeln in der vorliegenden Arbeit in Abschnitt 9 und 10.
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(9.4) bzw. (9.5) und (9.6) bzw. (10.1) ganz analoge Kongruenzen treten,
némlich (9.8) bzw. (9.7) bzw. (10.2), wobei in den beiden ersten Formen
analog die Eulerschen an Stelle der Bernoullischen Zahlen auftreten.

Ferner beweise ich den zum erwéhnten Satze von Mirimanoff analogen
Satz : Die Gleichung (1.2) hat keine Losung in ganzen rationalen zu !
teilerfremden Zahlen X, ¥ und Z, wenn wenigstens eine der Eulerschen
Zahlen E, ,, E, ,, B, ,, B, 4 und E,_,, nicht durch [ teilbar ist.

In bezug auf die Teilbarkeit der Zahlen X, ¥ und Z durch 2 beachte
man, dal wenn fiir (1.2) eine Losung in nicht verschwindenden ganzen
rationalen zueinander teilerfremden Zahlen existiert, notwendigerweise
eine der beiden Zahlen X und Y gerade, die andere und iibrigens auch Z
ungerade sind.

Zu unserem Satze sind aber sofort zwei Bemerkungen zu machen.

Erstens hat E. . Kummer [2] in einer im Oktober 1835 geschriebenen
und im Jahre 1837 publizierten Arbeit schon gezeigt, daB der erste Fall
bei der Gleichung (1.2) héchstens dann méglich ist, wenn [ = 1 (mod 8)
ist. Ich werde aber im folgenden von dieser Erkenntnis Kummers keinen
Gebrauch machen, d. h. I soll in der vorliegenden Arbeit eine beliebige
ungerade Primzahl bedeuten diirfen, da sich mir eine Fallunterscheidung
nicht aufdringte, und eine Reihe von Relationen an sich von Interesse
und vielleicht bei anderen Untersuchungen von Nutzen sind, wo man
nicht wiinscht, die erwidhnte Restriktion fiir ! vorauszusetzen.

Zweitens hat H. 8. Vandiver [11] im Jahre 1940 schon gezeigt, daB
sogar die Gleichung (1.1) keine Losung in ganzen rationalen Zahlen
x, ¥, 2, mit zyz==0 (mod!) haben kann, wenn E, ; nicht durch !
teilbar ist.

2. Bezeichnungen

In der ganzen vorliegenden Arbeit bedeute immer [ eine beliebige un-
27

gerade Primzahl, k, den Korper der rationalen Zahlen, { = el die
primitive [-te Einheitswurzel und k = k,({) den Korper der l-ten Ein-
heitswurzeln. Die Zahlen von k bezeichne ich mit griechischen Minuskeln,
die Ideale von £ mit Frakturminuskeln. Ferner bedeute r eine Primitiv-
zahl mod. 7, S den erzeugenden Automorphismus von k, also 5 = ¢{r,
A= 1 — ¢ den Primteiler von ! in £ und [ das Primideal von k, das 1
teilt, so daB I = [+,

Den erzeugenden Automorphismus des GauBlschen Zahlkorpers kg (¢)
bezeichne ich mit X, also ¥ = —4, das Kompositum von k und k,(z)
mit K = k(¢) = k,(2, {). Die Zahlen von K seien durch griechische Ma-
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juskeln, die Ideale von K durch Frakturmajuskeln angedeutet. Im Falle
I=1 (mod.4) seien £, und L, die voneinander verschiedenen Prim-
ideale von K, die [ teilen, so dafl [ = £,-8,, im Falle /] =3 (mod 4)
sei  das Primideal von K, das [ teilt, so dal [ = &.

Ist M eine zum Ideal J bzw. x eine zum Ideal i teilerfremde Zahl, wo

(3,1 = (j,I) = 1 ist, so bedeute (£> den I-ten Potenzcharakter in K,
K

3
(—‘t{—) den Il-ten Potenzcharakter in k. Fiir beliebiges J bzw. j sei das
k
Hilbertsche Normenrestsymbol in K mit (l’s—ﬂ{) , das Hilbertsche
K

Normenrestsymbol in & mit (v,l ) bezeichnet.
Jk

3. Die Takagische Form
des Reziprozititsgesetzes der I-ten Potenzreste in K

Fiir zu [ teilerfremde Zahlen M, N bzw. u, v sei

{M,N}Kz(N’M) <NM> , falls 7 =1 (mod 4)
& )\ 8 ) o
(M, N}y — (N EM)K , falls 7 = 3 (mod 4)

b= (), -

Fehlt bei einer geschweiften Klammer der Index, so ist immer das Sym-
bol in K gemeint:
{(M,N}= {M, N} .

Dann gelten, vergleiche generell Takag: [9], die Rechenregeln:

M, M} =1 (3.2)
{M,N}g = {N’M}El

{MM', N}g = {M,N}g-{M', N}g

{M,NN"}g = {M,N}g-{M, N'}g .

Fiir zwei zueinander und zu ! teilerfremde Zahlen M, N von K bzw.
W, v von k ist weiter
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{M,N}g = (%[4)1{ (%——)~1 (3.3)

K

(5.5} = (___!L)k (_L)'l, (3.4)

(4 JZ2 N

endlich gemdB Satz 10, Takagt [9], S. 24, fiir zueinander und zu ! teiler-
fremde Zahlenpaare M, N bzw. M’', N':

M=M

{(M',N}g = {M,N} , falls{N, —_N

} (mod. A}) .
Analog zu Takagi [10], S. 231, fithren wir die 2(I — 1) BasisgroBen
fir die Restklassen mod A! von K:

K, = 1—2*(mod A*#1) , K5-™ =1 (mod 4%
und w=1,2,...,1—1,

* . au usl *S-1¥% )
K, =1—1%@mod A*+}), K, 1 (mod A%

u

Il

ein, die zum Beispiel durch

_pu St

K,=(1— v §—rt
. §l—1 __,l—1

K= (1 —ii% §—rd

(modd), u=1,2,...,1—1,

gegeben werden kénnen, wobei man fiir » = 1 direkt K, = { und fiir
wu=1—1 direkt K, ; =1+ 1 und K; ;=1 + il nehmen darf. Da
diese Basisgrofen nur mod. A! bestimmt sind, kann man immer erreichen,
daB sie je zu zweit zueinander teilerfremd sind ; iibrigens sind sie mod A
eindeutig bestimmt.

Wir bestimmen nun zunéchst unter Anwendung der eben angegebenen
Rechenregeln fiir das Symbol {M, N}y den Wert dieses Symbols fiir je
zwei Basisgroflen.

Sind » und v zwei beliebige Zahlen der Reihe 1,2,...,1 — 1, so ist
{K,,K,}Jy =1, wenn u = v ist. Fir « # v ist geméll den Definitio-
nen (3.3) und (3.4) und Satz 5 oder 6, S.9—10, Takage [9], falls man
K, und K, in k£ wihlt:

_ (K, (Kv -1 _ [(K,\*[K,\7?__ 2
{Ku’Kv}Kﬁ(Kv)K\Ku)K —(Kv)IC(Ku)k ——-{Ku,Kv}k '

76



Mithin gilt allgemein, vergleiche Formeln (6) und (7), Takag: [10], S. 231 :

{Ky, K }g = % u+v=1
w,v=1,2,...,l—1. (3.5)
(K Kg—1 ,utv£1

Fir beliebiges v und » aus der Reihe 1,2,...,1 — 1 wird weiter:
{K *S}K _ {Ku’Kv}K {Ku’Kv}Ku+v ’

mithin ist dieses Symbol gleich 1, wenn u + v £ 1 ist.

Ferner ist, da man K, in ¥ annehmen darf:

{Ku”K;—u}%{ = {Ku’K’lk——u}K : {Ku’Kjfu K= {‘K K*1+2}K =

—u

sl—1__,1—1

—ypl—u T -
Ku’(1+a2l——2u) S—ri—u } .
K

Da man, wie eben bemerkt, annehmen darf, daB K, in k liegt, kann
dieses Symbol gemifl (3.5) hochstens dann einen von 1 verschiedenen

Wert haben, wenn fiir nicht negatives ganzes rationales x die Gleichung
besteht :

w421 —2ut+x=1.

Das bedeutet aber x = u — I, welche Gleichung nicht erfiillt ist.
Folglich ist

(K, Kog = {K, K g = {K, K3 Ty = (K, K g =1

(3.6)
fir beliebiges v, v =1,2, ...,1—1 .
Ferner ist
(K Ky = (KoL KoY — (KL Ko™,
so daB
{K,,K)}y =1, wenn u+4v #1 ist. (3.7)

Es ist mithin nur noch der Wert dieses Symbols fiir v + v =1 zu
bestimmen.
Wir bestimmen zuerst {K;, K, ,}z. Um die Betrachtungen weiter

unten nicht unterbrechen zu miissen, schicken wir folgende Bemerkungen
voraus.
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Es sei zur Abkiirzung

1-3 1—5

;.u(x)z(ll)xT+(;)xT+--°+(z_l_4)x+<l12)

Vs
und
1—3 1-5

z'.g(x):(é)x7+<i)x7+...+(l_l_3)x+(l_fl) (3.8)

gesetzt, so dafl u(r) und g(x) ganzrationalzahlige Polynome sind. Dann
hat das normierte ganzrationalzahlige Polynom :

—1

[(x—1)2 +1l.g(x—1]2— (. — D[l u(x — ]2

vom Grade 7 — 1 die Nullstelle £ =1+ 22=1+ (1 — ¢)2.
In der Tat wird

f(& — l)z_?-f- L-gé — D2 —(E— D[l -uE —1)]?
— A T g (] — B[ w(]?
=[A+1-g(2) + AL-u(@@)] [AF +1-9(22) — AT u(2?)]
= [P AL g() 4 2L u(®)] [A 4 AL g(8) — 21 ()]

—_—%[(A—F 1) — 1] [(A — 1)! 4 1]

und hier ist der zweite Faktor gleich 0.
Bedeutet daher n die absolute Norm in &, so wird

1—1
n(E)=n1+2)=[(-1)2 +1-g(=DP2+[l-u(-1)],
also
-
n(l4 A)=1+4+2(—1)2 1.-9(—1) (mod )
und daher
1—1
n(1+;2)*152(~1)2 -g(—1) (mod I) .
Folglich wird wegen:
n(14 A2)—1
¢ —r
(1 + 22
1-1
¢ _2(=1 % (=1
(7). = ¢ . 3.9)
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y
Wir betrachten die echte Erweiterung von K zu K (l/l — A4 1l).

l — At
Bedeutet N die Relativnorm von K (l/l — A+1l) zu K, so wird

4
NA—i 4. V1I—24il) =1 =i 451 — A+ i)
=1—3d—14+[1—3)—1+1]

oder
l___.._.____,...____.
Nl—d+dV1I—24+i)=1—452—1+(4+ Bi)l, (3.10)

mit ganzen rationalen 4 und B.
Hierbei interessiert uns nur der Wert von 4. Es ist

201 A=(1 - — 1424+ Q1 +H —1—1,
also
I—1

e ()l L)

Gemdfl Formel (3.8) wird
-1
4= (=1)"%-1-9(=1),
mithin
1—1

A= (=1 "*g(-1),

so daBl sich (3.9) mit Hilfe der in (3.10) definierten ganzen rationalen
Zahl A so schreiben 148t :

(T—%?)kz c24 (3.11)
Aus (3.10) und dem allgemeinen Reziprozitidtsgesetz folgt :
1—2+4¢, 1—tA—14+ A+ Bi)l}y=1,
und daraus 148t sich jetzt vermoge (3.11) leicht der Wert von {K; , K;_,} K

bestimmen 3). In der Tat folgt unter Benutzung der schon hergeleiteten
Formeln (3.5), (3.6) und (3.7):

3) Vergleiche zur letzten Formel und dem folgenden die Ausfithrungen bei T'akag: [10].
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{(CK 1, (=i — )1+ AD(L + Bil)}g =1,

also
(€, (1 =i — (1 + A1 + Bid}g x
X {Kj_1, 1 —3A)1 -1+ A)(1 + Bil)}g =1,
d. h.
{C’ 1 — @A}K 52 ' C—zA '{K?—-l > 1 —?’A}K =1 s
oder

¢
Folglich wird wegen Satz 5, S.9—10, Takag: [9]:

—2 G
{Kf ’ K?—I}K = {4 (m)k )
also vermoge (3.11):
(K3, Ky }g= 02 =720, (3.12)

Aus dieser Formel erhilt man jetzt aber sofort den Wert von {K,,,K;_,}x
fir jeden Wert von .

Es sei zundchst im folgenden 1<u<—l—,u+v=—_ l, also-é<v< l—1.

Es sei ferner A eine beliebige ganze Zahl von K mit der Eigenschaft
A = A (mod 22) ,
l —_——
und wir betrachten die echte Korpererweiterung von K zu K (V1 —iA).

l
Bedeutet N die Relativnorm von K(V' 1 —1¢A4) zu K, so wird
14
N_1—V1—id)=ida,

l
und daher ist die Zahl (1 — V' 1 — i A4)!, falls I =1 (mod 4) ist, genau
durch £, und &,, falls I =3 (mod. 4) ist, genau durch £ und durch
keine hohere Potenz dieser Ideale teilbar. Es wird mithin :

l

N(1 — =21 — VT —i4)?) =1 — #a-9 ] — {47 (mod &) .

Folglich wird :
{1 —24,1—¢d0-0] —g4°},=1. (3.13)

80



Insbesondere wird erstens fir A4 = 4:
{1 —2A, 1 —24? —gda-2]} =1,
Zweitens wird fir ein durch
1—iA4A=(1—14) K: (mod AY)
bestimmtes ganzzahliges A :
1 —iA=(1—1t2)(1 —124*) (mod A*+Y) ,
also
1l —2A=1—74A—1Av (mod A%+1) |
folglich
A= 2114 A+ (mod A%+1) |

mithin fiir geeignetes ganzes I' aus K:

A=21+ A1 4+ TI'A*) (mod AY) .
Daher wird

A= A*1 +viv )= A+ oAt = A — vl (mod ) .

Folglich wird nach (3.13):
{(1—32A)K,, 1 —4d?"— -2 ] 4 dpl}, =1,
also

(L= A KS, (1—idv — =0 ) (1 + iol)}g =1 .

Wegen (3.14) wird :

(3.14)

{1 —24, 1 4+vl}g {K:, 1 —GA — -0} (KX 14 ivl}g=1,

und weiter :

(1—id, K ) g (K, 1— A% (K, 1 — =9 I} (Ky, K7 Yg=1.

Wegen (3.6) und (3.7) wird
Ky, Kl ) (KL Ky =1,
und mithin wegen (3.12):
g2v {K:’ K:}K =1.

6 Commentarii Mathematici Helvetici
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Da also
{K,, K,)}g = ¢2v fiir 1§u<%, ut+v=1,
ist auch
{K,, K,}g = 2 fir —;-<v§l——1 , u+v=1.
Mithin ist
(K, ,K)}g =07, utv=1
(K., K} g =1, utvs#l

Ist allgemein fiir zu ! teilerfremdes M :

*

* %
—_ 2 -Gy (M) G2 (M) Q-1 (M) 1% Gy (M) 1% Gg (M) x @ » (31)
M = M RSO0 GO0 | O kG0 px GO g Oy

(mod AY) ,
(3.16)

so erhilt auf Grund der Formeln (3.5), (3.6) und (3.15) das Reziprozi-
titsgesetz, falls N zu M und zu [ teilerfremd ist, die Form :

1—1 -1 N
—2 3 wGyw(M)G—w(N) + 2 Elew(M)Gl__w(N)
W=

(M, Nyg=¢ *= (3.17)
Wie man sofort erkennt, wird weiter
1— 12 & % 112
4 4
{M,N}g= {M%,N*g ={MM2-J—M—2—, NNZ-—NF}K ’
1—2 1— 1%
(M, Nyg=uy®, Nyay,' (2 N (3.18)
M N°|g
und hiebei ist
1—12 —1
1 ~2 3 wQu(M)GLw(N)
{MME, NNZ} =¢ »=1 : (3.19) .
K
=2 L S edtanet
M N 4 . w=1w w l—w
{ME : F}K = : (3.20)



4. Die Kummersche Form
tiir das Reziprozititsgesetz der I-ten Potenzreste in K

Es sei M eine ganze Zahl von K, die der Kongruenz M =1 (mod 4)
geniigt. Setzt man

M=cy+c;l+cl2+---+cyti?,

wodiec,, u=20,1,2,...,1 — 2, ganze Zahlen des GauBlschen Zahl-
korpers sind, so ist also

Co+¢i+cg+--+¢ =1 (modl) .
Setzt man daher

MO =cotabt - o g —atatat cdoa-l,

X (L4 &+ 84 &Y,

so gilt fiir dieses ganzzahlige Polynom des GauBschen Zahlkérpers vom
Grade ! — 1, dessen freie Variable wir mit £ bezeichnen, um in spiteren
Formeln eine Verwechslung mit der Grole x der Gleichung (1.1) zu ver-
meiden :

Ml)=1, M@Q=M, M*(1)=1, M*()=M".
Fiir reelles v filhren wir die beiden reellen Funktionen 4)

F(M ; v) = }log M(e?) M*(e?)

und

M - — —i[M(e") — M7(e")]

F*(M ; v) = arc tg Mo + M= (&)

ein, so daB

log M(e®) = F(M;v) +iF"(M;v),
und setzen fir w=1,2,...,1 —1:

__[d*"F(M ;v) N e, 'v)]

Lw(M)w[ Tyt L=° und L, (M) ——z[ o e

Die ersten I —1 GroBen sind ganze rationale Zahlen, die zweiten [ —1

GroBen sind von der Form : ¢+ multipliziert mit einer ganzen rationalen
Zahl.

4) Die zweite dieser Funktionen ist zwar unendlich vieldeutig, aber wir brauchen im
folgenden iiberall nur ihre Ableitungen nach v.
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Sind die Koeffizienten von v, v2,...,v""1 der beiden Potenzreihen
F (v) und G'(v) Zahlen des GauBlschen Zahlkorpers mit zu [ teilerfremden
Nennern, und ist jeder der Koeffizienten von v, v2%,..., v~ der einen
Reihe je kongruent mod. ! zu dem entsprechenden der andern Reihe, so

schreiben wir
F(v) =~G(v) .

Wird die ganze Zahl M von K mit der Kongruenzeigenschaft M = 1
(mod. A) auf irgendeine Weise in die Gestalt

M=ay+a,{+al®+---+alf

gebracht, wo a,, a;, a,,. .., a, ganze Zahlen des GauBschen Zahlkorpers
sind, so wird im allgemeinen das Polynom

ME) =ay+ a &+ ay 824 -+ a, &

nicht mehr der Gleichung
' M(1)=1

geniigen, aber jedenfalls der Kongruenz

M(1)=1 (mod.l),
und es ist

— M(1) —
we=He - L0 aer et e 400 @ -,

wo @Q(x) ein Polynom von z ist, dessen Koeffizienten ganze Zahlen des
GauBschen Zahlkorpers sind.
Mithin wird
M(1) —1 pi-1

M(er) = M(e) + —— 7)1

und .
M(1) —1 pl-1

! -1

log M (¢¥) = log M (e?) +
Fiihrt man analog die beiden reellen Funktionen

F(M ;v) = } log M (e%) M>(e?)
und
. = — ¢ [ (e¥) — D> (e®
F*(M;v) = arc tg %(e'(’j z{- 71_7['2(315‘; )]

ein, so daB
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log M (e¥) = F(M ; v) + i F* (M ; v) ,
so folgt fir w=1,2,...,1—2:

L, (M) E[dwﬁgﬁ ) ]v=0 (mod ) ,

dvF* (M ;
L} (M) ——z[ dﬁ;w )]v=0 (mod 1) ,
und
d-1F(M ; MO +ME(1)—2
L“"(M)E[ d@f’“l v)]v.-:ﬁ ()+2z D=2 mody,
d-1F (M ; M) — M2(1
Ly, (M) = [ o ”’]M D=0 (moap .

Fir M=N=1 (mod.4A) und w=1,2,...,1 —1 erkennt man
leicht :

1. Ist M =N (mod. ), so ist
log M (e?) =2 log N (e?)
und daher
L,M)=L,N), L,(M)=L,(N) (modl) .
2. Es ist log M (e®) N (e®) =~ log M (e?) -+ log N (e®), falls

MQ)= M3(1)=N(1)=N3(1)=1,
und daher

L,(MN) = L,(M) + L,(N); L,(MN)= L, (M)+ L, (N) (mod ?)®) .
3. Fir u=1,2,...,1 —2 wird:
L,(M5) = rwu L, (M) ; L. (M) =rwe L (M) (modl) .

Da, wie man auf iibliche Weise nachrechnet, fiir u = 1 2,...,1—1,
w=1 s -l, . l — 1: .
L,K)=L,(K,)=L,K,))=L,(K;)=0 (modl), uws#w,

w

f
erner L (K,)=L,K;)=0 (modl),

%) Auf Grund der letzten beiden Formeln sind die Kummerschen Exponenten L, (M)
und Lj, (M) (mod. ) definiert fiir irgendeine ganze oder gebrochene Zahl M des Strahles
M =1 (mod 4).
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dagegen :
L,K, =(—1»1w!, LyK,)=i(—1)*1w! (modl),

so wird, vergleiche Formel (3.16) fir M =1 (mod 4):

G =0 oy, p0n = — i ST L) (mod )y
(4.1)

Folglich wird, vergleiche Formeln (3.19) und (3.20), fiir zueinander
teilerfremde M, N mit M =N =1 (mod 4):

1— 72 -1

11 2 3 (—1)" Lyp(M) Li_w(N)
MM*, NN* = = v»=!
und
1— (2 =1k T
BJI”E ’ ZJVVE} ' == 2w2-'-=1(_1) Lw(M)Ll"w(M

und damit wegen (3.18):

1—1 {—1 * *
2 2 (—1)% Lw (M) Liw(N) + 2 2:1(—-1)“’ Loy MLy _ ()

{M,N}:Cw=1 W=

6. Das Symbol {M, N} fiir Einheiten und I-te Idealpotenzen von K
Sind M und N Einheiten,

oder eine der beiden GroBen eine Einheit und die andere eine zu [
teilerfremde I-te Idealpotenz,

oder M und N zu ! teilerfremde I-te Idealpotenzen und die absolute
Norm von M zur Relativhorm von N in bezug auf £ teilerfremd,

oder M = N eine zu [ teilerfremde I-te Idealpotenz und die von
MM?* verschiedenen zu MM?Z absolut konjugierten GroBen zu M M=
teilerfremd,

so wird gemdfBl (3.3) und (3.2):

s M\s» N
{(MME) ,NN“’}:—-I,{(MZ) : NE}=1;n=O,l,2,...,l—2 ;
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Nun ist entsprechend den Definitionen fiir K, und K, und Formel
(3.16) :
M5 = MO RGO KrEtaon

A=) gy (M) L x17G) (M) 127G (M) «rd—=Dng* ()
K700 gt 0 g

oKy -1 (mod AY) ,

folglich wird geméB (3.19) und (3.20):
=1
> wrtQ@,(M)G,_,(N) =0 (mod l)
" n=10,1,2,...,1—2.

N wrnr@, (M)G;_,(N) =0 (mod 1)
w=1

Da die Determinante

1 1 1 A |

r re rd -1

r2 rd ¢ ... 72U == 0 (mod !)
1'-1—2 7-2 (1-2) 7'3 -2) ... r(l—l) ({—-2)

ist, so wird
G,(M) G, (N) = 0 (mod I)

w=1,2,...,1—1,
G, (M) G, _,(N) = 0 (mod I)

also auch fir M =N =1 (mod 4) gemiB (4.1):

L,M)L, ,(N)=0 (modl)

}w=l,2,...,l——l. (5.1)
L*(M)L* ,(N)= 0 (mod 1)

Speziell wird fir M = N =1 (mod A) mit der fiir diesen Fall oben
erwihnten Beschrinkung fiir M :

L,(M)L,_, (M) =0 (mod [)

} w=1,2,...,01—1. (5.2
L,(M)L; ,(M)=0 (mod!)

Im iibrigen ist klar, daBB wenn M eine Einheit oder eine zu ! teiler-
fremde I-te Idealpotenz ist, gemifB (3.3)
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el AL

also G;_;(M)=0 (modl), und falls M =1 (mod 2) ist:
L, ,(M)=0 (modl) (5.3)
ist.
6. Die Kummmer schen Exponenten fiir die Einheit H
Wir schicken voraus, dafl wir Vorzeichen und Indexbezeichnung der

Bernoullischen und Eulerschen Zahlen so wihlen, daB

- ] m v
eB”=2B,,,v v , (6.1)

ey m! e’ — 1

so daBl also auBler B, =1 alle B, mit ungeradem Index m gleich 0

sind, dagegen By =1, B, =}, B,= — 516’ usw. Aus Gleichung (6.1)
folgt iibrigens nach Division durch v und Integration nach v sofort, da@3
e’ —1 * B o™

1 = — B — 6.2
8 v m=1 m m! (6.2)
Ferner sei
ef? = i E -2 (6.3)
T T m! et fe? )

so daB alle ¥, mit ungeradem Index m gleich 0 sind, dagegen E, =1,
E,= —1, E,= 5, E; = — 61 usw. Durch Differentiation nach v er-
kennt man die Richtigkeit der Formel

2log (1 —¢e®) = log (1 + €27) ——z( 2 Em_1~—-—+ ) (6.4)

bei geeigneter Wahl der Determination der auf der linken Seite dieser
Gleichung stehenden Funktion, wo unter log(1l + €2¥) der Hauptwert
verstanden sein soll.
Fiir die Einheit ¢)
I+1

g2—1 =171 — [9\i2—1
H={(1-— =2
( ?’C ) g{_-]a( 1”“5)

141, 2y 11 s
(l—zc ) (U +C+0+: )

o= 18t

%) Fiir den zweiten Faktor vergleiche Hasse [1], p. 112/113.
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1+l

a1y 11 ,
H(5)=(1"?:§T)2“ I)H(l+§+52+...+§a—1)l -1,
: g=3 )

also
H(l)= (1 — 4@ H o e—-n1P Tt =T
und o=
1,
log H(e") = 2(12—1) log (1 —ie? )+
1—1
+(—1) Y log (1 +e" 42?4 ... .4 oDy
g=3

Es wird auf Grund der Formel (6.4)

. -1 9v __ 141 w
log H(e*) >~ — Elogev log(1+e(’+1)”)+zEEw_l( T ) i
9=3 e’ — 2 w!
oder
___ -1 eI? 1 e2v __ 1 o Ew~—1 W
log H(e%) >~ — 1 — ; .
0g H(e") = ,,g:;oge” Oge”~—l+zw‘§1 2 w!
-1 9v __ ] v w——l I
= — 1 . — 1 — 1)
9§1 Og gv e’ —1 og[( ]+22 Cw! ]
mithin unter Benutzung der Formel (6.2):
1—1 oo W . o_o‘ E. pw
lOgH(ev)N—-z z‘(w—l)———— ——-!——,—sz_—_‘l ow ;—!-.

Daher ist fir w=1,2,...,1 — 2:
— _ Bw
Ly,(H)= — e (mod ) ,
und, vergleiche die Bemerkung am Ende von Abschnitt 5:

L, ,(H)y=0 (mod.l) ,

ferner fir w=1,2,...,1 —1:

Ly(H) = 5 Eo-1 (mod 1) . 7)

) Will man eine Einheit haben, bei welcher bei der Kummerschen Entwicklung nur die

t+ &
mg_— nehmen.

Eulerschen Zahlen erscheinen, so kann man zum Beispiel
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7. Die erste Form der Kurmmer schen Exponenten fiir die Idealpotenz 4

Wenn die Gleichung (1.2) eine Losung in ganzen rationalen nicht ver-
schwindenden Zahlen X, Y, Z hat, so hat sie auch immer eine solche
Losung, fiir welche X, Y und Z je zu zweit zueinander teilerfremd sind.
Wir nehmen daher in der Folge zum indirekten Beweise unseres Satzes
in Abschnitt 1 an, daf die Gleichung (1.2) eine Losung besitzt, fiir welche
die ganzen rationalen Zahlen X, Y, Z je zu zweit zueinander teilerfremd
und (erster Fall des groflen Fermatschen Satzes!) alle drei zu [ teiler-
fremd sind. Dann sind auch alle 21 Faktoren der linken Seite der Glei-
chung

-1 1—1
X +itmY)IT(X —ifrY) = X3 4 Y2l = 722
m=20 n=0

zueinander teilerfremd, mithin zueinander und zu ! teilerfremde I-te
Idealpotenzen von K. Denn wenn ein Primideal B von K in zwei ver-
schiedenen dieser 27 Faktoren aufgehen wiirde, so wire zunéchst P ein
Teiler von Z. Von den beiden Zahlen X und Y ist eine gerade, die andere
ungerade und Z ungerade. Also wiirde P jedenfalls weder Teiler von 2
noch von [ sein. B wiirde auch die Differenz der beiden Faktoren, mithin
auch Y, und daher auch X teilen, was einen Widerspruch ergibt.

Insbesondere ist auch
4 — X +1Y
T X +1Y

eine l-te Idealpotenz von K, deren Zihler und Nenner zu ! teilerfremd
sind.

Es wird —_ X +1&Y -
T =5y A =22 =1,

ferner

_ X2 4 20 Y2

F(A;v) =% log X v

also .

dF (4 ; v) Y22

dv X% Y2e (7.1)

und mithin fir w=1,2,...,1 —1:

dvF(4 ; v) y— P, (X2, Y?)
dvv - (X2 4 Y3’
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wo P,(f;n) ein homogenes Polynom vom Grade w in & und 7 mit

ganzen rationalen Zahlkoeffizienten ist. Die Bezeichnung fiir diese Poly-

nome stimmt genau iiberein mit der von Mirimanoff [4], S. 46—47.
Fir w=1,2,...,1—1 ist folglich:

P,(X2,Y2
Lu(4) = 201 (X§ - Yz)z) (mod 1) .
Weiter wird
* XY(e® —1
F (A ; v) = arctg Xzfi— Y2e3 3
also
dF* (4 ; v) XY
dv T X%e v 4 Yzev (7.2)

Vertauscht man im Ausdrucke auf der rechten Seite der Gleichung
(7.2) X und Y und gleichzeitig v mit — v, so édndert er sich nicht. Mithin
ist fir ungerades w die GroBe

dv F* (4 ; v)]
» (7.3)

(X2 4- Y)w. [ 2

das Produkt von XY und eines homogenen Polynoms in & = X? und
7 = Y?, dasin £ und% vom Grade w — 1 und in & und 7 symmetrisch
ist. Fiir gerades w ist der Ausdruck (7.3) das Produkt von XY (X% — Y?)
und eines homogenen Polynoms in & = X? und » = Y?, dasin £ und ¢
vom Grade w — 2 und in & und 7 symmetrisch ist.

Setzt man fir w=1,2,...,1 —1:

dow -

dvF* (4 ; v) X Q,(X2,Y?
om0 Y (X2 4+ Y3y’

und
Y2
X2
Q, (X% Y?) = X2@Q,(1,1).

Setzt man weiter

=1,

so 1ist

Qu(l,?) =@, ,

go ist fir w=1,2,...,1 —1:
&P @] X QL
dv¥ =0 Y (1 t”
und
) X w (¢
Lyd) =iy - '('fg:l—(—t))"f’“ (mod 1) .
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@, (¢) ist ein ganzrationalzahliges Polynom vom Grade w in ¢. Fiir un-
*

. . t) ., . :
gerades w ist @' (¢) durch ¢ teilbar und ?——“’t(—l ist ein symmetrisches
Polynom in ¢ vom Grade w — 1. Fiir gerades wist @, (t) durch #(1 — %)

Qu (?)

teilbar und i1 — 1)
Die Rechnung liefert

Qy(t) =t(1—1)
Q. (t) =t(1—1t) (1 -22¢ +8)
Qe () =t(1—1t) (1 -236¢ + 14462 — 2364 +14)
Qa(t)=t(1—1t) (1 —2178¢+58 47912 —201 24413+ 58 47944 -2 17815 +19)
Qo) =t(1—1t) (1 —19672¢ +1 736 668¢> —19 971 304 +
+49441990¢* —19 9713045 +1736 6685 —196721" +¢5) .

ein symmetrisches Polynom in ¢ vom Grade w — 2 .

8. Die zweite Form der Kummer schen Exponenten fiir die Idealpotenz 4

In 4 = ALl setzen wir fiir die beiden ganzen rationalen und

X 4+1Y
zu [ teilerfremden Zahlen X und Y :
Y
x =7

und nehmen in der Folge wesentlich an (erster Fall des groen Fermat-
schen Satzes!), da 7%= —1 (mod. ) ist. Gemi den Formeln (7.1)
und (7.2) wird :

I N . T
Ll (A.) == —i“:}-——ﬂ_’? und Ll. (A) == 'L—I—_",:‘—ﬁ (mOd l) .
Im folgenden moge daher w=2,3,...,7 — 1 sein.
Zur Abkiirzung setzen wir voriibergehend
1T
U=+ T’
so dafB3
U
T=9—3
wird und
D ey Y/ 1 ot WP
A= =137 =1-0V0-0.
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Es wird
A =1-U1—8, AW=2%Q)=

und formal 8)

log Z(e")::log[l——U(l——ev)] = — i %U"(l—-@”)”
oo Un n‘ m — - -] Un n - 00 w ’Uw
~,¢2==1 n 17;2;0(— ! ( )e "",E n Eo(_l) ( )Ea Twl!

Mithin wird fir w=2,3,...,1 —1:

d* log A4 (e?) o TR, AN
[ dv® ]v=o_ Y () (M)m '

In der Summe iiber m verschwindet der Summand fir m = 0
und die innere Summe verschwindet fiir » > w. Folglich wird fiir
w=2,3,...,1l—1_:

dv log A (e°) LA £ A
[ Lo._ Y ¥ (—1) (m>m . (8.1)

dvv n=1 " m=1
Fir w=2,3,...,1] — 1 betrachten wir den Ausdruck:

(1+th 2( m gL m (8.2)

Fiithrt man in ihm die Gréfe U ein, so wird er gleich

-1
2 mw—1 Um(U__ l)l—m
m=1

= S e on| S5 ") o]
=S 3 (' o

Summiert man hier zuerst iiber m und dann iiber &, so wird der Aus-
druck (8.2) gleich

—h /7 __ 1—1
3 (—1p U (l hm>mw_1 + TS met
m=1 m=1

8) Vergleiche zum folgenden die Ausfithrungen auf S. 116/117 bei Hasse [1].
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Der Koeffizient von U! verschwindet mod !. Setzt mannoch A =1 — n,
so ist der Ausdruck (8.2) mod. ! gleich

-yl e (1T

m=1

Nun ist mod !

_1_@_(1——m):£. l—m)l—m—1)--- (I —(n—1))

l—mn m (n — m)!

n mm-+1)...((n—1)

= (=1 m (n —m)!

. wm P@—1) M —2)... (m+4 1)
= =1 (n —m)!

= (— 1)-—n+m(::‘z) )

Der Ausdruck (8.2) wird mithin mod

—1 Ur »
-3 53 _1)m( ) me .
Folglich wird geméfl (8.1) und (8.2) fiir w=2,3,...,1 —1:
y \ M w—1 m
L,(A) + L, (4) = (1+zT)’ 2 —mmvtT™ (modl) . (8.3)

Trennt man in der letzten Formel reelles und imaginéres und setzt wie

in Abschnitt 7 ye

==t

so folgt fir w=2,3,...,1—1:

Lo (4) = 201 "’“’()), (mod 1)

1+t
und
. G ()
L,4) =1 Y 0L (mod 1) ,
wo
1—1
Pp(t) = X (— 1)m 1t mwgm (8.4)
m=1
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die von Mirimanoff [4] S. 57, Formel (12) eingefiihrten Polynome sind
und !

Pu(t) = X (—1)m1(2m — 1ot gm (8.5)
ist. e

9. Beweis des Hauptsatzes

Aus den im Eingang zum Abschnitt 7 gemachten Annahmen folgt ge-
méfl Abschnitt 5, vergleiche Formeln (5.1) und (5.3), daB fir w =1,
2,...,1 —2:

Lw(A) Ll-—w(H) =0 (mOd l) ’
ferner
L,_,(4)=0 (modl) ,

endlich fir w=1,2,...,1 —1:

L,

(A) L} ,(H)=0 (modl) .

Gemafl Abschnitt 6 sind diese Kongruenzen, da es immer auf einen zu !
teilerfremden Faktor nicht ankommt, dquivalent zu den folgenden :

L,4)-B,_,=0 (modl), w=3,5,...,1—2, (9.1)
L_,(4) =0 (modl), (9.2)
Ly(A)E,_,_,=0 (modl), w=2,4,...,0—1. (9.3)

Die Kongruenzen (9.1) setzen auf jeden Fall voraus, da [>3 ist, was
wir in der Folge immer annehmen.

Beachtet man, dal X2 + Y2 jedenfalls zu [ teilerfremd ist, so ergeben
sich aus den Formeln des Abschnittes 7 die zu den Kongruenzen (9.1)
dquivalenten Kongruenzen : :

P,(X?, Y%).B,_,=0 (modl), w=3,5,..,1—2. (9.4)

Die Kongruenzen (9.4) entsprechen genau den Kongruenzen (2), S. 47
in der Arbeit [4] von Mirimanoff.

In der Folge beachte man, dal ¢t==0 (mod!) ist, ferner ist die Kon-
gruenz t = —1 (mod!) nicht moglich, da sonst Z =0 (modl) wire
gegen Annahme. Mithin sind die Kongruenzen (9.1) und (9.2) gemiB
Abschnitt 8 dquivalent zu den folgenden :
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Pu(t)- By =0 (modl), w=3,5,...,1—2, (9.5)
() =0 (modl) . (9.6)

Die Kongruenzen (9.3) sind dquivalent zu den folgenden :
Pu@) By =0 (modl), w=2,4,...,1—1. (9.7)

Die Polynome ¢, (f) und ¢, (¢) sind in den Formeln (8.4) und (8.5)
definiert.

Endlich sind die Kongruenzen (9.3) gemifB8 Abschnitt 7 dquivalent zu
den folgenden :

Q.t)E,_, ,=0 (modl), w=2,4,...,1—1, (9.8)

denn X und Y sind nach Annahme zu [ teilerfremd.

Der in Abschnitt 1 behauptete Satz wird mithin bewiesen sein, wenn
wir zeigen konnen, daB die Kongruenz @, (f) = 0 (mod I) nicht moglich
ist, falls w=2,4,6,8, 10 ist.

Aus den Ausfiihrungen von Mirimanoff [4], S. 48 und 51, geht aber
hervor, daB} mit einer Losung ¢t =17, t==0 (modl), t== —1 (mod )
der Kongruenz

Q. () =0 (mod.l)

diese Kongruenz notwendigerweise auch die Losungen

1 1 . 1 1 1 T
T ’ 147’ S 141
haben muB.

Diese sechs Wurzeln brauchen mod ! nicht notwendigerweise vonein-
ander verschieden zu sein. Man hat folgende drei Fille zu untersuchen :

I. Die sechs Wurzeln bilden im ganzen nur zwei mod ! inkongruente
Wurzeln, wenn $2°+ ¢+ 1 =0 (mod!) ist, und dieser Fall kann nur
eintreten, wenn I =1 (mod 6) ist.

Nun hat Pollaczek [6] gezeigt, da wenn die Kongruenzen (9.5) und
(9.6) gelten, dieser Fall nicht eintreten kann.

II. Diese sechs Wurzeln bilden im ganzen genau nur drei mod !
inkongruente Wurzeln, wenn ¢ mod ! kongruent einer der drei Zahlen 1,
—2, —1 ist.

Mithin muB8 ¢t = —2 (mod.l) Wurzel der Kongruenz

Qu ()

T = 0 (mod /)
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sein. Fiir w = 2 ist nichts zu beweisen. Fiir die weiteren Werte von w

*
hat der Quotient ﬂQll'i;(t—)t—)- fir ¢t = —2 die Primzahlpotenz-Produkt-
Zerlegung :

w= 4: 7

w= 6: 8161

w= 8: 983-2903

w=10: 7-109.173-12959 .

Aber fiir diese Primzahlen hat die Gleichung (1.1), also a fortiori (1.2)
im ersten Falle des groBen Fermatschen Satzes keine Losung ?).

ITII. Wenn diese sechs Wurzeln mod. ! inkongruent sind, so mu8} das
@ (1)
t(1 —t)

14+3t+at>+ (2a —5)t3+att+ 3¢50 (9.9)

Polynom

mod ! durch ein normiertes Polynom von der Form

teilbar sein, wo a ganzrationalzahlig ist und ag= —$ (mod l), ferner,
wenn I =1 (mod 6), auch a==6 (modl) ist. Dieser Fall kann hoch-
stens fiir w = 8 eintreten.

Fir w=8 wiirde — 2178 = 3 (mod. !), mithin mii8te, da [ = 3 zu

verwerfen ist, | = 727 sein. Fir [ = 727 wiirde ¢ = 319 (mod l),
also a== — 2 (modl) und a==6 (modl); aber die Kongruenz

2a — 5=135 (mod. 727)
ist nicht erfiillt.

Qu (?)
t(1—1)
mod. ! noch einen Faktor von der Form 1 + b¢ -+ ¢* mit ganzrational-
zahligem b haben (welcher Faktor dann ==0 (mod [) wire!). Aus den
Koeffizienten von ¢ und #* des entstehenden Polynoms vom 8. Grade
in ¢ wiirde aber folgen, daB

Fir w =10 miillte auBer einem Faktor von der Form (9.9)

b= —19675 (mod) und a =1795692 (modl) .

9) Dies erkennt man auf Grund bekannter Kriterien entweder sofort direkt oder dann
folgt es jedenfalls aus den Arbeiten von B. Rosser [7] und (8] und D. H. Lehmer und Emma
Lehmer [3], sowie natiirlich friiherer diesbeziiglicher Arbeiten anderer Autoren.
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Eliminiert man das Produkt ab aus den Koeffizienten von ¢ und ¢4, so
miillte

—2a — 5b = 89384594 (mod 1)
sein. Das wiirde aber bedeuten, daf3
3:7-13:-340211 =0 (modl) .

Aber fiir diese Primzahlen hat die Gleichung (1.1), also a fortiori (1.2)
im ersten Falle des groBen Fermatschen Satzes keine Losung.
Damit ist aber der Beweis unseres Satzes in Abschnitt 1 geleistet.

10. Eine weitere notwendige Bedingung
fiir die Losbarkeit der Gleichung (1.2)

Mirimanoff hat in seiner Arbeit [4] noch eine weitere notwendige Be-
dingung fiir die Losbarkeit der Gleichung (1.1) im ersten Falle aufge-
stellt. Wir geben zum Schlusse die entsprechenden Bedingungen fiir die
Losbarkeit der Gleichung (1.2) im ersten Falle an.

Aus den Formeln (5.2) und (5.3) folgt, falls man M = 4 setzt und
die zweite Form der Kummerschen Exponenten fiir die Idealpotenz A
gemifl Abschnitt 8 einfiihrt :

I —1
Pu(t) 9o () =0 (modl), w=2,3,...,—5—, (10.1)
@1 () =0 (mod !),
* * - I —1
Py () 910 (t) =0 (mod ) , w=2,3,..., 2 (10.2)
@71 (t) = 0 (mod 1) .

Dabei sind die Polynome ¢,,(!) und ¢, (f) in den Formeln (8.4) und
(8.5) definiert. Um Relationen zwischen diesen Polynomen aufzustellen —
worauf ich hier nicht weiter eingehen will — ist moglicherweise die Rela-
tion (8.3) geeigneter.

(Eingegangen den 17. Juni 1949.)
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