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Uber ein Kriterium
zur Fermatschen Vermutung

VYon HEeixNrIcH KAPFERER, Schwibisch-Hall

Der Zweck der vorliegenden Arbeit ist der Beweis des Satzes :

Die Gleichung P + y? + 22 = 0 st fir keine Primzahl p>7T in
ganzen rationalen Zahlen losbar, fur die weder die Diskriminante des Poly-

noms
p—3
M| 2 -7 1 — . fr
(r) 2r 2r + 1

noch zyz(x — y)(y — 2)(z — x)(2®* + y* + 2%) durch p teilbar ist.

Dieser Satz folgt aus dem Kritervum :

Notwendig und hinreichend fir die Existenz von drer ganzen rationalen
Zahlen x, y, z und etner Primzahl p>17, welche der Kongruenz xP + yP
+ 22 = 0 (mod p?) und gleichzeitiqg der Bedingung

zyz(x — y)(y — 2)(z — x)(2® + y* + 2*) % 0 (mod p)

geniigen, ist die Teilbarkeit der Diskriminante des p zugeordneten Poly-
noms :

7_2—{—7- 3_:?.__7' 1 ?“':z_r
p =1 (mod 3) : rgo (22T )-27‘4_17,(,6 L
r p—s—s ?:j_r . u—r
p= 2 (mod 3) : 2_‘,0 ( 227' )-2r+1u 4 T

durch die Primzahl p. Die Diskriminante A(p) wst stets eine ganze, von 0
verschiedene Zahl.

Die Bedingung (x — y)(y — 2)(? — z) = 0 (mod p) bedeutet nur fiir
solche Primzahlen p eine Einschriankung, fiir welche 27 = 2! (mod p?)
erfiillt ist, also erstmals fiir p = 1093. Die Bedingung 22 + 92 + 22 0
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(mod p) bedeutet fiir die Primzahlen p = 1 (mod 3), und nur fir diese,
eine Einschrinkung ; denn sie ist ein symmetrischer Ausdruck fiir die
dreifache Bedingung 2% 4+ x y + y?2=£0 (mod p), #® + yz + 22=£ 0(p),
22 + 2z x + 2?=£ 0 (mod p), von denen jede mit der ersteren dquivalent
ist vermoge x + y + z = 0 (mod p).

Nach meinen tabellarischen Rechnungen ist die Diskriminante fiir
p <100 nur fir 59, 79 und 83 durch p teilbar.

Im Kummerschen Kriterium gibt es unterhalb 100 ebenfalls genau drei
Ausnahmezahlen, drei nicht reguldre Primzahlen: 37, 59, 67.

Weder durch mein Kriterium noch durch dasjenige von Kummer ist
bewiesen, dafl es unendlich viele Primzahlen gibt, die das Kriterium nicht
erfilllen. Aus ersterem folgt u.a. — fir z=1, y=2, 2=—-3 —,
daBl die Kongruenz 1?7 4 2?2 — 3?2 =0 (mod p%) , p>7, hochstens
dann eine Losung haben kann, wenn A4(p) durch p teilbar ist?).
Nun folgt aber aus z? 4 y? 4 22 = 0 bekanntlich 27 = 2 (mod 2?),
falls nur keine der Zahlen «, ¥, z durch 2p teilbar ist, und analog folgt
37 = 3 (mod p?), falls nur keine der Zahlen z, y, z durch 3p teilbar ist,
beides leichte Folgerungen aus dem ,,ersten und dem ,zweiten” Furt-
wanglerschen Satz (in der Wiedergabe von Landaus Vorlesungen iiber
Zahlentheorie, III. Bd.). Verbindet man diese beiden Tatsachen mit
unserem, obigen Ergebnis, so gelangt man zu der Erkenntnis : Die Fermat-
sche Vermutung ist wahr fir jede Primzahl p, die nicht in der Diskrime-
nante des p zugeordneten Polynoms

Z’—_—;—?’~—r 1,
. % 2r 2r +1

aufgeht, falls unter den Zahlen x, y, z keine durch 2p und auch keine durch
3p teilbar ist.

Bemerkenswert ist ferner, daB das Kriterium eine Verschirfung in
folgender Richtung zuldft : Falls es k Zahlentripel x, y, z von der im
Kriterium genannten Art geben sollte, von denen keine zwei einander
proportional und von denen keine zwei durch Permutation von z, y, 2
auseinander hervorgehen, so ist die Diskriminante notwendig durch p*
teilbar. Jedoch wollen wir uns in dem nunmehr folgenden Beweis auf die
grundsitzliche Tatsache beschrinken, wie sie in der oben gegebenen For-
mulierung des Kriteriums ausgesprochen ist.

1) Aus 37 = 3(p?) und p =1(3) allein folgt schon — so teile ich hier, ohne Beweis,
mit — 4 (p) = 0 (mod p), wihrend bei 37 =3 (mod p?) und p=2(3) 4(p) nicht durch
p teilbar zu sein braucht, wie das Beispiel p = 11 zeigt.
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Die Frage nach der Existenz von Losungen der terndren Kongruenz
x? + y? 4 2P = 0 (mod p?) wird, vermoge der unmittelbaren Folgerung
aus ihr: z 4+ y 4+ z = 0 (mod p), auf die bindre Kongruenz zuriick-
gefilhrt : (z + y)? — 22 — y? = 0 (mod p?). Wir haben es also nur noch
mit den zerlegbaren Polynomen A4,(z, y) = (x + y)* — 2 — y? zu tun.
Wenn wir dieselben auf ihre Teilbarkeit durch p untersuchen wollen, so
ist es zweckmifig, zuerst etwaige algebraische Teiler mit Koeffizienten
aus dem Korper der rationalen Zahlen abzuspalten. Als solche erkennt
man sofort x und y und (x 4+ y). DaB iiberdies noch ein quadratischer
Faktor dieser Art stets vorhanden ist, bei p >3, ndmlich a2 4+ 2y + 92,
darauf hat zuerst 4. Cauchy hingewiesen und er hat auch gezeigt, daB3
sogar (2 + xy + y?)* als Teiler vorhanden ist jedesmal dann, und nur
dann, wenn p = 1 (mod 3) ist. Wesentlich ist ferner, daB3 p selbst als
Faktor des nach Potenzprodukten von z, y geordneten Polynoms her-
austritt. Demnach hat man es nur zu tun mit der Kongruenz :

@+ )P — 2P — yP
pry(x + 9y (x® + 2y 4+ y?)°

Co(z,y) = = 0(mod pY) ,

wobei 238 = p(mod 3), und s die kleinste natiirliche Zahl dieser Art ist.
Wir wollen diese ganze Klasse von Polynomen C (z,y), die einein-
deutig der unendlichen Reihe der Primzahlen zugeordnet sind, kurz als
Cauchysche Polynome bezeichnen. Eine explizite Entwicklung dieser Po-
lynome nach Potenzprodukten von x, y hat Cauchy allerdings nicht ge-
geben, auch, wie es scheint, kein anderer Autor seither. Wie man sie
trotzdem auf ihre Teilbarkeit durch p priiffen kann, dazu werde ich
im folgenden einen sicheren Weg zeigen. Zunéchst stellen wir folgendes
fest :

1. Jedesmal, wenn iberhaupt die Kongruenz C,(x,y) = 0 (mod p)
evne Losung besitzt.etwa x = « y (mod p), mit (x4 1) (6?4 ax+1)==0

(mod p), so sind gleichzeitig —g—g— = 0 (mod p) und —%g— = 0 (mod p) er-
fallt, fur ein und dasselbe x; mit anderen. Worten : Jede etwa vorhandene
Kongruenzwurzel zihlt doppelt.

A 1
Beweis : ?A,,(x,y)=zy(x+y) (x2+xy+ y2)3 . Op(x’?/)z U(w,y) : Cp(may)

_;,.%ii_z(x+y)2’~l——x”~1=U-0;~;— U..C,;
1 24
-y =@ty =y =U-C,+ U, C;
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(x4 gyt — 2Pt =y(x — y)(x — 2y)... (¢ — (p — 2) y) (mod p) ;
(x + gyt —yri=2(x — y)(x —2y)...(x — (p — 2) y) (mod p) .

Aus vorstehenden fiinf Zeilen folgt unmittelbar die Behauptung (1).
Jetzt erst machen wir von dem fundamentalen Satz Gebrauch, daB
jede beliebige bindre Form mit rationalen Koeffizienten, P(x, y), nach
Wahl einer beliebigen Primzahl p als Modul, eindeutig als Produkt von
Primfunktionen (mod p) zerlegt werden kann, d. h. als Produkt von
solchen homogenen Polynomen in «, y mit ganzen rationalen Koeffi-
zienten, die selbst nicht mehr weiter (mod p) zerlegt werden kénnen :
Pz, y) == qi*(x, ¥)-¢3* (%, ¥). . .¢;*(x, y) (mod p). Wegen der Eindeutig-
keit der Zerlegung (unter Voraussetzung einer gewissen Normierung der

Polynome, die hier keine Rolle spielt) konnen die beiden abgeleiteten

Polynome %—2 und %) , vermoge x - gg +y —g—ly—) = mP, dann und nur
dann ein und dieselbe Primfunktion ¢(z, y) (mod p) als gemeinsamen
Teiler besitzen, wenn eben dieselbe Primfunktion in der Zerlegung von P
selbst mindestens die Multiplizitit 2 besitzt. Daraus resultiert die be-

kannte Tatsache :

2a. Eine bindre Form P(x, y), mit ganzen rationalen Koeffizienten, ist
dann und nur dann durch das Quadrat etner Primfunktion (mod p) teilbar,
wenn thre Diskriminante durch p teilbar ist.

Ein Satz, der selbst wieder Spezialfall des nachstehenden Satzes ist :

2b. Zwer homogene ganzzahlige Polynome f(x,y), g(x, y) haben in
der ihnen eigentiimlichen Zerlegung (mod p) dann und nur dann wenigstens
etne Primfunktion (mod p) als gemeinsamen Teiler, wenn thre Resultante
durch p teilbar ist.

Speziell fiir unsere Polynome C, (x,y) folgt aus (2a), in Verbindung
mit dem Ergebnis (1), da die Existenz einer Losung von C,(z, y) =0
(mod p) notwendig die Teilbarkeit der Diskriminante von C,(x, y) nach
sich zieht. Dafl aber auch umgekehrt die Teilbarkeit der Diskriminante
durch p die Existenz von wenigstens einer Losung der Kongruenz
C,(z, y) = 0 (mod p) anzeigt, ist erst dann gewill, wenn es feststeht, dal
in der kanonischen Zerlegung von C,(z, y) (mod p) kein Quadrat einer
Primfunktion von hoherem als 1. Grade in x, y vorkommt. Dies trifft fir
die C,(z, y) tatsichlich zu, und darauf beruht wesentlich unser Kriterium ;
denn jedesmal, wenn iiberhaupt C,(z, y) durch das Quadrat einer Prim-
funktion (mod p) teilbar ist, so mufl ebendieselbe Primfunktion auch in
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oC . . oC . .
der Zerlegung von — , sowie in derjenigen von —— wenigstens einmal

ox oy
vorkommen, also, nach der Beweisfiihrung von (1), auch in der Zer-
legung von —1— —a—{l— und in derjenigen von —1- _6__4_ Von letztere
gung p oz jenmg » oy n

beiden Polynomen aber kennen wir bereits die vollstindige Zerlegung ;
dieselbe liegt ja explizite vor (4. und 5.Zeile des Beweises vor (1)),
und zwar besteht sie aus lauter linearen Primfunktionen. q.e. d. Somit
haben wir folgende 1. Form des Exzistenzkriteriums bewiesen :

3. Notwendig und hinreichend fiir die Existenz wenigstens evner Losung
x, y fir die Kongruenz (x + y)? — x? — y? = 0 (mod p?), p>T, welche
gleichzeitig die Bedingung xy(x + y)(2® + 2y + y?) =£ 0 (mod p) er-
fallt, ist die Teilbarkeit der Diskriminante von C,(x,y) durch p.

Fir p=5 und p =7 gibt es iiberhaupt keine Losung, ohne daB
gleichzeitig zy(x + y)(2* + xzy 4+ ¥?) = 0 (mod p) ist; erst bei p>7
spielt die Diskriminante eine Rolle.

Alles weitere griindet sich auf eine besondere Darstellung der Cauchy-
schen Polynome, und zwar nicht als Summe von Potenzprodukten
ar-y*, sondern als ,,zusammengesetzte” Funktion, ausgedriickt durch
eine algebraische Identitdt folgender Art: O, (z,y) = K, (u,v), mit
u=u(@,y)=(@+zy+ y)P v=r(z,y) = 2*y*(z+ y)p

K, (x, y) ist also eine bindre Form in u, v, welche ihrerseits binire
Formen vom 6. Grade in z, y sind. Da C, (x, y) vom Grade (p — 5)
P22 buw. 2T
je nachdem p =2 (mod 3) bzw. p =1 (mod 3) ist.

in wu,v,

bzw. (p — 7), so wird K (u,v) vom Grad

Wihrend die Polynome C,(x, y) bisher noch sehr uniibersichtlich zu
sein scheinen, erhalten sie nunmehr eine explizite Darstellung durch den
folgenden Satz:

4. Jedesmal, wenn p = 1 (mod 3), so st:

e
@t+yr—ar—y 0 (Per) 1
pry@+y) @ +2y+ ¥ o 2r ‘

Jedesmal, wenn p = 2 (mod 3), so ist:

,_p=>5
(x + )P —a? —yP _ 26 —————p;‘3——r 1 =
pry( +y) @+ 2y + 991 = 2r '
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Beweis von (4). Zunichst beachte man, dal das Polynom A4 ,(z, y) =
(x + y)» — 2 — y? auch als p-te Potenzsumme der drei Gréflen —zx,
—y, (z + y) angesehen werden kann, also auch als die p-te Potenz-
summe der Wurzeln derjenigen algebraischen Gleichung 3. Grades,
welche jene drei Groflen zu Wurzeln hat, und deren Koeffizienten dem-
nach lauten :

a,=0; ay=—(@2F+zy+9}); a;=—xy(x+ vy .

Daher liefert Warings Formel fiir die Potenzsummen der Wurzeln, spe-
ziell fiir jene Gleichung 3. Grades, sofort den fertigen Ausdruck :

2+ A —
Ap(x,y)zp- E Gt )

Ay | (__
Oadg) Aol Ay (= @) (—ay)’s

Die Summation ist zu erstrecken iiber alle natiirlichen Zahlen 2,, 4,,
welche der Bedingung 24, + 34, = p geniigen. Diese Formel fiir
A, (x,y) findet sich schon bei Th. Muir (Quarterl. Journal XI, 1879),
jedoch keineswegs die weitgehenden Folgerungen, die sich aus ihr fiir die
von uns so bezeichneten Cauchyschen Polynome ergeben, auf welche sich
das Interesse der vorliegenden Abhandlung konzentriert.

Zunichst fithren wir das rechnerisch zugéngliche Symbol (Z) ein und
erhalten

(/124"2-3“‘1)!_}“2‘*'13‘—1__1__
Ayl 251 O\ A—1 Ay

und wollen diesen, immer noch uniibersichtlichen, allgemeinen Koeffi-
zienten so umformen, daBl er explizite als Funktion von p erkennbar
wird. Alles dazu Notige entnehmen wir der Bedingung 24, + 34, =p
Aus ihr folgt zunidchst, daBl mit ungeradem p auch stets 4; ungerade, also
A3 = 1 + 27 sein muB ; ferner entnehmen wir aus ihr, da@ stets 24, = p

(mod 3) ist. Demnach sind zwe: Fille zu unterscheiden :
1. Fall: p=1(3): 4,=2+43¢q,

daher 24, + 34, =7+ 6(g+ 1) =p; g+r=L"1;

1 12+13——1>__ 2+3q+2r> 1
PR ( Ag—1 “( 2r 2r

=<2+-’0—‘;—7—r)
2r




2. Fall: p=2(3): Ah=1+3¢q ;

— b
21, +34=5+6@+nN=p; g+r="

1 12+13-—1_(1+3q+2r 1
( Ay — 1 )— 2r )2r+1“

Ay
2(1_*_1’%5__,.) 1 =<B_:_2:§__,.> 1 .
2y 2r+1 92y 2r +1

Wir haben also das befriedigende Ergebnis, daB fiir beide Primzahl-
arten, d. h. fiir alle p>3, der allgemeine Koeffizient jener Polynom-
entwicklung durch ein und dieselbe Formel als Funktion von p ausge-
driickt werden kann.

Aus der so erhaltenen Entwicklung fir 4 (x, y):

p=1@3): (z+4y")—a*—y’=

p—3 1
=pP- E ( 2 7’) 37 + 1 " (x2+xy+y2)2+3(1 . (xy.(x+y))1+2f
r+q=?i—}—7- 2r

P=20): @+yp—ar—y =

p—3
=7P- 2 <“—§“‘ - 7') 27.:_ 1 . (wzi_{_xy+y2)1+3q . (xy(x-{—y))‘”",

—5
f+4=£-6“‘ 27

erkennt man, daB in jedem Fall ein gemeinsamer Faktor aller Summen-
gliedersichabspaltenldBt,ndmlichimerstenFall : (2*+xy+y*)2xy(z+vy) ;
im zweiten Fall: (22 + 2y + #?)'zy(x + y). Geschieht dies, so ergibt
sich, mit Riicksicht auf die Definition der C,(x, y) als Quotienten, ge-
nau jene in Satz 4 behauptete Entwicklung fiir die Cauchyschen Poly-
nome.

Ausgehend von der nunmehr bewiesenen algebraischen Identitét
C,(x,y) = K,(u,v) werden wir in wenigen Schritten zum vollstindigen
Beweis unseres Kriteriums gelangen. Aus m-K = u K, + v- K, einer-
seits, wo m den Grad von K in u, v bedeutet, und andererseits aus

!/ __ r_.7 7! . ! __ /7 1 7
C,=K,u,+ K,v, ; C,=K,u,+ K,v, ,
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erkennt man, dal die beiden simultanen Kongruenzen OCL(z,y) =0
(mod p) und C)(z, y) = 0 (mod p), wenn @berhaupt, so nur fiir solche
Wertepaare x, y befriedigt werden konnen, fiir welche

entweder : K .(w,v) = 0 (mod p) und zugleich K ;(u, v) = 0 (mod p)

oder : welche sowohl K (u,v) %= 0(mod p) als auch K (u,v) # 0 (mod p),
aber gleichzeitig

/

2 s Uy
D(@,y)=| 7, | = 0(mod p)
befriedigen.
u, =322+ zy+ v 2z + y) ; =2z (x+y) Cz+y) ;
u, =32+ zy + ¥R (2y + ) ; v, =2y 2 (z + y)- 2y + ) .

Daher D(z,y) = 6-(2* + zy + #*)*- (22 + y)-(2y + 2)-(y — 2).
Hiermit ist schon folgender Satz bewiesen (in Verbindung mit (3)):

5. Die Kongruenz (x + y)?» — aP — y? = 0 (mod p®) p>17 1ist hich-
stens fir solche Wertepaare x, y erfillbar, fiir die entweder (gemdf 2b) die
Resultante der beiden abgeleiteten Polynome K, (u,v), K,(u, v), als Poly-
nome tn z, y betrachtet, durch p terlbar, oder fiir die

6ry(x + ¥)(2x + y)(2y + 2)(y — 2)(2® + x y + y2) = 0 mod p)
erfallt ist.

Zwischen der Resultante von K, (v, v) und K)(u,v), als Funktionen
von u, v betrachtet, und der Resultante ebenderselben Polynome, jedoch
als Funktionen von z, y betrachtet, besteht eine genaue Abhingigkeit,
néamlich die Relation (7). Zu deren Beweis dient ein Hilfssatz, den ich
gleich in einer etwas allgemeinerer Form aufstellen will, als er un-
mittelbar gebraucht wird, weil der Beweis dadurch nicht schwieriger,
sondern durchsichtiger wird.

F(x,y) und G(x,y) seien zwei beliebige bindre Formen in z, y,
mit der speziellen Eigenschaft, dafl sie sich gleichzeitig als bindre For-
men von u%,(z,y) und v,(x,y) darstellen lassen, wo % und v selbst
bindre Formen k-ten Grades in z, y sind: F = P(u(z,y),v (z, y));
G=Qu(x.y),v(r,y)); F vom Grade m-k, G vom Grade n-k

in z, y. Ich behaupte, daBl zwischen den drei Resultanten ( ; ,yG) ,
» My
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z,Y ] und u,? nachstehende algebraische Beziehung besteht :
P,Q g g

2, Y\ _ (u,v\E [z, y\™" (6)
F,qd/ \P,Q \u,v -
Der nachfolgende Beweis beniitzt nur allgemeine Eigenschaften der
Resultanten, welche, bei Gebrauch des Symbols (f, g) fiir die Resultante

von zwei in x, y homogenen Polynomen f,g, kurz so sich ausdriicken
lassen :

(a) Falls f=g-h ist, so ist (f, k) = (g, k)-(h, k) insbesondere ist
(c-f,g) =c"(f,g), falls ¢ von z, y unabhingig ist und n den Grad
von ¢ in z, y bedeutet.

(b) Falls der Grad m von f mindestens so groB3 als derjenige von g¢,
und falls 4 eine beliebig gewéhlte bindre Form des Grades (m — n) ist,
so gilt:

f,9)=G—12g.,9) .

Als bindre-Formen in u,v besitzen P und @ je eine Zerlegung in lauter
Linearfaktoren :

P=I(w—y) ; @=1II(@u—2d0).
r=1

= 8=1

Die Behauptung (6) ldaBt sich nun durch folgende Rechnung mit
Resultantensymbolen verifizieren. Einerseits ist

u,v\ w, v . w,v _
(P’Q>_1{]8('“‘“'}’r”:u“asv)_g(u“'}’rv,v'(Yr—‘as))——
u,v\ _
= e —8)- I 1) =T, — 8) .

Andererseits :

x,y)
F,Qq

Il

r,Y\ _ z,yY
(P’Q>——£(u—}/rv,u—6s?))

. x,Yy . _ k, r,yY
—-g(u—yrva"J'(Vr’“as))—(flz(yr 68)) f{{(u’v)

U, k x,y\nn
(7o) (4™ aea

I
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Die Anwendung von (6) auf unsere Polynome K, (u,v)= P(u,v) =
F(z,y) und K!(u,v) = Q(u,v) = G(x, y) ergibt sofort :

x,y L u,v \¢
(K;,K;)-(K;,K;) : )

da. (:i’ :I:’):z 1 iSt, bei u:($2+xy+y2)3 und v=x2,y2'(x+y)2.

Die\Verbindung der Ergebnisse (5) und (7) mit « 4+ y + z = 0 (mod p)
liefert nunmehr einen in xz, y, z symmetrischen Satz :

8. Notwendig und hinreichend dafiir, daf die Kongruenz x? + y? 4 2P
= 0 (mod p?) eine Losung =, y, z besilzt, die der Bedingung

xyz(x—y)(y —2)(z—2) (2 + y? + 22) 5 0 (mod p?)
genitgt, p>T, ist die Teilbarkeit der Resultante von _8_I_ﬁ_f , 9 letztere als

Polynome in u, v betrachtet, durch p. 9 " oY

Dieser Satz (8) ist aber bereits inhaltlich identisch mit unserem zu
Anfang formulierten Kriterium, abgesehen von dem noch fehlenden all-
gemeinen Nachweis, daBl obige Resultate, d. h. die Diskriminante von
K (u,v), niemals identisch verschwindet. Dariiber weiter unten !

Die praktische Prifung der Diskriminante A(p) auf ihre Teilbarkeit
durch p ist identisch mit der Untersuchung, ob die beiden abgeleiteten

Pol ome?—l—{ 9—{«{
yn ou’ ov’

gemeinsamen Teiler 7T (u,v) (mod p) besitzen, der wirklich von %, v ab-
héngig ist, d. h. sich nicht auf eine Konstante reduziert. Liegt dieser Fall
vor, so zerfallt 7' (u, v) a priori in lauter in u, v lineare Faktoren (mod p),
und jeder der letzteren, wiederum (mod p), in je sechs lineare Faktoren in
x, y. Hierbei spielt die Invarianz des Quotienten

als Polynome in u, v betrachtet, einen groten

_ @ oy
(p((s) - 62‘((5 + 1)2

gegeniiber den Transformationen der harmonischen Gruppe :

1 1 —5 841
3 — % 1+6 ° 641’ 5

9,

eine wesentliche Rolle. Auf Grund jener Invarianz wird
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u—p@)v=(@—9)(x = 59)(@+0+Dy)

5 41
(+6+1 y)(‘”+6+1 y)(’”+ 3 '”)

eine algebraische Identitdt in z, y und 4.

Wie bereits mitgeteilt, finden sich unter den Primzahlen » <100 nur
drei, fiir welche die Diskriminante des zugeordneten Polynoms K, (u, v)
durch p teilbar ist, ndmlich 59, 79, 83. Bei p = 59 ergibt sich T'(u, v)
als Polynom zweiten Gradesin », v, bei p = 79 und p = 83 berechnet
sich 7T (u,v) je als ein Ausdruck ersten Grades in u, v.

Zu p="179. T(u,v) =u-+ 5v(mod 79); die sechs einzigen Lésungen
von (¢4 1)?® —¢"® — 1" = 0 (mod 79%) mit ¢(¢ 4 1) (224214 1) == 0(79)
sind identisch mit denjenigen der Kongruenz sechsten Grades — 5 = ¢(d)
(mod 79), also mit ¢t= 6 =(11,36; — 12, —33;32, —37). In der
Tat ist 127 — 117 — 1% =0 (792) ; 337 — 327 — 17 = 0 (79?) ;

377 — 36™ — 17 = 0 (79?) .

Zu p=283. T(u,v)=u— 13v (mod 83). Der zugehorige einzige

Sechserverband von Losungen mit ¢ (¢ + 1) ==0(83) besteht aus (8,
—9, —37; 36,30). Inder Tat 1st 983 — 883 _ 183 = (832)
3183 — 3088 — 183 = 0 (832) ; 3783 — 3683 — 183 = 0 (83?) .

Zu p=259. T(u,v) = (u — 4v)(u + 18v) (mod 59) ; es gibt also
zwei Sechserverbinde von Losungen fir (¢ 4 1)% — 5 — 15 = 0 (59?)
mit ¢(f 4+ 1==0(59) , ndmlich (3,20; —4, —15; +14, —21) und
(4,15; —5, —12; 11, — 10). In der Tat ist z. B.

4% _ 39 _ 19 = 0 (mod 592) und 5% — 4% — 15 = 0 (59) .

Aus vorstehender Untersuchung der Primzahlen p <100 folgt im-
plizite, daf3 wenigstens fiir sie niemals 4(p) identisch Null wird. DaBl
dies auch stets der Fall ist, fiir alle Primzahlen p, 148t sich in wenigen
Schritten beweisen, z. B. in folgender Weise :

1 04 o
BT -1 __ g1 — JT (x —x - &k) ;
s = ®TY =ty )
1 24 =g

=@ty —yi= O ety —y-e),
falls ¢ eine primitive Wurzel von 271 = 1 bedeutet.
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Das Vorhandensein eines gemeinsamen algebraischen Teilers beider
Produkte wiirde verlangen, daB fiir wenigstens e:n £ und fiir wenigstens
ein l:

sl—e)+y—1-(@+y( — ),
d. h. daB
A=1—¢ und 1=(1-—¢) (1 —¢&)

ist. Weder ¢* noch & kann reell, d. h. hier: 41, sein ; sie miissen also kon-
jugiert komplex, also k¥ + 1 = p — 1 sein. Dann folgt nacheinander :

2k
l=(1—¢) - (1 —¢c¥%; e4ek=1; cosp_lzé
fir 1< k<p, mit den beiden einzigen Losungen k = ?——g—l— und
k=5- Z)—%}— Da iiberdies k eine ganze Zahl sein muB, so folgt notwen-

dig p = 1 (mod 8), falls iiberhaupt ein gemeinsamer algebraischer Teiler
existiert. Fiir jene beiden Werte von £ ist aber ¢ = primitive Wurzel von
28 = 1, und daher — & primitive Wurzel von 22 =1, also —é&¢* =«
mit a2 + « + 1 = 0. Die beiden einzigen, moglicherweise gemeinsamen
Linearfaktoren sind also diese « + ¥ + z-« und = + y + x-«~!, deren
Produkt 22 + x y + 2, wihrend gleichzeitig p = 1(6) ist. Dal} dieser
Fall tatsiichlich eintritt, und zwar stets im Fall p = 1(6), ist ja bekannt
aber auch leicht direkt zu bestitigen. q.e. d.

(Eingegangen den 1. Juni 1948.)
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