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Réduction de formes quadratiques
dans un corps algébrique fini

Par Pierre HumMmBERT (}), Lausanne

Introduction

Auf Wunsch der Redaktion méchte ich dieser nachgelassenen Untersuchung von Pierre
Humbert zwei erklirende Bemerkungen anfiigen:

1. In meiner 1940 in den Abhandlungen des Hamburger Mathematischen Seminars
erschienenen Arbeit wird die Reduktionstheorie der indefiniten quadratischen Formen von
m Variablen mit ganzen rationalen Koeffizienten in folgender Weise auf die Minkowskische
Reduktionstheorie der positiven definiten quadratischen Formen derselben Variablenzahl
zuriickgefiihrt. Es sei & die Matrix der gegebenen indefiniten Form F und § die Matrix
einer positiven definiten Form mit reellen Koeffizienten, welche der Bedingung SH-18=$
geniigt. Wenn F die Signatur n,m — n hat, d. h. reell in eine Summe von n positiven
und m — n negativen Quadraten transformierbar ist, so erfiillen jene §) einen n(m — n)-
dimensionalen Unterraum H im 4m(m -+ 1)-dimensionalen Raume P der positiven sym-
metrischen Matrizen §. Der Minkowskische reduzierte Raum R ist eine gewisse konvexe
Pyramide in P, deren Bilder bei Ausfithrung der samtlichen verschiedenen unimodularen
Transformationen P — P[U] = W PU eine lickenlose einfache Uberdeckung von P
ergeben. Man nennt F reduziert, wenn der Durchschnitt von H mit R nicht leer ist, mit
andern Worten, wenn die Gleichung S$H 1S = $ eine Losung § in R besitzt. Da aus
dieser Gleichung fir &, = G[U], H, = H[U] die analoge Beziehung &,H;1 S, = H,
folgt, so gibt es zu F' mindestens eine &dquivalente reduzierte Form. Aus den Eigenschaften
von R folgt, daB3 die Anzahl der reduzierten indefiniten quadratischen Formen von m
Variablen mit ganzzahligen Koeffizienten von gegebener Determinante endlich ist; hieraus
ersieht man, daB einerseits die Klassenzahl der indefiniten Formen gegebener Determinante
und Variablenzahl endlich ist, anderseits zu jeder indefiniten Form nur endlich viele aqui-
valente reduzierte Formen existieren. Aus letzterer Aussage ergibt sich schlielich, da8 die
Gruppe I'(S) der Einheiten von &, d. h. der ganzzahligen Transformationen von F in
sich, aus endlich vielen ihrer Elemente erzeugbar ist.

Diese Resultate werden in der vorliegenden Abhandlung von Pierre Humbert weit-
gehend verallgemeinert, indem statt des Korpers der rationalen Zahlen ein beliebiger
algebraischer Zahlkérper K von endlichem Grade zugrunde gelegt wird. An die Stelle der
Minkowskischen Reduktionstheorie tritt dann ihre schone und wichtige Ubertragung auf
algebraische Zahlkorper, die Humbert bereits in seiner Thése durchgefiihrt hatte. Sind 7,
von den Konjugierten von K reell, 27, komplex und hat F in den reellen Konjugierten die
Signatur n,,m—mn; (k=1,...,7), so hat man fur H das direkte Produkt von 7,
Réumen der Dimensionen n,(m — n,;) und r, Réumen der Dimensionen 4m(m — 1) zu
nehmen. Zugleich werden auch die analogen Probleme fiir hermitische Formen behandelt.

2. Der Raum H geht bei der Abbildung $— $[B] in sich tiber, wenn B die Matrix
einer beliebigen reellen Transformation von F in sich bedeutet. Auf diese Weise erhélt man
eine Darstellung der ,,Drehgruppe‘‘{2 (&) im Raume H von n(m — n) Dimensionen, in wel-
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chem die Einheitengruppe I'(S) diskontinuierlich ist. Auf H 148t sich ein bei 2(S) inva-
riantes Volumenelement einfithren. Sind U,,..., U g die Matrizen von unimodularen Sub-
stitutionen, welche die sémtlichen zu F' &quivalenten reduzierten Formen F,,...,F v inF
uberfithren, und geht bei den entsprechenden Transformationen P— P[U] der reduzierte
Raum R in die Bilder R,,..., R iiber, so ist der Durchschnitt von H mit R; + - - . 4 R,
ein Fundamentalbereich von I‘ie) auf H. In meiner erwahnten Arbeit wurde gezeigt,
daB das Volumen v(S) des Fundamentalbereiches endlich ist, wenn von dem trivialen
Ausnahmefall einer rational zerlegbaren binéren quadratischen Form abgesehen wird. Aus
einem Satze, den ich 1943 in den Annals of Mathematics verdffentlicht habe, ergibt sich
uibrigens, daB H der kleinstdimensionale Wirkungsraum der Drehgruppe ist, in welchem
die Einheitengruppe noch diskontinuierlich ist. Das Gruppenmaf3 v(&) und einige weitere
damit zusammenhéngende Folgerungen der Reduktionstheorie sind fiir die tiefere Unter-
suchung der analytisch-arithmetischen Eigenschaften indefiniter quadratischer Formen
von Bedeutung; man vergleiche etwa meine Arbeit ,,On the theory of indefinite quadratic
forms‘‘ in den Annals of Mathematics vom Jahre 1944,

Humbert hatte beabsichtigt, auch den Satz von der Endlichkeit des Gruppenmages auf
quadratische Formen in beliebigen algebraischen Zahlkérpern zu iibertragen; daran wurde
er dann leider durch seinen vorzeitigen Tod verhindert. In dem hier nicht abgedruckten
unvollstdndigen sechsten Paragraphen seines Manuskriptes zeigt er noch, da fir m > 1
das gesamte Volumen von H unendlich wird, wenn nicht zugleich K total-reell und F total-
definit ist. In Verbindung mit der Endlichkeit von (&) folgt hieraus die Existenz unend-
lich vieler Einheiten von F, wenn von den genannten Ausnahmefillen abgesehen wird.
Dies laBt sich allerdings auch durch eine elementare Uberlegung ableiten.

Carl Ludwig Siegel.

Ce travail est la généralisation d’un mémoire de M. Siegell), le corps
des nombres rationnels étant remplacé par un corps algébrique fini K.
Les résultats de M . Siegel s’étendent facilement, si I’on fait encore appel
a ceux de ma these. Toutefois, le cas ol le corps K posséde des conjugués
imaginaires a besoin d’un complément important et difféere sur bien des
points de celui o K est totalement réel. Le résultat est:

I existe seulement un nombre fini de classes de formes quadratiques a coef-
fictents entiers dans K et dont la norme du déterminant est donnée.

Dans un corps imaginaire K, identique au corps conjugué complexe,
on peut considérer des formes hermitiennes. Quand on passe aux conju-
gués de K, la symétrie hermitienne ne subsiste que si ’automorphisme
faisant passer au conjugué complexe est permutable avec les autres auto-
morphismes du groupe de Galois du plus petit surcorps galoisien de K.

Les résultats énoncés sont alors valables pour les formes hermitiennes
dans K.

1) Abhandlungen aus dem Mathematischen Seminar der Hansischen Universitiat, Bd. 13,
1940.
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§ 1. Réduction des systémes de formes quadratiques définies positives
dans K. (Pour ce paragraphe, se référer & ma theése, désignée dans
la suite par 7' 2).)

Pour généraliser la théorie de la réduction des formes quadratiques
définies positives au cas ou le groupe discontinu est celui des substitutions
unimodulaires dans un corps algébrique K, on considére des systémes
de formes définies positives & m variables associées aux différents con-
jugués de K. Si K possede g, conjugués réels et 2g, conjugués imagi-
naires, chacun de ces systémes est formé de g, formes quadratiques dé-
finies positives associées aux g, points & ’infini réels de K et de g, formes
hermitiennes définies positives associées aux g, points & l'infini imagi-
naires de K . Le systeme transformé par une substitution U & coefficients
dans K s’obtient en transformant chacune des formes du systéme par la
substitution conjuguée U¥) associée. On appelle substitution unimodu-
laire dans K une substitution a coefficients entiers de K et dont le déter-
minant est une unité de K. Deux systémes sont équivalents si I'un est le
transformé de l’autre par une substitution unimodulaire dans K.

Dans chaque classe d’équivalence, il existe un systéme réduit générale-
ment unique, et ’ensemble de ces systémes réduits constitue un domaine
fondamental du groupe unimodulaire dans I’espace P des systemes. On
obtient le systéme réduit par deux transformations successives: le sys-
téme donné S est d’abord transformé par une substitution entiére dans
K, dont la matrice A s’obtient par certaines conditions de minimum. Le
systéme S ainsi obtenu est situé dans un domaine R, de I'espace P,
domaine défini par les inégalités I et 11 de 7'. On démontre que la matrice
A est égale & UA, ou A, appartient & un ensemble fini de matrices ne
dépendant que de m et de K. Le systeme transformé de S par At est
le systéme réduit. Nous désignerons le domaine fondamental ainsi obtenu
par R.

Remarque. Soit S la matrice d’une forme quadratique ou hermitienne
définie positive. Considérons une décomposition quelconque de S partagée
suivant les lignes et les colonnes:

S, G-
CS=| Cub, ;
les matrices S,, S,,... en suivant la diagonale principale étant toutes

quadratiques. Les déterminants des S, vérifient I'inégalité suivante :

2) Comment. math. helv. vol. 12, p. 263, 1939/40.
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161 <& ]| Gl..., (1)

inégalité qu’il suffit évidemment de démontrer dans le cas d’'une décom-
position de © en 4 matrices :
S S
6 — ( 1 12)
621 62

On utilise pour cela l’'identité :

—1 —_—
= FYFEH] o smzraE
Comme |S|=|G,].|T|, il suffit de démontrer que le déterminant
de la somme de 2 matrices positives est au moins égal a chacun des dé-
terminants des matrices composantes. Or cela est évident si 'on utilise
le fait que deux matrices définies positives peuvent étre mises simultané-
ment sous la forme diagonale.

Soient S¥) = (s‘i’;)) les matrices, symétriques pour £t =1,2,...,4,,
hermitiennes pour £ =g, + 1,...,¢9; + ¢, des formes d’un systeme S
du domaine R,. Les s vérifient les inégalités suivantes, ou, pour simplifier,
s, désigne s, :

sP < s pour @ <j; A,pu quelconques (2)
| s | <y 8 (3)
s P, < gy | B (4)

et ou les constantes positives c,, ¢,, ¢, ne dépassent pas certaines bornes
fixées par m et K. Appelons R(c,, c,, ¢c;) ou plus simplement R(c) la
portion de I’espace P définie par les inégalités (2), (3), (4). Le domaine
R(c) contient R, sitot que les constantes ¢ dépassent les bornes mention-
nées. Désignons le domaine R(c) par R™(c) si 'on veut marquer sa
dépendance du degré m des matrices &%), c’est-a-dire du nombre des
variables des formes quadratiques ou hermitiennes envisagées.

Montrons que si le systéme S des S'® est situé dans R™(c), le systeme
obtenu en supprimant dans les matrices G les lignes et les colonnes &
partir de la n-iéme est situé dans R"(c). Il suffit de faire voir que les
coefficients du systéme ainsi tronqué vérifient les inégalités (2), (3), (4).
Or les inégalités (2) et (3) sont valables puisque le systéme des S est
dans R™(c). Quant & (4), on a

81+« .8y 8 .. .8y, 81+ +Spm

 Sn _ 1e o <
| S, | | Gl 8ntre - 8w — 1G] T

cela en vertu de (1).
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On peut maintenant énoncer un théoréme analogue au théoréme 6
de 7T':

Théoréme 1. Soient S*) et T (k= 1,...,9, + g,) deux systémes
du domaine R(c), U une matrice non dégénérée a coefficients dans K, et a
un entier rationnel tel que aW et aWA-1 soient entiéres. St Von a S* =
TEOUAR] pour k=1,...,9,+g,, les matrices W™ et AHE)-1 ont toutes
leurs éléments bornés, la borne ne dépendant que de m, de K et de a.

La démonstration se fait comme celle du théoréeme 6 de 7'. En effet
les inégalités I et I ne sont utilisées dans 7' que sous la forme atténuée
des inégalités définissant R(c). En outre le raisonnement par induction
sur m est valable d’aprés la remarque faite avant I’énoncé du théoréme 1.

Démontrons ensuite le

Théoréme 2. Soit B la matrice de la substitution xz, — x,_;. .. Sile
systéme positif des S* est situé dans le domaine R(c), le systéme trans-
formé par B du systéme des S*-1 est situé dans un domaine R(c’), ou les
¢’ ne dépendent que de m et de K.

Posons, en supprimant les indices supérieurs
St = (o) -

L’élément o, de S s’obtient en divisant par le déterminant | S| le
mineur de s,;. Or en évaluant grossiérement ce mineur au moyen de (3)
on trouve

(m — D™ ts,. . .8,

l Ok I g 3; { 6 I
En vertu de (4) on obtient
/
c
loa | < ‘;j“ . (5)
L’inégalité (1) donne
0,8, =>1. (6)

Les inégalités (2) et (3) pour les éléments de S—1[B] découlent de (2),

(5) et (6) ; les nouvelles constantes c, et ¢, sont c,c; et ¢,. L’inégalité (4)

se démontre en remarquant que | (o) | = | S|~ et en tenant compte
de (5) et de (1):

0y...0, _ cm| S|

l(aik)l T 818 T

Le théoréme 2 est établi.
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§ 2. Formes positives attachées 4 une forme indéfinie

La théorie de la réduction s’applique aux formes indéfinies par I’inter-
médiaire d'une idée de Hermite. Une forme quadratique indéfinie en les
variables x; peut se ramener par une substitution linéaire & coefficients

m
réels & une somme algébrique de carrés 3’ + z;. Hermite lui attache la
m i=1
forme définie positive X 23, considérée en les variables z;. Soit U la
i=1
substitution unimodulaire qui effectue la réduction de cette derniére

forme quadratique. La transformée de la forme indéfinie initiale par U
est la ,,réduite” de Hermite. La décomposition d’'une forme indéfinie en
somme algébrique de carrés étant possible d’une infinité de maniéres
différentes, il existe une infinité de formes positives attachées de la fagon
indiquée & la forme indéfinie envisagée; ces formes constituent, dans
I’espace des formes positives, une variété que nous allons étudier. Comme
nous aurons a considérer des formes quadratiques a coefficients réels
aussi bien qu’imaginaires, ainsi que des formes hermitiennes, nous avons
trois cas & distinguer.

Premier cas: Variété attachée a une forme quadratique réelle

Soit & la matrice symétrique réelle d’une forme quadratique indéfinie,
de signature (n, m — n). La décomposition en une somme algébrique de
carrés revient & écrire

S=UAFA

ou § est la matrice diagonale ayant » fois + 1 et m — n fois — 1 dans
sa diagonale principale, et ol U est une matrice réelle. La matrice de la
forme positive attachée & S suivant Hermite est alors:

H$=UAA.
Cette matrice § vérifie la relation
HS1H=6 (7)

et I’on démontre, en s’appuyant sur le fait que deux formes quadratiques
dont I’'une est positive peuvent se mettre simultanément sous forme dia-
gonale, que réciproquement toute § positive et solution de (7) est la
matrice d’une forme positive attachée & S. La variété H étudiée est donc
celle des solutions §) positives de (7). Ainsi qu’il est démontré dans le
mémoire cité de Siegel, cette variété H est algébrique, irréductible, et
admet la représentation paramétrique biunivoque suivante :
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H=23—-CS avece J=T1E,Y] Z=6“1[$]>0,

) étant une matrice variable & m — n lignes et & n colonnes, assujettie
a la seule condition que I soit positive.
Le nombre de dimensions de H est n (m — n).

Deuxiéeme cas. Variété attachée a une forme hermaitienne
Soit © une matrice hermitienne indéfinie, de signature (n,m — n).
Elle peut se mettre sous la forme
S=UFA

ou & & la méme signification que précédemment,

€, 0
8. B (O - gm-n)
et ou U est une matrice complexe. La matrice positive attachée & & est
hermitienne et définie par

§=AA.
Elle vérifie la relation (7) du premier cas:
PE1H=6. (7)

Réciproquement, toute solution § hermitienne positive de (7) est une
des matrices attachées a S ; cela se démontre comme dans le premier cas.
La variété H attachée & S est algébrique, irréductible, & n(m — n) di-
mensions complexes, et admet la méme représentation paramétrique que
dans le premier cas, sauf que 9) est complexe au lieu d’étre réelle.

Troisiéme cas: Variété attachée a une forme quadratique complexe

Soit © une matrice symétrique non dégénérée, & coefficients com-
plexes quelconques. Il n’y a ici rien d’analogue & la signature. Mais il est
clair que S peut se mettre sous la forme

S=UAA

ou A est une matrice complexe. Par définition, on attache & & la matrice
hermitienne définie positive _

H=UAA
qui vérifie la relation

$C1H=6. (8)
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Réciproquement, nous allons voir que toute matrice hermitienne posi-
tive $ vérifiant (8) est une matrice attachée & S dans le sens indiqué.
On s’appuie pour cela sur le

Théoréme 3. Soient § une matrice hermitienne positive et S une matrice
symétrique a coefficients complexes ; il existe une matrice complexe W telle
que

A'HA=E et A SA= D = matrice diagonale.

Nous réservons la démonstration de ce théoréme & plus tard pour
éviter une interruption.

Soit donc § une matrice hermitienne positive vérifiant (8); on peut
écrire, d’apres le théoréme 3 :

§=UAA, S=ADA.

D étant une matrice diagonale complexe, et | A | £ 0 puisque S n’est
pas dégénérée. La relation (8) donne

.

D=7 .

Soit D, la matrice dont les éléments sont les racines carrées de ceux de
D, et soit B la matrice B =D, A; on a

$=93'9% S=9'9B c. q. f. d.
La variété des § hermitienne positives attachées & S peut donc aussi
étre définie par 1’équation (8).

On peut donner de cette variété la représentation paramétrique sui-
vante : Soit W, une matrice particuliére telle que

S =Y, .
Si X est une matrice imaginaire vérifiant les conditions de symétrie
¥=%X=-%,
on voit que la matrice
9= g_—:_f_ A (9)
0 G + x 0

est hermitienne et vérifie la relation (8); $ est positive pour un certain
domaine D de l’espace des X. Réciproquement, toute § hermitienne
positive et vérifiant (8) peut se mettre sous la forme (9), car on tire de (9)
C-8K
C+ K

et Pon vérifie que X' =X = — X.

z = avec S=9[U"]
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Remarque. Le domaine D des X pour lequel § est positive peut ausss
étre défini par la condition que € + X soit positive.

En effet, supposons tout d’abord § positive; alors d’aprés (9)
(€ — X)(€ + X)! lestaussi;soit €+ X=3,dou € —X=3". On
en tire 2€ = 3 + 3’. En multipliant par 31, on voit que

237 = €+ 33

est positive comme somme de deux matrices positives. 31 étant positive,
3 et 3’ le sont aussi.

Supposons maintenant que 3 = E + X soit positive; alors 3’ =
€ — X lest aussi. La matrice

3'31=(€—%(E+ X

est hermitienne, en vertu des conditions de symétrie que vérifie X. Or
st deux matrices hermitiennes positives S et I, telles que € — X et
(€ 4+ X)~! par exemple, ont pour produit une matrice hermitienne, cette
matrice est positive. En effet, la condition de symétrie hermitienne s’ex-
prime par

ST=TG,

on peut transformer G et I simultanément sous forme diagonale: S =
WA, T=A"DUA; on voit alors que D est permutable avec la matrice

AUA' = K et que ST ala méme signature que K D = D & ; il suffit
donc de montrer que & D est positive. La matrice D est diagonale et a
ses éléments positifs ; on peut supposer qu’ils sont ordonnés par gran-
deurs croissantes. Décomposons & de facon analogue :

11 R12"‘
R=<Rgl Rgz.-.) .

Légalité R D = D ] donne alors
Rik =0 si 1 =h k.

La matrice & a donc la forme suivante :
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Les matrices &,, &,,... sont positives puisque { = A A’ est positive.
On en déduit que la matrice

&R 0 ...
DRz(O @&“)

-------------

est aussi positive, c. q.f. d.

La matrice X dépend de —%—"EE—H parametres réels ; ce nombre est

la dimension de la variété H attachée a4 une forme quadratique & coeffi-

cients imaginaires. H est donc dans ce cas une variété algébrique irré-

ductible a —m——(———-m2—-_——1)~ dimensions.

Démonstration du théoréme 3. Soit § une matrice hermitienne positive
et S une matrice symétrique non dégénérée & coefficients complexes. On
peut transformer § en la forme unité au moyen d’une substitution de
matrice €: €’ € = €. Posons €’ SE = T. Si U est une matrice uni-
taire, définie par U’ U = €, on aura, en posant A = E U :

AV HUA=C A SA=WIU .

11 suffit donc de démontrer que 'on peut mettre une matrice symetrique
donnée I sous la forme diagonale au moyen d’une transformation par une
matrice unitarre :

UIu=29.

Pour cela considérons la matrice hermitienne positive TI = R. On
peut la mettre sous forme diagonale au moyen d’une transformation
unitaire :

WRU=D, .
D, est réelle et a ses éléments positifs puisque R est positive. On a aussi
U’ ﬁ ﬁ = 31 .
Formons la matrice
A=UTU . (10)
On a
QI Dl = 91 QI .

La matrice U étant permutable avec D,, il s’ensuit que U est diagonale,
pourvu que les éléments de D, soient tous inégaux. Dans ce cas le théo-
reme est démontré en vertu de (10).
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Si les éléments de D, ne sont pas tous inégaux, on applique le résultat
précédent & la matrice T, =T 4 &I, au lieu de T ; T, est symétrique,
et ¢ réel positif. Soit R, = I, T,. La matrice diagonale obtenue en

transformant R, par une matrice unitaire 1, convenable, D,=UR 1.,
a ses éléments tous inégaux pour un choix convenable de T,, lorsque
e = 0. En effet, les éléments de D, sont les racines caractéristiques de
R, ; or le discriminant de 1’équation caractéristique |R, —xE| =0
n’est pas nul quel que soit I, car pour I, = e‘l(D’} —3), ou D est une
matrice diagonale d’éléments positifs tous différents, I’équation carac-
téristique est | D — x € | = 0. Soit donc T, une matrice pour laquelle
le discriminant de | R, — 2 € | = 0 est non nul quel que soit ¢ positif
assez petit. Comme on I’a vu, on peut alors mettre I, sous forme diago-
nale au moyen d’'une matrice unitaire :

u:: zs us: D, - (11)

Ce résultat ne cesse d’étre valable lorsque ¢ tend vers 0. Dans ces con-
ditions I, tend vers T. D’autre part U, qui est unitaire, donc bornée,
tend vers une matrice unitaire U, cela pour une certaine suite dénom-
brable d’s. Quant & ®,, elle tend a cause de (11) vers une matrice dia-
gonale D, et 'on a & la limite WIU =D, c.q.f.d.

§ 3. Formes indéfinies dans K et variétés attachées

1. Cas d’une forme quadratique

Reprenons le corps K ayant g, conjugués réels et 2g, conjugués ima-
ginaires. Soit & la matrice symétrique d’'une forme quadratique non
dégénérée dans K, et soient

Sw,... S

les g conjugués de S, qui sont également des matrices symétriques non
dégénérées, les 2¢g, derniéres étant en général complexes. Supposons-les
numérotées de fagon que S* et Sk+92) soient imaginaires conjuguées,
pour ¢, <k <g, + g,. A chacune des S'¥) faisons correspondre la va-
riété des matrices positives H® qui lui est attachée, variété qui peut
éventuellement se réduire & un seul point si S*) est définie positive ou
négative. Le produit direct des ¢, + g, variétés H® k <g, + g,, est
la variété H que nous attacherons & la matrice symétrique S. Cette va-
riété H doit étre considérée comme située dans ’espace P des systémes
positifs, espace qui est le produit direct des espaces des k-iémes compo-
santes des systémes. Sa dimension d est la somme des dimensions des
variétés H® | soit
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m(m — 1)

2
ou (ng, m — n,) est la signature de S*). La variété H se réduit & un
point si S est totalement définie, c’est-a-dire si toutes les conjuguées de S
sont définies positives ou négatives. Cela ne peut toutefois avoir lieu que
si le corps K n’a pas de conjugués imaginaires (g, = 0).

g1
d:kgnk(m'—nk)_{_gz

2. Cas d’une forme hermitienne

Si I'on veut considérer des formes hermitiennes dans K, il faut que le
corps K soit imaginaire et coincide avec 'imaginaire conjugué. Dans le
passage a un corps conjugué de K, une forme hermitienne S = (s;;) ne
conserve pas nécessairement la symétrie hermitienne caractérisée par la

condition s;; = s;;. Dans quels cas cette symétrie est-elle conservée ?
Pour le voir envisageons le plus petit corps galoisien K surcorps de K.
Désignons par » ’automorphisme de K faisant correspondre & chaque

nombre de K son conjugué complexe. La symétrie hermitienne de la ma-

trice s’exprime par

Si & doit rester hermitienne dans un corps conjugué o K de K, cela
implique
G 8 = %08y ,
c’est-a-dire
O K8, = KGOS, .

Donc: 8i Pautomorphisme faisant passer au conjugué complexe est per-

mutable avec les autres automorphismes de K, les conjuguées d’une matrice
hermitienne S de K sont ausst hermitiennes.

Nous supposons qu’il en sera toujours ainsi lorsqu’il s’agira de formes
hermitiennes dans un corps K. Dans ce cas le corps K est totalement
imaginaire, g, = 0, et son degré vaut 2¢g,. Soient

Sw, ..., Sl

les g, premiéres conjuguées d’une matrice hermitienne & dans K, les g,
autres conjuguées étant les conjuguées complexes de celle-la. Associons
a chacune des G la variété H® qui lui est attachée suivant le § 2,
deuxiéme cas. Le produit direct de ces H®, k=1,...,g,, est la variété

* g2
H attachée & S. La dimension de H est 2 2n,(m — ny), (n,, m — n,)
k=1

étant la signature de S, H se réduit & un point si toutes les S*) sont
définies.
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§ 4. Réduction des formes indéfinies dans K

Soit S la matrice d’une forme quadratique ou hermitienne non dégéné-
rée a coefficients dans K. Considérons I'un des systémes positifs S at-
tachés & S. Effectuons la réduction de ce systéme S comme il a été in-
diqué au § 1, réduction opérée par la substitution unimodulaire [ de K.
La transformation de & par U donne par définition une réduite de S. En
partant d’'un autre systéeme S attaché & &, on peut obtenir une autre
réduite. Toutefois le nombre des réduites équivalentes & & est fini, en
vertu du théoréme suivant :

Théoréme 4. Le nombre des formes quadratiques ou hermitiennes a coef-
ficients entiers de K , @ m variables, dont la norme du déterminant est donnée
et qui sont rédurtes est fins.

En effet, soit S la matrice de I’'une de ces réduites. Il existe un systéme
réduit attaché & S ; soient H*, k=1,...,9,+ ¢,, les matrices de ce
systéme. D’aprés le § 2 on a les relations

B GW-1 g = G ou G SE-1 Gk — S
suivant les cas. Soit U, la matrice auxiliaire correspondant au systéme
des $§'®. En transformant S et les § par A,*, on obtient des matrices

S, 9 qui vérifient encore les relations écrites, relations qui se mettent
aussi sous la forme:

$1SI=9H ou HEI=5.
D’autre part, le systéme des 55 est situé dans le domaine R(c), et d’apres
le théoréme 2 du § 1 le systéme des $*1 ou des 55“1 transformés par B

est situé dans un domaine R(c’). On peut alors appliquer le théoréme 1
du § 1, car les domaines R(c) et R(c’) sont tous deux contenus dans le
domaine R(c”) ou ¢] = max (¢;,¢c}), ¢t = 1,2,3. Comme & = G‘[?Iv]
est une matrice entiére dans K par hypothése, on peut prendre pour 1’en-
tier rationnel @ du théoréme 1 le nombre A:N(| S|) ou 4 est le plus
petit entier rationnel divisible par tous les | %, |. D’apres 7', théoreme 1,

P’entier A ne dépend que de m et de K. Les S possibles étant bornées
en vertu du théoréme 1 de ce travail, et A2 S étant entiére dans K , les
é sont en nombre fini, et il en est de méme des S. C. q. £. d.

Du théoréme 4 découle sans autre le résultat important contenu dans le

Théoréme 5. Le nombre des classes de formes quadratiques définies ou
indéfinies, a coefficients entiers dans K, dont la norme du déterminant est
donnée et non nulle, est fini. Il en est de méme du nombre des classes de formes
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hermitiennes entiéres dans K, pourvu que la symétrie hermitienne subsiste
dans le passage aux corps conjugués.

§ 5. Unités des formes indéfinies dans K

On appelle unité d'une forme quadratique ou hermitienne une substitu-
tion unimodulaire qui laisse cette forme invariante. Il est clair qu'une
forme totalement définie dans K ne posséde qu’un nombre fini d’unités.
Les unités d’une forme constituent un groupe multiplicatif que nous dé-
signerons par ['(S).

Considérons une forme quadratique ou hermitienne G dans K et sa
variété attachée H définie au § 3. La variété attachée & la transformée de
S par une substitution non dégénérée quelconque U est précisément la
variété obtenue en transformant H par U. Il s’ensuit que les unités de S
transforment la variété H en elle-méme. Le groupe I'(S) des unités de
S est discontinu dans H ; il y admet un domaine fondamental F' que nous
allons construire.

Aux réduites de S correspondent des variétés équivalentes & H et
coupant le domaine réduit R. D’apres le théoreme 4 il n’y a qu’un nombre
fini de pareilles variétés. Soient S, =G, S,=G[U,],..., S, =
S[U,] les différentes réduites de S, et H,, H,,..., H, les variétés at-
tachées. Désignons par G,,d,,...,d, les domaines communs & R et &
H,,...,H, respectivement. En transformant ces domaines G, par les
substitutions ;! correspondantes, on obtient dans la variété H des do-
maines D,=G,, D,,..., D, qui, par leur réunion, constituent un domaine
D .1l est facile de voir que tout systéme S de H posséde dans D un systéeme
équivalent par une unité de . Le domaine D est donc un domaine fonda-
mental pour I'(S) si deux points intérieurs a D dans H ne peuvent étre
équivalents par une substitution de I'(S); cela a certainement lieu si la
frontiere des domaines D, dans H coincide avec les portions des D, ob-
tenues au moyen de la frontiére de R. Cela est en général vrai, mais nous
n’y insisterons pas. Il nous suffit que le domaine D contienne un domaine
fondamental F de I'(S) dans H.

On peut obtenir les unités d’une forme & dans K au moyen des sub-
stitutions unimodulaires qui effectuent la réduction de S. Soient en effet
U et U* deux substitutions unimodulaires transformant S en la méme
forme réduite S, ; il est clair que U* U-! est une unité de S. Récipro-
quement, toute unité peut s’obtenir de cette facan : Le groupe des unités
de © admet, comme le groupe unimodulaire dans K, un nombre fini
d’éléments générateurs.

(Regu le 9 aotit 1948.)
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