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Réduction de formes quadratiques
dans un corps algébrique fini

Par Pierre Humbert (f), Lausanne

Introduction
Auf Wunsch der Redaktion mochte ich dieser nachgelassenen Untersuchung von Pierre

Humbert zwei erklarende Bemerkungen anfugen:

1 In memer 1940 m den Abhandlungen des Hamburger Mathematischen Semmars
erschienenen Arbeit wird die Reduktionstheone der mdefiniten quadratischen Formen von
m Variablen mit ganzen rationalen Koeffizienten in folgender Weise auf die Mmkowskische
Reduktionstheone der positiven definiten quadratischen Formen derselben Vanablenzahl
zuruckgefuhrt Es sei S die Matrix der gegebenen mdefiniten Form F und § die Matrix
einer positiven definiten Form mit reellen Koeffizienten, welche der Bedmgung SS"1^ §
genugt. Wenn F die Signatur n,m — n hat, d. h. reell in eme Summe von n positiven
und m — n negativen Quadraten transformierbar ist, so erfullen jene § emen n(m — n)-
dimensionalen Unterraum H îm \m{m + 1) dimensionalen Raume P der positiven sym-
metrischen Matrizen ty. Der Mmkowskische reduzierte Raum R ist eme gewisse konvexe
Pyramide m P, deren Bilder bei Ausfuhrung der sàmthehen verschiedenen unimodularen
Transformationen ^P~>Ç[U] U'^PU eme luckenlose emfache Ûberdeckung von P
ergeben. Man nennt F reduziert, wenn der Durchschnitt von H mit R nicht leer ist, mit
andern Worten, wenn die Gleiehung S^"1^ § eme Losung § m R besitzt Da aus
dieser Gleiehung fur Sx S[U], $! §[U] die analoge Beziehung S^J1 Sx §!
folgt, so gibt es zu F mindestens eme aquivalente reduzierte Form. Aus den Eigenschaften
von R folgt, dafl die Anzahl der reduzierten mdefiniten quadratischen Formen von m
Variablen mit ganzzahhgen Koeffizienten von gegebener Déterminante endheh ist, hieraus
ersieht man, daB einerseits die Klassenzahl der mdefiniten Formen gegebener Déterminante
und Vanablenzahl endheh ist, anderseits zu jeder mdefiniten Form nur endheh viele
aquivalente reduzierte Formen existieren. Aus letzterer Aussage ergibt sich sehliefiheh, daB die
Gruppe !"*((£>) der Emheiten von (S, d. h. der ganzzahhgen Transformationen von F m
sich, aus endheh vielen îhrer Elemente erzeugbar ist.

Dièse Resultate werden m der vorhegenden Abhandlung von Pierre Humbert weit-
gehend verallgememert, mdem statt des Korpers der rationalen Zahlen ein behebiger
algebraischer Zahlkorper K von endhehem Grade zugrunde gelegt wird. An die Stelle der
Minkowskischen Reduktionstheone tritt dann îhre schone und wichtige Ûbertragung auf
algebraische Zahlkorper, die Humbert bereits m semer Thèse durchgefuhrt hatte. Smd rx
von den Konjugierten von K reell, 2r2 komplex und hat F m. den reellen Konjugierten die
Signatur nk,m — nk (k — 1, rx), so hat man fur H das direkte Produkt von rx
Raumen der Dimensionen nk(m — nk) und r2 Raumen der Dimensionen Jm(m — 1) zu
nehmen. Zugleich werden auch die analogen Problème fur hermitische Formen behandelt.

2 Der Raum H geht bei der Abbildung § -» § [SB] m sich uber, wenn 33 die Matrix
emer behebigen reellen Transformation von F m sich bedeutet. Auf dièse Weise erhâlt man
eme Darstellung der ,,Drehgruppe"i2(S) im Raume H von n(m — n) Dimensionen, m wel-
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chem die Emheitengrappe F(S) diskontmuierhch ist. Auf H lafît sich ein beiQ(S)
invariantes Volumenelement emfuhren. Smd VLt, Ug die Matnzen von ummodularen Sub-
stitutionen, welche die sâmthchen zu F âqmvalenten reduzierten Formen Fx, Fg in F
uberfuhren, und geht bei den entsprechenden Transformationen ^P~>^P [U] der reduzierte
Raum R in die Bilder Rx, R^ uber, so ist der Durchschnitt von H mit Rx -f- • • • -f- Rg
ein Fundamentalbereich von JT\(S) auf H. In meiner erwahnten Arbeit wurde gezeigt,
dafi das Volumen v(S) des Fundamentalbereiches endlich ist, wenn von dem tnvialen
Ausnahmefall einer rational zerlegbaren bmàren quadratischen Form abgesehen wird. Aus
einem Satze, den ich 1943 m den Annals of Mathematics verofïentlicht habe, ergibt sich
ubngens, dafî H der klemstdimensionale Wirkungsraum der Drehgruppe ist, in welchem
die Einheitengruppe noch diskontmuierhch ist. Das Gruppenmafi v(&) und emige weitere
damit zusammenhangende Folgerungen der Reduktionstheone smd fur die tiefere Unter-
suchung der analytisch anthmetischen Eigenschaften mdefiniter quadratischer Formen
von Bedeutung, man vergleiche etwa même Arbeit ,,On the theory of mdefinite quadratic
forms" m den Annals of Mathematics vom Jahre 1944.

Humbert hatte beabsichtigt, auch den Satz von der Endhchkeit des Gruppenmafies auf
quadratische Formen m behebigen algebraischen Zahlkorpern zu ubertragen, daran wurde
er dann leider durch semen vorzeitigen Tod verhindert. In dem hier nicht abgedruckten
unvollstândigen sechsten Paragraphen seines Manuskriptes zeigt er noch, dafi fur m > 1

das gesamte Volumen von H unendlich wird, wenn nicht zugleich K total reell und F total-
defînit ist In Verbindung mit der Endhchkeit von v((2>) folgt hieraus die Existenz unendlich

vieler Emheiten von F, wenn von den genannten Ausnahmefâllen abgesehen wird.
Dies lafit sich allerdmgs auch durch eine elementare Ûberlegung ableiten.

Cari Ludwig Siegel.

Ce travail est la généralisation d'un mémoire de M. Siegel1), le corps
des nombres rationnels étant remplacé par un corps algébrique fini K.
Les résultats de M. Siegel s'étendent facilement, si Ton fait encore appel
à ceux de ma thèse. Toutefois, le cas où le corps K possède des conjugués
imaginaires a besoin d'un complément important et diffère sur bien des

points de celui où K est totalement réel. Le résultat est :

II existe seulement un nombre fini de classes de formes quadratiques à

coefficients entiers dans K et dont la norme du déterminant est donnée.

Dans un corps imaginaire K, identique au corps conjugué complexe,
on peut considérer des formes hermitiennes. Quand on passe aux conjugués

de K, la symétrie hermitienne ne subsiste que si l'automorphisme
faisant passer au conjugué complexe est permutable avec les autres auto-
morphismes du groupe de Galois du plus petit surcorps galoisien de K.
Les résultats énoncés sont alors valables pour les formes hermitiennes
dans K.

*) Abhandlungen aus dem Mathematischen Semmar der Hansischen Universitat, Bd. 13,
1940.
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§ 1. Réduction des systèmes de formes quadratiques définies positives
dans K. (Pour ce paragraphe, se référer à ma thèse, désignée dans
la suite par T2).)

Pour généraliser la théorie de la réduction des formes quadratiques
définies positives au cas où le groupe discontinu est celui des substitutions
unimodulaires dans un corps algébrique K, on considère des systèmes
de formes définies positives à m variables associées aux différents
conjugués de K. Si K possède gx conjugués réels et 2g2 conjugués
imaginaires, chacun de ces systèmes est formé de gx formes quadratiques
définies positives associées aux gx points à l'infini réels de K et de g2 formes
hermitiennes définies positives associées aux g2 points à l'infini imaginaires

de K. Le système transformé par une substitution 2Ï à coefficients
dans K s'obtient en transformant chacune des formes du système par la
substitution conjuguée 2l(fe) associée. On appelle substitution unimodulaire

dans K une substitution à coefficients entiers de K et dont le
déterminant est une unité de K. Deux systèmes sont équivalents si l'un est le
transformé de l'autre par une substitution unimodulaire dans K.

Dans chaque classe d'équivalence, il existe un système réduit généralement

unique, et l'ensemble de ces systèmes réduits constitue un domaine
fondamental du groupe unimodulaire dans l'espace P des systèmes. On
obtient le système réduit par deux transformations successives : le
système donné S est d'abord transformé par une substitution entière dans

K, dont la matrice 21 s'obtient par certaines conditions de minimum. Le

système S ainsi obtenu est situé dans un domaine Ro de l'espace P,
domaine défini par les inégalités I et II de T. On démontre que la matrice
21 est égale à U2tv où 21^ appartient à un ensemble fini de matrices ne

dépendant que de m et de K. Le système transformé de 8 par 2I71 est
le système réduit. Nous désignerons le domaine fondamental ainsi obtenu

par R.

Remarque. Soit S la matrice d'une forme quadratique ou hermitienne
définie positive. Considérons une décomposition quelconque de <5 partagée
suivant les lignes et les colonnes :

les matrices Qt, Q2,... en suivant la diagonale principale étant toutes
quadratiques. Les déterminants des Qk vérifient l'inégalité suivante :

2) Comment, math. helv. vol. 12, p. 263, 1939/40.
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l<S|<l<5iU®,|..., (1)

inégalité qu'il suffit évidemment de démontrer dans le cas d'une
décomposition de S en 4 matrices :

s If ?¦¦)
\®11 ®2 /

On utilise pour cela l'identité :

~ \0 %) |0 (g J
avec <s>2 £ + &Ï Lc>i2j •

Comme |S| |Si|.|2|, il suffit de démontrer que le déterminant
de la somme de 2 matrices positives est au moins égal à chacun des

déterminants des matrices composantes. Or cela est évident si l'on utilise
le fait que deux matrices définies positives peuvent être mises simultanément

sous la forme diagonale.
Soient <5{k) (s^) les matrices, symétriques pour Je 1, 2,..., gl9

hermitiennes pour Je gx + 1,..., gt + <72 >
des formes d'un système S

du domaine Ro. Les s vérifient les inégalités suivantes, où, pour simplifier,
st désigne stt :

4>} ^ ci 4M) pour i <j ; A, \i quelconques (2)

I qM I <" r qM ^^I *iifc I !b C2 *» V0/

«»>«?>...«£> <c,|S«»| (4)

et où les constantes positives cx, c2, c3 ne dépassent pas certaines bornes
fixées par m et K. Appelons R(cly c2, c3) ou> plus simplement R(c) la
portion de l'espace P définie par les inégalités (2), (3), (4). Le domaine
R (c) contient Ro sitôt que les constantes c dépassent les bornes mentionnées.

Désignons le domaine R(c) par Rm(c) si l'on veut marquer sa

dépendance du degré m des matrices S(fc), c'est-à-dire du nombre des

variables des formes quadratiques ou hermitiennes envisagées.
Montrons que si le système S des S(fe) est situé dans Rm(c), le système

obtenu en supprimant dans les matrices Q{k) les lignes et les colonnes à

partir de la n-ième est situé dans Rn(c). Il suffit de faire voir que les

coefficients du système ainsi tronqué vérifient les inégalités (2), (3), (4).
Or les inégalités (2) et (3) sont valables puisque le système des S(&) est
dans Rm(c). Quant à (4), on a

cela en vertu de (1).
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On peut maintenant énoncer un théorème analogue au théorème 6

de T:
Théorème 1. Soient <5{k) et Z{k) {Je 1,..., gx + g2) deux systèmes

du domaine R(c), 21 une matrice non dégénérée à coefficients dans K, et a
un entier rationnel tel que a% et a%^x soient entières. Si Von a S(fe) —
3;<*>[9l<*>] pour Jc=l,...,g1 + g2, les matrices Wk) et Wk)~l ont toutes
leurs éléments bornés, la borne ne dépendant que de m, de K et de a.

La démonstration se fait comme celle du théorème 6 de T. En effet
les inégalités I et II ne sont utilisées dans T que sous la forme atténuée
des inégalités définissant R(c). En outre le raisonnement par induction
sur m est valable d'après la remarque faite avant l'énoncé du théorème 1.

Démontrons ensuite le

Théorème 2. Soit 93 la matrice de la substitution xk -> xm_k+l. Si le

système positif des <5{k) est situé dans le domaine R(c), le système
transformé par 93 du système des Q{k)~x est situé dans un domaine R(cr), où les

cf ne dépendent que de m et de K.

Posons, en supprimant les indices supérieurs

L'élément atk de S"1 s'obtient en divisant par le déterminant | Q \ le
mineur de skt. Or en évaluant grossièrement ce mineur au moyen de (3)
on trouve

En vertu de (4) on obtient
ci

K* I < "f • (5)

L'inégalité (1) donne

Les inégalités (2) et (3) pour les éléments de ®~x[93] découlent de (2),
(5) et (6) ; les nouvelles constantes cx et c2 sont cxc'2 et c2. L'inégalité (4)

se démontre en remarquant que | (atk) | | S |~x et en tenant compte
de (5) et de (1) :

\(aik)

Le théorème 2 est établi.



§ 2. Formes positives attachées à une forme indéfinie

La théorie de la réduction s'applique aux formes indéfinies par
l'intermédiaire d'une idée de Hermite. Une forme quadratique indéfinie en les

variables xt peut se ramener par une substitution linéaire à coefficients
m

réels à une somme algébrique de carrés Z ± z\ Hermite lui attache la
m t=l

forme définie positive £ z\, considérée en les variables xt. Soit U la

substitution unimodulaire qui effectue la réduction de cette dernière
forme quadratique. La transformée de la forme indéfinie initiale par lt
est la „réduite" de Hermite. La décomposition d'une forme indéfinie en
somme algébrique de carrés étant possible d'une infinité de manières
différentes, il existe une infinité de formes positives attachées de la façon
indiquée à la forme indéfinie envisagée ; ces formes constituent, dans

l'espace des formes positives, une variété que nous allons étudier. Comme

nous aurons à considérer des formes quadratiques à coefficients réels
aussi bien qu'imaginaires, ainsi que des formes hermitiennes, nous avons
trois cas à distinguer.

Premier cas : Variété attachée à une forme quadratique réelle

Soit © la matrice symétrique réelle d'une forme quadratique indéfinie,
de signature (n,m — n). La décomposition en une somme algébrique de
carrés revient à écrire

où g est la matrice diagonale ayant n fois + 1 et m — n fois — 1 dans
sa diagonale principale, et où 21 est une matrice réelle. La matrice de la
forme positive attachée à S suivant Hermite est alors :

Cette matrice § vérifie la relation

SS-1§=S (7)

et l'on démontre, en s'appuyant sur le fait que deux formes quadratiques
dont l'une est positive peuvent se mettre simultanément sous forme
diagonale, que réciproquement toute § positive et solution de (7) est la
matrice d'une forme positive attachée à S. La variété H étudiée est donc
celle des solutions § positives de (7). Ainsi qu'il est démontré dans le

mémoire cité de Siegel, cette variété H est algébrique, irréductible, et
admet la représentation paramétrique biunivoque suivante :
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£> 23 — S avec 3 ï"1!!®, ty] £ S*

étant une matrice variable km — n lignes et à n colonnes, assujettie
à la seule condition que % soit positive.

Le nombre de dimensions de H est n (m — n).

Deuxième cas. Variété attachée à une forme hermitienne

Soit S une matrice hermitienne indéfinie, de signature (n, m — n).
Elle peut se mettre sous la forme

où 2? à la même signification que précédemment,

et où 91 est une matrice complexe. La matrice positive attachée à S est
hermitienne et définie par _

Elle vérifie la relation (7) du premier cas :

§ S"1 S S (7)

Réciproquement, toute solution § hermitienne positive de (7) est une
des matrices attachées à S ; cela se démontre comme dans le premier cas.
La variété H attachée à S est algébrique, irréductible, à n(m — n)
dimensions complexes, et admet la même représentation paramétrique que
dans le premier cas, sauf que est complexe au lieu d'être réelle.

Troisième cas : Variété attachée à une forme quadratique complexe

Soit S une matrice symétrique non dégénérée, à coefficients
complexes quelconques. Il n'y a ici rien d'analogue à la signature. Mais il est
clair que S peut se mettre sous la forme

où 31 est une matrice complexe. Par définition, on attache à S la matrice
hermitienne définie positive _

S==3Ï73I
qui vérifie la relation

_ _
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Réciproquement, nous allons voir que toute matrice hermitienne positive

§ vérifiant (8) est une matrice attachée à Q dans le sens indiqué.
On s'appuie pour cela sur le

Théorème 3. Soient <r> une matrice hermitienne positive et Q une matrice
symétrique à coefficients complexes ; il existe une matrice complexe 31 telle

que
__

(g et 3T S 31 D matrice diagonale.

Nous réservons la démonstration de ce théorème à plus tard pour
éviter une interruption.

Soit donc <?) une matrice hermitienne positive vérifiant (8) ; on peut
écrire, d'après le théorème 3 :

S 3t'3Ï S 3t'D3t

î) étant une matrice diagonale complexe, et | 3t | ^ 0 puisque S n'est
pas dégénérée. La relation (8) donne

î)-1 3)

Soit î)x la matrice dont les éléments sont les racines carrées de ceux de

D, et soit 23 la matrice 23 Vx 31 ; on a

§ 93'33 S 93'23 c. q.f.d.
La variété des § hermitienne positives attachées à S peut donc aussi

être définie par l'équation (8).
On peut donner de cette variété la représentation paramétrique

suivante : Soit 3l0 une matrice particulière telle que

Si X est une matrice imaginaire vérifiant les conditions de symétrie

£' _ £ __ £
on voit que la matrice

i
est hermitienne et vérifie la relation (8) ; § est positive pour un certain
domaine D de l'espace des 3£. Réciproquement, toute § hermitienne
positive et vérifiant (8) peut se mettre sous la forme (9), car on tire de (9)

avec

et l'on vérifie que 3£' X — X.
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Remarque. Le domaine D des X pour lequel % est positive peut aussi
être défini par la condition que (g + X soit positive.

En effet, supposons tout d^abord £> positive; alors d'après (9)
((£ - 3£)(Œ + X)-1 Test aussi ; soit (S + X 3, d'où (S - X 3'. On
en tire 2® 3 + 3'- ^n multipliant par 3~*> on

est positive comme somme de deux matrices positives. 3~x étant positive,
3 et 37 Ie son^ aussi.

Supposons maintenant que $ fè + X soit positive; alors 3'
(£ — X Test aussi. La matrice

3/3-1 (<g - *) (Œ + 3)-1

est hermitienne, en vertu des conditions de symétrie que vérifie 3£.Or
si dew# matrices hermitiennes positives <o et %, telles que (£ — X et
(© + 3£)-1 par exemple, ont pour produit une matrice hermitienne, cette

matrice est positive. En effet, la condition de symétrie hermitienne
s'exprime par

on peut transformer S et % simultanément sous forme diagonale : S
W %, % W î) 21 ; on voit alors que $) est permutable avec la matrice
51 %f Si et que <S % a la même signature que 51 3) î) ft ; il suffit
donc de montrer que R 3) est positive. La matrice î> est diagonale et a
ses éléments positifs ; on peut supposer qu'ils sont ordonnés par
grandeurs croissantes. Décomposons R de façon analogue :

L'égalité R î) D 51 donne alors

5^<fc 0 si i 76 fc

La matrice 51 a donc la forme suivante :

a 10 «,...).
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Les matrices 5^, $t2,... sont positives puisque R 21 %! est positive.
On en déduit que la matrice

/<*!**! 0 ..A

est aussi positive, c. q. f. d.

La matrice X dépend de —^— paramètres réels ; ce nombre est

la dimension de la variété H attachée à une forme quadratique à coefficients

imaginaires. H est donc dans ce cas une variété algébrique irré-
s m (m — 1)

ductible a —— dimensions.

Démonstration du théorème 3. Soit § une matrice hermitienne positive
et S une matrice symétrique non dégénérée à coefficients complexes. On

peut transformer § en la forme unité au moyen d'une substitution de

matrice (£ : G/ §(£ (£. Posons (£/ S (£ %. Si U est une matrice
unitaire, définie par U'U — (£, on aura, en posant 21 Clt :

Il suffit donc de démontrer que Von peut mettre une matrice symétrique
donnée Z sous la forme diagonale au moyen d9une transformation par une
matrice unitaire :

Pour cela considérons la matrice hermitienne positive % % 9t. On

peut la mettre sous forme diagonale au moyen d'une transformation
unitaire :

î)x est réelle et a ses éléments positifs puisque 91 est positive. On a aussi

If » Û - Dx
Formons la matrice

SI-îTSU (10)
On a

La matrice 21 étant permutable avec 3^, il s'ensuit que 2t est diagonale,

pourvu que les éléments de î^ soient tous inégaux. Dans ce cas le théorème

est démontré en vertu de (10).
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Si les éléments de 1)1 ne sont pas tous inégaux, on applique le résultat
précédent à la matrice %e X + e Zo au lieu de % ; Xo est symétrique,
et e réel positif. Soit 5Re Z£ %e. La matrice diagonale obtenue en
transformant 9te par une matrice unitaire Ue convenable, D£=Ue9t£Ue,
a ses éléments tous inégaux pour un choix convenable de ï0, lorsque
e -> 0. En effet, les éléments de î>£ sont les racines caractéristiques de
9t£ ; or le discriminant de l'équation caractéristique | 9t£ — x © | =0
n'est pas nul quel que soit ZQ, car pour %0 e~1(î)2 — %), où 25 est une
matrice diagonale d'éléments positifs tous différents, l'équation
caractéristique est | î) — x © | 0. Soit donc Zo une matrice pour laquelle
le discriminant de | 9te — x, (£ | 0 est non nul quel que soit s positif
assez petit. Comme on Fa vu, on peut alors mettre Z£ sous forme diagonale

au moyen d'une matrice unitaire :

U'£ZS% T>£. (11)

Ce résultat ne cesse d'être valable lorsque e tend vers 0. Dans ces
conditions %e tend vers %. D'autre part VLt qui est unitaire, donc bornée,
tend vers une matrice unitaire XI, cela pour une certaine suite dénom-
brable d'e. Quant à î)e, elle tend à cause de (11) vers une matrice
diagonale D, et l'on a à la limite VL'ZVL î), c. q. f. d.

§ 3. Formes indéfinies dans K et variétés attachées

1. Cas d'une forme quadratique

Reprenons le corps K ayant gx conjugués réels et 2gr2 conjugués
imaginaires. Soit S la matrice symétrique d'une forme quadratique non
dégénérée dans K, et soient

les g conjugués de S, qui sont également des matrices symétriques non
dégénérées, les 2g2 dernières étant en général complexes. Supposons-les
numérotées de façon que &{k) et Q(k^9l) soient imaginaires conjuguées,

pour gx<k < gx + g2. A chacune des Q{k) faisons correspondre la
variété des matrices positives H{k) qui lui est attachée, variété qui peut
éventuellement se réduire à un seul point si Q{k) est définie positive ou
négative. Le produit direct des gx + g2 variétés H{k), k <gx + g2, est
la variété H que nous attacherons à la matrice symétrique ®. Cette
variété H doit être considérée comme située dans l'espace P des systèmes
positifs, espace qui est le produit direct des espaces des fc-ièmes composantes

des systèmes. Sa dimension d est la somme des dimensions des
variétés Hik), soit
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j Vi xi m (m — 1)
d E nk (m - nk) + g2 —^— '-

où (nk, m — nk) est la signature de S(fe). La variété H se réduit à un
point si S est totalement définie, c'est-à-dire si toutes les conjuguées de Q
sont définies positives ou négatives. Cela ne peut toutefois avoir lieu que
si le corps K n'a pas de conjugués imaginaires (g2 0).

2. Cas d'une forme hermitienne

Si l'on veut considérer des formes hermitiennes dans K, il faut que le
corps K soit imaginaire et coïncide avec l'imaginaire conjugué. Dans le
passage à un corps conjugué de K, une forme hermitienne © (stJ) ne
conserve pas nécessairement la symétrie hermitienne caractérisée par la
condition sl3 sn. Dans quels cas cette symétrie est-elle conservée

Pour le voir envisageons le plus petit corps galoisien K surcorps de K.
Désignons par x l'automorphisme de K faisant correspondre à chaque
nombre de K son conjugué complexe. La symétrie hermitienne de la
matrice s'exprime par

*,% * si, •

Si © doit rester hermitienne dans un corps conjugué a K de K, cela

implique
a s3t k a st,

c'est-à-dire
a k st) k a st}

Donc : Si Vautomorphisme faisant passer au conjugué complexe est

permutable avec les autres automorphismes de K, les conjuguées d'une matrice
hermitienne S de K sont aussi hermitiennes.

Nous supposons qu'il en sera toujours ainsi lorsqu'il s'agira de formes
hermitiennes dans un corps K. Dans ce cas le corps K est totalement
imaginaire, g1 0, et son degré vaut 2g2. Soient

les g2 premières conjuguées d'une matrice hermitienne Q dans K, les g2

autres conjuguées étant les conjuguées complexes de celle-là. Associons
à chacune des Q{k) la variété Hik) qui lui est attachée suivant le § 2,
deuxième cas. Le produit direct de ces H{k), k 1,..., g2, est la variété

H attachée à S. La dimension de H est £ 2nk(m — nk), (nk,m — nk)
k=l

étant la signature de S(&). H se réduit à un point si toutes les Q{k) sont
définies.
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§ 4. Réduction des formes indéfinies dans K
Soit S la matrice d'une forme quadratique ou hermitienne non dégénérée

à coefficients dans K. Considérons l'un des systèmes positifs S
attachés à S. Effectuons la réduction de ce système S comme il a été
indiqué au § 1, réduction opérée par la substitution unimodulaire U de K.
La transformation de S par II donne par définition une réduite de S. En
partant d'un autre système S attaché à S, on peut obtenir une autre
réduite. Toutefois le nombre des réduites équivalentes à S est fini, en
vertu du théorème suivant :

Théorème 4. Le nombre des formes quadratiques ou hermitiennes à
coefficients entiers de K, à m variables', dont la norme du déterminant est donnée

et qui sont réduites est fini.
En effet, soit Q la matrice de l'une de ces réduites. Il existe un système

réduit attaché à S ; soient <r>(&), k 1,..., gx + g2 >
les matrices de ce

système. D'après le § 2 on a les relations

§<&) <g(*)-l ft(k) Q(k) QU ft(k) <5<&)-l £(k) Q(k)

suivant les cas. Soit 3lv la matrice auxiliaire correspondant au système
des §(&). En transformant S et les § par %~x, on obtient des matrices

S, § qui vérifient encore les relations écrites, relations qui se mettent
aussi sous la forme :

D'autre part, le système des § est situé dans le domaine R (c), et d'après

le théorème 2 du § 1 le système des fy-1 ou des §~1 transformés par 93

est situé dans un domaine R(cf). On peut alors appliquer le théorème 1

du § 1, car les domaines R(c) et R(cf) sont tous deux contenus dans le

domaine R(c") où é[ max (c,., cj), i 1,2,3. Comme © <S[3IJ
est une matrice entière dans K par hypothèse, on peut prendre pour l'entier

rationnel a du théorème 1 le nombre A2N(\ Q |) où A est le plus
petit entier rationnel divisible par tous les | St^ |. D'après T, théorème 1,

l'entier A ne dépend que de m et de K. Les &k) possibles étant bornées

en vertu du théorème 1 de ce travail, et A2(£> étant entière dans K, les

S sont en nombre fini, et il en est de même des Q. C. q. f. d.
Du théorème 4 découle sans autre le résultat important contenu dans le

Théorème 5. Le nombre des classes de formes quadratiques définies ou
indéfinies, à coefficients entiers dans K, dont la norme du déterminant est

donnée et non nulle, est fini. Il en est de même du nombre des classes de formes
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hermitiennes entières dans K, pourvu que la symétrie hermitienne subsiste
dans le passage aux corps conjugués.

§ 5. Unités des formes indéfinies dans K
On appelle unité d'une forme quadratique ou hermitienne une substitution

unimodulaire qui laisse cette forme invariante. Il est clair qu'une
forme totalement définie dans K ne possède qu'un nombre fini d'unités.
Les unités d'une forme constituent un groupe multiplicatif que nous
désignerons par jP(S).

Considérons une forme quadratique ou hermitienne S dans K et sa
variété attachée H définie au § 3. La variété attachée à la transformée de

S par une substitution non dégénérée quelconque 91 est précisément la
variété obtenue en transformant H par %. Il s'ensuit que les unités de Q
transforment la variété H en elle-même. Le groupe F(Q) des unités de

S est discontinu dans H ; il y admet un domaine fondamental F que nous
allons construire.

Aux réduites de S correspondent des variétés équivalentes k H et
coupant le domaine réduit R. D'après le théorème 4 il n'y a qu'un nombre
fini de pareilles variétés. Soient <5X S, S2 S[UJ Qt
S[UJ les différentes réduites de (3, et Hl9 H2,..., Ht les variétés
attachées. Désignons par Ql9 6?2,..., Gt les domaines communs à R et à

Hl9..., Ht respectivement. En transformant ces domaines Gk par les

substitutions XÇ1 correspondantes, on obtient dans la variété H des
domaines D1=G1, D2,..., Dt qui, par leur réunion, constituent un domaine
D. Il est facile de voir que tout système S de H possède dans D un système
équivalent par une unité de S. Le domaine D est donc un domaine
fondamental pour F((5) si deux points intérieurs à D dans H ne peuvent être'
équivalents par une substitution de jT(S) ; cela a certainement lieu si la
frontière des domaines Dk dans H coïncide avec les portions des Dk
obtenues au moyen de la frontière de R. Cela est en général vrai, mais nous
n'y insisterons pas. Il nous suffit que le domaine D contienne un domaine
fondamental F de -T(S) dans H.

On peut obtenir les unités d'une forme S dans K au moyen des

substitutions unimodulaires qui effectuent la réduction de S. Soient en effet

lt et XI* deux substitutions unimodulaires transformant ® en la même
forme réduite Qk ; il est clair que XI* Xt"1 est une unité de S.
Réciproquement, toute unité peut s'obtenir de cette façon : Le groupe des unités
de S admet, comme le groupe unimodulaire dans K, un nombre fini
d'éléments générateurs.

(Reçu le 9 août 1948.)
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