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Uber das Umkehrproblem
der Wertverteilungslehre”
Von LE-VAN, Thiem, Viet-Nam

§ 1. Problemstellung

1. Es sei w= w(z) eine in der endlichen z-Ebene meromorphe
Funktion. Man definiert in der Wertverteilungslehre folgende zu w(z)
gehorigen Grofen

N(r,a)—_—.fn(tt’a) dt , Nl(r,a)=fn1(tt’a) dt ,
T (r) =Max N (r,a) , (1)
6(a)=1—-'ﬁ?ﬁN—T(’;-;)“—), s(a)zﬁ_m—ly%%ﬂ , 2)

Dabei bezeichnet n(r,a) die Anzahl der a-Stellen von w(z) im Kreise
| z|<r und n,(r,a) die Anzahl der mehrfachen a-Stellen, indem jede
k-fache Stelle (¢ — 1)-fach gezihlt wird. d(a) und ¢(a) heillen Defekt
bzw. Index von a. Es gilt d(a) + e(a@)<1.

2. Zwischen diesen Groflen besteht eine fundamentale Beziehung,
welche den Kernpunkt der modernen Wertverteilungslehre darstellt,
die sogenannte

Detektrelation. Es gilt fir eine beliebige Anzahl g wvon a-Stellen
2 P

Séa)+Xe@) <2 . 3)
y=1 v=1

Dies bedeutet topologisch, daB die durch w(z) erzeugte Uberlagerungs-
fliche (parabolischer Typus) nicht zu stark verzweigt sein kann.

1) Es sei mir gestattet, Herrn Prof. Dr. R. Nevanlinna fiir die Anregung zu dieser Arbeit,
sowie Herrn Prof. Dr. A. Pfluger fiir die Erteilung wertvoller Ratschliage und die Durch-
sicht des Manuskriptes meinen innigsten und verbindlichsten Dank auszusprechen.

Das Zustandekommen der Abhandlung verdanke ich weiter einem vom Schweizerischen
Schulrat der Eidgendssischen Technischen Hochschule Ziirich erteilten Stipendium.
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Aus dieser Relation ergibt sich das

Umkehrproblem der Wertverteilungslehre. Jedem Punkt a, einer gege-
benen Folge a,,a,,...a, seien zweir Zahlen

611 = a(av) ) & = e(a’v)

zugeordnet, die zugleich mit threr Summe 06, + ¢, dem abgeschlossenen
Intervall <0,1) angehoren und die Relation X d, + Xe, = 2 erfillen.
Es soll eine meromorphe Funktion hergestellt werden, deren Wertverteilung
diesen Vorschriften entspricht.

3. Mit den zusitzlichen Voraussetzungen ¢, = 0, J, rational, hat
Herr R. Nevanlinna dieses Problem mit Hilfe von Flachen mit endlich
vielen logarithmischen Enden gelost?).

Spiter hat Herr E. Ullrich?) auf die Klasse Riemannscher Flichen
mit endlich vielen periodischen Enden hingewiesen, denen nichtver-
schwindende rationale ¢, entsprechen und die Vermutung ausgesprochen,
dafl obiges Umkehrproblem fiir rationale 4, und ¢, mit Hilfe jener Klasse
Riemannscher Flichen gelost werden konnte. Wir werden im folgenden
zeigen, dal diese Vermutung im wesentlichen richtig ist. Dabei ist die
quasikonforme Abbildung ein fundamentales Hilfsmittel.

§ 2. Quasikonforme Abbildung

4. Es werde ein Gebiet der z-Ebene umkehrbar eindeutig und stetig
auf ein Gebiet der w-Ebene abgebildet. Diese Abbildung sei iiberdies bis
auf isolierte Punkte und Linien stetig differenzierbar. Man setzt

=+ 1y , w=u+1v=u(,y) + v,y .

Ein unendlich kleiner z-Kreis geht in eine unendlich kleine w-Ellipse
iiber, deren Achsenverhdltnis gleich

dw| - ldw| S
D = D,,, = Max —C-lz—‘.Mm\—d?‘—K—}-VK -1 (4)
ist, mit
uy + up + 03+ v

2K =

lua:vv—uw'vxl

?2) R. Nevanlinna (1), L. Ahlfors (1).
3) E. Ullrich (1).
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Man nennt D den Dilatationsquotienten ¢) der Abbildung im Punkt z.
Bezeichnen wir das Flichenelement der z-Ebene mit df,, so ist

1 dfy, dw [2 dfw 5
D, <% | <P ®)
Es gilt ferner
D,,=>1 (= 1 nur fir konforme Abbildung) , (6)
Dw/z = Dz/w ’ (7)
D,,,<D,; Dy, (= Dy,, wenn w<>{ konform ist) . (8)

Der Dilatationsquotient ist also gegeniiber konformen Abbildungen
invariant.

5. Bleibt der Dilatationsquotient unterhalb einer festen Schranke,
so heifit die Abbildung quasikonform. Ihre Bedeutung im Typenproblem
geht aus dem folgenden Satz hervor ).

Satz 1. Wird der Einheitskreis |z|<<1 schlicht auf die punktierte
" Ebene w = oo abgebildet, so ist
|z|‘£1Dw/Z df, = oo .

Insbesondere kann D, in |z | <1 nicht beschrinkt sein. Daraus folgt
in Verbindung mit (8), daBl der Typus einfachzusammenhéngender Rie-
mannscher Flichen bei quasikonformer Abbildung invariant ist.

Zur Untersuchung der Wertverteilung der erzeugenden Funktion im
parabolischen Fall wird wiederum mit Vorteil eine besondere Klasse
quasikonformer Abbildungen herangezogen.

Definition. Die endliche z-Ebene werde auf die endliche w-Ebene quasi-
konform abgebildet. Wir nennen die Abbildung fast-konform, wenn

df,
f(Dw/z - 1) IZ Iz
18t, wobes das Integral sich mit moglicher Ausnahme eines beschrdinkten Ge-
bietes iber die ganze z-Ebene erstreckt.
Satz 2. Wird die endliche z-Ebene fast-konform auf die endliche w-Ebene
abgebildet, so gibt es eine Konstante y mait
lw@ | =ylz] (1 +e@), (9

wobei &(z) mit | z| —> oo gleichmdifig gegen O strebt ).

< o0

4) O. Teichmiiller (1).
5) O. Teichmiiller (1), T. Le-Van (1).
) O. Teichmiiller (1), S. 670.
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6. Wird nun eine Riemannsche Fliche vom parabolischen Typus
einerseits konform auf die {-Ebene ({ = p €'”), andererseits fast-konform
auf die z-Ebene (z = r ¢!?) abgebildet, so ergibt sich daraus eine fast-
konforme Abbildung der z-Ebene auf die {-Ebene. Ein Kreis |z | = r
geht also in eine kreisformige Kurve C iiber :

C) o=yr(1+4¢(r,9),

oder nach Normierung :
o=r(+e(r,9); e, 9)<elr)—0 glm. fir r >oo . (10)

Markieren wir die Bilder eines bestimmten Punktes der Fliache in der
z-Ebene sowie in der (-Ebene, so wird die Anzahl der Bildpunkte im
Kreise |z |<r und im Kreise | {|<r gemif} (10) asymptotisch gleich
sein. Dies bedeutet, dal wir die Vergleichsgrolen N (r,a), N,(r, @) und
T(r) der erzeugenden Funktion w(z) ebensogut auf der z-Ebene als auf
der (-Ebene abschitzen koénnen.

§ 3. Riemannsche Flichen mit endlich vielen periodischen Enden

7. Wir gehen von einer in % rationalen Funktion R(u) aus und bilden
die meromorphe Funktion

1(z) = R(&) .

Diese Funktion hat zwe: logarithmische Windungspunkte ?) iiber den
Stellen R(0) und R(co). Schneiden wir die erzeugte Fliche @, lings
einer Kurve auf, welche diese beiden Windungspunkte verbindet, so
zerfallt die Flache in zwei Halbflichen @*, die wir nach Ullrich 8) periodi-
sche Enden nennen.

Definition. Die Fliche W mat endlich vielen periodischen Enden sind
solche, die sich, abgesehen von einem abgeschlossenen Teil oder Kern, aus
endlich vielen periodischen Enden zusammensetzen.

Zu dieser Klasse gehoren insbesondere die Flichen R(e?).

8. Wie die Flichen R(e?), sind auch alle Flichen W nur iiber end-
lich vielen Grundpunkten verzweigt und koénnen durch den von Speiser
und Nevanlinna ®) eingefithrten Streckenkomplex dargestellt werden.
Die Flidchen W lassen sich dann auch folgendermaflen charakterisieren :

7) Es kann R(0) = R(w) sein; dann liegen die beiden logarithmischen Windungs-
punkte iiber dem gleichen Grundpunkt.

8) E. Ullrich (1).
%) R. Nevanlinna (2).
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Der Streckenkomplex von W mufl, abgesehen von einem endlichen Kern,
endlich viele logarithmische Gebiete aufweisen, die durch ebenso viele periodi-
sche Enden ganz beliebiger Art getrennt sind.

Wie sich herausstellen wird, ist der Kern, welcher aus endlich vielen
Knoten besteht, unwesentlich fiir das asymptotische Verhalten der er-
zeugenden Funktion. Jedes periodische Ende ist die Hélfte einer (periodi-
schen) Funktion der Form R(e?). Dieser Komplex laB3t sich nach Ullrich
folgendermaflen beschreiben :

Wir denken den Komplex von R(u) auf der u-Kugel gezeichnet. So-
fern R(0) und R(oco) nicht schon unter den Grundpunkten der (alge-
braischen) Windungspunkte von R(u) vorkommen, markieren wir auch
noch — mit Zweiecken — die iiber R(0) und R(co) liegenden schlich-

ten Stellen. Durch Abwickeln

e

i 1 ?™ deruniversellen Uberlagerungs-

l ‘ fliche der in 0 und oo punk-

1 o — ! | tierten u-Kugel auf die z-Ebene
Rlw)= 2u-2) T bekommen wir den Komplex

von R(e?) als Abwicklung des
Komplexes von R(u).

So entstehen z. B. die Komplexe von e? und sin z aus den Komplexen
von

Fig,l .

u

Ru)=u bzw. %(u——}—)

9. Essei nun W eine Fliache mit m periodischen Enden. Wir bezeich-

nen ihren Komplex auch mit W. Die periodischen Enden von W trennen

m logarithmische Elementargebiete voneinander. Wir legen um den Kern

einen Umlaufsinn fest und numerieren die periodischen Enden und die

logarithmischen Gebiete von 1 bis m derart, da3 das »-te log. Gebiet

von dem (» + 1)-ten durch das

/ \ / \ »-te periodische Ende getrennt

\ / \ yd \ / N~ / \ / wird. Die Knoten des »-ten

“ Endes, welche am Rande des

\”/ +\ v-ten bzw. (v 4 1)-ten log. Ge-

7 d o bietes liegen, nennen wir posi-

’ tive bzw. negative Randknoten

des betreffenden Endes. Es ist zu bemerken, da8 ein Randknoten zugleich
positiv und negativ sein kann (Fig. 2).

Jede Periode des Endes hat gleichviele Knoten wie der Komplex der

zugehorigen rationalen Funktion R,(u), d.h. 2#,, wenn der Grad von

R, n, ist. Darunter seien 2d;} bzw. 2d; positive bzw. negative Rand-

FLg.Z :ns3
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knoten. Die Zahlen d} und d; bezeichnen nichts anderes als die Ord-
nungen von R, (u) an den Stellen % = co und » = 0.
Unter der Charakteristik von W verstehen wir die Grofiel?)

(dydy. . .d,)*

A= |log o -

(11)

Die Charakteristik 4 ist offenbar unabhingig von der Numerierung
der Enden.

10. Bei den Nevanlinnaschen Flichen mit m logarithmischen Enden
ist die Ordnung der erzeugenden Funktion!?) gleich —722 . H. Wittich hat

an einem Beispiele gezeigt, daf dies bei den Fldchen mit m periodischen
Enden nicht immer zutrifft1?). Wir werden zunédchst in §5 diese Be-
hauptung durch den folgenden Satz verallgemeinern.

Satz A. Die erzeugende Funktion einer Fliche W mit m periodischen
Enden und der Charakteristtk A ist vom Mitteltypus der Ordnung

m A2
1:?(1‘*‘;%?)-

Im Falle A = 0 sind die Defekte und Indizes rational.

Wir wenden diese Resultate auf das Ullrichsche Umkehrproblem an
und beweisen in § 7 den

Satz B. Unier den Voraussetzungen

q q
1) ¥6,+ Xe, =2,
v=1

v=1

2) 6,, e, rational,
9
3) X4,#0,
yv=1
4) 6,4+ ¢,<1 , <1l falls ¢, #0 st

kann man das Umkehrproblem mit Hilfe von Flichen W der Charakteristik
4 = 0 stets losen.

Es mull betont werden, daf3 die Einschrankung 4) an der Periodizitat
im Flachenbau und nicht an der Bedingung 4 = 0 liegt!?).

10) Wir schreiben (d, d,.. .dr):‘E an Stelle von dli dgi. . .d,.i, r<m.
1) R. Nevanlinna (1).

12) H. Wittich (2).

13) E. Ullrich (2).
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Im Falle 2§, =0, ¢,<1 laBt sich das Umkehrproblem mit Hilfe
von doppelt-periodischen Funktionen losen.
Wir erginzen Satz B noch durch

Satz C. Die in Satz B benutzten periodischen Enden konnen so gewdihlt
werden, daf jedes einzelne hichstens iber drev Grundpunkten verzweigt 18t.

§ 4. Fast-konforme, schlichte Abbildung der Flichen W,

11. Essei W eine der w-Ebene iiberlagerte Fliche mit m periodischen
Enden.

Wir fangen an, ein einzelnes Ende @ von der Fliche W abzutrennen,

indem wir die beiden zugehorigen Windungspunkte durch eine einfache

Jordan-Kurve C verbinden. Diese Schnittkurve

wird so gewdhlt, daB sie in diesen Windungs-

C punkten als geradlinige Strecke endet!?) (Fig. 3).

Wir erginzen die so ausgeschnittene Halbfliche

@y zu einer Fliche @z(w(z,) = R(e*”)) und bilden

@, auf die z,-Ebene konform ab (z,=z,+ 1y,

=r,¢'?). Die Kurve C geht dabei in einen

Querschnitt I" der endlichen z,-Ebene iiber, der

sich auf beiden Seiten'®) in Richtung der posi-

tiven bzw. negativen x,-Achse erstreckt (Fig. 4).

Cees - Das Bild der Halbfliche @F sei dasjenige Gebiet G,

‘H/o) a,.:ﬁ(c;o)

th} . welches oberhalb I' liegt. @ wird durch die y,-
Achse in zwei Teile G, und G, getrennt. Die ent-
14, sprechenden Teile von I’ seien I} und I,.

12. Es soll zunichst G, durch eine spezielle

G, G quasikonforme Transformation auf den Quadran-
~ % ten &,>0, 5n,>0 abgebildet werden (¢, =&, +

v 1)

Flg4 G:G}fcz ,/-: /;+/; .

£

\

I', ist das Bild eines Bogens des Schnittes C,
welcher in einen log. Windungspunkt @, miindet.
Durch eine lineare Transformation auf der w-
Ebene verlegen wir diesen Windungspunkt ins Unendliche derart, daf3
das zugehorige Ende von C in das Ende der positiven reellen Achse iiber-
geht. Es besteht dann zwischen w und z, die Relation®)

14) Diese Wahl hat keine prinzipielle Bedeutung und dient nur zur Vereinfachung der
Rechnung.

15) GemafBl (12) und (13), mit horizontalen Asymptoten.

1) Die auftretende Zahl d* bestimmt, wie in Nr. 9 erklart, die Ordnung von R (u) an
der Stelle u = o.
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A€’ + - - -+ a
b e(’n——d"’) 2y 4o by

n-—d+

w(z) = B() = L (@aib, e £0) . (12)

Nach passender Festlegung eines Zweiges ist I, — abgesehen von
einem endlichen Stiick — definiert durch die Gleichung

Argw(z,) =0 . (13)

Auf der Kurve I, ist dann das Argument ¢, von z,, fiir r, hinreichend
grof}, eine umkehrbar eindeutige Funktion von 7,

¢, = ¢*(r,) >0 .
Setzen wir nun
1
Q:FIOglw(zv)l ’ (14)

so wird fiir 7, hinreichend gro3 jedem Punkte von I'; ein Wert p ein-
eindeutig zugeordnet?):

e =o(r,, ) =0*)~r, .

Wir definieren dann die gewiinschte quasikonforme Abbildung durch

TV_Q*(TV) ( n)
0y = Ty — Py — 51 >

(P* (Tv)"' g‘ 2
o* (r,) { (19)
¥ T
=@, — . n(%—g)-
97 (7',,)-————2—

An Hand der Formeln (12) und (13) ist leicht zu verifizieren, daB

ff(Dzvlgv - 1) dfg d'ZV <> (16)

1st18), wobei das Integral sich iiber den Quadranten &,, ,>0 erstreckt.
Durch (15) geht das Gebiet G, in den Quadranten £,>0, #,>0 iiber.
Ein Punkt y, = y der positiven y,-Achse geht iiber in den Punkt 7, = y

17) dz ist nichts anderes als der logarithmische Abstand des auf C liegenden Bildpunktes

von dem zugehérigen Windungspunkt. Diese geometrische Deutung von g ist wichtig
fir die spéateren Verheftungen.

18) Diese Tatsache findet ihre natiirliche Erklarung darin, daB die Abbildung (15) im
Unendlichen sehr wenig von der Identitét abweicht. Es ist

1
Dzv/gv-—l = D (pv,dv) —1 <Konst.~g—— .
v
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der positiven 7,-Achse und ein Punkt ¢ (Gl. 14) auf I} in den Punkt
&, = p der positiven &,-Achse.

Auf die gleiche Weise bilden wir das Gebiet G; quasikonform auf den
. Quadranten £,<<0, 7,=>0 ab und hef-
(@) . 5" ten die beiden ldngs der positiven 7,-
O o/ ! Achse zu einer Halbebene H, zusam-
ST men. Auf der negativen £, -Achse haben

wir statt (14) die Beziehung

1
e=g=log|w)] . (17)

Dabei bezieht sich d- und w auf den
anderen log. Windungspunkt.

13. Wir haben damit jedes periodische
Ende &} (v=1,...,m) auf eine Halb-
ebene H, quasikonform abgebildet. Die

: Schnitte C wurden so gewihlt, dall die
Fig.5. @7 alleindie Fliache W bis auf einen end-
lichen Kern zusammensetzen (Fig. 5).
Wir bilden nun die Halbebenen H, vermoge

2

drdy...d+ m 2
9":—-(1_2 _”) 0, , yv=1,...m ,
dl"’dl’—-l (18)
2 2 i .y
lz—ﬁv—i—('p_—:[_._n_ , C — 6“91»', zl =7',6“p ,
14 m m v = Oy

konform auf die z’-Winkelgebiete H, mit der Offnung %—nyi ab. Die ge-

samte Abbildung von W auf die z’-Ebene ist gemiB (14) und (17) in der
lings des Strahles ¢’ = 0 aufgeschlitzten z’-Ebene stetig. Dem Punkt
z+ =1’ des obern Ufers des Schlitzes entspricht der Punkt

2
+24

dd...dx\"m =5
m":( i m) r'=e™ ¢ (19)

did;...d,

des untern Ufers.

Uben wir auf die aufgeschlitzte z’-Ebene die Transformation
£ r>1, 0<¢'<2nm,
Y 124 Al A1 (20)
’ m ogr ogr
r>e” , o <e<2at— -,



aus, so werden die sich nach (19) entsprechenden beiden Punkte 2’ = r’
+24

und z'=e¢™ ¢’ €™ in ein und denselben Punkt iibergefiihrt.

Die Abbildung (20) ist im Nullpunkt singuldr, darum miissen wir den
Einheitskreis ausschlielen, was aber fiir die Anwendung der Sétze 1 und 2
(Nr. 5) keine Rolle spielt.

14. Die schlichte Abbildung von W auf die z-Ebene ist damit bis auf
einen gewissen Kreis stetig. Wir wollen beweisen, daf} sie fast-konform
ist. Es ist nach Nr. 8 D,.=D ,

w/z £ / &y
denn die Abbildungen w<«->z,, {,«>2', z’<«>2z, sind konform?). Es
gilt also

dfz . dlogz
J a0 = [ P | i

2 dfz’

|2 |2

- d -
( m2n2) f(Dw/z 1) l fllz

“1 = dlog?’
(1 + mznz) ff v/ )l dlogi,

4 -1 df,,dn,,
=5 () Eff UL TN

Die letzten Integrale sind in der Tat gemaB (16) endlich. Nach Satz 1
und 2 (Nr. 5) kénnen wir auf den parabolischen Typus von W schlieffen
und die Vergleichsgrofen N (r,a), N,(r,a), T(r) der erzeugenden
Funktion w(z) auf der z-Ebene abschitzen.

2dé, d’?v
Ik

I

§ 5. Wachstumsordnung von w (z) und Beweis des Satzes A.

15. Die Wachstumsordnung von w(z) ist definiert durch

A= lim 28T (21)
— logr
Einem Kreis |z | = r der z-Ebene entspricht nach (20) eine Kurve der
z'-Ebene, welche zwischen den Kreisen
24
|2/ | =7"=rr und |2/|=r¢r =e™" 1 (22)
AZ
liegt. Dabei ist &« =1 4+ —— peoperl

19) Hier konnen wir nicht von Zusammensetzung fast-konformer Abbildungen sprechen,
denn die Abbildung w < 2z’ ist nicht stetig (auBer im Fall 4 = 0).
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Einem Kreise |z’ | = ' entsprechen wiederum, gemiB (18) m Halb-
kreise in den m Halbebenen H, (v = 1,..., m) mit den Radien (Nr. 19)

m

I didy. . .dyy)~ %
Sl ==y "

Da die Funktionen R,(e?) die Periode 2z haben, so ist die Anzahl
der Periodenstreifen, welche Punkte des Halbkreises g, enthalten, asym-

(23)

ptotisch gleich —29—;’; . Jede Periode vertritt eine endliche Anzahl n, (Grad

von R, (u)) von Blittern der w-Ebene, somit gilt fiir die a-Stellen einer
gewissen w-Umgebung "
Brt® <n(r,a)<Ar7a ; (24)

wobei die Konstanten A und B nur von den Groflen n,, d;, d;, m und
A abhingen. Integration ergibt

m m
-—g—Br2 <N(r,ar,)<—~—2——Ar2 . (25)
m m o
Wegen der Defektrelation ist also auch
2 L 5 2 | e '
—Br® <T@r<—Ar (26)
m o m o

und daraus folgt

Satz A. Die erzeugende Funktion w(z) einer Fliche W mit m periodi-
schen Enden und der Charakteristik A gehort zum Maitteltypus der Ordnung

m A2
Wir werden spiter beweisen, dafl im Fall 4 = 0 Defekte und Indizes

rational sind.

16. Die periodischen Flachen

B — [— —— JE——
[} s . . . .

' l l ' ' | ih——l R(¢®) sind besondere Flichen W
' * : . f—— '~ mit
Fig6: &=/, dp=2, n-2. m=2, df =d;=d,
dI = d; = dz >

so daB 4 =0, A=1 ist (Fig. 6).
Ersetzen wir nun eine Hilfte des Komplexes von R(e?) durch ihre
symmetrische??) (Fig. 7), so wird

dt =df =d,, di=d;=4d,

20) Vgl. H. Wittich (2). Wir wollen eine solche Operation Antisymmetrisierung nennen.
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und darum

’ Z:1+(logd1——logd2)2.

7
Die Grofle 4 miBit hier sozusagen ==: o=
die Asymmetrie der Fliche W’ (Fig. l ‘ | |

7). Im allgemeinen Falle kénnen wir ' . - ' ‘ . .
sagen : die Erhohung der Ordnung I I

iiber den Wert % hinaus wird durch Fig.7: Flache W

D
. . .
[————

die Asymmetrie im Flachenbau verursacht.
Die a-Stellen von w(z) verteilen sich in endlich viele Gruppen derart,
dal die Stellen einer einzelnen Gruppe sich an eine Spirale

r=ced oo (Fig. 8) \\\/\
S
anschmiegen. Die Kriimmung K im Kurven- \/ /
punkt |z|=r ist um so stirker, je grofler \'\,
4 ist: /\\
1 mea2\ "% . / O\
K—— ( 1+ —ZIT) . 7\
r \ /.\
17. Andererseits sind Fille bekannt, in denen Fig. 8.

die Storung gewisser Symmetrieeigenschaften
einer Fliche den Ubergang vom parabolischen zum hyperbolischen Typus
verursacht?!). An einem Beispiele seien die beiden Tatsachen in Zusam-

menhang gebracht.
Der Komplex der Fliche W,

R(e?) = (1 -+ %z—)n

besteht aus einer Kette von algebraischen Elementargebieten n-ter Ord-
nung, welche an den Rand eines log. Gebietes grenzen (Fig. 6: n = 2).
Hier ist

d, 1

dy n °
Durch Antisymmetrisierung bekommen wir eine Fliche W, :m = 2,
A=1logn? (Fig. 8). Die Ordnung der erzeugenden Funktion ist geméaB (27)

—14 (loin)z’

21) Myrberg (1), C. Blanc (1).
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Solange n (also die Ordnung) endlich bleibt, gehort die Fliche W, nach
bekannten Kriterien ?2) zum parabolischen Typus. Im Grenzfall n = oo

! ! ! ! ! ! lim R(e?) = e* W,—->W,,

u ]I “ ” ” " gehort die antisymmetrische Fliche W/,

l ' , l l l dem hyperbolischen Typus an, obwohl die

-> - * . . -—  Fliache W, parabolisch ist (Fig. 9 und 10).

P oz Der Beweis ergibt sich wie fir endliche #,

Fig.9: Fliche #, (w-e / nur tritt hier an Stelle der Transformation
(20) eine solche der Form

z=f(z'),

wobei r fiir ' —oco gegen einen endlichen
Wert R strebt?®). Die oben betrachteten
Spiralen nidhern sich jetzt asymptotisch dem
Rand des Kreises |z |<R.

Zusammenfassend : Die Asymmetrie be-
wirkt bei schwacher Verzweigsheit eine Ord-
nungserhohung wund, bei gentigend starker
Verzweigsheit einen Ubergang vom paraboli-
Fig. 10 : Flache 7788 schen zum hyperbolischen Typus.

§ 6. Wertverteilung von w(z) im Fall 4 =0.

18. Wir wollen hier einige Aussagen iiber Defekte und Indizes von
w(z) im Fall A4 = 0 herleiten, die wir spater fiir die Losung des Um-
kehrproblems brauchen werden.

Nach (24) und (25) ist es erlaubt, zur Berechnung von d(a) und &(a)
die GroBen n(r, a) und =,(r, a) an Stelle von N(r,a) und N,(r,a) zu
beniitzen.

Hier entsprechen nach (23) einem Kreis |z |<<r m Halbkreise

_(dydy. . .diy)” 121 .
‘Ct‘<@'¢_ (dldg...di)+ r ’ O<19',,<75 ’ (Z——-l,...,')’n) .

Sind also é%(a), &*(a) Defekt und Index von a in bezug auf R,(e?),
so ist beziiglich w(z)

22) H. Wittich (1), R. Nevanlinna (3).
28) C. Blanc (1).
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1 dody. . .d,_)-
nl_aTal(a’)_{'_' R ((3132 d )1_?. o™ (a)
Mg T d,
S8 = 1 N dyds. - A ’
e T, d,)
(28)
1 dody. . .dy, )
nl?iTsl(a)+---+nm ((;122 :i")lJ)r ™ (a)
My T d,
e(@)=—— dy. o do )
Mgy TG )

Fiir die 6¢, &' der periodischen Funktion R;(e?) brauchen wir nur die
relativen Defekte und Indizes in den einzelnen Perioden zu berechnen.
Diese lassen sich wiederum aus dem Komplex der rationalen Funktion
R,;(u) ablesen.

Die Anzahl der Knoten dieses Komplexes ist gleich E = 2n,, wobei
n; den Grad von R,(u) bedeutet. Einem (eigentlichen oder scheinbaren 24)
Grundpunkt a, entsprechen eine gewisse Anzahl S, von algebraischen
Elementargebieten. Sei 2K, die Anzahl der Strecken, welche diese S,
Gebiete beranden, dann gilt fiir die Funktion R,;(e?)

K,—8,

ot (@) + & (@) = "’l"n—"“ ’ d° (@) =0,
' fir @, R;(00) , R;(0),
. . K,—8,+1 : di
Bi(a) +eta) =t L i) =2
fir a, = R;(c0) # R;(0) ,
. . K,—8,+1 . d; (29)
0" (av) + &' (av) = oy + ’ 0 ((1,,) = n.
fir a,= R;(0) # R;(c0) ,
. K,—8,+2 : di +d;
#@)+eta) =22 gy S TS

fir a, = R;(c0)=R;(0) ,

Insbesondere folgt daraus, daB die &¢, ¢ rational sind, mithin nach
(28) auch 4 und e. Das ist die Ergéinzung zu Satz A (Nr. 15).

19. Die Anzahl der Elementargebiete bzw. Strecken im Komplex

R, (u) ist

q q
§S=38, bzw. K=K, ,
yv=1 v=1

#4) Vgl. Nr. 8.
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so dafl nach der Polyederformel gilt

So@)+Se@ -ty 2 2B
GemialBl (28) ergibt sich auch?) fir w(z)
X o)+ Xel@)=2. (30)
Ebenso folgt aus (28) und (29)
X 8(a)> 0, (31)
d(a,) + e(a,)<1 , <1 falls e(a,)>0 ist. (32)

Durch Beweis des Satzes B wird gezeigt, da8 fiir die Zahlen 6 und ¢
keine weiteren Einschriankungen aufler (30), (31) und (32) bestehen.

20. Gilt fiir alle periodischen Enden &}
df =d;=d, (=1,2,...,m), (33)

so ist die Bedingung 4 = 0 automatisch erfiillt und die Formel (28)
vereinfacht sich zu

Liét@+- -+ 1,0 (a)

6 o=
(@) A ; a8
_he@)+-- -+l em(a)
(O =,
Dabei ist
zz.::-gf} G=1,2,...,m) (35)

und /; hingt nur vom betreffenden Ende ab. Wir sagen, das Ende sei von
der Charakteristik Null und nennen I, seine reduzierte Linge. Es ist
nicht moglich, beim Umkehrproblem mit solchen Enden allein auszu-
kommen. Die Formel (34) 148t sich aber mit Hilfe des Begriffes zusam-
mengesetzter Flachen verallgemeinern.

Zusammengesetzte Flichen. Es seien zwei Flichen W,, W, von der
Charakteristik 4 = 0, welche je einen log. Windungspunkt iiber dem-
selben Punkt a, besitzen. In dem betreffenden log. Gebiet jedes Kom-
plexes werde ein Schnitt angebracht. Heften wir die beiden Komplexe
laings der Schnittufer zusammen, so entsteht ein Komplex W (oder

26) Das folgt auch direkt aus einem allgemeineren Satz von Teichmiiller (2).
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Fliche W), welche auch von der Charakteristik 4 = 0 ist: Wir sagen,’
W, und W, seien vereinighar und schreiben

IV = Wl + W2 . (36)
Fir jeden Teilkomplex 1463t sich analog zu (35) — durch den Nenner
von (28) — eine reduzierte Léinge?$) definieren :

B 1 dy...dpy)~ .
Li_(nla}_ju...nm T BT ) G=1,2), (37
Wegen 4, = A, = 0 hingt L, nicht vom Umlaufssinn bei der Nume-
rierung der Enden ab.
Sind 6'(a), e'(a) bzw. 62(a), ¢*(a) Defekt und Index von @ in bezug
auf W, bzw. W,, so wird — analog zu (34) — beziiglich W

5 Lad'+ L, & L Ligtt Ly
A A L, +1,

Auf die gleiche Weise 163t sich eine Fliche W aus mehreren W,, W,,...
zusammensetzen. Darunter miissen wir eine sukzessive Zusammensetzung
verstehen, d. h. wir bilden zuerst W, + W,, dann (W, + W,) + W,,
usw. Es ist nur erforderlich, da W,und (W, + Wy +- .-+ W,_,) log. Win-
dungspunkte iiber dem gleichen Grundpunkt besitzen. Wie man auch die
Reihenfolge der W, annimmt, gilt immer analog zu (38)

(38)

$=73L . fTTIL )
Als W,, W,,... werden wir die periodischen Flichen R(e?) nehmen

oder solche, die sich aus periodischen Flachen zusammensetzen lassen.
Alle diese Flichen sind offenbar von der Charakteristik 4 = 0.

21. Problem. Gegeben seien zwei vereinigbare Flichen W,, W, (4, =
A, = 0). Es sollen zwei andere vereinigbare Fliachen Wi, W, (4; = A4, = 0)
konstruiert werden mit folgenden Eigenschaften :

1) W, und W, haben entsprechend gleiche Defekte und Indizes wie W,
und W,.

2) Die Lingen Lj und Ly von W, und W, sollen zueinander in gegebe-
nem rationalem Verhdltnis stehen.

Lésung : Es sei

/ /
L, = Lzz_%% , %:% (D;, N;, N} ganze Zahlen).
2 2

D, ’

26) Die Numerierung beginnt bei dem ausgezeichneten log. Gebiet.
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*Dann nehmen wir fiir W; (bzw. W) eine Fliche, welche sich aus N| N, D,
(bzw. N, N, D,) Exemplaren W, (bzw. W,) zusammensetzt. Defekte und

Indizes haben sich nicht gedndert und die Langen sind
L=N;N,D,L,=N,N, N, , 10)
ngN;N1D2L2=.N;N2N1. (

§ 7. Das Ullrichsche Umkehrproblem. Die Sitze B und C.

22. Wir wollen eine Fliche W von der Charakteristik 4 = 0 kon-
struieren, welche in bezug auf a,, a,,..., ¢, dem folgenden Schema ent-
spricht

a...a,...o,
01...0,...0, | = , v=1,2,...,q, (41)
TR - Tyt

wobei die rationalen Zahlen §, und ¢, den Bedingungen (30), (31), (32)
geniigen. Wir nennen dies ein U-Schema. Lat sich die entsprechende
Flache W realisieren, so heilt das Schema losbar.

Es ist leicht einzusehen, dafl nur ein einziges U-Schema mit zwei Spal-
ten existiert, namlich das Schema

1 1
0 0
und die Losung ist eine lineare Funktion von e?.

Ist aber (41) ein U-Schema mit mindestens zwei nicht verschwindenden
d,, so sind es auch die Schemen

(61...6,—}—8,,...6,,) (42)

&... 0 ...g

(61... 0 ...4,

E1.+.0, + &,...5
23. Nun gilt das folgende

Lemma: 8ind die Schemen (42) und (43) losbar, so ist es auch das
Schema (41).

Beweis: Wir losen (42) und (43) durch die Komplexe W, bzw. W,.
Daraus kénnen wir nach Nr. 21 zwei Flichen W, und W, konstruieren,
welche auch (42) und (43) 16sen und deren Lingen L;, L, — in bezug auf
ein gemeinsames log. Elementargebiet — sich wie §,, ¢, verhalten:

Li:L;=4,:¢, .

) L 8y, e #0 . (43)
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Durch Zusammensetzung von W; und W, erhalten wir gemiB (38) eine
Flache W, welche (41) lost, w.z. b. w.

Wir driicken diese Tatsache symbolisch aus durch

6+ o) (al...a,...)___6v(al...av§sv...)+8v(al... 0 ) ()

s v aslpess Eqonn &...0,+¢,...
Nach dem Lemma 148t sich das allgemeine Schema (41) schrittweise
je auf die beiden folgenden Arten von Schemen zuriickfiihren :

a) Schemen mit nur einem nicht verschwindenden 4,
b) Schemen, bei welchen jede Spalte » nur ein nicht verschwindendes
Element, entweder 0, oder ¢,, besitzt.

Die ersten Schemen nennen wir erste Hauptschemen (46). Die zweiten
lassen sich durch die Bedingung

q
X d,6,=0 (45)
v=1

charakterisieren und heilen darum Orthogonalschemen.

24. Hauptschemen : Es sind Schemen, welche den periodischen Funk-
tionen R(e®) entsprechen :

(61 0 .0 ) : erstes Hauptschema |, (46)

E1 82 ...8,

(61 00...0 ) : zweites Hauptschema . (47)
81 82 83. . .Eq

Die Auflosung dieser Schemen ist ein algebraisches Problem. Ist n ein
gemeinsamer Nenner der Zahlen ¢, und ¢,, so schreiben sich (46) und
(47) in der folgenden Form

Gy hdy

bzw. , (48)
b b, b b % &% %
n n n n n om n

wobei die d, und e, ganze Zahlen sind.

Nach Nr. 18 miissen wir eine rationale Funktion R(u) n-ten Grades
konstruieren, welche nur iber a,, a,,..., a, mehrfache Stellen hat, und
zwar mit folgender Vorschrift :

1. fiir das erste Hauptschema :
Uber a, liegt ein Windungspunkt «+ =oo (d+ — 1)-ter Ordnung und

%7) Ordnung ist so zu verstehen, daB3 eine schlichte Stelle von nullter Ordnung ist.
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ein Windungspunkt 4~ = 0 (d— — 1)-ter Ordnung (d* 4+ d-=d,) ; die
Gesamtordnung der anderen Windungspunkte ist gleich e,.

Uber a, (v = 2, 3,..., q) betrigt die Gesamtordnung der Windungs-
punkte e, ;

2. fir das zweite Hauptschema :

Uber a, und a, liegt je ein Windungspunkt %, =oo (d, — 1)-ter Ord-
nung bzw. u, = 0 (d;, — 1)-ter Ordnung ; die Gesamtordnung der ande-
ren Windungspunkte ist gleich e, bzw. e,.

Uber a, (v = 3,4,..., q) betriigt die Gesamtordnung der Windungs-
punkte e, .

Wegen (30) und (32) sind diese beiden Probleme losbar2®): (30) ist
die Hurwitzsche Relation ; (32) besagt, dafl die Gesamtordnung der iiber
einem Grundpunkt a, liegenden Windungspunkte kleiner als der Grad
von R(u) ist.

Aus der so erhaltenen rationalen Funktion R(u) bilden wir dann die
Funktion R(e?), welche offenbar (46) bzw. (47) lost.

Sind einmal die Hauptschemen gelost, so 146t sich die Auflésung des
allgemeinen Schemas nach (38) auf ein diophantisches Gleichungssystem
zuriickfithren. Aber die Losungen dieses Systems miissen so komplizierte
Nebenbedingungen erfiillen, da wir den kombinatorischen Weg vor-
ziehen.

25. Orthogonalschema : Ein Orthogonalschema 148t sich nach passen-
der Numerierung der Grundpunkte a, in der folgenden Form schreiben :

0;...6,0...0 %1—%0 ... 0
= . (49)
0...641...8; 0...06":1---2’

Fir » = ¢ haben wir das von R. Nevanlinna geloste Schema #9).

Fir v<{2 haben wir ein Hauptschema.

Es sei also »>3. Wir wahlen zunédchst den gemeinsamen Nenner n
so, dal3 die Summe der d, gerade ist und setzen

d1+d2+"'+dv:2d<2n .

28) Man kann auch direkt den Komplex von R(u) angeben. Dazu konstruiere man
zunichst den Komplex einer Funktion R, welche iber a, (v = 1,..., q) genau einen
Windungspunkt A, ,-ter Ordnung — mit passend gewéhlten A, — besitzt. Dies gelingt
durch Rekurrenz in bezug auf ¢. (Der Fall ¢ = 3 wird in Nr. 29 behandelt.) Es ist dann
leicht, daraus die gewiinschten Komplexe herzuleiten.

29) R. Nevanlinna (1).
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Wir l6sen dann die (zweiten) Hauptschemen

d d ifi— 0 ... 0
—— 0 ... 0 n n
nn = . . (50)
0 0L . % 06— 1 "
n n
fir alle Kombinationen ¢,j=1,2,...,».

Alle diese Hauptschemen ergeben Fliachen W,, gleicher reduzierter
Lange 2,
d

Wir konstruieren nach Nr. 20 eine Fliche W mit 2d periodischen
Enden, welche sich aus d solchen Exemplaren W, ; zusammensetzt der-
art, daf von den insgesamt 2d log. Windungspunkten von W genau d;
iiber dem vorgegebenen Grundpunkte a, liegen (+ = 1,2,...,%). Jeder

d 1
20 n
der gesamte Defekt des Punktes ¢, summiert sich also auf den vorgegebe-

Lif -

Windungspunkt liefert zum Defekt von a, den Beitrag % . , und

nen Wert —%— =d;. Der Index von a, (k>v) beziiglich W,; ist immer

e, 8o dafl in bezug auf W auch der gleiche Index ¢, herauskommt.
Somit ist das Orthogonalschema (49) durch die Fliche W gelost.
Es gilt also der

Satz B. Unier den Voraussetzungen
q q
1) X96,+ X e =2,
=1 v=1
2) &

q
3) X 4,+#0,
y=1
4) 0, + ¢,<1, <1 falls ¢, 0 ust,

kann man das Umkehrproblem mit Hilfe von Flichen W der Charakteristik
= 0 stets losen.
Man kann sich noch die Frage stellen, welches die kleinste Anzahl m
von periodischen Enden ist, die man zur Losung eines gegebenen Schemas
benotigt.

g, rational,

26. Die oben angegebene Methode ist zwar bequem fiir den Beweis
der Losbarkeit des Ullrichschen Umkehrproblems, das folgende Ver-
fahren fiihrt aber schneller zum Ziel.
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I h 41):
m Schema (41) 5, 8,...4,
€1 €5+ .. &

fassen wir alle ¢, ins Auge, fiir welche 4,>0 ist. Diese seien nach passen-

der Numerierung der a, die r ersten:

(6162...6,0 ...0)

81 82 LR 087 8r+10 . -8q

mit &>e>--- 2 (r<q).
Fir r<2 haben wir ein Hauptschema. ,
Es sei also r>3. Wenn fiir alle v<r ¢, + % ¥ 6, <1 gilt, so ist die
1

in Nr. 25 fiir Orthogonalschemen angegebene Auflosungsmethode noch
verwendbar. Wir nennen ein solches Schema quasiorthogonal.

Gilt nun fiir &, und nur fiir dieses &, +1 6,21, so laflt sich obiges
Schema sogleich auf zwei quasiorthogonale Schemen zuriickfithren, nim-
lich durch die Zerlegung?3°)

(81+61—82)(6162.“) =

81 82.00

(81—82)(0 62) + 6, (61+81—8262---)

g+ 0,6, .. €y Eg oo
Man iiberzeugt sich leicht auf Grund der Relationen
81>82>"'>87 ’ 81+6r<1 ) 81+61+82+62<2 D)

daB die Schemen rechts quasiorthogonal sind.

Gilt aber fir ¢ und & & +333, =6 +43d, =1, so wird
gg=-c =g, =0

Es bleibt also nur noch das einfache Schema

0, 03 05.. .6,
£ 8 0...0
zu losen. Hier ist die Orthogonalisierung (Nr. 25) dann notwendig.

27. Andererseits kann man sich die Frage stellen, wie einfach sich die
periodischen Enden wihlen lassen, um das allgemeine Schema zu l6sen,
wenn es nicht auf ihre Anzahl m ankommt.

Nach dem Vorigen brauchen wir diese Untersuchung nur fiir die folgen-
den Schemen auszufiihren :

30) Vgl. Schlu8 von Nr. 23.
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(610...0) ’ (61620...0) . (51)

€1 E3.. .8, 0 0 &...¢
Wir kénnen, wie bei der Behandlung der Orthogonalschemen, auf ana-
q
loge Weise die Schemen (51) — indem wir statt =14 ¥4, die Summe
1

q
¢ =13 Ye¢, betrachten — auf die folgenden Schemen zuriickfiihren :
2

6 0 O 6, 6, O 6, 6, 0 O
(81 €g 83), (0 0 53), (O 0 & 8). (62)
Das letzte Schema laft sich wiederum auf die beiden ersten zuriick-
fiilhren. Wir unterscheiden dabei drei Falle:

1) 2e<1. Wir setzen

2(616200= 8 8 0 0) (8 & 00

0 0 ¢ ¢ 0 0 2& O 0 0 O 2¢
2) 2¢e21, 6,=06,=20. Esist dann 26<<1 oder 28°<3 und
wir konnen setzen :

(2+26)(6 & 0 0) _

0 0 & ¢

26200 0 02620 0 1100
(0 0 1—¢2 1-52)+(00 1— 2 1—62)+25(0000)

3) 2e21, 6,>6,. Es gilt immer noch §; 4+ §,<{1 und die Zer-

1
egung (61+ 62+2)(61 d, O O)__
0 0, 0 0 ¢ ¢)
8, (6,408,000, 8 (08,48 00 0110s 01490
~a“(ﬂ 0 )+73'"(00 )+2 2 ?
2 € & 1 € ¢ 0 0 e¢e¢

tihrt auf 2) zuriick.
Somit gilt der

Satz C. Das Ullrichsche Umkehrproblem lift sich durch Flichen W mit
endlich vielen periodischen Enden losen, deren einzelne hichstens dber dred
Grundpunkten verzweigt sind und den folgenden sogenannten Elementar-
schemen entsprechen3!):

6 0 0 6, O 0)
(81 €9 53) ’ (0 0 &) ° (53)

81) Das einzige Ende mit zwei Grundpunkten ist das logarithmische Ende.
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28. Wiirden wir von diesem Resultat ausgehen, so kénnten wir den
Beweis der Losbarkeit des Ullrichschen Problems dadurch vereinfachen,
dal wir bei der Abbildung der einzelnen Enden auf einen Quadranten
zuerst ihre drei Grundpunkte auf eine Gerade verlegen. Die Kurve I
(Fig. 4, Nr. 12) ist dann namlich auch eine Gerade und die Gebiete G,
bzw. G, sind von selbst Quadranten.

Andererseits brauchen wir, statt die allgemeinen Hauptschemen (46)
und (47), nur (53) aufzulosen, und das entsprechende algebraische Pro-
blem vereinfacht sich wesentlich.

Dabei miissen wir eine algebraische Funktion konstruieren, welche
héchstens fiinf Windungspunkte, verteilt iiber drei Grundpunkten, be-
sitzt. Wir kénnen aber erreichen, daf3 schon Funktionen R(u) mat dres
Windungspunkten geniigen. Dazu brauchen wir nur das erste der Schemen
(63) folgendermaflen zu zerlegen :

(dy+ & —1) (61 0 0) d+e—1] 2" o
—_ == e, — =

! ! & & & ! ! 2e, 2e, 2¢

2n 2n 2n
(2d,+2¢;, — 1)+ 1 0 0 141 0 0

@, — 1) 2n Lo 2n

' 0 2e, 2e, "\ 2d,4+2¢,—2 2¢, 2¢,
2n 2n 2n 2n 2n

Im letzten Schema haben wir zwar noch fiinf Windungspunkte fiir die
periodische Funktion R(e?), aber nur drei Windungspunkte fiir die
rationale Funktion R(u). Gewisse logarithmische
Windungspunkte von R(e?) rithren von schlichten

A
/ ° '\ Stellen von R(u) her.

29. Die rationalen Funktionen, die wir brauchen,
sollen also nur drei Windungspunkte iiber drei Grund-
punkten aufweisen, z. B. iiber @, einen Windungs-
\ / punkt &, A -ter Ordnung (v = 1,2,3; 4, + A, + 4 =
2n — 2; A,<n).
Das Problem wird durch Angabe des Komplexes
A,:3,2,:2,4,-:3 gelost. Wir zeichnen zunichst in der z-Ebene ein
Polygon mit 21, + 2 Ecken (Fig. 11). Das AuBere

dieses Polygons soll das Elementargebiet «, sein. Wir numerieren
die Ecken von 1 bis 24, + 2 und verbinden die erste Ecke mit der

F1g.1] :
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(A4 + Ay — 43 + 2)-ten3?) durch einen innerhalb des Ausgangspolygons
laufenden Streckenzug, welcher 4, + A4, — 4; Knoten enthilt. Dadurch
wird das Polygoninnere in zwei Polygone mit 24, + 2 bzw. 24; 4 2
Ecken geteilt. Diese sollen die Elementargebiete &, bzw. «,; sein. Um den
gewiinschten Komplex zu erhalten, haben wir nur noch die eventuell
schlichten Stellen iiber a,, a,, a, mit Zweiecken zu deuten.

(Eingegangen den 27. Mai 1948.)
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