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Ûber das Umkehrproblem
der WertverteilungslehreX)

Von Le-Van, Thiem, Viet-Nam

§ 1. Problemstellung

1. Es sei w w(z) eine in der endlichen z-Ebene meromorphe
Funktion. Man definiert in der Wertverteilungslehre folgende zu w(z)
gehôrigen GrôBen

Nl{r,a) J^^.dt,
MaxN(r,a) (1)

a

~nTJZ\ * \")

Dabei bezeichnet n(r,a) die Anzahlder a-Stellen von w(z) im Kreise
| z \^r und nx(r, a) die Anzahl der mehrfachen a-Stellen, indem jede
k-fâche Stelle (k — l)-fach gezâhlt wird. ô(a) und e(a) heiBen Defekt
bzw. Index von a. Es gilt ô(a) + e(a)^l.

2. Zwischen diesen GrôBen besteht eine fundamentale Beziehung,
welche den Kernpunkt der modernen Wertverteilungslehre darstellt,
die sogenannte

Deîektrelation. Es gilt fur eine beliebige Anzahl q von a-Stellen

a1,a2,...,aq q q

Eà(av) + £e(av)^2 (3)

Dies bedeutet topologisch, daB die durch w(z) erzeugte Ûberlagerungs-
flâche (parabolischer Typus) nicht zu stark verzweigt sein kann.

x) Es sei mir gestattet, Herrn Prof. Dr. R. Nevanlinna fur die Anregung zu dieser Arbeit,
sowie Herni Prof. Dr. A. Pfluger fur die Erteilung wertvoller Ratschlàge und die Durch-
gicht des Manuskriptes meinen innigsten und verbindlichsten Dank auszusprechen.

Das Zustandekommen der Abhandlung verdanke ich weiter einem vom Schweizerischen
Schulrat der Eidgenôssischen Technisohen Hochschule Zurich erteilten Stipendium.
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Aus dieser Relation ergibt sich das

Umkehrproblem der Wertverteilungslehre, Jedem Punkt av einer gege-
benen Folge al9a2,... aQ seien zwei Zahlen

àv ô(av) ev e(av)

zugeordnet, die zugleich mit ihrer Summe ôv + ev dem abgeschlossenen
Intervall <0,l> angehôren und die Relation S àv + E ev 2 erfilllen.
Es soll eine meromorphe FunJction hergestellt werden, deren Wertverteilung
diesen Vorschriften entspricht.

3. Mit den zusâtzlichen Voraussetzungen ev 0, àv rational, hat
Herr R. Nevanlinna dièses Problem mit Hilfe von Flâchen mit endlich
vielen logarithmischen Enden gelôst2).

Spâter hat Herr E. Ullrich3) auf die Klasse Riemannscher Flâchen
mit endlich vielen periodischen Enden hingewiesen, denen nichtver-
schwindende rationale ev entsprechen und die Vermutung ausgesprochen,
da8 obiges Umkehrproblem fiir rationale ôv und sv mit Hilfe jener Klasse
Riemannscher Flâchen gelôst werden kônnte. Wir werden im folgenden
zeigen, daB dièse Vermutung im wesentlichen richtig ist. Dabei ist die
quasikonforme Abbildung ein fundamentales Hilfsmittel.

§ 2. Quasikonforme Abbildung

4. Es werde ein Gebiet der z-Ebene umkehrbar eindeutig und stetig
auf ein Gebiet der w-Ebene abgebildet. Dièse Abbildung sei ûberdies bis
auf isolierte Punkte und Linien stetig differenzierbar. Man setzt

z x iy w u + iv u(x, y) + iv(x, y)

Ein unendlich kleiner z-Kreis geht in eine unendlich kleine w;-Ellipse
ùber, deren Achsenverhàltnis gleich

dw
dz

: Min
dw
dz K (4)

ist, mit

\uxvy-uyvx\

2) R. Nevanlinna (1), L. Ahlfors (1).

3) E. Ullrich (1).
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Man nennt D den Dilatationsquotienten 4) der Abbildung im Punkt z.
Bezeichnen wir das Flàchenelement der z-Ebene mit dfz, so ist

dz dfz
(5)

Es gilt ferner

Dwj2 ^ 1 (=1 nur fur konforme Abbildung) (6)

Dw/z^iDwiçDyz (=Dç/2J wenn w*-+Ç konform ist) (8)

Der Dilatationsquotient ist also gegenûber konformen Abbildungen
invariant.

5. Bleibt der Dilatationsquotient unterhalb einer festen Schranke,
so heiBt die Abbildung quasikonform. Ihre Bedeutung im Typenproblem
geht aus dem folgenden Satz hervor5).

Satz 1. Wird der Einheitskreis \ z \ < 1 schlicht auf die punktierte
Ebene w ^ oo abgebildet, so ist

JD df ooW/Z 1Z

Insbesondere kann Dw/Z in | z \ < 1 nicht beschrânkt sein. Daraus folgt
in Verbindung mit (8), daB der Typus einfachzusammenhângender Rie-
mannscher Flâchen bei quasikonformer Abbildung invariant ist.

Zur Untersuchung der Wertverteilung der erzeugenden Funktion im
parabolischen Fall wird wiederum mit Vorteil eine besondere Klasse
quasikonformer Abbildungen herangezogen.

Définition. Die endliche z-Ebene werde auf die endliche w-Ebene
quasikonform abgebildet. Wir nennen die Abbildung fast-konform, wenn

r>w/*—l)-rr7s-<°o

ist, wobei das Intégral sich mit môglicher Ausnahme eines beschrânkten Ge-

bietes ûber die ganze z-Ebene erstreckt.

Satz 2. Wird die endliche z-Ebene fast-konform auf die endliche w-Ebene

abgebildet, so gibt es eine Konstante y mit

| w (z) | y | z | (1 + s (z)) (9

wobei e(z) mit |z|->oo gleichmaflig gegen 0 strebt*).

4) O. Teichmûller (1).
6) O. Teichmûller (1), T. Le-Van (1).
6) O. Teichmûller (1), S. 670.
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6. Wird nun eine Riemannsche Flâche vom parabolischen Typus
einerseits konform auf die C-Ebene (C Q e*^), andererseits fast-konform
auf die z-Ebene (z r ei<p) abgebildet, so ergibt sich daraus eine fast-
konforme Abbildung der z-Ebene auf die C-Ebene. Ein Kreis | z \ r
geht also in eine kreisfôrmige Kurve C iïber :

C) Q yr(l+e(r,ïï))
oder nach Normierung :

q r(l + e(r,&)) ; s(r,&)<s(r) -> 0 glm. fur r->oo (10)

Markieren wir die Bilder eines bestimmten Punktes der Flâche in der
z-Ebene sowie in der C-Ebene, so wird die Anzahl der Bildpunkte im
Kreise | z \ <r und im Kreise | £ | <p gemâB (10) asymptotisch gleich
sein. Dies bedeutet, da8 wir die VergleichsgrôBen N(r,a), Nx{r,a) und
T(r) der erzeugenden Funktion w(z) ebensogut auf der z-Ebene als auf
der C-Ebene abschâtzen kônnen.

§ 3. Riemannsche Flâchen mit endlich vielen periodischen Enden

7. Wir gehen von einer in u rationalen Funktion R(u) ausundbilden
die meromorphe Funktion

/(z) B(e?)

Dièse Funktion hat zwei logarithmische Windungspunkte7) iiber den
Stellen B(0) und B(oo). Schneiden wir die erzeugte Flâche &R lângs
einer Kurve auf, welche dièse beiden Windungspunkte verbindet, so
zerfâllt die Flâche in zwei Halbflâchen 0*, die wir nach Uïlrich 8) periodi-
sche Enden nennen.

Définition. Die Flâche W mit endlich vielen periodischen Enden sind
solche, die sich, abgesehen von einem abgeschlossenen Teil oder Kern, aus
endlich vielen periodischen Enden zusammensetzen.

Zu dieser Klasse gehôren insbesondere die Flâchen R(ez).

8. Wie die Flâchen B{ez), sind auch aile Flâchen W nur uber endlich

vielen Grundpunkten verzweigt und kônnen durch den von Speiser
und Nevanlinna9) eingefuhrten Streckenkomplex dargestellt werden.
Die Flâchen W lassen sich dann auch folgendermaBen charakterisieren :

7) Es kann B(0) R(oo) sein; dann liegen die beiden logarithmischen Windungspunkte

uber dem gleichen Grundpunkt.
8) E. Ullrieh (1).

9) R. Nevanlinna (2).
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Der Streckenkomplez von W mufi, abgesehen von einem endlichen Kern,
endlich viele logarithmische Gebiete aufweisen, die durch ebenso viele periodi-
sche Enden ganz beliebiger Art getrennt sind.

Wie sich herausstellen wird, ist der Kern, welcher aus endlich vielen
Knoten besteht, unwesentlich fur das asymptotische Verhalten der er-
zeugenden Funktion. Jedes periodische Ende ist die Hâlfte einer (periodischen)

Funktion der Form B(ez). Dieser Komplex lâBt sich nach Ullrich
folgendermaBen beschreiben :

Wir denken den Komplex von B(u) auf der w-Kugel gezeichnet. So-

fern B(0) und 12 (oo) nicht schon unter den Grundpunkten der (alge-
braischen) Windungspunkte von B(u) vorkommen, markieren wir auch
noch — mit Zweiecken — die ûber 12(0) und 12 (oo) liegenden schlich-

ten Stellen. Durch Abwickeln
deruniversellen tïberlagerungs-
flâche der in 0 und oo punk-
tierten %-Kugel auf die z-Ebene

_ _, y y
bekommen wir den Komplex

2
v> von B(ez) als Abwicklung des

Komplexes von B(u).
So entstehen z. B. die Komplexe von ez und sin z aus den Komplexen

von
B(u) u bzw. \ lu - ~

9. Es sei nun W eine Flâche mit m periodischen Enden. Wir bezeich-

nen ihren Komplex auch mit W, Die periodischen Enden von W trennen
m logarithmische Elementargebiete voneinander. Wir legen um den Kern
einen Umlaufsinn fest und numerieren die periodischen Enden und die
logarithmischen Gebiete von 1 bis m derart, daB das v-te log. Gebiet

von dem (v + 1 )-ten durch das

%<tr ^^. v-te periodische Ende getrennt
\v y^ \/ wird. Die Knoten des v-ten

Endes, welche am Rande des
i^-ten bzw. (y + l)-ten log. Ge-

j+ * j- o bietes liegen, nennen wir posi-
D tive bzw. négative Randknoten

des betreffenden Endes. Es ist zu bemerken, daB ein Randknoten zugleich
positiv und negativ sein kann (Fig. 2).

Jede Période des Endes hat gleichviele Knoten wie der Komplex der
zugehôrigen rationalen Funktion Bv(u), d. h. 2nv, wenn der Grad von
Bv nv ist. Darunter seien 2d+ bzw. 2d~ positive bzw. négative Rand-
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knoten. Die Zahlen d+ und dv bezeichnen nichts anderes als die Ord-

nungen von Bv(u) an den Stellen u — oo und u 0.
Unter der Charakteristik von W verstehen wir die GrôBe10)

A log
(dxd2. .dm)~

(11)

Die Charakteristik A ist offenbar unabhângig von der Numerierung
der Enden.

10. Bei den Nevanlinnaschen Flâchen mit m logarithmischen Enden

ist die Ordnung der erzeugenden Funktion11) gleich —. H. Wittich hat

an einem Beispiele gezeigt, daB dies bei den Flâchen mit m periodischen
Enden nicht immer zutrifft12). Wir werden zunâchst in § 5 dièse Be-

hauptung durch den folgenden Satz verallgemeinern.

Satz A. Die erzeugende Funktion einer Floche W mit m periodischen
Enden und der Charakteristik A ist vom Mitteltypus der Ordnung

m

Im Faile A 0 sind die Defekte und Indizes rational.

Wir wenden dièse Resultate auf das Ullrichsche Umkehrproblem an
und beweisen in § 7 den

Satz B. Unter den Voraussetzungen
Q Q

1) ^ôv+ ^ev 2

2) ôv, ev rational,

à) JL àv ^ 0
v=l

4) 5v + ev<l <1 falls sv ^ 0 ist,

kann man das Umkehrproblem mit Hilfe von Flâchen W der Charakteristik
A 0 stets lôsen.

Es muB betont werden, daB die Einschrânkung 4) an der Periodizitât
im Flâchenbau und nicht an der Bedingung A 0 liegt13).

10) Wir schreiben (dt d2.. .d^ an Stelle von df^ d^r • -df^, r ¦< m.
11 R. Nevanlinna (1).
12) H. Wittich (2).
i3) E. Ullrich (2).
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Im Falle Z ôv 0, ev<l lâfit sich das Umkehrproblem mit Hilfe
von doppelt-periodischen Funktionen lôsen.

Wir ergânzen Satz B noch durch

Satz C. Die in Satz B benutzten periodischen Enden kônnen so gewâhlt
werden, dafi jedes einzelne hôchstens liber drei Grundpunkten verzweigt ist.

§ 4. Fast-konforme, schlichte Abbildung der Flâchen W.

11. Es sei W eine der w-Ebene uberlagerte Flâche mit m periodischen
Enden.

Wir fangen an, ein einzelnes Ende $* von der Flâche W abzutrennen,
indem wir die beiden zugehôrigen Windungspunkte durch eine einfache

Jordan-Kurve C verbinden. Dièse Schnittkurve
wird so gewâhlt, da8 sie in diesen Windungs-
punkten als geradlinige Strecke endet14) (Fig. 3).

Wir ergânzen die so ausgeschnittene Halbflâche
0* zu einer Flâche &R(w(zv) R(eZv)) und bilden
&R auf die zv-Ebene konform ab (zv xv-\- i yv

rvel<Pv). Die Kurve C geht dabei in einen
Querschnitt F der endlichen zy-Ebene uber, der
sich auf beiden Seiten15) in Richtung der posi-
tiven bzw. negativen a^-Achse erstreckt (Fig. 4).
Das Bild der Halbflâche &* sei dasjenige Gebiet G,
welches oberhalb F liegt. G wird durch die yv-
Achse in zwei Teile Gx und G2 getrennt. Die ent-
sprechenden Teile von F seien Fx und F2.

12. Es soll zunâchst Gx durch eine spezielle
quasikonforme Transformation auf den Quadran-
ten |y^0, rjv^O abgebildet werden (£„ £„ +

3

G2

-ç

" Ft ist das Bild eines Bogens des Schnittes C,

~ welcher in einen log. Windungspunkt av miindet.
7 2 Durch eine lineare Transformation auf der w-

Ebene verlegen wir diesen Windungspunkt ins Unendliche derart, da6
das zugehôrige Ende von G in das Ende der positiven reellen Achse ûber-
geht. Es besteht dann zwischen w und zv die Relation16)

14 Dièse Wahl hat keine prinzipielle Bedeutung und dient nur zur Vereinfachung der
Rechnung.

15) Gemafi (12) und (13), mit horizontalen Asymptoten.
16) Die auftretende Zahl d+ bestimmt, wie in Nr. 9 erklart, die Ordnung von Ry{u) an

der Stelle u — oo.
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an enZv H h «o- ^T^— —-î («..ft^^O). (12)
O 6 -j- • • • -j- 0O

n—dn—d

Naeh passender Festlegung eines Zweiges ist /\ — abgesehen von
einem endlichen Stûck — definiert durch die Gleichung

Argw(zv) 0 (13)

Àuf der Kurve 7\ ist dann das Argument ç^ von zv, fur r,, hinreichend
groB, eine umkehrbar eindeutige Funktion von rv

<Pv <P*(rv)->0
Setzen wir nun

l\(zv)\ (14)

so wird fur rv hinreichend groB jedem Punkte von Ft ein Wert q ein-
eindeutig zugeordnet17) :

Q Q{rv><Pv) Q*{rv)~rv •

Wir definieren dann die gewunschte quasikonforme Abbildung durch

— Q* (rv)
Qv rv —

(15)

Y \'v) 2

An Hand der Formeln (12) und (13) ist leicht zu verifizieren, daB

J c. ___ I I r 'w ^" c^r\ i I ri I

ist18), wobeidas Intégral sich uberden Quadranten |v, rjv^O erstreckt.
Durch (15) geht das Gebiet O1 in den Quadranten !v>0, rjv^O iiber.

Ein Punkt yv y* der positiven 2/p-Achse geht ùber in den Punkt r\v y
17

c?ç ist nichts anderes als der logarithmische Abstand des auf C liegenden Bildpunktes
von dem zugehôrigen Windungspunkt. Dièse geometrische Deutung von q ist wichtig
fur die spâteren Verheftungen.

18) Dièse Tatsache findet ihre naturliche Erklàrung darin, daÔ die Abbildung (15) im
Unendlichen sehr wenig von der Identitât abweicht. Es ist

£>zv/lv — l =D{çv,#v) — K Konst.
Qv

3 Commentarii Mathematici Helvetici *o



der positiven ^,,-Achse und ein Punkt g (Gl. 14) auf /\ in den Punkt
£v g der positiven £V-Achse.

Auf die gleiche Weise bilden wir das Gebiet 02 quasikonform auf den
Quadranten £v<0, rjv^O ab und hef-
ten die beiden langs der positiven rjv-
Achse zu einer Halbebene Hv zusam-
men. Auf der negativen |v-Achse haben
wir statt (14) die Beziehung

1
g -— log | w (zv) | (17)

cl

Dabei bezieht sich d~ und w auf den
anderen log. Windungspunkt.

13. Wir haben damit jedes periodische
Ende 0* (v 1,..., m) auf eine Halbebene

Hv quasikonform abgebildet. Die
Schnitte C wurden so gewahlt, daB die
0* allein die Flache W bis auf einen end-
lichen Kern zusammensetzen (Fig. 5).

F«g 5

Wir bilden nun die Halbebenen Hv vermoge

• • • (*V \ <m> - (dldï- "dv\
\ d~{. d~v_x / (18)

m m

2nkonform auf die zA-Winkelgebiete Hfv mit der ôffnung ab. Die ge-

samte Abbildung von W auf die z'-Ebene ist gemaB (14) und (17) in der
langs des Strahles <p' 0 aufgeschlitzten z;-Ebene stetig. Dem Punkt
x+ r' des obern Ufers des Schlitzes entspricht der Punkt

-(¦ - • • dm

des untern Ufers.
t)ben wir auf die aufgeschlitzte z'-Ebene die Transformation

i±-
r'>\

r>e
±2A_
m

0<(pf<2n

Alogr <cp<2n±
A logr

mn

(19)

(20)
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aus, so werden die sich nach (19) entsprechenden beiden Punkte zr rf

und z' em rfe27Ti in ein und denselben Punkt ûbergefiihrt.
Die Abbildung (20) ist im Nullpunkt singulâr, darum mûssen wir den

Einheitskreis ausschlieBen, was aber fur die Anwendung der Sâtze 1 und 2

(Nr. 5) keine Rolle spielt.

14. Die schlichte Abbildung von W auf die z-Ebene ist damit bis auf
einen gewissen Kreis stetig. Wir wollen beweisen, daB sie fast-konform
ist. Es ist nach Nr. 8

__

denn die Abbildungen w+-±zv, £„«--> z', z'<-+z, sind konform19). Es

gilt also

dlogz
d log z'

df.
z'|2

,dr\v

m* < oo

Die letzten Intégrale sind in der Tat gemâB (16) endlich. Nach Satz 1

und 2 (Nr. 5) kônnen wir auf den parabolischen Typus von W schlieBen
und die VergleichsgrôBen N(r,a), ^(r,»), T(r) der erzeugenden
Funktion w(z) auf der z-Ebene abschâtzen.

§ 5. Wachstumsordnung von w (z) und Beweis des Satzes A.

15. Die Wachstumsordnung von w(z) ist definiert durch

limi^i. (21)
logr ;

Einem Kreis | z \ r der z-Ebene entspricht nach (20) eine Kurve der
z;-Ebene, welche zwischen den Kjreisen

und r' (22)

liegt. Dabei ist oc 1 + ¦

19 Hier kônnen wir nicht von Zusammensetzung fast-konformer Abbildungen spreehen,
denn die Abbildung w -<-> z' ist nicht stetig (aufier im Fall A 0).
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Einem Kreise | zf | rr entsprechen wiederum, gemàB (18) m Halb-
kreise in den m Halbebenen Hv (v 1,..., m) mit den Radien (Nr. 19)

Da die Funktionen Rv(ez) die Période 2n haben, so ist die Anzahl
der Periodenstreifen, welche Punkte des Halbkreises qv enthalten, asym-

ptotisch gleich -~ Jede Période vertritt eine endliche Anzahl nv (Grad

von Rv(u)) von Blàttern der w-Ebene, somit gilt fiir die a-Stellen einer
gewissen w-Umgebung

Br2'0' <n(r,a)<Ar¥<X (24)

wobei die Konstanten A und B nur von den GrôBen nv, d+, d~, m und
A abhângen. Intégration ergibt

m m

Br2<X<N(r,a)< Ar 2 *
(25)

m oc mot

Wegen der Defektrelation ist also auch
m ^ m

*a (26)r<()<m oc moc
und daraus folgt

Satz A. Die erzeugende Funktion w (z) einer Flâche W mit m periodi-
schen Enden und der Charakteristik A gehôrt zum Mitteltypus der Ordnung

m I
¦=== —__ I I

Ç\ I
\

Wir werden spâter beweisen, daB im Fall A 0 Defekte und Indizes
rational sind.

16. Die periodisehen FlàchenII R{ez) sind besondere Flâchen W

mit

Fig 6 J,sl, J2=2 n =2. m 2, di=dl d1,

d~ dî d2

so daB A 0, A 1 ist (Fig. 6).
Ersetzen wir nun eine Hâlfte des Komplexes von R(ez) durch ihre

symmetrische20) (Fig. 7), so wird

d± d£ dl9 dï d2 d2

20) Vgl. H. Wittich (2). Wir wollen eine solche Opération Antisymmetrisierung nennen.
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und darum
dl -x i

Die GrôBe A miBt hier sozusagen •==: •=
die Asymmetrie der Flâche Wr (Fig. | | |

7). Im allgemeinen Falle kônnen wir
sagen : die Erhôhung der Ordnung

liber denWert — hinaus wird durch Fig 7 Fiacre W.

die Asymmetrie im Flàehenbau verursacht.
Die a-Stellen von w(z) verteilen sich in endlich viele Gruppen derart,

daB die Stellen einer einzelnen Gruppe sich an eine Spirale

r e * (Fig. 8) \ \
anschmiegen. Die Krummung K im Kurven- \/
punkt | z | r ist um so stàrker, je grôBer
A ist :

y
17. Andererseits sind Fàlle bekannt, in denen Fig ô

die Stôrung gewisser Symmetrieeigenschaften
einer Flâche den Ûbergang vom parabolischen zum hyperbolischen Typus
verursacht21). An einem Beispiele seien die beiden Tatsachen in Zusam-
menhang gebracht.

Der Komplex der Flâche Wn

1

besteht ans einer Kette von algebraischen Elementargebieten ?i-ter
Ordnung, welche an den Rand eines log. Gebietes grenzen (Fig. 6 : n 2).
Hier ist

»! 1

d2
~~

n

Durch Antisymmetrisierung bekommen wir eine Flâche Wrn : m 2,
A log n2 (Fig. 8). Die Ordnung der erzeugenden Funktion ist gemâB (27)

21) Myrberg (1), C. Blanc (1).
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Solange n (also die Ordnung) endlich bleibt, gehôrt die Flâche W'n nach
bekannten Kriterien22) zum parabolischen Typus. Im Grenzfall n oo

Wn -+ W

gehôrt die antisymmetrische Flache W^
dem hyperbolischen Typus an, obwohl die
Flache Ww parabolisch ist (Fig. 9 und 10).

rr rt r-. 1 tir ,- z\ -Der Beweis ergibt sich wie fur endliche
Fig 9: FUckeC, (Ï0;e*Z) v. G+ ,1 m e6 l nur tntt hier an btelle der lransformati

Fi 10 Fiacre W'

nur tntt hier an btelle der lransformation
(20) eine solche der Form

wobei r fur rf ->oo gegen einen endlichen
Wert R strebt23). Die oben betrachteten
Spiralen nâhern sich jetzt asymptotisch dem
Rand des Kreises | z \ < R.

Zusammenfassend : Die Asymmetrie be-

wirkt bei schwacher Verzweigsheit eine Ord-
nungserhôhung und, bei genilgend starker
Verzweigsheit einen Ûbergang vom paraboli-
schen zum hyperbolischen Typus.

§ 6. Wertverteilung von w (z) im Fall A 0

18. Wir wollen hier einige Aussagen uber Defekte und Indizes von
w(z) im Fall A 0 herleiten, die wir spàter fur die Lôsung des Um-
kehrproblems brauchen werden.

Nach (24) und (25) ist es erlaubt, zur Berechnung von ô(a) und e(a)
die GrôBen n(r,a) und %(r,a) anStellevon N(r,a) und N^r,^ zu
bentitzen.

Hier entsprechen nach (23) einem Kreis | z \<r m Halbkreise

(dxd2. .dj^) g 0 i < n (i 1,. m)

Sind also à1 (a), ei(a) Defekt und Index von a in bezug auf Ri(ez),
so ist beztiglich w(z)

22) H.Wittich (1), R.Nevanlinna (3).
2S) C. Blanc (1).
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(28)

(n\ __

Fur die ôi, e* der periodischen Funktion Bj(ez) brauchen wir nur die
relativen Defekte und Indizes in den einzelnen Perioden zu berechnen.
Dièse lassen sich wiederum aus dem Komplex der rationalen Funktion
B{ (u) ablesen.

Die Anzahl der Knoten dièses Komplexes ist gleich E 2niJ wobei
^denGradvon B^u) bedeutet. Einem (eigentlichenoderscheinbaren24)
Grundpunkt av entsprechen eine gewisse Anzahl Sv von algebraischen
Elementargebieten. Sei 2KV die Anzahl der Strecken, welche dièse Sv
Gebiete beranden, dann gilt fiir die Funktion B^e2)

ô* (av) + e* (av)
Kv~8v d* (av) 0

fur av^Bi{oo) Bi(0)

d*(av) + e*(av) ^-^v + l #^ ^_
fur av Bi {06) =£ Bi (0)

àl(av) + e*{av) v^ à* (av) -^-
fur av Bi{0)^Bi(oo)

fur «„ J2,- (oo) 5, (0)

Insbesondere folgt daraus, daB die ô{, e* rational sind, mithin nach
(28) auch d und e. Das ist die Ergânzung zu Satz A (Nr. 15).

19. Die Anzahl der Elementargebiete bzw. Strecken im Komplex
ist qq

S X Sv bzw. K= % Kv
q

v=l

24) Vgl. Nr. 8.
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so daB nach der Polyederformel gilt

GemâB (28) ergibt sich auch25) fiir w(z)

Zà(av) + Xe(av)=:2 (30)

Ebenso folgt aus (28) und (29)

£ô(av)>0 (31)

ô (av) + e (av) < 1 < 1 falls e (av) > 0 ist. (32)

Durch Beweis des Satzes B wird gezeigt, da8 fiir die Zahlen ô und e

keine weiteren Emsehrânkungen auBer (30), (31) und (32) bestehen.

20. Gilt fiir aile periodischen Enden 0*

d+ =dT dt (i= 1,2,..., m) (33)

so ist die Bedingung A 0 automatisch erfiillt und die Formel (28)
vereinfacht sich zu

(34,

Dabei ist

Zt ^î- (i=l,2,...,m) (35)

und lt hângt nur vom betreffenden Ende ab. Wir sagen, das Ende sei von
der Charakteristik Null und nennen l% seine reduzierte Lange. Es ist
nicht môglich, beim Umkehrproblem mit solchen Enden allein auszu-
kommen. Die Formel (34) lâBt sich aber mit Hilfe des Begrifïes zusam-
mengesetzter Flâchen verallgemeinern.

Zusammengesetzte Flâchen, Es seien zwei Flâchen Wx, W2 von der
Charakteristik A 0, welche je einen log. Windungspunkt iiber dem-
selben Punkt av besitzen. In dem betreffenden log. Gebiet jedes Kom-
plexes werde ein Schnitt angebracht. Heften wir die beiden Komplexe
làngs der Schnittufer zusammen, so entsteht ein Komplex W (oder

26) Das folgt auch direkt aus einem allgemeineren Satz von Teichmuller (2).
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Flache W), welche auch von der Charakteristik A 0 ist : Wir sagen,
Wx und W2 seien vereinigbar und schreiben

W W + W2 (36)

Fur jeden Teilkomplex laBt sich analog zu (35) — durch den Nenner
von (28) — eine reduzierte Lange26) definieren :

U 1 O\ /Q7\\l — 1 L) \6 é)

Wegen Ax — A2 0 hangt ij nicht vom Umlaufssinn bei der Nume-
rierung der Enden ab.

Sind ô1(a), s1 {a) bzw. ô2(a), e2(a) Defekt und Index von a in bezug
auf Wx bzw. W2, so wird — analog zu (34) — bezuglich W

Auf die gleiche Weise laBt sich eine Flache W aus mehreren Wx, W2,...
zusammensetzen. Darunter mussen wir eine sukzessive Zusammensetzung
verstehen, d. h. wir bilden zuerst Wx + W2, dann (Wt + W2) + TF3,

usw. Es ist nur erforderlich, da6 Wr und (Wx + W2 + • • • + Wr_i) log. Win-
dungspunkte uber dem gleichen Grundpunkt besitzen. Wie man auch die
Reihenfolge der Wr annimmt, gilt immer analog zu (38)

Als Wly W2,,.. werden wir die periodischen Flachen R(ez) nehmen
oder solche, die sich aus periodischen Flachen zusammensetzen lassen.
Aile dièse Flachen sind offenbar von der Charakteristik A 0.

21. Problem, Oegeben seien zwei vereinigbare Flachen W±, W2 (A1
A2 0). Es sollen zwei andere vereinigbare Flachen W[, W'2 [A[ ^2 0)
konstruiert werden mit folgenden Eigenschaften :

1) W[ und W2 haben entsprechend gleiche Defekte und Indizes wie Wt
und W2.

2) Die Langen L[ und L2 von Wrx und W2 sollen zueinander in gegebe-

nem rationalem Verhaltnis stehen.

Losung : Es sei

L, *f- L2 A T£ Wt (D%,Nt,N[ ganze Zahlen).

26 Die Numenerung begmnt bei dem ausgezeichneten log Gebiet.
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*Dann nehmen wir fur Wx (bzw. W2) eine Flâche, welche sich aus N[ N2 Dx
(bzw. N2 Nx D2) Exemplaren Wx (bzw. W2) zusammensetzt. Defekte und
Indizes haben sich nicht geàndert und die Lângen sind

L[ N[N2DxLx NfxNxN2

L'2 N'2 Nx D2 L2 N2N2NX

§ 7. Das Ullrichsche Umkehrprofolem. Die Sâtze B und C.

22. Wir wollen eine Flâche W von der Charakteristik A 0 kon-
struieren, welche in bezug auf ax, a2,..., aQ dem folgenden Schéma ent-
spricht

(41)

wobei die rationalen Zahlen àv und ev den Bedingungen (30), (31), (32)

geniigen. Wir nennen dies ein U-Schema. LâBt sich die entsprechende
Flâche W realisieren, so heiBt das Schéma lôsbar.

Es ist leicht einzusehen, da8 nur ein einziges U- Schéma mit zwei Spal-
ten existiert, nâmlich das Schéma

1 M

und die Lôsung ist eine lineare Funktion von ez\

Ist aber (41) ein U-Schéma mit mindestens zwei nicht verschwindenden
ôv, so sind es auch die Schemen

(!::::''tv::!:) <«>

; ôu ev =£ 0 (43)

23. Nun gilt das folgende

Lemma: Sind die Schemen (42) und (43) lôsbar, so ist es auch das

Schéma (41).

Beweis: Wir lôsen (42) und (43) durch die Komplexe Wx bzw. W2.
Daraus kônnen wir nach Nr. 21 zwei Flâchen W[ und W2 konstruieren,
welche auch (42) und (43) lôsen und deren Lângen L[, L'2 — in bezug auf
ein gemeinsames log. Elementargebiet — sich wie ôv, ev verhalten:

L'x : L2 ôv : ev
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Durch Zusammensetzung von W[ und W'2 erhalten wir gemâB (38) eine
Flâche W, welche (41) lôst, w. z. b. w.

Wir driicken dièse Tatsache symbolisch aus durch

)x...dv + ev...\ /«!... 0

:x... 0 .../ +Sv\e1...dv + ey

Nach dem Lemma lâBt sich das allgemeine Schéma (41) schrittweise
je auf die beiden folgenden Arten von Schemen zurûckfùhren :

a) Schemen mit nur einem nicht verschwindenden ô,
b) Schemen, bei welchen jede Spalte v nur ein nicht verschwindendes

Elément, entweder ôv oder ev, besitzt.
Die ersten Schemen nennen wir erste Hauptschemen (46). Die zweiten

lassen sich durch die Bedingung

^ôvev O (45)

charakterisieren und heiBen darum Orthogonalschemen.

24. Hauptschemen : Es sind Schemen, welche den periodischen Funk-
tionen R (ez) entsprechen :

(1 ' " I : erstes Hauptschema (46)
£l e2 ' ' ' eq /

(ç
c s\ Ci \12 " " I : zweites Hauptschema (47)

el £2 e3• • • eqI

Die Auflôsung dieser Schemen ist ein algebraisches Problem. Ist n ein
gemeinsamer Nenner der Zahlen ôv und ev, so schreiben sich (46) und
(47) in der folgenden Form

0\ /J2.^L 0 0

bzw. »
I (48)

n / \ n n n n

wobei die dv und ev ganze Zahlen sind.
Nach Nr. 18 miissen wir eine rationale Funktion R(u) n-ten Grades

konstruieren, welche nur iïber al9 a2,..., aQ mehrfache Stellen hat, und
zwar mit folgender Vorschrift :

1. fur das erste Hauptschema:
Ûber ax liegt ein Windungspunkt u+ =oo (d+ — l)-ter Ordnung und

27 Ordnung ist so zu verstehen, dafi eine schlichte Stelle von militer Ordnung ist.
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ein Windungspunkt u~~ 0 (d~ — l)-ter Ordnung (d+ -f- dr dx) ; die
Gesamtordnung der anderen Windungspunkte ist gleich ex.

Ûber av (v 2, 3,..., q) betragt die Gesamtordnung der Windungspunkte

ev ;

2. fur das zweite Hauptschema :

Ûber ax und a2 liegt je ein Windungspunkt % =oo (dx — l)-ter
Ordnung bzw. u2 0 (d2 — 1 )-ter Ordnung ; die Gesamtordnung der anderen

Windungspunkte ist gleich ex bzw. e2.
Ûber av (v 3, 4,..., q) betragt die Gesamtordnung der Windungspunkte

ev.

Wegen (30) und (32) sind dièse beiden Problème losbar28) : (30) ist
die Hurwitzsche Relation ; (32) besagt, daB die Gesamtordnung der uber
einem Grundpunkt av liegenden Windungspunkte kleiner als der Grad
von R(u) ist.

Aus der so erhaltenen rationalen Funktion R(u) bilden wir dann die
Funktion R(ez), welche offenbar (46) bzw. (47) lost.

Sind einmal die Hauptschemen gelost, so laBt sich die Auflosung des

allgemeinen Schémas nach (38) auf ein diophantisches Gleichungssystem
zuruckfuhren. Aber die Losungen dièses Systems mussen so komplizierte
Nebenbedingungen erfullen, daB wir den kombinatorischen Weg vor-
ziehen.

25. Orthogonalschema : Ein Orthogonalschema laBt sich nach passen-
der Numerierung der Grundpunkte av in der folgenden Form schreiben :

0
¦

(49)
0

n n

Fur v q haben wir das von R. Nevanlinna gelôste Schéma29).
Fur v<2 haben wir ein Hauptschema.
Es sei also v^S. Wir wahlen zunachst den gemeinsamen Nenner n

so, daB die Summe der dt gerade ist und setzen

28) Man kann auch direkt den Komplex von R{u) angeben. Dazu konstruiere man
zunachst den Komplex einer Funktion R, welche uber av (v 1,..., q) genau emen
Windungspunkt Av-ter Ordnung — mit passend gewahlten Av — besitzt. Dies gelmgt
durch Rekurrenz m bezug auf q. (Der Fall q 3 wird m Nr. 29 behandelt.) Es ist dann
leicht, daraus die gewunschten Komplexe herzuleiten.

29) R. Nevanluma (1).
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Wir lôsen dann die (zweiten) Hauptschemen

d

n

0

a3

d

n

0

av+1

0

ev+i
n

aq

0

_^
n

^d, 0

- - (50)
o o-^

fur aile Kombinationen i, j 1, 2 ,...,?>.
Aile dièse Hauptschemen ergeben Flàchen Wl3 gleicher reduzierter

Lange 2 n

Wir konstruieren nach Nr. 20 eine Flâche W mit 2d periodischen
Enden, welche sich aus d solchen Exemplaren WtJ zusammensetzt der-
art, daB von den insgesamt 2d log. Windungspunkten von W genau dt
uber dem vorgegebenen Grundpunkte at liegen (i 1, 2,..., v). Jeder

Windungspunkt liefert zum Defekt von at den Beitrag -=- • —— — und

der gesamte Defekt des Punktes at summiert sich also auf den vorgegebenen

Wert —-=dt. Der Index von ak (k>v) bezûglich W%3 ist immer

eki so daB in bezug auf W auch der gleiche Index ek herauskommt.
Somit ist das Orthogonalschema (49) durch die Flâche W gelôst.

Es gilt also der

Satz B. Unter den Voraussetzungen

1> 1 V=l
2) dv9 ev rational,

3) £dv^0,
4) dv + ev^l, <l falls ev^0 ist,

kann man das Umkehrproblem mit Hilfe von Flàchen W der Charakteristik
À — 0 stets lôsen.

Man kann sich noch die Frage stellen, welches die kleinste Anzahl m
von periodischen Enden ist, die man zur Lôsung eines gegebenen Schémas

benôtigt.

26. Die oben angegebene Méthode ist zwar bequem fur den Beweis
der Lôsbarkeit des Ullrichschen Umkehrproblems, das folgende Ver-
fahren fiihrt aber schneller zum Ziel.
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Im Schéma (41) :
fô1ô2...ôq\
\e1e2...ej

fassen wir aile ev ins Auge, fur welche ôv>0 ist. Dièse seien nach passen-
der Numerierung der av die r ersten :

/ô1ô1...dr0 ...0 \
\el e2'"er £r+l • • • sq /

mit £i^£2^' '

Fur r^2 haben wir ein Hauptschema. r
Es sei also r^3. Wenn fur aile v^r ev-\- ^ J£ <^< 1 gilt, so ist die

i
in Nr. 25 fur Orthogonalschemen angegebene Auflôsungsmethode noch
verwendbar. Wir nennen ein solches Schéma quasiorthogonal.

Gilt nun fur ex und nur fur dièses ex + J £ ô^ 1, so Ià8t sich obiges
Schéma sogleich auf zwei quasiorthogonale Schemen zuriickfuhren, nâm-
lich durch die Zerlegung30)

+Ô1 U,

Man iiberzeugt sich leicht auf Grand der Relationen

'^«r > «i + ^r<! » £i+ àx + e2 + ô2<2

da8 die Schemen rechts quasiorthogonal sind.
Gilt aber fur e± und e2 ex + \£ ô^ e2 + \ J£ ^ 1 so wird

Es bleibt also nur noch das einfache Schéma

(Ô1Ô2Ô3...ÔQ\
\ ex e2 0 0 /

zu lôsen. Hier ist die Orthogonalisierung (Nr. 25) dann notwendig.

27. Andererseits kann man sich die Frage stellen, wie einfach sich die
periodischen Enden wâhlen lassen, um das allgemeine Schéma zu lôsen,

wenn es nicht auf ihre Anzahl m ankommt.
Nach dem Vorigen brauchen wir dièse Untersuchung nur fur die folgen-

den Schemen auszufuhren :

80) Vgl. Schlufi von Nr. 23.
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(Ô1O...O\ d1ôa0...0

Wir kônnen, wie bei der Behandlung der Orthogonalschemen, auf ana-

loge Weise die Schemen (51) — indem wir statt ô jç]£ôv die Summe
Q 1

betrachten ¦— auf die folgenden Schemen zurûckfùhren :

(52)
/ «i 0 0 \ tà1à%0\ I Ôt ô2 0 0 \
\e1 e2 ej 9 \ 0 0 e3

> \0 0 s e) '

Das letzte Schéma lâfit sich wiederum auf die beiden ersten zuriick-
fuhren. Wir unterscheiden dabei drei Fâlle :

1) 2e<1. Wir setzen

(à, ô2 0 0\ là, ô2 0 0\ (ô1 ô2 0 0 \
\0 0 e e) \0 0 2e0/"t"\0 0 0 2e] '

2) 2e>l, Ô1 ô2 ô. Es ist dann 2<5<1 oder 2^2<| und
wir kônnen setzen :

/25200 0 \ /O2(32O 0

\ 0 0 l-ô2 l-ô2 + \ 0 0 l-ô2 l (52 )+ \0000
und die Zer-

2 Ô1+ô2
0 0

2

0 e 6)
fiihrt auf 2) zuriick.

Somit gilt der

Satz C. Das Ullrichsche Umkehrproblem lafit sich durch Flachen W mit
endlich vielen periodischen Enden lôsen, deren einzelne hôchstens ilber drei
Orundpunkten verzweigt sind und den folgenden sogenannten Elementar-
schemen entsprechenzl) :

ôl 0 0\ là1 ô2 0\
e1 ez ej ' \O 0 ej (53)

81 Das einzige Ende mit zwei Grundpunkten ist das logarithmische Ende.
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28. Wurden wir von diesem Résultat ausgehen, so konnten wir den
Beweis der Losbarkeit des Ullrichsehen Problems dadurch vereinfachen,
da8 wir bei der Abbildung der einzelnen Enden auf einen Quadranten
zuerst ihre drei Grundpunkte auf eine Gerade verlegen. Die Kurve F
(Fig. 4, Nr. 12) ist dann namlich auch eine Gerade und die Gebiete Gx

bzw. G2 sind von selbst Quadranten.
Andererseits brauchen wir, statt die allgemeinen Hauptschemen (46)

und (47), nur (53) aufzulosen, und das entsprechende algebraische Pro-
blem vereinfacht sich wesentlich.

Dabei mussen wir eine algebraische Funktion konstruieren, welche
hochstens funf Windungspunkte, verteilt uber drei Grundpunkten, be~

sitzt. Wir kônnen aber erreichen, dafi schon Funktionen R(u) mit drei
Windungspunkten genilgen. Dazu brauchen wir nur das erste der Schemen

(53) folgendermaBen zu zerlegen :

0 0

ft-DI 2-
2e

0 '

0 0 \ / ^-^- 0 0

2dY

2n
2ex

2n

0

2e2

2n

0

2 63

2n

/\2n 2n) \ 2n 2n 2nt

Im letzten Schéma haben wir zwar noch funf Windungspunkte fur die
periodische Funktion R(ez), aber nur drei Windungspunkte fur die

rationale Funktion B (u). Gewisse logarithmische
1 Windungspunkte von R(ez) ruhren von schlichten

/ \ Stellen von R(u) her.

^//\ 29. Die rationalen Funktionen, die wir brauchen,
o * I sollen also nur drei Windungspunkte uber drei Grund-

°,v s? punkten aufweisen, z. B. uber av einen Windungs-
N^ ^ # punkt ocv Av-ter Ordnung (y 1, 2, 3 ; Xx + A2 + A3

H7~° 2 X)7̂
; Das Problem wird durch Angabe des Komplexes

%! 3 A2^2 ,Ays3 gelôst. Wir zeichnen zunachst in der 2;-Ebene ein
Polygon mit 2AX + 2 Ecken (Fig 11). Das ÀuBere

dièses Polygons soll das Elementargebiet ocx sein. Wir numerieren
die Ecken von 1 bis 2 Ax + 2 und verbinden die erste Ecke mit der
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(Aj + ^2 — h + 2)-ten32) durch einen innerhalb des Ausgangspolygons
laufenden Streckenzug, welcher A2 + K ~ K Knoten enthâlt. Dadureh
wird das Polygoninnere in zwei Polygone mit 2 A2 + 2 bzw. 2 A3 + 2

Ecken geteilt. Dièse sollen die Elementargebiete <x2 bzw. oc3 sein. Um den

gewiinschten Komplex zu erhalten, haben wir nur noch die eventuell
schlichten Stellen ûber ax, a2, az mit Zweiecken zu deuten.

(Eingegangen den 27. Mai 1948.)
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