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. Lattices* des groupes abéliens finis

Par Huego RiBEIRO?Y), Zurich

Un type de problémes que pose actuellement la théorie des lattices?2)
est celui des problémes de représentation. En particulier, les représenta-
tions des lattices par des lattices de sous-groupes constituent une source
de questions?3) intéressant non seulement la théorie générale des lattices
et la théorie des groupes, mais aussi la théorie des relations d’équivalence,
car on sait que, non seulement chaque lattice de sous-groupes est iso-
morphe & une lattice de répartitions mais aussi que chaque lattice de
répartitions est isomorphe & une lattice de sous-groupes?).

L’object du présent travail est d’apporter une contribution & de telles
recherches par 1’étude systématique des lattices de sous-groupes des
groupes abéliens finis. Nous nous demandons donc tout d’abord, quelles
sont les lattices qui peuvent étre réalisées par tous les sous-groupes d’un
groupe abélien fini, les opérations de lattice étant la formation de I’inter-
section (meet) et la formation du groupe-réunion (join). Nous dirons
toujours , lattice du groupe G’ pour désigner la lattice de tous les sous-
groupes de .

Notre méthode consistera & réduire le probléme & 1’étude des lattices
des composantes primaires (§ 1), et, ensuite, & analyser, parmi elles,
tout d’abord les lattices dans lesquelles chaque élément a un complément,
et que nous appellerons, suivant l’'usage, ,lattices complémentées’.

Une propriété tres étudiée des lattices des groupes abéliens a été dé-
couverte déja par Dedekind?). Il s’agit de la loi modulaire, qui a le
caractére d’une loi distributive affaiblie. Nous travaillerons presque tou-

1) Boursier & Zurich de I'Instituto para a Alta Cultura, Lisboa.
2) Nous employons partout le mot anglais ,lattices* au lieu de ,structures’.

3) Ces problémes sont déja suggérés dans 'ouvrage de G. Birkhoff, Lattice Theory,
American Math. Soc. Coll. Publ. Vol. 25, New York 1940, auquel nous renvoyons le
lectour quant aux résultats et notions utilisés dans notre travail.

4) v. G, Birkhoff, Onthestructure of abstract algebra, Proc. Cambridge Phil. Soc.
31, 1935, p. 433—454.

5) Gesammelte mathematische Werke, 2. Bd., Braunschweig 1931, p. 115.

1 Commentarii Mathematici Helvetici 1



jours avec ces lattices modulaires et leurs propriétés caractéristiques. Notre
principal objectif est précisément de savoir ce que I’on doit exiger d’une
lattice modulaire finie pour qu’elle soit isomorphe & la lattice d’un groupe
abélien fini. Nous serons ainsi amenés & considérer parmi les lattices
finies une classe de lattices que nous appelons uniformes dont les lattices
distributives forment une sous-classe. Les seules lattices uniformes com-
plémentées sont les algebres de Boole et les géométries projectives. Plu-
sieurs conséquences intéressant aussi la théorie générale des lattices dé-
coulent, plus ou moins directement, de notre analyse.

Nous n’avons connaissance d’aucune étude systématique du probléme
de représentation que nous nous sommes posé pour le cas, le plus simple
et fondamental, des groupes abéliens finis. Cependant on connait beau-
coup de propriétés des lattices de groupes et lorsque nous avons eu la
possibilité d’en donner des applications nous ’avons fait remarquer. En
particulier nous croyons avoir reconnu, aprés la rédaction de notre travail,
qu’il serait possible d’obtenir, de cette fagon, quelques-uns de nos résul-
tats sur les lattices de produits directs. Dans cette direction on doit citer
ici, surtout, les travaux de O. Ore, ,,On the foundation of abstract al-
gebra’”, Annals of Math., vol. 36 (1935), 37 (1936) et ,,Structures and
group theory”’, Duke Math. J., vol. 3 (1937), 4 (1938).

§ 1. Lattices de produits directs. Lattices de groupes cycliques.

1. Ici nous ne supposons pas encore que les lattices considérées soient
modulaires ni que les groupes soient abéliens. Soit tout d’abord L une
lattice produit-join (plus simplement: ,,produit’) de ses m>1 sous-
lattices L,, L,,..., L,,, donc chaque élément de L est le join de m élé-
ments appartenant respectivement & L,, L,,..., L, et cela d’une seule
facon. On peut, trés facilement, démontrer que:

1) L;,, ¢=1,2,...,m, aun infimum ¥, celui-ci est le méme pour
toutes les L, et c’est aussi 'infimum de L.

2) L;, v=1,2,...,m, est unidéal de L, c’est-a-dire que L, est une
sous-lattice de L pour laquelle H;~ X est un élément de L,, quels que
soient les éléments H,; de L, et X de L.

3) Si G,64,G,,...,4, sont des suprema de L,L,,L,,...,L,
respectivement, on a G =G, vG@yv...vG, et aussi (G,vG,v...
VG,_IVG,+1V...VGm)ﬁGr=-‘E, 7':1,2,...,’”&.
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Indiquons briévement les démonstrations :

1) Soit H, un élément de L. Il y a alors m éléments 4,,4,,...,4,, avec
A,eL; (j=1,2,...,m) ettelsque H,= A4, vA4,v...v4;v...v4,.
Mais A, = H, caronaaussi H,= A, vA4,v...vH,v...v4,. Main-
tenant si pour j 7% ¢ on pouvait trouver B, ¢ L; avec B;<A4, on aurait
H,=4,vA,v...vH,v...vB;v...v4,, doncune autre décomposition de
H, comme un join ce qui est impossible. 4;, pour j 7 ¢, est par conséquent
Pinfimum de L;. En prenant H, avec k 5 ¢ on voit de méme que L; a
un infimum. Soient E,, E,,..., E,, ces infima. ¥ =E,vE,v...vE,
est certainement 'infimum de L et cette égalité nous montre que E; = E
pour ¢ =1,2,...,m.

2) Cela résulte de ce que I'on a H,= (H;~ X)vH,;, donc si
H,~ X avait des composantes différentes de &, d’indices k avec k ¢,
H, aurait deux décompositions distinctes comme join; H,~ X est donc
sa propre composante d’indice 7, et il est ainsi un élément de L;.

3) La premieére égalité est évidente. Quant & la deuxieme égalité, on
voit que (G,vGyv...vG,_;vG, ,v...vG, )~ G, est, en vertu de 2),
un élément H, de L., et 'on a alors, G, vGyv...vG,_ v EvqG, ;v
v...v@, =G vGyv...vG,_vH,vG, ,v...vq,, donc H,=E.

De ce qui précéde on tire immédiatement, en utilisant une définition
bien connue du groupe produit direct de sous-groupes, que : 8¢ la lattice
L d’un groupe G est un produit de m sous-lattices L,, L,,...,L, dontles
éléments suprema @,,QG,,...,Q4,, sont invariants dans G, alors G est le
produit direct de Gy, G,,. .., G,,, et L;estlalatticedeG; (1 =1,2,...,m).

Lorsqu’on cherche une réciproque de cette proposition on trouve le
théoreme :

St G est le produst direct de m sous-groupes G,,G,,...,G,, e st L, L,,
L,,...,L, sont les lattices respectives, alors tous les joins, dans L, de m
éléments appartenant respectivement & L., L,,..., L, constituent une
sous-lattice L', de L (qui est le produit de L., L,,..., L,).

Démonstration. Soient H =H,vH,v...vH, et K=K, vK,v
v...vK, avec H,eL, et K,eL,, t=1,2,...,m deux tels joins.
Il est tout d’abord évident que H v K est aussi un tel join, car H v K =
(HyvK,)v(Hyv K,)v...v(H,v K,). Il nous suffira de démontrer
que ’'on a, de méme, H~ K = (H,~ K,) v (Hyr Ky)v...v (H,~ K,).
Or, la relation (H;~ K,)v(Hy;~n Ky)v...v(H,~K,)<H~ K est
évidente. Pour montrer que H~ K < (H;~ K,)v (Hyn K,) v...v
(H,,~ K,) nous allons vérifier que si g est un élément du groupe H~ K,
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la représentation (univoque) de g comme un produit d’éléments g, ¢ G,,
¢=1,2,...,m, est telle que g,¢H,~ K;. Nous montrons que si
geH alors g, e H,; et on ferait de méme pour K et K,. Il suffit de
remarquer que deux éléments I'un de H,, 'autre de H, (¢,j=1,2,...,m),
¢ % §, étant toujours permutables, ge H, v H,v...v H, a une repré-
sentation comme produit de m éléments, de H,, H,,..., H,, respective-
ment, et cette représentation ne peut étre autre que la représentation ci-
dessus ; donc ¢; e H,. On voit par la que H; est déja déterminé par H :
c’est le groupe des éléments de G, figurant dans la représentation d’'un
élément, au moins, de H¢). On a donc H, = H~ G, (sous-groupe in-
variant dans H), et ces produits directs H = H, X H,X --- X H,, consti-
tuent, en effet, la lattice L’ produit des lattices L,,L,,...,L,. Le
théoreme est ainsi démontré.

2. Si l'on veut poursuivre cette étude des produits de lattices de
groupes il est naturel de se demander, tout d’abord, quels sont les cas
ou L’ est égale & L. A défaut de toute autre indication on supposera dans
la suite que les groupes pris en considération sont toujours finis. Le
théoréme précédent peut alors étre complété de la fagon suivante :

St G est le produit direct de m sous-groupes G,,G,,. . .,G,,, la lattice L de
G est le produit des lattices L,,L,,. . .,L,,, respectivement de G1,G,,...,G,,

st, et seulement st, les ordres de deux quelconques des groupes G,,4,,. . .,4,
sont premiers entre eux.

Démonstration. Il nous suffit, maintenant, de vérifier que I'on a H =
HA~AG)v(HA~Gyv...v(HA~G,) pour chaque élément H de L si, et
seulement si, les ordres de deux quelconques des groupes ¢,d,,...,G,
sont premiers entre eux. Montrons, tout d’abord, que cette derniére con-
dition est suffisante: Soient ge H et ¢g=¢,-¢s: ... 9. avec g,eG,,

t=1,2,...,m. Si Ilx, est le produit des ordres «; des m — 1G;, avec

. . o, o, .
j#ti, onaura g ’=g¢; ’; Ilx; et I'ordre x, de G; sont premiers

entre eux donc g, est un élément de H et aussi de H ~ G,;. Cela étant

vrai pour chaque élément g de H, on en conclut que H = (H~ G,) v
HAGy)v...v(HAG,)T).

8) Pour cette remarque ainsi que pour les questions qui nous occupent dans cette
section et la suivante voir G. Birkhoff, Lattice theory, 1940, p. 52.

") V. Remak, Uber die Darstellung der endlichen Gruppen als Untergruppen
direkter Produkte, Journal fiir die reine und angewandte Mathematik, Bd. 163, p. 7,
1930. Dans ce travail on déduit, sous les mémes hypotheéses, tout en utilisant un théoréme
de Klein-Fricke, que H est le produit direct de sous-groupes de @,,@Gs,..., @

m*
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Pour voir que la condition est nécessaire, remarquons que, si le nombre
premier p 7% 1 divise les ordres de G, et G;, + #j, il y a au moins
deux groupes 4; et 4;, chacun d’ordre p (engendrés respectivement par
des éléments a; et a, de (), qui sont des sous-groupes respectivement de
G;et de Gy vGyv.. . v@_v@G,,v...vG,. Le produit 4,xA4; con-
tiendra un troisiéme groupe H du méme ordre p (engendré par a;a,).
H n’étant pas un join d’autres groupes et ne pouvant pas étre un sous-
groupe, ni de G; ni de G, vGyv...vG;_v@, ,v...v(G,, vérifiera
H~G,=E, i=1,2,...,m. L posséde donc un élément H tel que
H+-H~Q) v(HAGY)v...v(H~G,), ce qu’il fallait démontrer.

Rappelons ici qu’on appelle ,,irréductible” toute lattice qui n’est pas
un produit, et qu’aucune lattice ne peut étre de deux fagons différentes
produit de lattices irréductibles.

Soient, enfin, G un groupe abélien et G,,0,,...,{, ses composantes
primaires, c’est-a-dire les m sous-groupes de G formés par les éléments
dont I’ordre est une puissance d’'un méme nombre premier diviseur de
Pordre de G. G étant toujours le produit direct de ses composantes pri-
maires on a le corollaire suivant du dernier théoréme :

I. Lalattice d’un groupe abélien fini est le produit des lattices de ses com-
posantes primaires. Celles-ci sont toujours vrréductibles, et, par conséquent,
dans toute autre représentation de la lattice donnée comme un produit il y a
aw moins un facteur réductible.

Ce théoréeme nous permet de limiter notre étude a celle des groupes
abéliens finis dont ’ordre est une puissance d’un nombre premier. La
question de réductibilité ne se posant plus pour les lattices de ces groupes
nous devrons trouver un nouveau point de vue dans notre analyse.
L’examen direct, que nous allons maintenant faire, des lattices des
groupes cycliques 8) nous permettra non seulement de faire une applica-
tion immédiate des résultats précédents mais aussi de mieux saisir le
caractere de notre probleme.

3. Nous ne considérons dans la suite que des groupes abéliens, sauf
mention expresse du contraire.

I1 est évident que la lattice d’un groupe cyclique d’ordre p® est, quel
que soit le nombre premier p, une chaine, c¢’est-a-dire un ensemble or-

8) Rappelons dés maintenant le théoréme dii & Ore selon lequel les seuls groupes finis
dont la lattice est distributive sont les groupes cycliques. V. Structures and group theory,
II, Duke Math. J. 4 (1938), p. 267—268.



donné, et que de tels groupes cycliques sont les seuls groupes dont la lattice

est une chaine & ¢ dimensions. Cette remarque nous permet, d’aprés le
théoréme I, de dire:

La lattice d’un groupe cyclique fini est le produit de m chaines; celles-ct
ont respectivement 6,, 0y,...,0,, dimensions st pf* cpdr L. p,snm est la

décomposition en facteurs premiers de Uordre n du groupe.

Mais on a aussi: Si la lattice d’un groupe (abélien) G est le produit de m

chaines a dimensions 6,, d,,..., 0,, respectivement, G est cyclique d’ordre
pfl . :pgﬁ S pfn"‘ 5 PisPase--> Py étant des mombres premiers tous diffé-

rents. En effet, G est le produit direct des suprema des m chaines et les
ordres de ceux-ci sont donc des nombres premiers entre eux. Mais,
chaque chaine étant la lattice d’un groupe cyclique dont I’ordre est la
puissance d’un nombre premier d’exposant égal a la dimension, G est le

produit direct des groupes cycliques d’ordres pf‘, poL L, pfnm, avec
P Fp; 8l v#£9) (1,7=1,2,...,m). Or, comme on sait, un tel groupe
est cyclique d’ordre n = pdt.pd:. ... .pdm,

Nous faisons encore remarquer que : 1) la lattice d’un groupe cyclique
d’ordre » est isomorphe & celle des diviseurs de n; 2) chaque lattice qui
est le produit de m chaines de dimensions 6,, d,,..., d, est isomorphe
a la lattice du groupe cyclique d’ordre n=p2. p§= . pf,{", P1:Pgs++ > Pm
étant des nombres premiers tous différents, d’ailleurs quelconques.

Nous voulons étudier de plus preés les lattices produits de chaines
finies. Supposons une lattice L produit de m chaines L,, L,,..., L,, de
dimensions respectives d,, d,,..., d,,; et soient A, A‘;",. .. les élé-
ments de dimensions «;, f;,... de la chaine L, (0 <«,, f;,...< é;,
t=1,2,...,m). L aura donc (6, + 1)(dy + 1)...(d,, + 1) éléments
et la dimension 6, + d,+---+4,,; et l'ona APruvAdyro...v4Im <
Ar o A8 o, .o AP i, et seulement si, «; < f; pour chaque ¢. La loi
distributive est vérifiée dans L et elle se traduit par 1’égalité numérique
min [«;, max (f;, ¥;)] = max[min («;,5;), min (x;, y;)]. Pour qu'un élé-
ment A v AP v...vA¥ de L ait un complément A5 v APz o, o 4Pm
(lequel est alors unique, car L est distributive) il faut et il suffit que, pour
tout 7, max (x;, ;) = 6; et min («;, ;) = 0, c’est-a-dire que les seuls
éléments possédant un complément, sont ceux pour lesquels on a «; = 0
ou =46;, 1=1,2,...,m. Ainsi, il y a dans L exactement 2™ éléments
complémentés: ils forment une algébre de Boole, ayant m atomes, c’est-
a-dire m éléments suivant immédiatement I'infimum. Remarquons en-
core que les éléments suivant immédiatement un élément donné de L
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s’obtiennent en augmentant d’une unité I’indice supérieur d’une, et d’une
seule, des composantes A}, il y en a donc au plus m. Ainsi le nombre
des éléments suivant immédiatement un élément de L ne dépasse pas
celui des atomes de 1’algébre de Boole des éléments complémentés de L.

L’intérét des observations presque évidentes que nous venons de faire
réside dans le fait qu’elles nous permettent de caractériser les lattices qui
sont le produit de chaines finies. Ainsi, au schéma géométrique (dans
Pespace a m dimensions, m étant le nombre des chaines considérées) on
peut faire correspondre une trés simple caractérisation algébrique dans
le cadre des lattices. Nous démontrons :

Pour qu’une lattice finie L soit un produit de chaines il faut et <l suffit
qu’elle soit distributive et qu’aucun élément ne sott ymmédiatement suivi par
des éléments dont le nombre dépasse celui des atomes de 'algébre de Boole
des éléments complémentés de L. (Si 'on remarque qu’un élément V suit
immédiatement un élément U dans une lattice L si, et seulement si, le
systeme U= U~ X, V= Vv X aexactement deux solutions X dans
L, on peut exprimer algébriquement la derniére condition du théoréme
en disant que, quel que soit U, le nombre des V pour lesquels le systéme
U=U~X, V=VvX aexactement deux solutions, est au plus celui
des atomes de ’algébre de Boole des éléments complémentés).

Démonstration. Apres ce qui a été dit ci-dessus il nous suffira main-
tenant de montrer que, si L est finie et vérifie les conditions énoncées,
L est un produit de chaines. Soient G,, @,,...,d,, les atomes de ’al-
gébre de Boole des éléments complémentés de L, G le supremum et H
un élément quelconque de L. Du fait que G appartient & I’algébre de
Boole et de la propriété distributive, il résulte que H =HA~ G =
H~ (G,vGyv...v@,)=H~Q)v(H~AGy)v...v(H~QG,). Donc, L,,
L,,..., L, étant les idéaux de L formés des éléments qui précedent ou
égalent respectivement @,,G,,...,d,, nous pouvons dire que chaque
élément H de L est, d’une seule fagon, le join de m éléments appartenant
respectivement & L,, L,,..., L, et nous en concluons que L est le pro-
duit de ces m sous-lattices. Mais, d’autre part, il est facile de voir que
chacune des lattices L, (¢ = 1,2,...,m) est une chaine: en effet, H,
étant un élément quelconque de L, et L étant modulaire, les éléments
suivant immédiatement H; dans L sont ceux qui suivent immédiatement
H, dans L, et encore les joins (tous différents !) de H, avec un atome de L
appartenant & une lattice L; ol § #¢; en tenant compte de notre der-
niére hypothése sur L, on voit tout d’abord que chaque L, a un seul
atome et ensuite, que le nombre des éléments suivant immédiatement H
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dans L; ne dépasse pas m — (m — 1). Chacune des lattices L, est done
une chaine, et notre théoréme est démontré ?).

Ce sera seulement plus loin que nous nous occuperons d’autres pro-
priétés des lattices de groupes cycliques lorsque nous chercherons & les
rapprocher des lattices de composantes primaires. Soulignons cependant,
ici encore, qu’un produit de chaines est toujours une lattice autoduale et
que les deux propriétés au moyen desquelles il peut étre défini sont in-
dépendantes.

§ 2. Lattices complémentées. Lattices de composantes primaires.

1. Revenons a la fin du no. 2, §1, et reprenons ’analyse générale que
nous avions développée jusque la. Tout d’abord il fut question de cons-
truire des lattices réductibles de groupes au moyen de sous-lattices qui
n’étaient plus réductibles. Maintenant il s’agira de comprendre com-
ment, dans ces lattices irréductibles, les éléments qui ne sont plus des
joins d’autres engendrent leurs joins, donc de savoir de quelle maniere
les sous-groupes d'un groupe abélien d’ordre puissance d’un nombre
premier sont formés & partir des sous-groupes cycliques qu’ils contien-
nent.

Pour étudier ces lattices des composantes primaires les plus générales,
il est naturel d’envisager tout d’abord celles des groupes abéliens élémen-
taires (c’est-a-dire les groupes pour lesquels tous les sous-groupes cycliques
a ’exception du groupe identité ont un méme ordre premier). Cela, d’une
part, parce que, pour toutes ces lattices et leurs produits il nous suffira
de spécialiser des résultats bien connus; et d’autre part parce que telles
lattices interviennent, de fagon décisive, dans I’analyse du cas général.

Nous envisagerons toujours, dans la suite, des lattices finies, et nous
commencerons par la remarque suivante : Dans chaque lattice modulaire
finie L les éléments qui sont des joins d’atomes constituent, avec Uinfimum,
un idéal (principal) L* de L. St L est le produit de m lattices L,, L,,. . ., L,
alors L* est le produit des idéauzx Lf¥, LY ,..., L* respectivement de L.,
L,,..., L, ; par conséquent, si L* est trréductible L Uest aussi. En effet,
rappelons que si le supremum G@* d’une lattice modulaire finie L* est
un join d’atomes, chaque élément de L*, l'infimum excepté, est aussi
un join d’atomes. Maintenant, soient G* le join de tous les atomes

%) Nous avons pu connaitre, grice & ’amabilité de M. le Prof. P. Bernays, une étude
de Th. Skolem ou les produits de chaines sont aussi caractérisés de plusieurs fagons diffé-
rentes de la nétre. Voir ,,Uber gewisse ,Verbande’ oder ,Lattices’”, Avhandlinger
utgitt av Det Norske Videnskaps-Akademi, Oslo, I. Mat.-Naturv. Klasse, 1936, Nr. 7,
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de notre lattice L, et L* 1'idéal engendré par G*, c’est-a-dire la sous-
lattice de L formée de tous les éléments X pour lesquels X~ G*=X.
Alors, non seulement chaque join d’atomes de L appartient & L*  mais
aussi chaque élément de L*, qui n’est pas I'infimum est un join d’atomes
de L, car il est un join d’atomes de L*. Quant & la deuxiéme partie de
I’énoncé il suffit de remarquer que chaque atome de L appartient & une
seule lattice L;, 1 =1,2,...,m et y est un atome.

La remarque précédent s’applique aux lattices des groupes abéliens
finis ; lorsque L est la lattice d’un groupe abélien fini nous appellerons
I'idéal L* le ,,noyau“ de L. Nous soulignons les conséquences suivantes :

Les noyaux sont les lattices des groupes abéliens finis dont tous les éléments
ont des ordres non divisibles par des carrés. Car les atomes d’une lattice L
de groupe abélien fini G sont les sous-groupes cycliques d’ordre premier de
G'. G* contient donc précisément les éléments de G dont 'ordre n’est pas
divisible par un carré, et L* est, évidemment, la lattice de G*.

Le noyau de la lattice L d’un groupe G est le produit des noyaux des
lattices des composantes primaires de Q.

Les noyaux irréductibles sont les lattices des groupes abéliens élémen-
taires, Uirréductibilité du noyauw de L étant équivalente a celle de L.

Les noyaux sont les seules lattices de groupes abéliens finis qui sont com-
plémentées. Car 'existence d’'un complément pour chaque élément et le
fait que chaque élément est un join d’atomes constituent, comme 1’on sait,
des conditions équivalentes dans toute lattice modulaire finie.

Le théoreme général sur la représentation de chaque lattice modulaire
complémentée & dimension finie comme un produit de lattices irréduc-
tibles19), nous permet maintenant de dire qu’'un noyau L* est, et cela
d’une seule fagon, un produit de géométries projectives. Et il résulte de
ce qui précéde que ces géométries projectives sont précisément les lat-
tices des composantes primaires du groupe G*, dont la lattice est L*;
donc elles sont des lattices de groupes abéliens élémentaires. Si ’ordre n
de G* a la décomposition pf*.p32....-pi™ en facteurs premiersil y a
m géométries projectives facteurs Ly, LY ,..., L*¥. La composante pri-
maire d’ordre p}* n’ayant que des éléments d’ordre p; (l'identité excep-
tée) leurs éléments forment, évidemment, un espace vectoriel de dimen-
sion «, sur le corps premier d’ordre p,, les sous-espaces s’identifiant aux
sous-groupes. La géométrie projective L} est, alors, la géométrie projec-

10) Q. Birkhoff, Combinatorial relations in projective geometries, Annals of
Math. vol. 36, 1935, p. 743.



tive sur le corps d’ordre p; et de &, dimensions, selon le point de vue
adopté ici de la théorie des lattices. On peut, donc, énoncer le corollaire
suivant du théoréme général cité ci-dessus:

Une lattice est un noyau st, et seulement st, elle est le produit de géométries
projectives sur des corps premaiers, ceux-ci étant différents lorsque les dimen-
sions des géométries projectives auxquelles ils se rapportent sont >1. Si

n=pPr-py?- ... -pim est Vordre d’un groupe dont la lattice est un noyau,
tl y a m géométries projectives facteurs, de dimensions x; (1 = 1,2,...,m),

les corps étant respectivement d’ordres p; toutes les fois que «,>1.

Deux noyaux sont isomorphes si, et seulement si, les décompositions en
facteurs premiers des ordres des groupes dont ils sont les lattices ne diffe-
rent au plus que par les facteurs ayant I’exposant 1. Par conséquent, pour
qu’un produit direct de groupes abéliens élémentaires soit bien déterminé par
sa lattice il faut et il suffit que les ordres des groupes facteurs ne sovent pas des
nombres premaers.

Remarquons ici que les lattices modulaires finies pour lesquelles le
supremum est un join d’atomes sont autoduales et, par conséquent,
peuvent se définir comme étant les lattices modulaires finies pour les-
quelles I'infimum est un meet d’éléments précédant immédiatement le
supremum. En effet, les lattices modulaires finies pour lesquelles le supre-
mum est un join d’atomes sont complémentées, donc elles sont le produit
de géomsétries projectives, évidemment autoduales; et, d’autre part,
chaque produit de lattices autoduales est autodual. Nous utiliserons cette
remarque plus tard. En particulier, les noyaux sont des lattices auto-
duales.

2. Dans cette section nous indiquons tout d’abord quelques proprié-
tés simples qui sont des conséquences du théoréme général de décompo-
sition de lattices modulaires complémentées & dimensions finies. Ces pro-
priétés définissent les noyaux des lattices de groupes cycliques (donc des
algébres de Boole) et les noyaux irréductibles (donc les géométries pro-
jectives sur des corps d’ordre premier). Cela nous aménera & une pro-
priété générale des lattices de composantes primaires et des lattices
distributives.

Nous supposons les lattices finies, bien que cela ne soit pas toujours
nécessaire. Les algébres de Boole et les géométries projectives jouissent,
comme l’on sait, de la propriété que deux sous-lattices ,,convexes’”, ou
s,quotients”’ (c’est-a-dire des sous-lattices L’ telles que si 4, Be L’ et
A < X < B alors X ¢ L’), y sont isomorphes si elles ont les mémes dimen-
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stons. Le théoréme général de décomposition des lattices modulaires com-
plémentées nous montre, d’autre part, qu'une lattice modulaire complé-
mentée L qui n’est pas une algébre de Boole ni une géométrie projective ne
jourt pas de la propriété ci-dessus't) : car elle est, alors, un produit de géo-
métries qur me sont pas toutes de dimension 1, donc il y a des sous-lattices
convexes de L, et méme de telles sous-lattices de dimension 2, qui ne sont pas
1somorphes. Ainsi, la propriété que nous considérons est, pour les lattices
modulaires complémentées, presque équivalente a celle de l’irréductibi-
lité, les seules lattices non irréductibles possédant cette propriété étant les
algébres de Boole & plus de 2 éléments. De plus, pour qu’une lattice mo-
dulaire complémentée jouisse d’une telle propriété, il suffit déja que I'iso-
morphisme ait lieu pour les sous-lattices convexes & 2 dimensions ; mais
cela est aussi valable pour une classe beaucoup plus étendue de lattices
modulaires. Plus précisément : L étant une lattice modulaire, L’ et L”
deux sous-lattices de L, complémentées, convexes et de mémes dimen-
sions, si toutes les sous-lattices complémentées, convexes et & 2 dimen-
sions de L sont isomorphes, alors celles qui sont des sous-lattices de L’
sont aussi isomorphes entre elles, donc L’ est une algébre de Boole ou
une géométrie projective. De méme pour L”. Maintenant, si ’'on écarte le
cas des géométries projectives (& trois dimensions) qui ne sont pas sur
des corps, I'isomorphisme supposé dans L et le fait que L’ et L” ont, méme
dimension entrainent I’isomorphisme de L’ et L”.

Nous sommes conduits, de cette fagcon, & fixer notre attention sur le
nombre des éléments des sous-lattices convexes de dimension 2 dans les
lattices modulaires, ,,non exceptionnelles’, ou toute sous-lattice convexe
qui est une géométrie projective I’est sur un corps. D’ailleurs, les lattices
qui nous occupent étant toujours modulaires mais pas toujours distribu-
tives, il était naturel d’avoir le souci de chercher une propriété convenable
des lattices modulaires impliquée par la distributivité, et de partir, pour
cela, de la caractérisation des lattices modulaires se rapportant aux sous-
lattices convexes de dimension 212),

Nous posons la définition :

Une lattice modulaire, non exceptionnelle, L est appelée ,,uniforme-u’ st,
et seulement si, quels que sotent A, B,C e L, avec dim B — dim A = 2

11) Chaque sous-lattice convexe, L’, d’une lattice modulaire complémentée L est aussi
complémentée: si 4 et B sont respectivement I'infimum et le supremum de L’, XeL’ ot
X' est complément de X dans L, alors (X’ ~ B)w A est, comme ’on sait, un complément
de X relatif & 4 et B. Mais, L’ étant convexe, on a (X’ ~ B)vw AeL’, donc cet élément
est un complément de X dans L’.

12) On sait qu’une telle caractérisation peut étre ainsi formulée: si deux éléments
suivent immédiatement leur meet ils précédent immédiatement leur join, et dualement.
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et A#C # B lesystétme A =C~ X, B=CvX a,ou0, ouu solu-
tions. Ceci veut dire que toute sous-lattice de L complémentée, convexe,
de dimension 2 a # 4 3 éléments. On dit simplement que L est uniforme
lorsqu’on ne veut pas spécialiser le nombre . Pour désigner une lattice
uniforme-u on écrira L, .

On peut maintenant énoncer et préciser quelques-uns des résultats pré-
cédents :

Une lattice modulaire, non exceptionnelle, est uniforme st, et seulement st,
toutes ses sous-lattices complémentées, convexes et d’égale dimension sont 180-
morphes. Les algébres de Boole et les géométries projectives sur des corps sont
les seules lattices uniformes complémentées (les unes déja déterminées par le
nombre des dimensions, et les autres par ce nombre et celui des ,,points sur
une drovte’’). Les algébres de Boole et les noyaux irréductibles peuvent se dé-
finir comme étant des lattices complémentées et uniformes-u, w étant un
nombre indécomposable (égal a 1 pour le cas des algébres de Boole et a un
nombre premier s’il s’agit d’une géométrie projective).

Nous soulignerons plus tard le fait que les lattices de composantes
primaires sont toujours uniformes, les » étant des nombres indécom-
posables (u = 1 lorsque la lattice est une chaine, et seulement dans ce
cas). Ici, nous nous bornons & analyser les lattices distributives en géné-
ral, qui sont toutes, évidemment, des lattices uniformes-112). Donec, on
peut dire que la classe des lattices uniformes est une sous-classe des lattices
modulaires contenant comme sous-classe propre celle des lattices distributives.
Et nous pouvons énoncer encore :

Les lattices uniformes-1 sont précisément les lattices distributives.
Ceci résulte maintenant de la proposition suivante :

Une lattice modulaire L est distributive st toutes ses sous-lattices convexes
a 2 dimensions sont distributives.

Démonstration. L étant une lattice modulaire, les sous-lattices non
distributives de L ont, toutes, une dimension >1 (s’il y en a). Soit L’ une
sous-lattice de L, non distributive et telle que toute sous-lattice de L
ayant une dimension plus petite que celle de L’ soit distributive. Il y a

13) En voici une démonstration directe: Si L est distributive et 4, BeL ou bien
A <K B et alors, quel que soit CeL, A=CA~ X, B=Cv X n’a aucune solution;
ou bien 4 < B et, X; et X, étant des solutions, on a Xy = (Cv Xy) ~ X, = B~ X,
=C0vX)nX=Av(X;nXy)=(AvX)n(AvX)=[(CnrnX)v X]n
[(CAX,)v X, ]=X;nX,, donc X, < X,, et de méme on verrait que X; < X,;
donc X, = X,.
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done, dans L/, trois éléments, distincts, U, V, W telsque U~V = U~W
=VAaW=A4 et UvV=UW=VWW = B, A et B étant respecti-
vement I'infimum et le supremum de L', car autrement il viendrait
dim B — dim A <dim L', contrairement & ’hypothése. Des égalités ci-
dessus et de la modularité il résulte dim U — dim A = dimV — dim 4
=dim W —dim A = —@'—%—L—/— . Sil’on avait dim L’ > 2, donc dim W —

dim A>1, il y aurait un élément W', tel que A <W’'<W. La dimen-
sion de la lattice L” des éléments X de L tels que 4 <X <W'oV est, évi-
demment, plus petite que celle de L', donc L” est distributive. En tenant
compte des dimensions, on voit que V, (W/'oV)~ U et [(W V)~ UlvW’
appartiennent 3 L”, sont tous distincts et (W/vV)~ U<[(W/ V)~ U]
~W’'. D’autre part,ona Vo[(W/oV)n U] = (W oV)~n B =W’'vV, done
la distributivité dans L” nous permet d’écrire non seulement Ve~ {[(W'V)
~AUJvW'} = A =V~[(W V)~ U] mais aussi Vo{[(W'vV)n UlvW'}
= VoW/'=Vo[(W'vV)~ U]. La sous-lattice de 5 éléments A, V, (W/V)
AU, [(WoV)n UlvW' et VoW’ ne serait pas modulaire, ce qui est
absurde. Par conséquent, on ne peut pas avoir dim L’'>2 et ainsi
dim L' = 2. Donc, si L n’est pas distributive il se trouve qu’il y a déja
une sous-lattice convexe de L ayant la dimension 2 qui n’est pas distri-
butive, ce qu’il fallait démontrer.

Remarquons que le résultat démontré ci-dessus fournit, lorsqu’il est
appliqué aux lattices finies, une simplification effective du contréle gra-
phique fondé sur la lattice bien connue de 5 éléments, permettant de
distinguer les lattices modulaires non distributives1?).

3. Le cas général des composantes primaires n’est pas aussi simple
que celui des groupes abéliens élémentaires. Chaque élément de la lattice
n’est pas, nécessairement, un join d’atomes, donc la lattice n’est plus une
lattice complémentée. Rappelons, tout d’abord, quelques définitions :
Soit L une lattice. Les éléments de L qui ne sont pas des joins d’autres,
sont appelés ,,irréductibles”. Si tous les éléments de L sont irréductibles,
L est une chaine, et réciproquement. Un ,,cycle” !5) de L est un élément

14) Aprés la rédaction de notre travail, nous avons remarqué que ce théoréme est une
conséquence immédiate d’un énoncé de G. Birkhoff dans son mémoire: Applications of
lattice algebra, Proc. Cambridge Phil. Soc., vol. 30, 1934, p. 118, ou cette simplification
n’est d’ailleurs pas expressément indiquée. Les deux démonstrations sont tout & fait
différentes.

15) Cette désignation (que nous empruntons & Reinhold Baer: A unified theory of
projective spaces and finite abelian groups, Trans. Am. Math. Soc., vol. 52,
1942, p. 286) est commode, et se justifie loraque L est la lattice d’un groupe. C’est parce que
nous discutons ici précisément ces lattices que nous I'utilisons & défaut d’'une autre plus
adéquate.
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irréductible différent de I'infimum et tel que tout élément qui le précede
est aussi irréductible. Chaque atome de L est un cycle ; chaque élément
différent de 'infimum et précédant un cycle est un cycle, ,,sous-cycle” du
premier. Si L est modulaire, une suite d’éléments de L, U,, U,,..., U,,,
tous différents de E, est dite ,,indépendante”’ si, et seulement si,
(UyvUgo...vU)~AU, ;=FE pourtout r=1,2,...,m—1, K étant
Iinfimum de L. Uune suite U,,U,,...,U,, est une ,base de L’ si elle
est indépendante et telle que U, vU,v...vU,, =G, G étant le supre-
mum de L.

Soit maintenant G' une composante primaire que nous supposerons
produit direct de m groupes cycliques tous du méme ordre p*. Dans la
lattice L de G' chaque élément irréductible qui n’est pas I'infimum est un
cycle (un sous-groupe cyclique de @) et chaque cycle ,,maximal “ (qui
n’est pas suivi d’'un autre cycle) a la dimension «. D’autre part, L est
une lattice uniforme-p, p étant premier, et les dimensions des sous-
lattices convexes et complémentées de L ne dépassent pas la dimension
de la lattice engendrée par les atomes de L. (Remarquons, en particulier,
que chacune des sous-lattices convexes de dimension 2, de L, est iso-
morphe & la lattice d’un groupe quotient, d’ordre p?, ayant donc 3 ou p+3
éléments selon qu’il s’agit d’une chaine ou d’une lattice complémentée.)

Nous démontrons maintenant que deux lattices L, et L, possédant les
propriétés qu’on vient de souligner dans la lattice L du groupe G sont néces-
sairement isomorphes, et, par conséquent, que ces propriétés caractérisent @
moins d’un isomorphisme la lattice d’un groupe qui est le produit direct de
m groupes cycliques d’ordres p*.

Pour arriver a établir I’isomorphisme liant L, et L, nous partons de
Pisomorphisme, évident, des systémes partiellement ordonnés formés des
éléments de dimension <1, de L, et L,, et nous montrons qu’un isomor-
phisme des systémes partiellement ordonnés, formés respectivement des
éléments de L, et L, de dimension < y — 1, peut étre étendu aux élé-
ments de dimension <y: en effet, comme les éléments irréductibles de
dimension >0 sont toujours des cycles, chaque élément de dimension y
qui n’est pas un cycle est un join de cycles et suit plus d’un élément de
dimension y — 1. Soit B, un tel élément. de dimension y dans L,. Pre-
nons tous les éléments de dimension y — 1 précédant B, et leurs cor-
respondants (par I’isomorphisme supposé) dans L,. Soit 4, le meet de
ces éléments de dimension y — 1 de L,, et considérons la lattice L; de
tous les éléments X tels que 4, < X < B,;. Selon la remarque faite, &
la fin du no. 1, § 2, L] est complémentée. Les correspondants des atomes
de L; engendrent donc, dans L, une lattice ayant méme nombre de di-
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mensions (isomorphe & L;) et dont le supremum (nécessairement de di-
mension y) sera le correspondant de B;. De méme, une correspondance
des éléments non cycles de L, de dimension y & ceux de L, peut étre
établie ; et de ces correspondances 'une est la réciproque de I’autre. Le
nombre des éléments de dimension y qui ne sont pas des cycles, dans L,
et dans L, est alors le méme, et d’autre part, comme chaque élément
précédant B, dans L, est égal ou précéde un tel élément de dimension
y — 1, 'isomorphisme initial est ainsi étendu aux éléments de dimension
y qui ne sont pas des cycles.

Maintenant il nous reste & étendre cet isomorphisme aussi aux cycles
a dimension y. Pour cela nous partons de la correspondance biunivoque
entre les cycles de dimension y — 1 de L, et L, établie par I’isomor-
phisme supposé entre les éléments de dimension <<y — 1. Chaque cycle
de dimension y suit immédiatement un seul cycle de dimension y — 1
et aucun autre élément. Il nous suffit donc de montrer que le nombre des
cycles de dimension y suivant un cycle de dimension y — 1 est toujours
le méme dans les lattices ayant les propriétés que nous supposons. Tout
d’abord, il n’y a aucun cycle & dimension y si y>«. Si y <« et C est
un cycle & dimension y — 1, considérons la sous-lattice, convexe, formée
des éléments X tels que C < X < D, ou D est le join des éléments de
dimension y suivant immédiatement C. La dimension de cette lattice,
convexe et complémentée, ne dépasse pas m, donc, cette lattice étant
une géométrie projective sur le corps d’ordre p (car la lattice totale que
nous considérons est uniforme-p) le complément d’un atome est précédé

m—1__ 1
par g_p_:i_. atomes, au plus. D’autre part on voit qu’il y a précisément
pm-—l —_— 1 ‘
T éléments suivant immédiatement C, et qui sont des joins de C

avec les atomes de la lattice totale. (En effet,ona Cvd4,=CvA4,, A;
et A, étant des atomes différents entre eux et différents de ’atome C,; qui
précéde C, si et seulementsi dim (CvA;vA,)=y, donc, par la modula-
rité, si et seulement si (y — 1) + 2 — dim [(A, v 4;)~ C] est égal & y,
c’est-a-dire C;, < 4;v 4,. Le nombre de tels éléments non cycles sui-
vant immédiatement C est, alors, égal & celui des atomes précédant le
complément de C; dans la géométrie projective, & m dimensions sur le
corps d’ordre p, formée des atomes de notre lattice totale. Ce nombre est

celui des atomes d’une géométrie projective & m — 1 dimensions sur le
m—1 ___

corps d’ordre et p, et donc égal, & %:r) En outre, 8’il y a un cycle
au moins suivant immédiatement C, la sous-lattice convexe complé-
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mentée des éléments X tels que C < X < D aura, ainsi, au moins un

nouvel atome de plus et, étant une géométrie projective sur le corps pre-
m

p—1

Nous en concluons que chaque cycle & dimension y — 1 est suivi d’exac-
tement p™—! cycles & dimension y, ce qu’il fallait démontrer. Nous pou-
vons alors, énoncer :

mier p a dimension < m, aura m dimensions, donc atomes.

Les lattices des produits directs de groupes cycliques tous d’ordre p* sont
caractérisées par les propriétés suivantes: chaque élément irréductible diffé-
rent de Uinfimum est un cycle, chaque cycle maximal a la dimension «, la
lattice est uniforme-p et le nombre des éléments qui suivent immédiatement un
élément quelconque ne dépasse pas celutr des atomes.

Nous dirons, briévement, qu’une lattice possédant ces quatre propriétés
est I’,,extension de degré « d’une géométrie projective sur le corps d’ordre
premier p“. Les schémas suivants nous donnent, d’abord, la lattice du
groupe du type (p?, p?) (produit direct de deux groupes cycliques

A

d’ordres p*) dans le cas p = 2, et ensulte, quatre la,ttlces modulalres qui
nous montrent I'indépendance des quatre propriétés ci-dessus (x = 2 et
p = 2).

Remarquons que de ce qu’on a dit au no. 2 de ce paragraphe il résulte
que les produits de chaines de dimension x peuvent se définir par les
propriétés ci-dessus p y étant remplacé par 1. Nous aurons ainsi, en
général, des ,,extensions de lattices complémentées et uniformes-u’’, u
étant un nombre indécomposable quelconque.

Finalement, nous obtenons le théoréme :

I1. Une lattice est isomorphe a la lattice d’une composante primaire st, et
seulement su, elle est un idéal d’une extension de géométrie projective sur un
corps d’ordre premier. St une composante primasre est le produit direct de m
groupes cycliques dont m,, m,,...,m;, avec m; + my+---+4 m; =m,
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ont respectivement les ordres p*t, p™*,...,p" avec ;> oxy> -+ >0y,
alors le corps est d’ordre p, la géométrie projective a la dimension m , Uexten-
ston a un degré > x, et Uidéal a une base de cycles dont m,, m,,..., m,
ont respectivement les dimensions o, %g,. .., &;.

Comme conséquence immédiate des théoremes I et 1I, on a le résultat
fondamental suivant :

Une lattice est isomorphe & la lattice d’un groupe abélien fint st et seule-
ment st elle est le produit d’idéaux d’extensions de lattices complémentées et
untformes-u, les u étant tous indécomposables et différents entre eux. La
représentation d’une telle lattice comme un tel produit est univoque, le fac-
teur, Ly, pour lequel w =1 (sl existe) étant la lattice d'un groupe
cyclique.

Et 'on peut ajouter le corollaire :

Pour que la lattice d’un groupe abélien fint détermine (& un isomorphisme
pres) ce groupe, il faut et il suffit que uw %= 1 dans chaque facteur de la re-
présentation ci-dessus, ¢’est-a-dire qu’aucun de ces facteurs ne soit distributif.

(Recu le 10 juin 1947.)
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