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^Lattices" des groupes abélîens finis

Par Hugo Bibeero1), Zurich

Un type de problèmes que pose actuellement la théorie des lattices2)
est celui des problèmes de représentation. En particulier, les représentations

des lattices par des lattices de sous-groupes constituent une source
de questions3) intéressant non seulement la théorie générale des lattices
et la théorie des groupes, mais aussi la théorie des relations d'équivalence,
car on sait que, non seulement chaque lattice de sous-groupes est
isomorphe à une lattice de répartitions mais aussi que chaque lattice de

répartitions est isomorphe à une lattice de sous-groupes4).

L'object du présent travail est d'apporter une contribution à de telles
recherches par l'étude systématique des lattices de sous-groupes des

groupes abéliens finis. Nous nous demandons donc tout d'abord, quelles
sont les lattices qui peuvent être réalisées par tous les sous-groupes d'un
groupe abélien fini, les opérations de lattice étant la formation de
l'intersection (meet) et la formation du groupe-réunion (join). Nous dirons
toujours „lattice du groupe G" pour désigner la lattice de tous les sous-

groupes de C?.

Notre méthode consistera à réduire le problème à l'étude des lattices
des composantes primaires (§1), et, ensuite, à analyser, parmi elles,

tout d'abord les lattices dans lesquelles chaque élément a un complément,
et que nous appellerons, suivant l'usage, ,,lattices complémentées".

Une propriété très étudiée des lattices des groupes abéliens a été
découverte déjà par Dedekind5). Il s'agit de la loi modulaire, qui a le
caractère d'une loi distributive affaiblie. Nous travaillerons presque tou-

x) Boursier à Zurich de Flnstituto para a Alta Cultura, Lisboa.
2) Nous employons partout le mot anglais ,,lattices" au lieu de ,,structures".
8) Ces problèmes sont déjà suggérés dans l'ouvrage de O. Birkhoff, Lattice Theory,

American Math. Soc. Coll. Publ. Vol. 25, New York 1940, auquel nous renvoyons le
lecteur quant aux résultats et notions utilisés dans notre travail.

4) v. O, Birkhoff, On the structure of abstract algebra, Proc. Cambridge Phil. Soc.
31, 1935, p. 433—454.

6) Gesammelte mathematische Werke, 2. Bd., Braunschweig 1931, p. 115.
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jours avec ces lattices modulaires et leurs propriétés caractéristiques. Notre
principal objectif est précisément de savoir ce que Ton doit exiger d'une
lattice modulaire finie pour qu'elle soit isomorphe à la lattice d'un groupe
abélien fini. Nous serons ainsi amenés à considérer parmi les lattices
finies une classe de lattices que nous appelons uniformes dont les lattices
distributives forment une sous-el&sse. Les seules lattices uniformes com-
plémentées sont les algèbres de Boole et les géométries projectives.
Plusieurs conséquences intéressant aussi la théorie générale des lattices
découlent, plus ou moins directement, de notre analyse.

Nous n'avons connaissance d'aucune étude systématique du problème
de représentation que nous nous sommes posé pour le cas, le plus simple
et fondamental, des groupes abéliens finis. Cependant on connaît beaucoup

de propriétés des lattices de groupes et lorsque nous avons eu la
possibilité d'en donner des applications nous l'avons fait remarquer. En
particulier nous croyons avoir reconnu, après la rédaction de notre travail,
qu'il serait possible d'obtenir, de cette façon, quelques-uns de nos résultats

sur les lattices de produits directs. Dans cette direction on doit citer
ici, surtout, les travaux de O. Ore> ,,On the foundation of abstract al-

* gebra", Annals of Math., vol. 36 (1935), 37 (1936) et ,,Structures and

group theory", Duke Math. J., vol. 3 (1937), 4 (1938).

§ 1. Lattices de produits directs. Lattices de groupes cycliques.

1. Ici nous ne supposons pas encore que les lattices considérées soient
modulaires ni que les groupes soient abéliens. Soit tout d'abord L une
lattice produit-join (plus simplement: ,,produit") de ses m>\ sous-
lattices Lly L2y..., Lm, donc chaque élément de L est le join de m
éléments appartenant respectivement à Lx, L2,..., Lm et cela d'une seule

façon. On peut, très facilement, démontrer que :

1) Li9 i=l,2,...,m, a un infimum E, celui-ci est le même pour
toutes les L{ et c'est aussi l'infimum de L.

2) L{, i 1, 2,..., m, est un idéal de L, c'est-à-dire que L{ est une
sous-lattice de L pour laquelle H{ ^ X est un élément de Lt, quels que
soient les éléments Hi de L{ et X de L.

3) Si G,G1,G29.. .,Gm sont des suprema de L, Ll9 L2,..., Lm
respectivement, on a 6? Gx ^ G% ^... ^ Gm et aussi (G1 ^ G2 ^...



Indiquons brièvement les démonstrations :

1) Soit Ht un élément de L{. Il y a alors m éléments Al7A2,. - -,Am avec

Aj e Lj (7=1,2,..., m) et tels que H{ Ax ^ A2 ^.. .^^4* ^.. .w^.m.
Mais ^ j6Tt. car on a aussi iï4- -4X ^ ^42 w- • • ^ ^«: ^ • •w -^m*
Maintenant si pour j i^i on pouvait trouver B^ e Lj avec jB, <Aj on aurait
JET^. =-4x ^-42 ^• • • Wj^iw • • • ^Bj ^ - - • w-4m donc une autre décomposition de

I7t comme un join ce qui est impossible. A$, pour j =£i, est par conséquent
Finfimum de Li. En prenant Hk avec ^ 7^ i on voit de même que L{ a

un infimum. Soient Ex, E2,..., Em ces infima. E Et^> E2^~>.. ,^> Em
est certainement Finfimum de L et cette égalité nous montre que E{ E
pour i 1, 2,..., m.

2) Cela résulte de ce que Fon a iït. (H{r\ X) ^ H{, donc si

Hirv X avait des composantes différentes de E, d'indices h avec Je ^ i,
H{ aurait deux décompositions distinctes comme join ; H^ X est donc
sa propre composante d'indice i, et il est ainsi un élément de L{.

3) La première égalité est évidente. Quant à la deuxième égalité, on
voit que (G1 ^ G2 ^... ^ Gr-i w ^>+i w • • •w ^m) ^ ^r es^> en vertu de 2),

un élément Hr de if, et Fon a alors, G1^G2^.. .^ (?,._! ^ J5 w^?r-i-i ^
w...-Gw (?1u(?2-...u(?r_1-Jffr-(?r+1u...u(?mJ donc ,ffr ^.

De ce qui précède on tire immédiatement, en utilisant une définition
bien connue du groupe produit direct de sous-groupes, que : Si la lattice
L d'un groupe G est un produit de m sous-lattices L1,L2,..., Lm dont les

éléments suprema Gx, G2,..., Gm, sont invariants dans G, alors G est le

produit direct de Gx, G2,..., Gm, et Lt est la lattice deG{ (i 1, 2,..., m).
Lorsqu'on cherche une réciproque de cette proposition on trouve le

théorème :

Si G est le produit direct de m sous-groupes Gl7G2,.. ,,Gm et si L, Ll9
L2,..., Lm sont les lattices respectives, alors tous les joins, dans L, de m
éléments appartenant respectivement à Lx, L2,..., Lm constituent une
sous-lattice Z/, de L (qui est le produit de LXi L2,..., Lm).

Démonstration. Soient H H±^ H2^... ^ Hm et K K±^ K2^
^... ^ Km avec Hi^Li et Ki^Li, i 1, 2,..., m deux tels joins.
Il est tout d'abord évident que H ^ K est aussi un tel join, car H ^ K
(H1 v-> K±) ^ (H2 ^ K2) v.. .^ (Hm w iTTO). Il nous suffira de démontrer

que Fon a, de même, H^ K (.ff^ j?^) w (#2^ ir2) ^.. .w (jEfm^ Km).
Or, la relation (#! ^ Z^ ^ (^2 ^ K2) ^... ^ (Fm rs irm) <Hn>K est
évidente. Pour montrer que H<^ K < (Hl<^ KJ ^ (H2rs K2) ^.. .^
(Hmrs Km) nous allons vérifier que si g est un élément du groupe H^K,



t >
la représentation (univoque) de g comme un produit d'éléments gt e G

i 1, 2,..., m, est telle que gt e Ht^ Kt. Nous montrons que si

g e H alors gte Ht; et on ferait de même pour K et Kt. Il suffit de

remarquer que deux éléments l'un de Ht, l'autre de H^ (i, /= 1, 2,..., m),
i t£ j, étant toujours permutables, g e Hx ^ H2 ^... w i/m a une
représentation comme produit de m éléments, de Hx, H2,..., Hm respectivement,

et cette représentation ne peut être autre que la représentation ci-
dessus ; donc gte Ht. On voit par là que Ht est déjà déterminé par H :

c'est le groupe des éléments de Gt figurant dans la représentation d'un
élément, au moins, de HB). On a donc Ht H <^Gt (sous-groupe
invariant dans H), et ces produits directs H H1xH2 X • • • X Hm constituent,

en effet, la lattice V produit des lattices Ll9 L2,..., Lm. Le
théorème est ainsi démontré.

2. Si l'on veut poursuivre cette étude des produits de lattices de

groupes il est naturel de se demander, tout d'abord, quels sont les cas
où V est égale àl.A défaut de toute autre indication on supposera dans
la suite que les groupes pris en considération sont toujours finis. Le
théorème précédent peut alors être complété de la façon suivante :

Si G est le produit direct de m sons-groupes Gx ,G2,... ,Gm, la lattice L de

G est le produit des lattices L1,L2,-. .,Lm9 respectivement de G1,G2,.. ,,Gm,
si, et seulement si, les ordres de deux quelconques des groupes G1,G2,... ,6?m

sont premiers entre eux.

Démonstration. Il nous suffit, maintenant, de vérifier que l'on a H
(H rs GJ ^ (H r> G2) ^.. .^ (H ^ Gm) pour chaque élément H de L si, et
seulement si, les ordres de deux quelconques des groupes GX,G2,.. ,,Gm
sont premiers entre eux. Montrons, tout d'abord, que cette dernière
condition est suffisante : Soient g e H et g gx • g2 • • gm avec gteGt,
i=l,2,...,m. Si II(x3 est le produit des ordres <x3 des m — 1 G}, avec

j yéz i, on aura g
°Cj

gi
a?

; i7<%3 et l'ordre oct de Gt sont premiers
entre eux donc gt est un élément de H et aussi de H <^Gt. Cela étant
vrai pour chaque élément g de H, on en conclut que H (H <~s Gx) ^

6) Pour cette remarque ainsi que pour les questions qui nous occupent dans cette
section et la suivante voir G. Birkhoff, Lattice theory, 1940, p. 52.

7) F. Bemahf Ûber die Darstellung der endlichen Gruppen als Untergruppen
direkter Produkte, Journal fur die reine und angewandte Mathematik, Bd. 163, p. 7,
1930. Dans ce travail on déduit, sous les mêmes hypothèses, tout en utilisant un théorème
de Klein-Fricke, que JET est le produit direct de sous-groupes deOl9Q^9..., Om.



Pour voir que la condition est nécessaire, remarquons que, si le nombre
premier p ^ 1 divise les ordres de G{ et Gj, i ^ j, il y a au moins
deux groupes A{ et Ai9 chacun d'ordre p (engendrés respectivement par
des éléments at et aj de G), qui sont des sous-groupes respectivement de

G{ et de G± ^G2 ^...^G{_x ^Gi+1 ^...^Gm. Le produit A{xAj
contiendra un troisième groupe H du même ordre p (engendré par a{ a^.
H n'étant pas un join d'autres groupes et ne pouvant pas être un sous-

groupe, ni de (?t ni de Gx ^G2 ^.. .^6?^! ^Gi+1 ^.. .^Gm, vérifiera
HrsGi E, i 1, 2,.. ,,m. L possède donc un élément H tel que
H ^ (H ^ Gt) ^ (H r, G2) w... ^ (H r, Gm), ce qu'il fallait démontrer.

Rappelons ici qu'on appelle ,,irréductible" toute lattice qui n'est pas
un produit, et qu'aucune lattice ne peut être de deux façons différentes
produit de lattices irréductibles.

Soient, enfin, G un groupe abélien et Gl9G29.. .,Gm ses composantes
primaires, c'est-à-dire les m sous-groupes de G formés par les éléments
dont l'ordre est une puissance d'un même nombre premier diviseur de

l'ordre de G. G étant toujours le produit direct de ses composantes
primaires on a le corollaire suivant du dernier théorème :

I. La lattice d'un groupe abélien fini est le produit des lattices de ses

composantes primaires. Celles-ci sont toujours irréductibles, et, par conséquent,
dans toute autre représentation de la lattice donnée comme un produit il y a

au moins un facteur réductible.

Ce théorème nous permet de limiter notre étude à celle des groupes
abéliens finis dont l'ordre est une puissance d'un nombre premier. La
question de réductibilité ne se posant plus pour les lattices de ces groupes
nous devrons trouver un nouveau point de vue dans notre analyse.
L'examen direct, que nous allons maintenant faire, des lattices des

groupes cycliques8) nous permettra non seulement de faire une application

immédiate des résultats précédents mais aussi de mieux saisir le
caractère de notre problème.

3. Nous ne considérons dans la suite que des groupes abéliens, sauf
mention expresse du contraire.

Il est évident que la lattice d'un groupe cyclique d'ordre p8 est, quel

que soit le nombre premier p, une chaîne, c'est-à-dire un ensemble or-

8) Rappelons dès maintenant le théorème dû à Ore selon lequel les seuls groupes finis
dont la lattice est distributive sont les groupes cycliques. V. Structures and group theory,
II, Duke Math. J. 4 (1938), p. 267—268.



donné, et que de tels groupes cycliques sont les seuls groupes dont la lattice
est une chaîne à ô dimensions. Cette remarque nous permet, d'après le
théorème I, de dire :

La lattice d'un groupe cyclique fini est le produit de m chaînes; celles-ci
ont respectivement ôx, ô2,..., ôm dimensions si pi1-pi2- • pfy* est la
décomposition en facteurs premiers de l'ordre n du groupe.

Mais on a aussi : Si la lattice d'un groupe (abélien) G est le produit de m
chaînes à dimensions ô1, ô2,..., ôm respectivement, G est cyclique d'ordre
Pi1 'PÎ2* • • • "PwT*> Pi>P2>- * ->Pm étant des nombres premiers tous
différents. En effet, G est le produit direct des suprema des m chaînes et les
ordres de ceux-ci sont donc des nombres premiers entre eux. Mais,
chaque chaîne étant la lattice d'un groupe cyclique dont l'ordre est la
puissance d'un nombre premier d'exposant égal à la dimension, G est le

produit direct des groupes cycliques d'ordres p\x, p\2,..., p^1, avec

pi zfi p. si i t^j (i, j 1, 2,..., m). Or, comme on sait, un tel groupe
est cyclique d'ordre n p\x-p\2- • p%™.

Nous faisons encore remarquer que : 1) la lattice d'un groupe cyclique
d'ordre n est isomorphe à celle des diviseurs de n ; 2) chaque lattice qui
est le produit de m chaînes de dimensions dx, ô2,..., ôm est isomorphe
à la lattice du groupe cyclique d'ordre n=p\x • p\2 • • pfy, px, p2,..., pm
étant des nombres premiers tous différents, d'ailleurs quelconques.

Nous voulons étudier de plus près les lattices produits de chaînes
finies. Supposons une lattice L produit de m chaînes Ll9 L2,..., Lm de
dimensions respectives dl9 ô2,..., ôm ; et soient A**, A?1,... les
éléments de dimensions (xi9 &,... de la chaîne Lt (0 < oci9 fli9... < ôit
i 1, 2,..., m). L aura donc (^ + l)(ô2 + 1).. .(ôm + 1) éléments
et la dimension ôt + ô2 H (- ôm ; et l'on a Af1 ^A^2 ^.. .^A%» <
A^1 ^ A2* ^...^ A%p si, et seulement si, oc{ < /?,. pour chaque i. La loi
distributive est vérifiée dans L et elle se traduit par l'égalité numérique
min [(Xi, max (&, y^] max [min (#t- ,/y, min ((xt, yt)]. Pour qu'un
élément Af1 ^ A22 ^...^A^ de L ait un complément A^1 ^ A\2 ^... ^ A^
(lequel est alors unique, car L est distributive) il faut et il suffit que, pour
tout i, max (oci} &) (5* et min (oci} &) 0, c'est-à-dire que les seuls
éléments possédant un complément, sont ceux pour lesquels on a a^ 0

ou ôi, i 1, 2,..., m. Ainsi, il y a dans L exactement 2m éléments
complémentés : ils forment une algèbre de Boole, ayant m atomes, c'est-
à-dire m éléments suivant immédiatement l'infimum. Remarquons
encore que les éléments suivant immédiatement un élément donné de L

6



s'obtiennent en augmentant d'une unité l'indice supérieur d'une, et d'une
seule, des composantes A*%, il y en a donc au plus m. Ainsi le nombre
des éléments suivant immédiatement un élément de L ne dépasse pas
celui des atomes de l'algèbre de Boole des éléments complémentés de L.

L'intérêt des observations presque évidentes que nous venons de faire
réside dans le fait qu'elles nous permettent de caractériser les lattices qui
sont le produit de chaînes finies. Ainsi, au schéma géométrique (dans
l'espace à m dimensions, m étant le nombre des chaînes considérées) on
peut faire correspondre une très simple caractérisation algébrique dans
le cadre des lattices. Nous démontrons :

Pour qu'une lattice finie L soit un produit de chaînes il faut et il suffit
qu'elle soit distributive et qu'aucun élément ne soit immédiatement suivi par
des éléments dont le nombre dépasse celui des atomes de l'algèbre de Boole
des éléments complémentés de L, (Si l'on remarque qu'un élément F suit
immédiatement un élément U dans une lattice L si, et seulement si, le

système U Ur\ X, F V^ X a exactement deux solutions X dans

L, on peut exprimer algébriquement la dernière condition du théorème
en disant que, quel que soit U, le nombre des F pour lesquels le système
U U ^ X, F F ^ X a exactement deux solutions, est au plus celui
des atomes de l'algèbre de Boole des éléments complémentés).

Démonstration. Après ce qui a été dit ci-dessus il nous suffira
maintenant de montrer que, si L est finie et vérifie les conditions énoncées,

L est un produit de chaînes. Soient G1, (?2,..., Gm les atomes de
l'algèbre de Boole des éléments complémentés de L, G le supremum et H
un élément quelconque de L. Du fait que G appartient à l'algèbre de
Boole et de la propriété distributive, il résulte que H H rsG
Hrs {GX^G2 v.. .w<?J (H r, Gx) w (Hr, G2) w... w (H rs GJ. Donc, Ll9
jL2,. Lm étant les idéaux de L formés des éléments qui précèdent ou
égalent respectivement Gl9 G2,..., Gm, nous pouvons dire que chaque
élément H de L est, d'une seule façon, le join de m éléments appartenant
respectivement à Ll9 L2,..., Lm et nous en concluons que L est le produit

de ces m sous-lattices. Mais, d'autre part, il est facile de voir que
chacune des lattices L£ (i 1, 2,..., m) est une chaîne : en effet, Ht
étant un élément quelconque de Lt et L étant modulaire, les éléments
suivant immédiatement Ht dans L sont ceux qui suivent immédiatement
H4 dans Lt et encore les joins (tous différents de H% avec un atome de L
appartenant à une lattice Lj où j ^ i ; en tenant compte de notre
dernière hypothèse sur L, on voit tout d'abord que chaque L{ a un seul
atome et ensuite, que le nombre des éléments suivant immédiatement H €



dans Li ne dépasse pas m — (m — 1). Chacune des lattices L{ est donc
une chaîne, et notre théorème est démontré 9).

Ce sera seulement plus loin que nous nous occuperons d'autres
propriétés des lattices de groupes cycliques lorsque nous chercherons à les

rapprocher des lattices de composantes primaires. Soulignons cependant,
ici encore, qu'un produit de chaînes est toujours une lattice autoduale et

que les deux propriétés au moyen desquelles il peut être défini sont
indépendantes.

§ 2. Lattices complémentées. Lattices de composantes primaires.

1. Revenons à la fin du no. 2, § 1, et reprenons l'analyse générale que
nous avions développée jusque là. Tout d'abord il fut question de
construire des lattices réductibles de groupes au moyen de sous-lattices qui
n'étaient plus réductibles. Maintenant il s'agira de comprendre
comment, dans ces lattices irréductibles, les éléments qui ne sont plus des

joins d'autres engendrent leurs joins, donc de savoir de quelle manière
les sous-groupes d'un groupe abélien d'ordre puissance d'un nombre
premier sont formés à partir des sous-groupes cycliques qu'ils contiennent.

Pour étudier ces lattices des composantes primaires les plus générales,
il est naturel d'envisager tout d'abord celles des groupes abéliens élémentaires

(c'est-à-dire les groupes pour lesquels tous les sous-groupes cycliques
à l'exception du groupe identité ont un même ordre premier). Cela, d'une
part, parce que, pour toutes ces lattices et leurs produits il nous suffira
de spécialiser des résultats bien connus ; et d'autre part parce que telles
lattices interviennent, de façon décisive, dans l'analyse du cas général.

Nous envisagerons toujours, dans la suite, des lattices finies, et nous
commencerons par la remarque suivante : Dans chaque lattice modulaire
finie L les éléments qui sont des joins d'atomes constituent, avec Vinfimum,
un idéal (principal) L*deL. 8i L est le produit de m lattices L±, L2,..., Lm
alors L* est le produit des idéaux L* L$ £* respectivement de Lx,
L2,..., Lm ; par conséquent, si £* est irréductible L l'est aussi. En effet,
rappelons que si le supremum (?* d'une lattice modulaire finie £* est

un join d'atomes, chaque élément de 1/*, l'infimum excepté, est aussi

un join d'atomes. Maintenant, soient G* le join de tous les atomes

9) Nous avons pu connaître, grâce à l'amabilité de M. le Prof. P. Bernays, une étude
de Th. Skolem où les produits de chaînes sont aussi caractérisés de plusieurs façons
différentes de la nôtre. Voir ,,Ûber gewisse ,Verbânde' oder ,Lattices* ", Avhandlinger
utgitt av Det Norske Videnskaps-Akademi, Oslo, I. Mat.-Naturv. Klasse, 1936, Nr. 7.

8



de notre lattice L, et L* l'idéal engendré par (?*, c'est-à-dire la sous-
lattice de L formée de tous les éléments X pour lesquels X ^ G* X.
Alors, non seulement chaque join d'atomes de L appartient à L*, mais
aussi chaque élément de £*, qui n'est pas l'infimum est un join d'atomes
de L, car il est un join d'atomes de £*. Quant à la deuxième partie de
l'énoncé il suffit de remarquer que chaque atome de L appartient à une
seule lattice Li, i 1, 2,..., m et y est un atome.

La remarque précédent s'applique aux lattices des groupes abéliens
finis ; lorsque L est la lattice d'un groupe abélien fini nous appellerons
l'idéal L* le ,,noyau" de L. Nous soulignons les conséquences suivantes :

Les noyaux sont les lattices des groupes abéliens finis dont tous les éléments

ont des ordres non divisibles par des carrés. Car les atomes d'une lattice L
de groupe abélien fini G sont les sous-groupes cycliques d'ordre premier de
G. C?* contient donc précisément les éléments de G dont l'ordre n'est pas
divisible par un carré, et L* est, évidemment, la lattice de G*.

Le noyau de la lattice L d'un groupe G est le produit des noyaux des

lattices des composantes primaires de G.

Les noyaux irréductibles sont les lattices des groupes abéliens élémentaires,

Virréductibilité du noyau de L étant équivalente à celle de L.
Les noyaux sont les seules lattices de groupes abéliens finis qui sont com-

plémentées. Car l'existence d'un complément pour chaque élément et le
fait que chaque élément est un join d'atomes constituent, comme l'on sait,
des conditions équivalentes dans toute lattice modulaire finie.

Le théorème général sur la représentation de chaque lattice modulaire
complémentée à dimension finie comme un produit de lattices
irréductibles10), nous permet maintenant de dire qu'un noyau L* est, et cela
d'une seule façon, un produit de géométries projectives. Et il résulte de

ce qui précède que ces géométries projectives sont précisément les
lattices des composantes primaires du groupe (?*, dont la lattice est L* ;

donc elles sont des lattices de groupes abéliens élémentaires. Si l'ordre n
de G* a la décomposition p** • p%2 • • p^1 en facteurs premiers il y a
m géométries projectives facteurs L* L* L* La composante
primaire d'ordre p*1 n'ayant que des éléments d'ordre p{ (l'identité exceptée)

leurs éléments forment, évidemment, un espace vectoriel de dimension

oc{ sur le corps premier d'ordre pi9 les sous-espaces s'identifiant aux
sous-groupes. La géométrie projective Lf est, alors, la géométrie projec-

10) G. Birkhoff, Combinatorial relations in projective géométries, Annals of
Math. vol. 36, 1935, p. 743.



tive sur le corps d'ordre pt et de oct dimensions, selon le point de vue
adopté ici de la théorie des lattices. On peut, donc, énoncer le corollaire
suivant du théorème général cité ci-dessus :

Une lattice est un noyau si, et seulement si, elle est le produit de géométries

projectives sur des corps premiers, ceux-ci étant différents lorsque les dimensions

des géométries projectives auxquelles ils se rapportent sont > 1. Si
n pfl- p%* • • p%" est l'ordre d'un groupe dont la lattice est un noyau,
il y a m géométries projectives facteurs, de dimensions <x$ (i 1, 2,..., m),
les corps étant respectivement d'ordres p4 toutes les fois que <xi>l.

Deux noyaux sont isomorphes si, et seulement si, les décompositions en
facteurs premiers des ordres des groupes dont ils sont les lattices ne diffèrent

au plus que par les facteurs ayant l'exposant 1. Par conséquent, pour
qu'un produit direct de groupes abéliens élémentaires soit bien déterminé par
sa lattice il faut et il suffit que les ordres des groupes facteurs ne soient pas des

nombres premiers.
Remarquons ici que les lattices modulaires finies pour lesquelles le

supremum est un join d'atomes sont autoduales et, par conséquent,
peuvent se définir comme étant les lattices modulaires finies pour
lesquelles l'infimum est un meet d'éléments précédant immédiatement le

supremum. En effet, les lattices modulaires finies pour lesquelles le supremum

est un join d'atomes sont complémentées, donc elles sont le produit
de géométries projectives, évidemment autoduales ; et, d'autre part,
chaque produit de lattices autoduales est autodual. Nous utiliserons cette

remarque plus tard. En particulier, les noyaux sont des lattices
autoduales.

2. Dans cette section nous indiquons tout d'abord quelques propriétés

simples qui sont des conséquences du théorème général de décomposition

de lattices modulaires complémentées à dimensions finies. Ces

propriétés définissent les noyaux des lattices de groupes cycliques (donc des

algèbres de Boole) et les noyaux irréductibles (donc les géométries
projectives sur des corps d'ordre premier). Cela nous amènera à une
propriété générale des lattices de composantes primaires et des lattices
distributives.

Nous supposons les lattices finies, bien que cela ne soit pas toujours
nécessaire. Les algèbres de Boole et les géométries projectives jouissent,
comme l'on sait, de la propriété que deux sous-lattices ,,convexes", ou
^quotients" (c'est-à-dire des sous-lattices V telles que si A, B € L' et
A < X < B alors X e V), y sont isomorphes si elles ont les mêmes dimen-
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sions. Le théorème général de décomposition des lattices modulaires eom-
plémentées nous montre, d'autre part, qu'une lattice modulaire complé-
mentée L qui n'est pas une algèbre de Boole ni une géométrie projective ne

jouit pas de la propriété ci-dessus11) : car elle est, alors, un produit de géo-

métries qui ne sont pas toutes de dimension 1, donc il y a des sous-lattices

convexes de L, et même de telles sous-lattices de dimension 2, qui ne sont pas
isomorphes. Ainsi, la propriété que nous considérons est, pour les lattices
modulaires complémentées, presque équivalente à celle de l'irréductibilité,

les seules lattices non irréductibles possédant cette propriété étant les

algèbres de Boole à plus de 2 éléments. De plus, pour qu'une lattice
modulaire complémentée jouisse d'une telle propriété, il suffit déjà que l'iso-
morphisme ait lieu pour les sous-lattices convexes à 2 dimensions ; mais
cela est aussi valable pour une classe beaucoup plus étendue de lattices
modulaires. Plus précisément : L étant une lattice modulaire, V et L"
deux sous-lattices de h, complémentées, convexes et de mêmes dimensions,

si toutes les sous-lattices complémentées, convexes et à 2 dimensions

de L sont isomorphes, alors celles qui sont des sous-lattices de V
sont aussi isomorphes entre elles, donc V est une algèbre de Boole ou
une géométrie projective. De même pour 2/. Maintenant, si l'on écarte le
cas des géométries projectives (à trois dimensions) qui ne sont pas sur
des corps, l'isomorphisme supposé dans L et le fait que V et L" ont même
dimension entraînent l'isomorphisme de 2/ et Lr/.

Nous sommes conduits, de cette façon, à fixer notre attention sur le
nombre des éléments des sous-lattices convexes de dimension 2 dans les

lattices modulaires, ,,non exceptionnelles'9, où toute sous-lattice convexe
qui est une géométrie projective l'est sur un corps. D'ailleurs, les lattices
qui nous occupent étant toujours modulaires mais pas toujours distribu-
tives, il était naturel d'avoir le souci de chercher une propriété convenable
des lattices modulaires impliquée par la distributivité, et de partir, pour
cela, de la caractérisation des lattices modulaires se rapportant aux sous-
lattices convexes de dimension 212).

Nous posons la définition :

Une lattice modulaire, non exceptionnelle, L est appelée ,,uniforme-u" si,
et seulement si, quels que soient A, B,C € L, avec dim B — dim A 2

11 Chaque sous-lattice convexe, V, d'une lattice modulaire complémentée L est aussi
complémentée : si A et B sont respectivement Pinfimum et le supremum de L', XeU et
Xr est complément de X dans L9 alors (X' r\B)^ A est, comme Ton sait, un complément
de X relatif à A et B. Mais, U étant convexe, on a (Xf r\ B) ^ AeL', donc cet élément
est un complément de X dans L\

12) On sait qu'une telle caractérisation peut être ainsi formulée: si deux éléments
suivent immédiatement leur meet ils précèdent immédiatement leur join, et dualement.
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et A =£ C =£ B le système A C^ X, B C ^ X a, ou 0, ou u
solutions. Ceci veut dire que toute sous-lattice de L complémentée, convexe,
de dimension 2a w + 3 éléments. On dit simplement que L est uniforme
lorsqu'on ne veut pas spécialiser le nombre u. Pour désigner une lattice
uniforme-^ on écrira L{u).

On peut maintenant énoncer et préciser quelques-uns des résultats
précédents :

Une lattice modulaire, non exceptionnelle, est uniforme si, et seulement si,
toutes ses sous-lattices complémentées, convexes et d'égale dimension sont
isomorphes. Les algèbres de Boole et les géométries projectives sur des corps sont
les seules lattices uniformes complémentées Iles unes déjà déterminées par le

nombre des dimensions, et les autres par ce nombre et celui des ,,points sur
une droite"). Les algèbres de Boole et les noyaux irréductibles peuvent se

définir comme étant des lattices complémentées et uniformes-u, u étant un
nombre indécomposable {égal à 1 pour le cas des algèbres de Boole et à un
nombre premier s'il s'agit d'une géométrie projective).

Nous soulignerons plus tard le fait que les lattices de composantes
primaires sont toujours uniformes, les u étant des nombres indécomposables

(u 1 lorsque la lattice est une chaîne, et seulement dans ce

cas). Ici, nous nous bornons à analyser les lattices distributives en général,

qui sont toutes, évidemment, des lattices uniformes-113). Donc, on
peut dire que la classe des lattices uniformes est une sous-classe des lattices
modulaires contenant comme sous-classe propre celle des lattices distributives.
Et nous pouvons énoncer encore :

Les lattices uniformes-1 sont précisément les lattices distributives.

Ceci résulte maintenant de la proposition suivante :

Une lattice modulaire L est distributive si toutes ses sous-lattices convexes
à 2 dimensions sont distributives.

Démonstration. L étant une lattice modulaire, les sous-lattices non
distributives de L ont, toutes, une dimension > 1 (s'il y en a). Soit L1 une
sous-lattice de L, non distributive et telle que toute sous-lattice de L
ayant une dimension plus petite que celle de Lf soit distributive. Il y a

ls) En voici une démonstration directe: Si L est distributive et A, BeL ou bien
A <£ B et alors, quel que soit C € L, A — G r\ X, B — C w X n'a aucune solution;
ou bien A < B et, Xt et X2 étant des solutions, on a J2 (C ^ X2) r\Xt — Br\Xt

(C w Xt) rs X2 A ^ (Xj r, X2) (A w Xx) ^ (A w X2) [{C r> Xt) ^ X{\ rs

[(CAl^I^JjnJj, donc X2 < Xlf et de même on verrait que Xt < X2;
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donc, dans Z/, trois éléments, distincts, U, V, W tels que U ^ V Î7 ^ TF

=:Vr,W A et U^V U^W =V^W B, A et jB étant respectivement

l'infimum et le supremum de V', car autrement il viendrait
dim B — dim A < dim Lr, contrairement à l'hypothèse. Des égalités ei-
dessus et de la modularité il résulte dim U — dim A dim V — dimA

dim W — dim A Si Ton avait dim V > 2, donc dim W —

dim A > 1, il y aurait un élément Wr, tel que A <W <W. La dimension

de la lattice L" des éléments X de L tels que A <X <W'^V est,
évidemment, plus petite que celle de U, donc Uf est distributive. En tenant
compte des dimensions, on voit que F, (Wf^V)^ JJ et [(W;^V)^ U]^Wr
appartiennent à L", sont tous distincts et (JF'^F)^ ?7<[(TF/^F)^ U]
r,W. D'autre part, on a V^[(W'^V)r, U] (W^V)^B =W'^V, donc
la distributivité dans L'f nous permet d'écrire non seulement F^ {[(WF^F)
rs U] ^W'} A =Vr,[(Wf^V)rs U] mais aussi V^{[(Wf^V)r, U]^W'}

V^W'=V^[(W'^V)r, U]. La sous-lattice de 5 éléments A, F, (Tf'wF)
^ C^j [(TF/wF) ^ C7] v W et F^ W ne serait pas modulaire, ce qui est
absurde. Par conséquent, on ne peut pas avoir dim L1 > 2 et ainsi
dimU 2. Donc, si L n'est pas distributive il se trouve qu'il y a déjà
une sous-lattice convexe de L ayant la dimension 2 qui n'est pas
distributive, ce qu'il fallait démontrer.

Remarquons que le résultat démontré ci-dessus fournit, lorsqu'il est

appliqué aux lattices finies, une simplification effective du contrôle
graphique fondé sur la lattice bien connue de 5 éléments, permettant de

distinguer les lattices modulaires non distributives14).

3. Le cas général des composantes primaires n'est pas aussi simple
que celui des groupes abéliens élémentaires. Chaque élément de la lattice
n'est pas, nécessairement, un join d'atomes, donc la lattice n'est plus une
lattice complémentée. Rappelons, tout d'abord, quelques définitions :

Soit L une lattice. Les éléments de L qui ne sont pas des joins d'autres,
sont appelés ,,irréductibles". Si tous les éléments de L sont irréductibles,
L est une chaîne, et réciproquement. Un ,,cycle"15) de L est un élément

14) Après la rédaction de notre travail, nous avons remarqué que ce théorème est une
conséquence immédiate d'un énoncé de G. Birlchoff dans son mémoire: Applications of
lattice algebra, Proc. Cambridge Phil. Soc, vol. 30, 1934, p. 118, où cette simplification
n'est d'ailleurs pas expressément indiquée. Les deux démonstrations sont tout à fait
différentes.

15) Cette désignation (que nous empruntons à Reinhold Baer : A unified theory of
projective spaces and finite abelian groups, Trans. Am. Math. Soc., vol. 52,
1942, p. 286) est commode, et se justifie lorsque L est la lattice d'un groupe. C'est parce que
nous discutons ici précisément ces lattices que nous l'utilisons à défaut d'une autre plus
adéquate.
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irréductible différent de Finfimum et tel que tout élément qui le précède
est aussi irréductible. Chaque atome de L est un cycle ; chaque élément
différent de Finfimum et précédant un cycle est un cycle, ,,sous-cycle" du
premier. Si L est modulaire, une suite d'éléments de L, U1, U2,..., Um,
tous différents de E, est dite ,,indépendante" si, et seulement si,

(U1^U2^.. .^ Ur)rsUrJtl — E pour tout r== 1, 2,.. .,m — 1, E étant
l'infimum de L. Une suite Ul9U2i..., Um est une ,,base de L" si elle
est indépendante et telle que Ux ^ U2 ^..? ^ Um G, G étant le supre-
mum de L.

Soit maintenant G une composante primaire que nous supposerons
produit direct de m groupes cycliques tous du même ordre p*. Dans la
lattice L deG chaque élément irréductible qui n'est pas l'infimum est un
cycle (un sous-groupe cyclique de et chaque cycle ,,maximal" (qui
n'est pas suivi d'un autre cycle) a la dimension oc. D'autre part, L est
une lattice uniforme-p, p étant premier, et les dimensions des sous-
lattices convexes et complémentées de L ne dépassent pas la dimension
de la lattice engendrée par les atomes de L. (Remarquons, en particulier,
que chacune des sous-lattices convexes de dimension 2, de L, est
isomorphe à la lattice d'un groupe quotient, d'ordre p2, ayant donc 3 ou p-\- 3

éléments selon qu'il s'agit d'une chaîne ou d'une lattice complémentée.)
Nous démontrons maintenant que deux lattices Lx et L2 possédant les

propriétés qu'on vient de souligner dans la lattice L du groupe G sont
nécessairement isomorphes, et, par conséquent, que ces propriétés caractérisent à
moins d'un isomorphisme la lattice d'un groupe qui est le produit direct de

m groupes cycliques d'ordres pa.
Pour arriver à établir l'isomorphisme liant Lx et L2 nous partons de

Fisomorphisme, évident, des systèmes partiellement ordonnés formés des

éléments de dimension < 1, de Lx et L2, et nous montrons qu'un isomorphisme

des systèmes partiellement ordonnés, formés respectivement des

éléments de Lx et L2 de dimension < y —- 1, peut être étendu aux
éléments de dimension <y : en effet, comme les éléments irréductibles de
dimension > 0 sont toujours des cycles, chaque élément de dimension y
qui n'est pas un cycle est un join de cycles et suit plus d'un élément de
dimension y — 1. Soit B1 un tel élément de dimension y dans Lt.
Prenons tous les éléments de dimension y — 1 précédant Bx et leurs
correspondants (par Fisomorphisme supposé) dans L2. Soit Ax le meet de

ces éléments de dimension y — 1 de L±, et considérons la lattice L[ de

tous les éléments X tels que Ax < X < Bx. Selon la remarque faite.à
la fin du no. 1, § 2, L[ est complémentée. Les correspondants des atomes
de L[ engendrent donc, dans L2 une lattice ayant même nombre de di-
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mensions (isomorphe à L[) et dont le supremum (nécessairement de
dimension y) sera le correspondant de B1. De même, une correspondance
des éléments non cycles de L2 de dimension y à ceux de L± peut être
établie ; et de ces correspondances Tune est la réciproque de l'autre. Le
nombre des éléments de dimension y qui ne sont pas des cycles, dans L±
et dans L2 est alors le même, et d'autre part, comme chaque élément
précédant Bx dans Lx est égal ou précède un tel élément de dimension

y — 1, l'isomorphisme initial est ainsi étendu aux éléments de dimension

y qui ne sont pas des cycles.
Maintenant il nous reste à étendre cet isomorphisme aussi aux cycles

à dimension y. Pour cela nous partons de la correspondance biunivoque
entre les cycles de dimension y — 1 de Lx et L2 établie par l'isomorphisme

supposé entre les éléments de dimension < y — 1. Chaque cycle
de dimension y suit immédiatement un seul cycle de dimension y — 1

et aucun autre élément. Il nous suffit donc de montrer que le nombre des

cycles de dimension y suivant un cycle de dimension y — 1 est toujours
le même dans les lattices ayant les propriétés que nous supposons. Tout
d'abord, il n'y a aucun cycle à dimension y si y >ot. Si y < oc et C est

un cycle à dimension y — 1, considérons la sous-lattice, convexe, formée
des éléments X tels que C < X < D, où D est le join des éléments de
dimension y suivant immédiatement C. La dimension de cette lattice,
convexe et complémentée, ne dépasse pas m, donc, cette lattice étant
une géométrie projective sur le corps d'ordre p (car la lattice totale que
nous considérons est uniforme-^) le complément d'un atome est précédé

pm-i_i
par atomes, au plus. D'autre part on voit qu'il y a précisément

p 1

pm-i__x
— éléments suivant immédiatement C, et qui sont des joins de C

p—l ^

avec les atomes de la lattice totale. (En effet, on a C ^ At C ^ A3, At
et Ai étant des atomes différents entre eux et différents de l'atome Cx qui
précède C, si et seulement si dim (C ^> At^> A3) y, donc, par la modularité,

si et seulement si (y — 1) + 2 — dim [(At ^ A3) ^ C] est égal à y,
c'est-à-dire Cx < At ^ Ajt Le nombre de tels éléments non cycles
suivant immédiatement C est, alors, égal à celui des atomes précédant le
complément de Cx dans la géométrie projective, à m dimensions sur le

corps d'ordre p, formée des atomes de notre lattice totale. Ce nombre est
celui des atomes d'une géométrie projective à m — 1 dimensions sur le

corps d'ordre et p, et donc égal, à ——). En outre, s'il y a un cycle

au moins suivant immédiatement C, la sous-lattice convexe complé-
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mentée des éléments X tels que C < X < D aura, ainsi, au moins un
nouvel atome de plus et, étant une géométrie projective sur le corps pre-

mier p à dimension < m, aura m dimensions, donc — atomes.

Nous en concluons que chaque cycle à dimension y — 1 est suivi d'exactement

pm~x cycles à dimension y, ce qu'il fallait démontrer. Nous
pouvons alors, énoncer :

Les lattices des produits directs de groupes cycliques tous d'ordre pa sont
caractérisées par les propriétés suivantes : chaque élément irréductible différent

de l'infimum est un cycle, chaque cycle maximal a la dimension oc, la
lattice est uniforme-p et le nombre des éléments qui suivent immédiatement un
élément quelconque ne dépasse pas celui des atomes.

Nous dirons, brièvement, qu'une lattice possédant ces quatre propriétés
est F,,extension de degré oc d'une géométrie projective sur le corps d'ordre
premier p". Les schémas suivants nous donnent, d'abord, la lattice du

groupe du type (p2, p2) (produit direct de deux groupes cycliques

a) b) c) d) e)

d'ordres p2) dans le cas p 2, et ensuite, quatre lattices modulaires qui
nous montrent l'indépendance des quatre propriétés ci-dessus (oc 2 et

p-2).
Remarquons que de ce qu'on a dit au no. 2 de ce paragraphe il résulte

que les produits de chaînes de dimension oc peuvent se définir par les

propriétés ci-dessus p y étant remplacé par 1. Nous aurons ainsi, en
général, des ,,extensions de lattices complémentées et uniformes-^", u
étant un nombre indécomposable quelconque.

Finalemeut, nous obtenons le théorème :

II. Une lattice est isomorphe à la lattice d'une composante primaire si, et

seulement si, elle est un idéal d'une extension de géométrie projective sur un
corps d'ordre premier. Si une composante primaire est le produit direct de m

groupes cycliques dont mx, m2,..., m%, avec mx + m2 -f- • • • + mx m,
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ont respectivement les ordres p*1, p*2,..., pai avec <xx > <x2 > • • • > ocl,
alors le corps est d'ordre p, la géométrie projective a la dimension m, l'extension

a un degré > ocx et Vidéal a une base de cycles dont mx, m2,..., mx
ont respectivement les dimensions ocx, a2,^ oct.

Comme conséquence immédiate des théorèmes I et II, on a le résultat
fondamental suivant :

Une lattice est isomorphe à la lattice d'un groupe abélien fini si et seulement

si elle est le produit d'idéaux d'extensions de lattices complémentées et

uniformes-u, les u étant tous indécomposables et différents entre eux. La
représentation d'une telle lattice comme un tel produit est univoque, le

facteur, i(1), pour lequel u 1 (s'il existe) étant la lattice d'un groupe
cyclique.

Et l'on peut ajouter le corollaire :

Pour que la lattice d'un groupe abélien fini détermine (à un isomorphisme
près) ce groupe, il faut et il suffit que u ^ 1 dans chaque facteur de la
représentation ci-dessus, c'est-à-dire qu'aucun de ces facteurs ne soit distributif.

(Reçu le 10 juin 1947.)
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