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Uber die Idéale arithmetischer Ringe
Von Ladislatjs Fuchs, Budapest

1. Die vorliegende Arbeit beschâftigt sich mit solchen Ringen 51,

deren Idéale1) den beiden âquivalenten distributiven Gesetzen2)

a + (b - c) (a + b) - (a + c) (1)
und

0 rs (b + C) (û rs b) + (a rs C) (2)

genûgen. Einen solchen Ring werden wir als ,,arithmetischen Ring", kurz
A-Ring, bezeichnen3). Es ist leicht einzusehen, daB die algebraischen
Zahl- und Funktionenringe, sowie aile Noetherschen Funfaxioms-Ringe
immer A -Ringe sind.

Die Relationen a + (b ^ c) c (a + b) ^ (a + c), bzw. o^(b + c)

(a ^ b) + (a rs c) gelten offensichtlich in allen Ringen ; es handelt sich
also um Ringe, in denen auch die umgekehrten Zeichen gultig sind.

2. Ein Idéal, das sich nicht mehr als Durchschnitt echter Teiler dar-
stellen lâBt, heiBt bekanntlich irreduzibel. Wenn auch der Durchschnitt
zweier nicht durch t> teilbarer Idéale nicht durch t> teilbar ist, d. h., wenn
aus a^ b c v entweder a c v oder b c t> folgt, so wird t) im folgenden
ein primitives Idéal genannt4). Man sieht ohne weiteres, daB jedes Prim-
idéal primitiv und jedes primitive Idéal stets irreduzibel ist. Wir kônnen
aber leicht ein Beispiel anfûhren, das zeigt, daB ein irreduzibles Idéal

1) Wir bezeichnen, wie ûblich, mit a -f- b und a ^ b den grôfiten gemeinsamen Teiler
bzw. den Durchschnitt (k. g. V.) der Idéale a, b. Fur das Einheitsideal schreiben wir
0 ; Cl b oder b C a bedeutet : a ist ein (echter oder unechter) Teiler von b.

2) Daô (1) und (2) âquivalent sind, sieht man durch triviale Umformungen ein. Aus (1)

folgt (2) : (o ^ b) + (a ^ c) (a + a) ^ (b + a) ^ (a + c) ^ (b + c) a ^ (b + c) ; um-
gekehrt : (a -f- b) ^ (a -f c) (a ^ a) + (b r\ a) + (a ^ c) + (b ^ c) a + (b ^ c).

3) Der Termin ist der Théorie der Verbânde entnommen: die Idéale eines <4-Ringes
bilden einen Verband, den O.Ore ,,arithmetic structure" nennt.

4) In der Verbandtheorie wiirde man t) nach einer vôllig verschiedenen Terminologie
Primideal nennen.
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nicht notwendigerweise primitiv ist5); ist aber der Ring arithmetisch,
so kann man die Behauptung auch umkehren, ja sogar den Satz be-
weisen :

In einem Ring 5R ist jedes irreduzible Idéal dann und nur dann primitiv,
wenn 9Î ein A-Ring ist.

Ist nàmlich i ein irreduzibles Idéal und besteht eine Relation a ^ b c i,
so folgt nach (1) im Falle eines ^4-Ringes, daB auch eine Relation von der
Gestalt t ti ^ t2 gultig ist, wo \x t -f- a und t2 i + b ist. Aus der
Irreduzibilitât des Ideals i kann man nun folgern, daB entweder t -f- a
oder t -j- b gleich i ist, d. h., daB i in der Tat primitiv ist.

Es sei nun umgekehrt jedes irreduzible Idéal primitiv. Ist i ein irredu-
zibler Teiler des auf der linken Seite von (1) stehenden Ideals b

û + (b rs c), so ist a c i und b ^ c c t. Nach Voraussetzung folgt aus der
zweiten Inklusion, daB entweder b c i oder cet ist, d. h., wir haben
entweder a + b c i oder a + c c i. Die beiden Fâlle kônnen in eine
Relation (a + b) ^ (a + c) c i vereinigt werden. Da aber — wie in 3

gleich bewiesen wird — der Durchschnitt aller i gerade b darstellt, muB
die Relation (a + b) ^ (a + c) c b gûltig und daher der Ring arithmetiseh

sein, w. z. b. w.

3. Nun beweisen wir ohne Benutzung der Arithmetizitât den folgen-
den Satz, den wir schon unter 2 angewendet haben und der auch sonst
im allgemeinen von grundlegender Bedeutung ist.

Jedes Idéal a ist gleich detn Durchschnitt aller seiner irreduziblen Teiler.

Der Satz besteht aus zwei Behauptungen :

a) der Durchschnitt der irreduziblen Teiler von a existiert und teilt a ;

b) der Durchschnitt enthâlt keine anderen Elemente, als die von a.

a) ist trivial, da jedes Idéal einen trivialen irreduziblen Teiler : das
Einheitsideal hat. Der Beweis der Behauptung b) stûtzt sich auf das be-
kannte Lemma von M.Zorn [7]. Ist oc ein Elément, das nicht zu a ge-
hôrt, so besitzt a nach dem Lemma einen Teiler <xa, der ebenfalls oc nicht
enthâlt und der auBerdem die Eigenschaft hat, daB oc in jedem echten
Teiler von oa vorkommt6). Nach der letzten Eigenschaft von cta ist aa

5) (#2, x -f- y) ist im Polynomring von x> y mit rationalen Koeffizienten ein
irreduzibles Idéal, das nicht primitiv ist; denn es enthâlt wohl den Durchschnitt
(x) r>, (x2, x— y) (x2, xy), aber keine der Komponenten.

6) McCoy [4] hat bewiesen, daB es ein irreduzibles Idéal gibt, das ein gegebenes, von 0

verschiedenes a nicht enthâlt. Beim Beweis benùtzt er Wohlordnungschliisse. Seinen
Beweisgang kônnte man auch hier mit Erfolg anwenden.
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irreduzibel. Variiert oc durch aile Elemente hindurch, die nicht zu a ge-
horen, so ist miser Satz bewiesen

Gilt ferner der [/-Satz7) im Ringe, so reicht schon eine endliche An-
zahl der irreduziblen Komponenten hin, da die Kette ix tx ^ t2

wenn jedes Glied echtes Vielfaches des vorangehenden ist und aile Teiler
von a sind, ira Endlichen abbrechen muB und demnach schon endlich-
viele irreduzible Idéale das Idéal a darstellen mussen.

4. Ein Idéal vo soll stark-primitiv genannt werden, wenn auch fur
eine unendîiche Anzahl der a^ aus8)

AaK c w (Aûj =£ 0)
die Inklusion

ah c vo fur ein k

folgt. Wenn der Ring dem U-Satz genugt, sind offenbar aile primitiven
Idéale gleichzeitig stark-primitiv.

In ^4-Ringen gilt der folgende, auch an sich intéressante Satz, der dem
Àquivalenzsatz des Teilerkettensatzes (O-Satzes) und des Basissatzes

entspricht9).

In einem A-Ring ist die Gultigkeit des U-Satzes die notwendige und
hinreichende Bedingung dafur, dafi jedes vom Nullideal verschiedene Idéal
eine Durchschnittsdarstellung mit endlichvielen stark-primitiven Komponenten

zulafit.

Zunâchst ist nach 3 jedes Idéal in einem Ring mit [/"-Satz als Durch-
schnitt endhchvieler irreduzibler Idéale darstellbar, die nach 2 in einem
^4-Ring primitiv und somit nach dem [7-Satz stark-primitiv sein mussen.
Demnach ist die Bedingung notwendig.

Ist, umgekehrt, die im Satze ausgesprochene Bedingung erfullt, und
bezeichnen wir mit a den Durchschnitt aller Glieder der Kette ax D a2

;û3) •••, so ist a^O nach Voraussetzung als a — xo1^...^von
mit stark-primitiven vot darstellbar. Nun ist Aak c tx)z fur i -= 1,2,.. ,,n
und daraus folgt akl c V0t fur ein gewi&ses kt. Wâhîen wir l groBer alb

jedes k%, so erhalten wir at c XO1 ^ ^ wm a, d. h. at a und in der

7) Vgl. Krull [3], S. 8; (der abgeschwachte Vielfachenkettensatz).
8) A dient zur Bezeichnung des Durchschmtts, wenn die Anzahl der Komponenten

nicht mit Sicherheit endhch ist.
9) Dieser Satz wurde fur Hinge, die mmdestens einen Nichtnullteiler be&itzen, in meiner

ersehemenden Note [2] mit Hilfe eines Aktzuktschen Satzes bewiesen Der neue Beweis
stutzt sich statt des Ahizukischen auf den unter 3 bewiesenen Satz.
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gegebenen absteigenden Kette sind in der Tat von der l-ten Stelle an aile
Glieder gleich.

5. Wir nehmen im folgenden an, daB 5R ein ^4-Ring mit (2-Satz ist.

Wir fuhren in 9t eine der Idealquotientenbildung10) analoge Opération

ein, die nur im Falle von ^-Ringen existiert. Sind zwei Idéale a, b

gegeben, so betrachten wir aile Idéale c, die der Relation b^cca ge-
nûgen. Wenn b ^ Cx c a und b ^ c2 c a gelten, so gilt nach (2) auch
b^ (tx + C2) (b^ Cx) + (b^ c2) c a. Es gibt daher ein einziges maximales

Idéal c* mit b^c* c a; c* ist nâmlich der grôBte gemeinsame
Teiler aller Idéale c, fur die b^cc a gilt. (Wir kônnen demnach aus einer
Relation b^ccû auf c c c* folgern.) Dièses maximale c* bezeichnen
wir mit dem Symbol a o b.

Man ûberzeugt sich leicht, daB im Ring der ganzen rationalen Zahlen
die Bildung des Ideals a o b in folgender Weise vor sich geht : man làBt
aus der Primzahlzerlegung der Basiszahl von a die Potenzen derjenigen
Primzahlen weg, die in der Basiszahl von b mit mindestens ebenso

groBen Exponenten vorkommen.

6. Nun sollen die Grundeigenschaften der Opération aob unter-
sucht werden.

a) Offensichtlich ist zunâchst a c a o b c o, und zwar ist aob 0

dann und nur dann, wenn b c a ist.

b) Unsere Opération ist monoton : aus ax a2 folgt ûx o b ~) û2 o b ;

aus bi b2 folgt a obi c a ob2- Gilt fur jedes m die Relation cti om
D <x2 ont, so ist ûi 3 û2. Wir diirfen nâmlieh m a2 wâhlen, dann er-
halten wir a± o a2 0 d. h. cti :> û2. Es gilt auch die entsprechende Be-
hauptung : aus der fur jedes m geltenden Relation m o bx nt ob2
ergibt sich bi c b2. (Beweis derselbe : man wâhle m b2.)

c) Die o-Operation ist anti-kommutativ, d. h. Kommutativitât aob
boa besteht dann und nur dann, wenn a und b gleich sind. Nach

der Définition und nach a) gilt nâmlich b b^>(b oa) b^(û ob)ca
und âhnlicherweise a c b.

Wichtig sind die beiden folgenden distributiven Gesetze :

d) (Cti rx • • • rs an) O b (Cti O b) ^ • * • rs (<XW O b) •

Es gilt nâmlich b^cc a^ ••• ^an dann und nur dann, wenn fur jedes i,
b ^ C c et, gilt. Insbesondere ist also (ct^b)ob ctob.

10) Siehe z. B. Waerden [6], S. 24.
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*e) a o(b1+---+bm) (a obA)~ • • • Ma obj.
Aus (bx -i h bj ^ c (bi ^ c) H h (bm ^ c) c a folgt bi ^ c c a

fur jedes j und umgekehrt. Insbesondere ist a o (a + b) a o b.

f Es ist stets (a o bi) o b2 ex o (bi ^ b2) (a o b2) o b!, denn aus
c c (a o bi) o b2 ergibt sich b2 ^ c c a o bi und weiter (bi ^ b2) ^ c c a ;

und umgekehrt.

g) Es ist jeweils ûo(aob))b, weil nach f) (oo(aob)} ob
(a ob)o(a ob) 0 ist, und nach a) erhâlt man die Behauptung. Ist
dagegen b von der Gestalt a o c, so gilt auch das umgekehrte Zeichen c ;

wir kônnen nâmlich mit Anwendung des eben Bewiesenen mit Hilfe
von b) auf ao{ûo(ûoc)}(ûoc folgern. Es gilt daher die Gleichung
ao{ao(aob)} ûob fur jedes a und b.

Wir beweisen nun eine der wichtigsten Eigenschaften der Opération o :

h) Ist a irreduzibel, so ist a o b entweder gleich a oder gleich o. Ist
nàmlich aob 7^0, d. h. ist b kein Vielfaches von a, so muB wegen der
Primitivitât von a aus b ^ (a o b) c a folgen, daB a o b c a ist, es gilt
daher a o b et.

7. Nach E. Noether [5] gibt es bekanntlich fur jedes Idéal eines

Ringes eine endliche Darstellung durch irreduzible Idéale in dem Ealle,
wenn der Ring dem O-Satz geniigt ; dièse Zerlegung ist jedoch i. a. nicht
eindeutig. Ûber Zerlegungen in ^4-Ringen làBt sich eine weitere Aussage
machen :

Ist ein Idéal in einem beliebigen A-Ring dis unverkiirzbarer11) Durch-
schnitt von endlichvielen irreduziblen (primitiven) Idealen darstellbar, so ist
dièse Darstellung eindeutig12).

Sind nâmlich m cti^ • • • ^ an bi^ ••r%bm zwei endliche un-
verkûrzbare Darstellungen von m mit irreduziblen a{ und b,, so bildet
man m o af wo af ai ^ • • ^ ût_i ^ ai+1 ^ • • • ^ an ist. Nun ist
einerseits m o a* offenbar gleich a{, andrerseits gleich dem Durch-
schnitt gewisser b,-(Anwendung von 6d)). Aus der Irreduzibilitât von et*

folgt fur ein b,-, daB at- b^ ist. So ergibt sich, daB die Komponenten
der beiden und daher auch aller endlichen unverkûrzbaren Darstellungen
paarweise ubereinstimmen.

11 Unverkûrzbarkeit bedeutet, dafi keine Komponente einfach weggelassen werden
kann.

12) Dieser Satz ist die Hâlfte eines Birkhoffschen Satzes fl].
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Wâhrend wir im allgemeinen von den Komponenten der Durchschnitts-
darstellungen die Teilbarkeit von zwei Idealen uberhaupt nicht ablesen
kônnen — sind doch dièse nicht einmal geeignet, die Gleichheit der
Idéale zu entscheiden —, ist die Teilbarkeit imFalle eines ^4-Ringes leicht
entscheidbar. a geht nâmlich dann und nur dann in b auf, wenn sâmt-
liche irreduziblen Komponenten von a unter den irreduziblen Komponenten

von b ein Vielfaches haben. Das ,,dann" dieser Behauptung ist
ganz trivial, das ,,nur dann" ergibt sich sofort, wenn man bloB in Be-
tracht zieht, da6 die irreduziblen Komponenten von a primitiv sind.

Der oben bewiesene Satz ermôglicht zu definieren : ï ist ein Kompo-
nentenideal von et, wenn in der (eindeutig bestimmten) Zerlegung von î
in endlichviele irreduzible Idéale nur solche Komponenten vorkommen,
die auch Komponenten der ebensolchen Zerlegung des Ideals a sind13).
Wir kônnen leicht beweisen :

a o b ist immer ein Komponentenideal von a, und zwar dasjenige, das

gleich dem Durchschnitt von den nicht in b aufgehenden irreduziblen
Komponenten von a ist.

Die Behauptung folgt miihelos angesichts 6 h) aus dem distributiven
Gesetz 6d).

Aus diesem Satze folgt, daB man durch die Opération a o b aile Kom-
ponentenideale von a darstellen kann. Man wâhle fur b z. B. den Durchschnitt

aller iibrigen irreduziblen Komponenten von a. Die Opération
stellt daher 2n verschiedene Idéale dar, wo n die genaue Anzahl der
irreduziblen Komponenten von a bezeichnet.

8. Nun liegt der Gedanke nahe, zwei Idéale bi, b2 hinsichtlich a

âquivalent zu betrachten, wenn aobi ciob2 ist. Man sieht sofort,
daB die so eingefuhrte Âquivalenzrelation eine reflexive, symmetrische
und transitive Relation ist, so daB sie eine Klasseneinteilung der Idéale
liefert. Wir schreiben bx ~ b2 <û>, oder wenn kein MiBverstândnis ob-
walten kann, kurz bi~b2.

Die Àquivalenz bleibt bei der Summen- und Durchschnittsbildung un-
verândert : aus bi ~ b2 folgen die Âquivalenzen bi + c ~ b2 + c bzw.
b1 rs c ~ b2^ c fur jedes c. Der erste Teil der Behauptung ergibt sich un-
mittelbar aus 6 e) durch leichte Umformung : a o (bi + c) (aobi)^
(a o c) (a o b2) ^ (a o c) a o (b2 + c), der zweite ebenso leicht aus
6f : a o (bi ^ c) (a o b,) o c (a o b2) o c a o (b2 ^ c).

18 Das Einheitsideal und das Idéal a selbst sollen den Komponentenidealen zugerech-
net werden.
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Aus 6g) folgt, daB b zu ao(a ob), einem Komponentenideal von o

âquivalent ist.
Sind îx und ï2 zwei Komponentenideale von a, dann ist ïx ~ ï2 <a>

nur in dem Falle, wenn t± f2 ist. Um dies zu beweisen, braucht man
nur zu beachten, daB das Idéal o o I ein Komponentenideal von a ist,
und zwar so entsteht, wenn man gerade diejenigen irreduziblen Kompo-
nenten von o weglâBt, die auch Komponenten von ï sind.

Aus diesen Bemerkungen ergibt sieh unmittelbar die Tatsache, daB

jedes Idéal b zu einem und nur zu einem Komponentenideal von a
âquivalent ist : zu dem Durehsehnitt der in b aufgehenden Komponentenideale14).

So existieren gerade 2n nicht-âquivalente Idéale; jede der 2n

Klassen kann durch ein einziges Komponentenideal von a repràsentiert
werden.

9. Unter den Idealklassen kann man leicht eine ein-eindeutige Abbildung

$1 konstruieren. Bezeichnet K eine Klasse und ist f ein Reprasen-
tant von K, etwa das Komponentenideal von a in K, so soll der Klasse K
bei der Abbildung 31 jene Klasse K' zugeordnet werden, welche das
Idéal f a o l enthâlt.

Die Abbildung % ist involutorisch. Nach 6g) ist nâmlich ïr a o ï
ao{ao(aof)} ûo(aof) und daraus folgt ï^ctoî', da dièse
Idéale âquivalent und gleichzeitig Komponentenideale von a sind. Dem
Idéal ïj + ï2 entspricht bei der Abbildung offensichtlich das Idéal

fi^ï2 infolge 6 e), und ebenso entspricht ï£ + % ^em Idéal ïi^ï2.
Nun wenden wir uns dem Beweis des folgenden Satzes zu :

Zwei Idéale sind dann und nur dann âquivalent hinsichtlich a, wenn sie

hinsichtlich aller irreduziblen Komponenten von a âquivalent sind.

Gilt nâmlich bi ~ b2 <tfc> fur aile irreduziblen Komponenten ik von a,
so folgt aus 6d) nach Voraussetzung

a o bi (ti ^ • • • rs y o bi (ii o bi) ^ • • • ^ (iw o bj
(ii °b2)^ ••• ^(tnOb2) (ii^ ••• ^in)ob2 aob2

also bi ^ b2 <a>.
Umgekehrt, sei b± ~ b2 <a>. Wir kônnen jedes Komponentenideal,

insbesondere jede irreduzible Komponente xk in der Form xk a o c fur

l4) Man sieht ohne weiteres, da8 jede Klasse ein einziges maximales Idéal enthâlt, das

eindeutig dadureh ausgezeichnet ist, daB es ein Komponentenideal von a ist.
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geeignetes c darstellen. Ist nun c so gewâhlt, so folgt aus a o bx a o b2

nach 6f)

ifcObx (aoc)obi (ûobx)oc (ctob2)oc (aoc)ob2 ifcOb2,

w. z. b. w.
Somit haben wir die Âquivalenzrelation hinsichtlich a auf solche hin-

sichtlich irreduzibler Idéale zurùckgefùhrt. Die Bedeutung dieser Auf-
spaltung liegt darin, daB die Verhâltnisse bei irreduziblen Idealen in
jeder Hinsicht ungemein einfach sind. Nach 6h) existieren nâmlich nur
zwei Komponentenideale, somit auch nur zwei Idealklassen, und zwar
gehôren zwei Idéale dann und nur dann zu derselben Klasse, wenn beide
dureh t teilbar oder aber beide durch i unteilbar sind. Die Abbildung
besteht nun einfach daraus, daB man die beiden Klassen einander zu-
ordnet. Durch dièse trivialen Abbildungen ergibt sich also eine sehr
einfache Ùbersicht uber die Abbildung 51

(Eingegangen den 1. August 1948.)
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