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Uber die Ideale arithmetischer Ringe
Von Lapisraus Fucus, Budapest

1. Die vorliegende Arbeit beschéiftigt sich mit solchen Ringen R,
deren Ideale!) den beiden dquivalenten distributiven Gesetzen 2)

a+®~rc)=(a+Db ~ (a+ ¢ (1)

und

and+c=(a~bd)+(anc (2)

geniigen. Einen solchen Ring werden wir als ,,arithmetischen Ring“, kurz
A-Ring, bezeichnen3). Es ist leicht einzusehen, daBl die algebraischen
Zahl- und Funktionenringe, sowie alle Noetherschen Fiinfaxioms-Ringe
immer A4-Ringe sind.

Die Relationen a4 (b~c¢)c(a+ b)n(a 4 ¢), bzw. an(d 4+ ¢)>
(a~b) 4+ (a~c¢) gelten offensichtlich in allen Ringen; es handelt sich
also um Ringe, in denen auch die umgekehrten Zeichen giiltig sind.

2. Ein Ideal, das sich nicht mehr als Durchschnitt echter Teiler dar-
stellen 148t, heilt bekanntlich irreduzibel. Wenn auch der Durchschnitt
zweier nicht durch v teilbarer Ideale nicht durch p teilbar ist, d. h., wenn
aus a~bcv entweder acp oder b ¢ folgt, so wird v im folgenden
ein primatives Ideal genannt4). Man sieht ohne weiteres, da3 jedes Prim-
ideal primitiv und jedes primitive Ideal stets irreduzibel ist. Wir kénnen
aber leicht ein Beispiel anfiihren, das zeigt, dafl ein irreduzibles Ideal

1) Wir bezeichnen, wie iiblich, mit @ 4+ b und a ~ b den gré8ten gemeinsamen Teiler
bzw. den Durchschnitt (k. g. V.) der Ideale a, b. Fiir das Einheitsideal schreiben wir
p; aDb oder b Ca bedeutet: q ist ein (echter oder unechter) Teiler von b.

2) DaB (1) und (2) aquivalent sind, sieht man durch triviale Umformungen ein. Aus (1)
folgt (2): (anb)+(anc)=(a+a)n(b+a)n(a+c)n b4+ c)=an (b4 c); um-
gekehrt: (a+b)~(a+c¢)=(ana)+dBra)+(@nc)+Gn)=a+ (B0

3) Der Termin ist der Theorie der Verbiande entnommen: die Ideale eines A-Ringes
bilden einen Verband, den O.Ore ,,arithmetic structure‘‘ nennt.

4) In der Verbandtheorie wiirde man v nach einer vollig verschiedenen Terminologie
Primideal nennen.
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nicht notwendigerweise primitiv ist5); ist aber der Ring arithmetisch,
so kann man die Behauptung auch umkehren, ja sogar den Satz be-
weisen :

In einem Ring R ist jedes irreduzible Ideal dann und nur dann primitiv,
wenn R ein A- Ring 1ist.

Ist ndmlich i ein irreduzibles Ideal und besteht eine Relation a~b ¢ i,
so folgt nach (1) im Falle eines 4-Ringes, daB auch eine Relation von der
Gestalt i = i, ~1, giiltigist, wo i, =1+ a und i, =1+ b ist. Aus der
Irreduzibilitit des Ideals i kann man nun folgern, dafl entweder i+ a
oder i + b gleich i ist, d. h., daB i in der Tat primitiv ist.

Es sei nun umgekehrt jedes irreduzible Ideal primitiv. Ist { ein irredu-
zibler Teiler des auf der linken Seite von (1) stehenden Ideals b =
a+ (brc), soist aci und b~cci. Nach Voraussetzung folgt aus der
zweiten Inklusion, dafl entweder b c¢i oder c¢ci ist, d. h., wir haben
entweder a + bci oder a -+ cci. Die beiden Fille konnen in eine
Relation (a 4+ b)~(a 4 ¢) ¢ i vereinigt werden. Da aber — wie in 3
gleich bewiesen wird — der Durchschnitt aller i gerade b darstellt, mu3
die Relation (a + b)~(a 4 ¢) ¢ d giiltig und daher der Ring arithme-
tisch sein, w. z. b. w.

3. Nun beweisen wir ohne Benutzung der Arithmetizitdt den folgen-
den Satz, den wir schon unter 2 angewendet haben und der auch sonst
im allgemeinen von grundlegender Bedeutung ist.

Jedes Ideal a vst gleich dem Durchschnitt aller seiner trreduziblen Teiler.

Der Satz besteht aus zwei Behauptungen :

a) der Durchschnitt der irreduziblen Teiler von a existiert und teilt a ;
b) der Durchschnitt enthilt keine anderen Elemente, als die von q.

a) ist trivial, da jedes Ideal einen trivialen irreduziblen Teiler : das
Einheitsideal hat. Der Beweis der Behauptung b) stiitzt sich auf das be-
kannte Lemma von M. Zorn [7]. Ist x ein Element, das nicht zu a ge-
hort, so besitzt a nach dem Lemma einen Teiler q,, der ebenfalls &« nicht
enthilt und der auBerdem die Eigenschaft hat, dal « in jedem echten
Teiler von a, vorkommt ¢). Nach der letzten Eigenschaft von q, ist q,

5) (a2, 2 + y) ist im Polynomring von z, y mit rationalen Koeffizienten ein irre-
duzibles Ideal, das nicht primitiv ist; denn es enthalt wohl den Durchschnitt
(z) ~ (22, x — y) = (2%, zy), aber keine der Komponenten.

8) McCoy [4] hat bewiesen, daB es ein irreduzibles Ideal gibt, das ein gegebenes, von 0
verschiedenes a nicht enthalt. Beim Beweis beniitzt er Wohlordnungschliisse. Seinen
Beweisgang konnte man auch hier mit Erfolg anwenden.
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irreduzibel. Variiert « durch alle Elemente hindurch, die nicht zu a ge-
horen, so ist unser Satz bewiesen.

Gilt ferner der U-Satz”) im Ringe, so reicht schon eine endliche An-
zahl der irreduziblen Komponenten hin, da die Kette i, >i,~i,> ---,
wenn jedes Glied echtes Vielfaches des vorangehenden ist und alle Teiler
von a sind, im Endlichen abbrechen mufl und demnach schon endlich-
viele irreduzible Ideale das Ideal a darstellen miissen.

4. Ein Ideal w soll stark-primitiv genannt werden, wenn auch fiir
eine unendliche Anzahl der q, aus3)

Ada, cw (4a;, # 0)
die Inklusion
a, Cw fir em k

folgt. Wenn der Ring dem U-Satz geniigt, sind offenbar alle primitiven
Ideale gleichzeitig stark-primitiv.

In A-Ringen gilt der folgende, auch an sich interessante Satz, der dem
Aquivalenzsatz des Teilerkettensatzes (O-Satzes) und des Basissatzes
entspricht ?).

In etnem A-Ring ist die Gultigkeit des U-Satzes die notwendige und
hinreichende Bedingung dafiir, daf} jedes vom Nullideal verschiedene Ideal
eine Durchschnittsdarstellung mit endlichvielen stark-primitiven Kompo-
nenten zuldf3t.

Zunéchst ist nach 3 jedes Ideal in einem Ring mit U-Satz als Durch-
schnitt endlichvieler irreduzibler Ideale darstellbar, die nach 2 in einem
A-Ring primitiv und somit nach dem U-Satz stark-primitiv sein miissen.
Demnach 1st die Bedingung notwendig.

Ist, umgekehrt, die im Satze ausgesprochene Bedingung erfiillt, und
bezeichnen wir mit a den Durchschnitt aller Glieder der Kette a;> a,
Ja3d ---, 80 ist a % 0 nach Voraussetzung als a=w;~...~wW,
mit stark-primitiven w, darstellbar. Nunist daq, cw, fir ¢ =1,2,...,n
und daraus folgt a; ¢ w; fiir ein gewisses k,. Wihlen wir [ groler als
jedes k,, so erhalten wir q, cw;~...~w, = a, d. h. q; = a und in der

7) Vgl. Krull [3], S.8; (der abgeschwiichte Vielfachenkettensatz).

8) A4 dient zur Bezeichnung des Durchschnitts, wenn die Anzahl der Komponenten
nicht mit Sicherheit endlich ist.

9) Dieser Satz wurde fiir Ringe, die mindestens einen Nichtnullteiler besitzen, in meiner
erscheinenden Note [2] mit Hilfe eines Akizukischen Satzes bewiesen. Der neue Beweis
stiitzt sich statt des Akizukischen auf den unter 3 bewiesenen Satz.
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gegebenen absteigenden Kette sind in der Tat von der I-ten Stelle an alle
Glieder gleich.

5. Wir nehmen im folgenden an, dal R ein A-Ring mit O-Satz ist.

Wir fiihren in R eine der Idealquotientenbildung®) analoge Opera-
tion ein, die nur im Falle von 4-Ringen existiert. Sind zwei Ideale a, b
gegeben, so betrachten wir alle Ideale ¢, die der Relation b~ ¢ ca ge-
niigen. Wenn b~¢;ca und b, ca gelten, so gilt nach (2) auch
ba(cy +¢) =(0n¢) + (brc,) ca. Es gibt daher ein einziges maxi-
males Ideal ¢* mit b~ c¢*ca; c¢* ist ndmlich der grofite gemeinsame
Teiler aller Ideale ¢, fiir die b ~¢ ¢ a gilt. (Wir konnen demnach aus einer
Relation brcca auf ccc¢* folgern.) Dieses maximale ¢* bezeichnen
wir mit dem Symbol a 0b.

Man iiberzeugt sich leicht, dall im Ring der ganzen rationalen Zahlen
die Bildung des Ideals a ob in folgender Weise vor sich geht : man 148t
aus der Primzahlzerlegung der Basiszah! von a die Potenzen derjenigen
Primzahlen weg, die in der Basiszahl von b mit mindestens ebenso
groen Exponenten vorkommen.

6. Nun sollen die Grundeigenschaften der Operation a ob unter-
sucht werden.

a) Offensichtlich ist zundchst acaobcp, und zwar ist aob=0»o
dann und nur dann, wenn b ¢ a ist.

b) Unsere Operation ist monoton : aus a,> a, folgt a, ob>a, 0b;
aus b; > b, folgt aob, caob,. Gilt fir jedes m die Relation q;om
> ayom, soist a;> a,. Wir diirfen ndmlich m = a, wéhlen, dann er-
halten wir a, oa, = o d.h. a;> a,. Es gilt auch die entsprechende Be-
bhauptung : aus der fir jedes m geltenden Relation m ob;> m ob,
ergibt sich b, ¢ b,. (Beweis derselbe : man wiéhle m = b,.)

c¢) Die o-Operation ist anti-kommutativ, d. h. Kommutativitit aob
= boa besteht dann und nur dann, wenn a und b gleich sind. Nach
der Definition und nach a) gilt ndmlich b = b~ (b ca) =b~(a 0ob) ca
und dhnlicherweise a ¢b.

Wichtig sind die beiden folgenden distributiven Gesetze :

d) (a,~ - na)ob = (a; 0b)~---~(a,0b) .

Es gilt ndmlich b~¢c a;~ -+ ~a, dann und nur dann, wenn fiir jedes ¢,
b~ cca; gilt. Insbesondere ist also (a~b)ob =ao0b.

10) Siehe z. B. Waerden [6], S. 24.
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‘e) ao(b;+---+b,)=(aob)n~---~(aoh,).

Aus (b;+---+b)rec=0Byr¢)+- -+ (bprc)ca folgt b,~rcca
fiir jedes § und umgekehrt. Insbesondere ist a o(a 4+ b) = a ob.

f) Es ist stets (ao0b;) oby, =ao(b;~b,) = (a0b,) 0b;, denn aus
cc(aob,) ob, ergibt sich b,~ccaob, und weiter (b;~by)~cca;
und umgekehrt.

g) Es ist jeweils ao(aob)>b, weil nach f) {ao(aob)} ob =
(aob)o(aob) =0p ist, und nach a) erhdlt man die Behauptung. Ist
dagegen b von der Gestalt a o ¢, so gilt auch das umgekehrte Zeichenc ;
wir konnen ndmlich mit Anwendung des eben Bewiesenen mit Hilfe
von b) auf ao{ao(aoc¢)}caoc folgern. Es gilt daher die Gleichung
ao{ao(aob)} =aob fir jedes a und b.

Wir beweisen nun eine der wichtigsten Eigenschaften der Operation o:

h) Ist a irreduzibel, so ist a ob entweder gleich a oder gleich p. Ist
nidmlich aob % o, d. h. ist b kein Vielfaches von a, so mull wegen der
Primitivitdt von a aus b~ (aob)ca folgen, daB aobca ist, es gilt
daher aob=aq.

Y. Nach E. Noether [5] gibt es bekanntlich fiir jedes Ideal eines
Ringes eine endliche Darstellung durch irreduzible Ideale in dem Falle,
wenn der Ring dem O-Satz geniigt ; diese Zerlegung ist jedoch i. a. nicht
eindeutig. Uber Zerlegungen in A-Ringen 4Bt sich eine weitere Aussage
machen :

Ist ein Ideal in einem beliebigen A-Ring als unverkiirzbarerl) Durch-
schnitt von endlichvielen irreduziblen (primitiven) Idealen darstellbar, so st
diese Darstellung eindeutig'?). .

Sind ndmlich m =aq~---~a,=b,~---~b, zwei endliche un-
verkiirzbare Darstellungen von m mit irreduziblen a; und b;, so bildet
man moa’, wo a¥ =@a;~- -~ 1~Aqnc-~a, ist. Nun ist
einerseits m oaf offenbar gleich a,, andrerseits gleich dem Durch-
schnitt gewisser b; (Anwendung von 6d)). Aus der Irreduzibilitdt von a;
folgt fir ein b,;, daBB a;, = b, ist. So ergibt sich, daBl die Komponenten
der beiden und daher auch aller endlichen unverkiirzbaren Darstellungen
paarweise iibereinstimmen.

11) Unverkiirzbarkeit bedeutet, da8 keine Komponente einfach weggelassen werden
kann.

12) Dieser Satz ist die Halfte eines Birkhoffschen Satzes [1].

338



Wihrend wir im allgemeinen von den Komponenten der Durchschnitts-
darstellungen die Teilbarkeit von zwei Idealen iiberhaupt nicht ablesen
kénnen — sind doch diese nicht einmal geeignet, die Gleichheit der
Ideale zu entscheiden —, ist die Teilbarkeit im Falle eines A-Ringes leicht
entscheidbar. a geht ndmlich dann und nur dann in b auf, wenn simt-
liche irreduziblen Komponenten von q unter den irreduziblen Kompo-
nenten von b ein Vielfaches haben. Das ,,dann“ dieser Behauptung ist
ganz trivial, das ,,nur dann“ ergibt sich sofort, wenn man blo in Be-
tracht zieht, daf} die irreduziblen Komponenten von a primitiv sind.

Der oben bewiesene Satz ermoglicht zu definieren : f ist ein Kompo-
nentenideal von a, wenn in der (eindeutig bestimmten) Zerlegung von
in endlichviele irreduzible Ideale nur solche Komponenten vorkommen,
die auch Komponenten der ebensolchen Zerlegung des Ideals a sind?13).
Wir konnen leicht beweisen :

a ob ust vtmmer ein Komponentenideal von a, und zwar dasjenige, das
gleich dem Durchschnitt von den nicht in b aufgehenden irreduziblen Kom-
ponenten von a ust.

Die Behauptung folgt miihelos angesichts 6h) aus dem distributiven
Gesetz 6d).

Aus diesem Satze folgt, daBl man durch die Operation a ob alle Kom-
ponentenideale von a darstellen kann. Man wéhle fiir b z. B. den Durch-
schnitt aller iibrigen irreduziblen Komponenten von a. Die Operation
stellt daher 2" verschiedene Ideale dar, wo = die genaue Anzahl der irre-
duziblen Komponenten von a bezeichnet.

8. Nun liegt der Gedanke nahe, zwei Ideale b,, b, hinsichtlich a
dquivalent zu betrachten, wenn aob, = aob, ist. Man sieht sofort,
daB die so eingefithrte Aquivalenzrelation eine reflexive, symmetrische
und transitive Relation ist, so daB sie eine Klasseneinteilung der Ideale
liefert. Wir schreiben b, ~ b, (a)>, oder wenn kein MiBverstdndnis ob-
walten kann, kurz b; ~b,.

Die Aquivalenz bleibt bei der Summen- und Durchschnittsbildung un-
verdndert : aus b, ~ b, folgen die Aquivalenzen b, + ¢ ~ b, + ¢ bzw.
b; ~ ¢ ~ by~ ¢ fiir jedes ¢. Der erste Teil der Behauptung ergibt sich un-
mittelbar aus 6e) durch leichte Umformung: ao(b; + ¢) = (a 0by)~
(@oc¢)=(aoby)~(aoc)=ao(b, + ¢), der zweite ebenso leicht aus
6f): ao(by;nc)=(aob;) oc=(aoby) oc=ao(b,~¢).

13) Das Einheitsideal und das Ideal a selbst sollen den Komponentenidealen zugerech-
net werden.
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Aus 6g) folgt, dal b zu ao(a ob), einem Komponentenideal von a
dquivalent ist.

Sind f, und f, zwei Komponentenideale von a, dann ist ¥, ~ ¥, (a)
nur in dem Falle, wenn ¥, = ¥, ist. Um dies zu beweisen, braucht man
nur zu beachten, dafl das Ideal aof ein Komponentenideal von q ist,
und zwar so entsteht, wenn man gerade diejenigen irreduziblen Kompo-
nenten von a wegliflt, die auch Komponenten von ¥ sind.

Aus diesen Bemerkungen ergibt sich unmittelbar die Tatsache, dal}
jedes Ideal b zu einem und nur zu einem Komponentenideal von a dqui-
valent ist : zu dem Durchschnitt der in b aufgehenden Komponenten-
ideale4). So existieren gerade 2" nicht-dquivalente Ideale; jede der 2=
Klassen kann durch ein einziges Komponentenideal von a reprisentiert
werden.

9. Unter den Idealklassen kann man leicht eine ein-eindeutige Abbil-
dung W konstruieren. Bezeichnet K eine Klasse und ist f ein Représen-
tant von K, etwa das Komponentenideal von a in K, so soll der Klasse K
bei der Abbildung U jene Klasse K’ zugeordnet werden, welche das
Ideal ¥ = aof enthiilt.

Die Abbildung U ist involutorisch. Nach 6g) ist ndmlich ¥ = aqof =
aof{ao(aof}=ao(aof) und daraus folgt f=aof , da diese
Ideale dquivalent und gleichzeitig Komponentenideale von a sind. Dem
Ideal ¥, + ¥, entspricht bei der Abbildung offensichtlich das Ideal
£, ~f, infolge 6e), und ebenso entspricht ¥, - f, dem Ideal ¥, ~f,.

Nun wenden wir uns dem Beweis des folgenden Satzes zu :

Zwei Ideale sind dann und nur dann dquivalent hinsichtlich a, wenn sie
hinsichtlich aller irreduziblen Komponenten von a dquivalent sind.

Gilt ndmlich b, ~ b, (i, fiir alle irreduziblen Komponenten i, von a,
so folgt aus 6d) nach Voraussetzung

aob; = ({~n---nt,)oby= ({,0b) - ~(i,0b,) =
= ({y0bg)n -~ (i, 0by) = (i~ - ~i,)0b; =ao0b, ,
also b, ~b,{a).

Umgekehrt, sei b, ~b,<{a>. Wir kénnen jedes Komponentenideal,
insbesondere jede irreduzible Komponente i,, in der Form i, = a o ¢ fiir

14) Man sieht ohne weiteres, daf3 jede Klasse ein einziges maximales Ideal enthalt, das
eindeutig dadurch ausgezeichnet ist, daB es ein Komponentenideal von q ist.
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geeignetes ¢ darstellen. Ist nun ¢ so gewihlt, so folgt aus aob, = aob,
nach 6f)

i,0b; = (aoc)ob, = (aob;)oc= (aoby)oc= (aoc)ob, = i,0b,,

w.z. b. w.

Somit haben wir die Aquivalenzrelation hinsichtlich a auf solche hin-
sichtlich irreduzibler Ideale zuriickgefiihrt. Die Bedeutung dieser Auf-
spaltung liegt darin, daB} die Verhiltnisse bei irreduziblen Idealen in
jeder Hinsicht ungemein einfach sind. Nach 6h) existieren ndmlich nur
zwei Komponentenideale, somit auch nur zwei Idealklassen, und zwar
gehoren zwei Ideale dann und nur dann zu derselben Klasse, wenn beide
durch i teilbar oder aber beide durch i unteilbar sind. Die Abbildung
besteht nun einfach daraus, daB3 man die beiden Klassen einander zu-
ordnet. Durch diese trivialen Abbildungen ergibt sich also eine sehr
einfache Ubersicht iiber die Abbildung U .

(Eingegangen den 1. August 1948.)
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