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Die erste Cohomologiegruppe von Uber-
lagerungen und Homotopie-Eigenschaften

dreidimensionaler Mannigfaltigkeiten
Von Ernst Specker, Zurich

Einleitung
Die erste Cohomologiegruppe B1 eines endlichen (zusammenhangenden)

Komplexes K ist durch die Fundamentalgruppe © von K bestimmt :

Wird der Cohomologietheorie die abelsche Gruppe J als Koeffîzienten-
bereich zugrunde gelegt, so ist B1 isomorph der Gruppe der homomorphen
Abbildungen von © in J ; die naturliche Isomorphie dieser beiden Grup-
pen hat die folgende Bedeutung : Der Charakter, der einer Cohomologie-
klasse zugeordnet ist, hat auf einem Gruppenelement g e © den Wert,
den die Cohomologieklasse auf der g entsprechenden ganzzahligen Homo-
logieklasse hat (B. Eckmann [1], S. 267).

Dieser Satz wird folgendermaBen verallgemeinert : Der endliche Kom-
plex K mit der Fundamentalgruppe © werde vom Komplex K uber-
lagert, und zwar gehôre die tîberlagerung zur Untergruppe <r> von ©.
Dann ist die erste Cohomologiegruppe jB1 von K — berechnet unter Zu-
grundelegung endlicher Ketten mit Koeffizienten aus der abelsehen
Gruppe J — durch die Inklusion von § in © bestimmt. Wir werden auch
hier eine Gruppe B((S, §) definieren (und zwar in Abhângigkeit von J
und § c ©) und zeigen, da8 B1 dieser Gruppe isomorph ist.

Die Decktransformationengruppe î) einer Ûberlagerung K des
Komplexes K kann in natùrlicher Weise aufgefaBt werden als Automor-
phismengruppe der ersten Cohomologiegruppe B1 von K. (Zum Begriff
der Decktransformationengruppe einer beliebigen Ûberlagerung ver-
gleiche man H. Seifert und W. Threlfall [17], S. 198.) Wir werden dem-
nach auch die Gruppe i?(©, £>) als Gruppe mit der Automorphismen-
gruppe D erklâren und die Operatorisomorphie von B1 und J3(©,£)
beweisen. Dièse Ergebnisse sind im wesentlichen in zwei inzwischen er-
schienenen Arbeiten von B. Eckmann [2] und [3] enthalten ; es werden
in diesen Arbeiten auch hôherdimensionale Cohomologiegruppen be-
trachtet.
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Wird die Ûberlagerung K des endlichen Komplexes K ihrerseits von
einem Komplex K ûberlagert, so gibt die Projektionsabbildung von K
auf K AnîaB zu einem Homomorphismus der ersten Cohomologiegruppe
von K in diejenige von K\ diesen Homomorphismus werden wir alge-
braisch beschreiben, und zwar in Abhângigkeit von der Fundamental-
gruppe von K und den Untergruppen, die zu den Ûberlagerungen ge-
hôren. Sind K und K endliche Komplexe, so steht dieser Homomorphismus

in enger Beziehung zum gruppentheoretischen Begrifï der Verlage-
rung (H. Zassenhaus [21], S. 131).

Wir betrachten nun wieder eine einzige Ûberlagerung K des endlichen
Komplexes K, die zur Untergruppe § der Fundamentalgruppe © von
K gehôrt. Die Elémente von B(®, £>) sind Klassen von Funktionen auf
© mit Werten in J, und sie sind durch die damit in natiïrlicher Weise
gegebene Addition verknupft ; auf § haben aile Funktionen einer Klasse
denselben Wert. Bezeichnet 2£(©,<?>) die Untergruppe derjenigen
Klassen, deren Elemente auf den Elementen von £> den Wert 0 haben,
so darf die Faktorgruppe B((ô, §)/.£/(©, £j) als Gruppe von
Funktionen auf <r> mit Werten in J aufgefaBt werden. In diesem Sinne ist
jB(®, §)/jE7(®, <r>) eine Gruppe von homomorphen Abbildungen von §
in J — und zwar ist sie identisch mit der durch die erste Cohomologiegruppe

JS1 von K induzierten Charakterengruppe der (als Fundamentalgruppe

von K aufgefaBten) Gruppe § ; beim, natiirlichen Isomorphismus
von B((&, £>) auf B1 wird namlich E(($>, <r>) auf die Gruppe E1

derjenigen eindimensionalen Cohomologieklassen abgebildet, die auf allen
Zyklen den Wert 0 haben. Durch die Inklusion §c ® sind daher neben
B1 auch die Gruppen E1 und B1^1 bestimmt.

Wir werden die Untergruppe E1 der ersten Cohomologiegruppe bei
beliebigen Komplexen nâher untersuchen ; in Komplexen, deren erste

Homologiegruppe die Nullgruppe ist, ist E1 gleich der ersten
Cohomologiegruppe ; in endlichen Komplexen ist E1 die Nullgruppe. (Im folgen-
den sei der Homologie- und Cohomologietheorie die additive Gruppe der

ganzen Zahlen als Koeffizientenbereich zugrunde gelegt.) Bei unend-
lichen Komplexen steht E1 in enger Beziehung zur Endentheoiïe, wie
sie von H. Freudenthal in [7] entwickelt worden ist : Der Rang der
Gruppe E1 und die Anzahl der Enden eines Komplexes bestimmen sich

gegenseitig. Im Zusaromenhang mit dem Beweis dièses Satzes werden
wir zeigen, daB die erste Cohomologiegruppe eines beliebigen Komplexes
eine freie abelsche Gruppe ist.

Gehôrt die Ûberlagerung K des endlichen Komplexes K mit der
Fundamentalgruppe © zur Untergruppe § von ©, so ist die Gruppe E1
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von K und damit auch die Endenzahl von K durch §c ® bestimmt ;

das ist die Verallgemeinerung eines Satzes der Arbeit [10] von H. Hopf,
der besagt, daB die Endenzahl einer regulàren Ûberlagerung eines end-
lichen Komplexes durch die Decktransformationengruppe bestimmt ist.
Wie in der Arbeit [10] weiter gezeigt wird, ist die Endenzahl einer solchen
Uberlagerung gleich 0,1,2 oder unendlich ; wir werden daraus schlieBen :

Der Rang der ersten Cohomologiegruppe einer regulàren unendlichblâtt-
rigen Ûberlagerung eines endlichen Komplexes ist gleich 0, 1 oder
unendlich ; fur nicht-regulâre unendlichblâttrige Ûberlagerungen braucht
der entsprechende Satz nicht zu gelten.

In einem zweiten Teil wenden wir dièse Ergebnisse an auf die Unter-

suchung von dreidimensionalen endlichen (berandeten oder unberande-
ten) orientierbaren Mannigfaltigkeiten. (Die Beschrànkung auf orientier-
bare Mannigfaltigkeiten ist in den meisten Fàllen nicht nôtig und wird
nur der Einfachheit halber durchgefiihrt.) Eine solche Anwendung ist bei
unberandeten Mannigfaltigkeiten durch die Dualitàt nahegelegt. Auf
Grand der bekannten Isomorphie der zweiten Homotopiegruppe eines

Komplexes und der zweiten Homoiogiegruppe seinei universellen
Ûberlagerung kônnen wir zum Beispiel beweisen, daB die zweite Homotopiegruppe

einer dreidimensionalen geschlossenen Mannigfaltigkeit durch
ihre Fundamentalgruppe bestimmt ist. H. Hopf hat diesen Satz in [9]
ohne Beweis ausgesprochen.

Etwas weniger naheliegende Anwendungen erhalten wir, wenn wir
berandete dreidimensionale Mannigfaltigkeiten betrachten. Auch hier
ist nàmlich noch ein Rest der Dualitàt vorhanden, der in gewissen Fallen
gestattet, ûber die zweite Homoiogiegruppe der universellen Ûberlagerung
etwas auszusagen. So gelingt es, eine solche Klasse Si von Gruppen an-
zugeben, daB jede dreidimensionale endliche (berandete) Mannigfaltigkeit,

unter deren Randflachen sich keine Kugel befmdet und deren
Fundamentalgruppe zu 51 gehôrt, aspharisch ist. Unter weiteren Einschràn-
kungen sind schârfere Aussagen môglich : Die zweite Homotopiegruppe
einer endlichen dreidimensionalen Mannigfaltigkeit, deren nicht leerer
Rand aus Ringflâchen besteht, ist durch die Fundamentalgruppe der

Mannigfaltigkeit bestimmt. Besonders intéressante Mannigfaltigkeiten
dieser Art sind die AuBenrâume von Verschlingungen in der dreidimensionalen

Sphâre.
Nach einem Satz von W. Hurewicz [12] sind die Homologiegruppen

eines asphârischen Komplexes durch seine Fundamentalgruppe bestimmt.
Folgt daher einerseits aus der Struktur einer Gruppe ©, daB eine
dreidimensionale endliche Mannigfaltigkeit mit der Fundamentalgruppe (g
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asphârisch ist, wenn sich unter ihren Randflâchen keine Kugel befindet ;

kônnen anderseits die Homologiegruppen eines asphârischen Komplexes
mit der Fundamentalgruppe (g nicht Homologiegruppen einer solchen

Mannigfaltigkeit sein, so dûrfen wir schlieBen, daB (5 nicht Fundamentalgruppe

einer dreidimensionalen endlichen Mannigfaltigkeit ist. Als An-
wendung zâhlen wir die abelschen Gruppen auf, die als Fundamental-
gruppen solcher (berandeter oder unberandeter) Mannigfaltigkeiten auf-
treten ; daraus ergeben sich dann weiter notwendige Bedingungen fur die
Einbettbarkeit zweidimensionaler Komplexe in beliebige dreidimen-
sionale Mannigfaltigkeiten.

Herrn Professor H. Hopf danke ich fur Anregung und Erraunterung.

I. Die erste Cohomologiegruppe von Uberlagerungen

1. Vorbereitende Bemerkungen
1.1. K sei ein beliebiger Komplex (simplizialer Komplex oder Zellen

komplex). Der Homologietheorie von K legen wir ganzzahlige endliche
Ketten zugrunde. fin, 3n> $>n> 33™ 3nl$n bezeichnen die Gruppen der
w-dimensionalen Ketten, Zyklen, Rànder, Homologieklassen. Die Ele-
mente von Qn bezeichnen wir mit kleinen lateinischen Buchstaben mit
hoehgestelltem, Dimensionsindex : cn. Die Elemente der Faktorgruppe
Qnl$)n werden mit kleinen fetten Buchstaben bezeichnet : cn.

1.2. J sei eine abelsche Gruppe. Der Cohomologietheorie von K
legen wir endliche Ketten mit Koeffizienten aus J zugrunde. Ln,Zn, Hn,
Bn Zn/Hn bezeichnen die Gruppen der /i-dimensionalen Ketten, Co-

zyklen, Corânder, Cohomologieklassen. Die Ketten aus Ln bezeichnen
wir mit groBen lateinischen Buchstaben : Cn.

Da die additive Gruppe der ganzen Zahlen und die Gruppe J bezug-
lich J ein Gruppenpaar bilden, ist der Kroneckersche Index eines Ele-
mentes von Ln auf einem Elément von Qn definierbar. Er ist ein Elément
von J ; wir schreiben ihn als Produkt. Jede Kette aus Zn hat auf den
Elementen von Srf1 den Wert 0 ; es wird daher in naturlicher Weise ein
Produkt der Elemente von Zn mit den Elementen von Qnl$)n induziert.

1.3. Die w-dimensionalen Cozyklen, die auf allen Zyklen den Wert 0

haben, bilden eine Untergruppe An von Zn, die Hn enthàlt ; wir setzen

AnjHn En. Die Gruppe A1 lâBt sich auch folgendermaBen beschreiben :
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C1 gehort genau dann zu A1, wenn es eme solche 0 dimen&ionale, even
tuell unendhche Kette C° mit Koeffizienten aus J gibt, daB der Corand
von 0° die Kette C1 ist

1 4 Ist der Komplex K gegeben als Komplex mit emer Automor
phismengmppe ©, so werden die m der Homologie und Cohomologie-
theone auftretenden Gruppen stets aufgefaBt als Gruppen, die © als

Operatorgruppe besitzen Dies wird msbesondere dann der Fall sein,
wenn K gegeben ist als Uberlagerungskomplex emes Komplexes Kr, die
Gruppe © ist dann die Decktransformationengruppe von K

15 Zu den îm folgenden benutzten Satzen aus der Uberlagerungs-
theorie vergleiche man Seifert Threlfall [17], 8 Kapitel Wir erinnern
nur kurz an folgendes

Es sei K Uberlagerungskomplex des zusammenhangenden Komplexes
K Im folgenden bedeute ,,Weg" stets ,,Kantenweg" Ist w em Weg m K
mit dem Anfangspunkt 0, O em 0 uberlagernder Punkt von K, dann
gibt es genau einen Weg w mit dem Anfangspunkt O, der w uberlagert
Jedem Weg w von K ist auf naturliche Weise em Elément c1(m?) der
Kettengruppe fi1 von K zugeoidnet Es seien v und w homotope Wege
von K mit dem Anfangspunkt 0, v und w die entsprechenden Ûber-
lagerungswege mit dem Anfangspunkt O, dann sind die Ketten c1^)
und cx(w) homolog (d h îhre DifEerenz liegt m §1(K)), es haben also
msbesondere v und w denselben Endpunkt

Es sei nun m K em Eekpunkt 0, m K em 0 uberlagernder Eekpunkt O
ausgezeichnet, zu Wegen mit dem Anfangspunkt 0 betrachten wir Uber
lagerungswege mit dem Anfangspunkt O Der Eekpunkt 0 sei der Pol
der Fundamentalgruppe © von K Reprasentieren v und w em Elément
a e ©, so sind cx(v) und c1(m?) homolog, wir konnen daher einem Ele
naent a e © m naturheher Weise em Elément c1(a) der Gruppe fi1/^1
von K zuordnen Die Elémente h von ©, die die Eigenschaft haben, daB

cx(^) em Homologiezyklus ist, bilden eme Untergruppe § von © Smd
a und b zwei Elemente von ©, so haben c1^) und c1^) genau dann
denselben Rand, wenn a und 6 in derselben rechtsseitigen Restklasse von §
nach © hegen Die Menge der rechtsseitigen Restklassen von © nach §
bezeichnen wir im folgenden mit ©/£> und verstehen unter emer
,,Restklasse" stets eme ,,rechtsseitige Restklasse" Aile Wege, die Reprasen-
tanten von Elementen emer Restklasse X von ©/§ uberlagern, besitzen
denselben Endpunkt Wir bezeichnen îhn mit O(X), O(X) uberlagert 0.
Verschiedenen Restklassen werden dadurch verschiedene Eckpunkte zu-
geordnet Fur Elemente h €§ und a e © ist ^(ha) c1^) + C1(a),
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denn ein h reprâsentierender Weg wird von einem geschlossenen Weg
ùberlagert.

1.6. Nur endlich viele der Wege wt von K, die einen Weg w von K
tiberlagern, haben mit einem vorgegebenen endlichen Teilkomplex von
K einen nieht leeren Durchschnitt.

Beweis : Es genugt zu zeigen, daB ein Eckpunkt P von K nur Eckpunkt
von endlich vielen der Wege wt ist. Die Eckpunkte von w seien in ihrer
Reihenfolge Pl5 Pn Ist Pk Projektion von P, so gibt es genau einen
Weg wlk, dessen k-tev Eckpunkt P ist.

2. Satz I.
2.1. K sei Ûberlagerungskomplex des endlichen und zusammen-

hàngenden Komplexes K ; in K sei ein Eckpunkt 0, in K ein 0 ûber-
lagernder Eckpunkt ausgezeichnet. Nach Auszeichnung dieser
Eckpunkte gehôrt zur Ûberlagerung eindeutig eine gewisse Untergruppe §
der Fundamentalgruppe © von K. Der Satz I besagt in einer vorlâufigen
Formulierung, daB die Gruppen jB1(K) und EX(K) durch © und ihre
Untergruppe § bestimmt sind (und zwar als Gruppen mit der Deck-
transformationengruppe als Operatorgruppe).

2.2. Es sei Z1 die Gruppe der Cozyklen von K. Wir bilden Z1 homo-
morph ab in eine Gruppe von Funktionen auf © mit Werten in /. Nach
1.5 gehôrt zu jedem Elément a e © eindeutig ein Elément c1^) der
Gruppe flVÔ1 von K.

Dem Cozyklus C1 e Z1 ordnen wir die Funktion / (a) C1 • c1 (a) auf
© zu. Wird die Addition von Funktionen auf © mit Werten in J wie
ublich erklàrt, so ist dièse Zuordnung ein Homomorphismus I) von Z1

auf eine Gruppe von Funktionen auf ©. Es soll nun untersucht werden,
welche Funktionen beim Homomorphismus ï) Bild eines Cozyklus sind.

2.21. Es sei f(x) eine Funktion auf © mit Werten in J, die beim
Homomorphismus ï) Bild eines Cozyklus C1 ist. Dann ist fur h € § und

f{h)
Beweis: f{ha) C^-^Qba) C^fc1^) + c1^)]

C^cHh) + Ci-cM») - f(h) + f(a)

2.22. Nach 2.21 ist die Funktion F(x) f(xa) — f(x) (a testes
Elément von ®) konstant auf den Restklassen von © nach §? wenn f(x)
Bild eines Cozyklus ist. Es ist daher F(x) in naturlicher Weise eine Funktion

auf den Restklassen von ©/§ zugeordnet ; wir bezeichnen dièse
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Funktion mit F(X). Wir zeigen min, daB es nur endlich viele Restklassen
gibt, auf denen F(X) einen von 0 verschiedenen Wert hat. Diesen Sach-
verhalt werden wir auch folgendermaBen ausdriicken : Es ist F (X) 0

fiir fast aile X e ©/§. Dieselbe Sprechweise verwenden wir auch in
anderem Zusammenhang.

Beweis : Es sei w ein das Elément a der Fundamentalgruppe repràsen-
tierender Weg : w (X) sei der w ûberlagernde Weg mit dem Anfangspunkt
O(X) und cx(X) die zum Wege w(X) gehôrende Kette. Fur C1 eZ1
istdann: C1 - [c1 (x a) — c1 (x)] C1 - c1 {X), xeX. Nachl.6ist \ C1 \

fremd zu fast allen Wegen w(X), d. h. F(X) C^c^X) 0 fiir fast
aile X

2.3. Es sei 0(©,|>) die Gruppe der Funktionen f(x) auf © mit
Werten in J, die die beiden folgenden Bedingungen erfullen :

1) Fiir Ac§ und a € © ist f{ha) f(h) + f(a).
Bei festem a ist daher die Funktion f(xa) — f(x) konstant auf den

Restklassen von ©/£> und es kann die Funktion f(Xa) — f(X) auf
betrachtet werden.

2) f(Xa) — f(X) 0 fur fast aile X e ©/§.
In 2.2 wurde gezeigt, daB der Homomorphismus î) die Gruppe Z1 in

§) abbildet ; wir zeigen nun, daB ï) eine Abbildung von Z1 auf
£>(©,£>) ist.

Den Beweis zerlegen wir in die folgenden Nummern :

2.31. In Jl werde jeder Eckpunkt P durch einen Weg v(P) mit 0
verbunden ; v(O) sei der Nullweg. Ist P ein Eckpunkt von K, so sei v(P)
der Weg in K mit dem Anfangspunkt P, der v (P) ûberlagert ; der End-
punkt von v(P) ist ein Eckpunkt O(X). Wir ordnen jedem Eckpunkt P
diejenige Restklasse X(P) zu, daB O(X(P)) der Endpunkt von v(P) ist.
Es sei w ein Weg von K mit dem Anfangspunkt P und dem Endpunkt Q ;

wir setzen X(w) X(P). Die Projektion des Weges v~1(P)wv(Q) ist
ein geschlossener Weg in K mit dem Anfangspunkt 0 ; es gehôrt also zu
ihm ein gewisses Elément a a(w) der Fundamentalgruppe von K.
Man sieht leicht, daB die Funktionen X (w) und a(w) die folgenden Eigen-
schaften besitzen :

a) Besitzen v und w dieselbe Projektion, so ist a(v) a(w).
b) Besitzen v und w verschiedene Anfangspunkte mit derselben

Projektion, so ist X(v) ^X(w).
c) Ist w homotop 0 (also insbesondere geschlossen), so ist a(w?)gleich

dem Einselement von © : a (w) e.
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d) Sind v und w zwei Wege, die nxiteinander multipliziert werden
kônnen (d. h. ist der Endpunkt von v gleich dem Anfangspunkt von «?),

so ist
X(vw) X(v) X (v) a (v) X (w) a(v w) a(v) a(w)

2.32. Es sei nun f(x) ein Elément von <Z>(®, §). Wir ordnen /(a;)
die folgende Funktion auf den Wegen von K mit Werten in J zu :

Wir leiten nun einige Eigenschaften der Funktion C1 (w) lier :

a) Ist der Weg w homotop 0, so ist Cl(w) 0.

Beweis : Wenn w homotop 0 ist, so ist a(w) e.

b) Sind v und w zwei Wege, die miteinander multipliziert werden
kônnen, so ist C1{vw) Cx(v) + G1(w).

Beweis :

f(X(vw))
v)) + f(X(v)a(v)a(w))-f(X(v)a(v))

e) Aus a) und c) folgt unmittelbar :

d) Sind wt Wege mit derselben Projektion aber verschiedenen An-
fangspunkten, so ist G1(wt) 0 flir fast aile w%.

Beweis : a(wt) a, X(wt) Xt ; fur i ^ j ist Xt =£ Xô.

C1(wi) f(Xt a) — f(Xt), und dièse BifiEerenz ist 0 fur fast aile i.

2.33. Es werde nun der Funktion G1 (w) iolgendermaBen eine Funktion

C1 auf den Kanten von K mit Werten in J zugeordnet : Der Wert
von C1 auf der Kante x1 sei gleich G1(w), wobei w der Weg ist, der die
Kante x1 einmal in der gegebenen Orientierung durchlâuft. Nach 2.32
c) ist C1 eine ungerade Funktion der Kanten, es kann daher C1 aufgefaBt
werden als Kette. Die Kette C1 ist endlich : Nach 2.32 d) besitzt C1 nur
auf endlieh vielen Kanten mit derselben Projektion einen von 0 ver-
sehiedenen Wert, und da der Komplex K endlich ist, folgt daraus die
Behauptung. Aus 2.32 b) folgt : Gehôrt zum Wege w die Kette c1, so ist
(71.01 Cl(w).

Die Kette G1 ist ein Cozyklus.
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Beweis : Zu einer zweidimensionalen Zelle x2 gibt es einen Weg w mit
folgenden Eigenschaften : w ist homotop 0, und die Kette, die zu w
gehôrt ist der Rand dx2 von x2. Naeh 2.32 a) hat C1 auf dx2 den Wert 0 ;

es hat daher der Corand ôC1 von C1 auf der Zelle x2 den Wert 0 : C1 ist
Cozyklus.

2.34. Wir zeigen, dafi der in 2.2 defînierte Homomorphismus ï) den
Cozyklus C1 auf die Funktion f(x) abbildet, von der wir ausgegangen
sind. Es sei a e © ; w sei ein Weg von K mit denx Anfangspunkt O,
dessen Projektion zu a gehôrt. Ist c1 die dem Wege w entsprechende
Kette, so ist der Wert von I) C1 auf a gleich C1^1. Aus a(w) a und
X(u>) $ folgt:

/(a)

Damit ist gezeigt, daB fj die Gruppe Z1 der Cozyklen von K auf die Gruppe
§) abbildet.

2.4. ^((S,^) sei die Untergruppe derjenigen Funktionen von
§), die auf den Elementen von § den Wert 0 haben. Das Urbild

von @1(($>, §) beim Homomorphismus r) ist die Gruppe AX{K) (Définition

in 1.3).
Beweis: 2.41. Es sei C1 e A1. Ist A e §, so ist c1^) ein Homologie-

zyklus. Es ist daher C^-c1^) 0, d. h. das Bild von C1 beim
Homomorphismus ï) gehôrt zu 0X(©,§).

2.42. Es sei ï) C1 — /(x) e 0X(©,§). Zu jedem Zyklus c1 in K
existiert ein A c §, so daB c1 in c1 (A) liegt

Cfi.c1 C1-c1(A) /W O d.h. C1*^1.
2.5. Fiir /(a?) c ^(©,§1 ist (A e g) /(fc a) - /(A) + /(a) /(a),

d. h. f(x) ist auf Restklassen von © nach § konstant ; es gehôrt daher zu
f(x) eine Funktion f(X) definiert auf den Restklassen X e ©/$. Es sei

#2(©> $>) die Untergruppe derjenigen /(#) von ^(S, §), zu denen es

ein solches c e J gibt, daB /(X) c fur fast aile X e ©/§.
Das Urbild von $2(©, £) beim Homomorphismus ï) ist die Gruppe

der Corànder

Beweis: 2.51. Es sei C1 Corand : C1 ôC°. Nach 2.4 gehôrt f(x)
I) C1 zu #i(©,<&). Liegt a in der Restklasse ^1, so ist

f(a) f(A) C^cM») «^.cH») C^ScM») C°-O(A) - C°-

und da C° endlich ist, ist f(A) — C°-O fur fast aile Restklassen
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2.52. Es gehôre anderseits das Bild von C1 beim Homomorphismus I)

zu <2>2(©5«D)- ^u jedem Eckpunkt P werde eine Kette dx(P) so be-

stimmt, daB dd1(P)=P~O. Wir definiercn eine nulldimensionale
Kette F0 (mit Koeffizienten aus J) durch F°'P C1-d1(P). F0 ht un-
abhàngig von der speziellen Wahl von dx(P), demi nach 2.4 liât C1 auf
allen Zyklen den Wert 0. Man sieht leicht, daB ÔF° C1. Die Kette F0
braueht nicht endlich zu sein ; wir zeigen aber, daB F0 auf fast allen Eck-
punkten denselben Wert c e J liât.

Nach Définition von f) C1 f(x) ist

f(X) C1-d1(O(X)) F°-O(X)

und da f(x) e $>2(©> §)> so i&t F°-O(X) — c fur fast aile Restklassen
X e ©/£>. Es seienP, die Eckpunkte von K, die einen Eckpunkt P von K
ûberlagern ; es sei w ein Weg von 0 nach P, wt seien die Ûberlagerungs-
wege von OH nach Pt und cj die zu wt gehôrigen Ketten. Es ist F°'Pt —

F°'OH C1%- c] ; nach 1.6 sind fast aile wt fremd zu \ C1 \ es ist
daher C1 • c] 0 fur fast aile i. F0 hat auf fast allen Eckpunkten Pf
den Wert c, und da K endlich ist uberhaupt auf fast allen Eckpunkten P.
Es sei E° die Kette, die auf allen Eckpunkten den Wert c liât ; die Kette
(j^o _ Eo) jst endlich, und es ist Ô(F° - E°) ÔF° C\ d. h. C1 ist
Corand.

Wir haben damit gezeigt : Der Homomorphismus Ij bildet Z1 auf

$(©,§) ab; die Urbilder der Gruppen #i(©,§) und ^(©5§) bei
dieser Abbildung sind die Gruppen A1 und H1. ï) induziert daher einen
Isomorphismus t der Cohomologiegruppe B1 Z1!!!1 von K auf die
Gruppe <£(©, §)/(P2(© ,§) £(©,§), der die Untergrappe i/1
von jB1 auf die Gruppe 01(<5, S)/<Pa(© > S) ^(©^ S) abbildet.

2.6. Wir fassen zusammen :

Définition. Es sei : © eine (multiplikativ geschriebene) Gruppe, § eine

Untergruppe von © ; J eine abelsche (additiv geschriebene) Gruppe ;

<P((S, ô) die Gruppe der Funktionen /(#) auf © mit Werten in J, die die
folgenden beiden Eigenschaften haben :

1) Fur Ae§ und ae© ist f(ha) f(h) + f(a),
2) fur festes a e © ist f(x a) f(x) fur aile # e © mit Ausnahme

der x aus hôchstens endlich vielen (rechtsseitigen) Restklassen von ©
nach § ;

0X(©,£)) die Gruppe derjenigen Funktionen aus 0(©,£))> die auf
den Elémenten von § den Wert 0 haben; 02(&, §) die Gruppe der-
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jenigen Funktionen aus 01(®, £)), die auf alîen Eîementen — mit Aus-
nahme derjenigen aus endlich vielen (rechtsseitigen) Restklassen von (5

nach § — einen konstanten Wert haben.

Satz I. K sei ein endlicher zusammenhàngender Komplex mit der

Fundamentalgruppe © ; K sei eine Uberlagerung von K, die zur Unter-

gruppe § von (5 gehôrt. Dann gibt es einen Isomorphismus der ersten Co-

homologiegruppe B1 von K (berechnet unter Zugrundelegung endlicher Kftten
und des Koeffizientenbereiches J) auf die Gruppe @((5, §)/$2(©> §>)

-B(©, §), der die Gruppe E1 der eindimensionalen Cohomologieklassen, die
auf allen Zylden den Wert 0 haben, auf die Gruppe ^((S, ÔV^M©* S) —
E (<8, %) abbildet.

2.7. Gehôrt die Uberlagerung K von K zur Untergruppe § von (5,
so ist die Decktransformationengruppe von K (d. h. die Gruppe derjeni-
gen Âutomorphismen von K, die mit der Projektion von K auf K ver-
tauschbar sind) isomorph zur Faktorgruppe Sft/S) des Normalisators 91

von § in © nach § (Seifert-Threlfall [17], S. 198). Die Decktransformationengruppe

gibt AnlaB zu Automorphismengruppen der in der Homo-
logie- und Cohomologietheorie von K auftretenden Gruppen. Aile jene
Gruppen identifizieren wir.

2.8. Es soll nun die Faktorgruppe 9î/§ als Automorphismengruppe
von B((&, £)) erklaH werden ; dazu erklâren wir zunâchst 91 als
Automorphismengruppe von 0 (©,£))•

Ist ae9l und /(x) e 0(®, S), so sei

a f(x) /(a"1 xa)

Man zeigt leicht, daB mit f(x) auch af(x) zu $(©,!)) gehôrt; die
Elemente von 91 sind damit als Automorphismen von (f>(®, §) erklârt,
und zwar bilden sie die Gruppen $\(©, §) (i 1,2) auf sich ab.

Die Elemente von § bilden f(x) e 0 (©, §) in eine modulo $2(©> §)
kongruente Funktion ab.

Beweis: Es ist zu zeigen, daB fur h e $>

1) Sei k e § ; dann ist

/(*) - h f(k) f(k) - f(h~i fc A) /(&) + f(h) - f(k) - /(A) 0

2) f(X)-hf(X) /(Z) - /(Hli) - /(Z) - /(Z A)

und dièse Dififerenz ist gleich 0 fur fast aile X e ©/jr>.
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Es ist demnach die Grappe 9t/£> in natûrlicher Weise als Automor-
phismengruppe von $(©, §)/^2(©, %)) B(($>, £)) erklàrbar ; die Auto-
morphismen von 9l/§ bilden die Untergruppe E1 auf sich ab.

Satz F. K sei ein endlicher zusammenhàngender Komplex mit der Fun-
damentalgruppe © ; K sei eine Ûberlagerung von K, die zur Untergruppe
<r> von © gehôrt. Dann existiert ein Operatorisomorphismus der Gruppe
B1^) auf die Gruppe J3 (©,£), der E1(K)auf #(©,§) abbildet. Dabei
ist die Faktorgruppe Jt/§ des Normalisators 5R von § m © nach § die (7e-

meinsame Operatorgruppe.

Dem Beweis schicken wir einen Hilfssatz voraus : Es sei /( x) e<2>(©,§),
n e 31 (Normalisator von § in ©) ; dann ist n f(x) — {fin-1 x) — fin"1))
«*,(©,$).

Beweis : 1) Es sei h e § ; dann ist auch n"1 h n e $

fin-1 h) - /(ti-1) /(tz,-1 hnn-1) - /(t*-1)

/(ft-1 h n) + /(n,-1) - /(rc-1) w /(A)

2) Es ist /(In)-/(I) 0 fur fast aile X c ©/§ ; mit Y durchlâuft
n"1 Y die Restklassen von ©/§, und es ist daher / [n~x Y n) — / (n~x Y)

0 fur fast aile Y e ©/£.

/(ft-^n) - (fin-1 Y) - fin'1)) f^1) c fur fast aile Y c ©/§.

Beweis von Satz V: Wir zeigen, daB der durch den in 2.2 definierten
Homomorphismus induzierte Isomorphismus von BX(K) auf 2?(©,<?>)

operatortreu ist. Es sei C1 eZ1, I) C1 f(x), n e 91 ; die Restklasse von
7i in 5R/§ bezeichnen wir mit (n). (n) fassen wir auf als Automorphismus
von Z1, S1/^1 usw- ^s sei $(n) C1 0(^0 ' dann ist

g (a) (w) C^cH») C1-^)-1 c^a)

Aus der Définition von c1 (a) folgt unmittelbar :

(n)-1 cHa) c1^"1 «) — c1^"1)

und es ist daher g (a) f (n-1 a) — / (n-1) ; nach dem Hilfssatz sind
g(x) und nf(x) modulo $2(© > *0) kongruent, d. h. der durch ï) induzierte
Isomorphismus von B1 auf £(©,§) ist operatortreu.

3. Projektion. Satz IL
3.1. Der Komplex K uberlagere den Komplex K. Die Projektions-

abbildung von K auf K ist mit der Rand- und Coranbildung in K und K
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vertauschbar ; sie induziert daher Homomorphismen der in der Homo-
logie- und Cohomologietheorie auftretenden Gruppen von K in die ent-
sprechenden Gruppen von K. Aile dièse Homomorphismen bezeichnen
wir mit U.

3.2. K2 uberlagere K1, K1 iiberlagere den endlichen zusammen-
hângenden Komplex K. Es soll in diesem Abschnitt der Homomorphis-
mus von JS^K2) in jB1(K1) auf Grund der Fundamentalgruppe © von K
und der Untergruppen von ©, die zu den beiden Ûberlagerungen gehôren,
beschrieben werden.

0 sei der Pol der Fundamentalgruppe © von K ; O1 sei ein Eckpunkt
von K1, der O iiberlagert, O2 sei ein Eckpunkt von K2, der O1 und damit
auch O Iiberlagert. Es seien §z (i 1,2) die Untergruppen von ©, die
zu den Ûberlagerungen J8C* und den ausgezeichneten Eckpunkten O%

gehôren. Da O2 den Eckpunkt O1 iiberlagert, ist §2 Untergruppe von §x.
Durch die Wahl von O1 ist der im letzten Abschnitt konstruierte Iso-
morphismus it von Bx(Kl) auf -B(©,§t) eindeutig bestimmt. Wir be-
schreiben den Homomorphismus U von jB1(K2) in B1^1), indem wir
den Homomorphismus V x1 U xj1 von B(®, §2) in £(©, ôx) be-
schreiben.

3.3. Es sei C1 eine endliche Kette (mit Koeffizienten aus J) in K2,
UC1 ihre Projektion in K1 ; c1 sei eine (endliche oder unendliche) ganz-
zahlige Kette in K1, U"1 c1 ihr vollstândiges Urbild in K2. Dann ist

3.4. Zum Cozyklus C1 in K2 gehôre die Funktion f(x) aus
zu seiner Projektion in K1 die Funktion F (x) aus $(©, §x). Wir zeigen,
wie die Funktion F(x) aus f(x) berechnet werden kann. Um den Wert
der Funktion F(x) auf einem Elément a € © zu berechnen, haben wir
in K einen a reprâsentierenden Weg w zu wâhlen, diesen Weg in den ihn
ûberlagernden Weg w mit dem Anfangspunkt O1 in K1 durchzudrucken
und das dem Weg w entsprechende Elément c1 von S1 (K1) zu bestimmen ;

dann ist F (a) UW-c1.
Wir betrachten nun die im allgemeinen unendliche Kette U~x c1 von

K2. Sind w\ die Wege von K2, die den Weg w ûberlagern, und gehôren

zu den Wegen w\ die Ketten c\, so ist JJ-1 c1 £c\. Die Wege w\ lassen
i

sich auch folgendermaBen charakterisieren : Sie iiberlagern den Weg w
und beginnen in einem Eckpunkt O2(X) von K2, wobei X eine Rest-
klasse aus Ih/êa ^ (dabei bezeichnet §i/§2 die Menge der Restklassen

von © nach §2> die in ^ liegen).
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Es sei c1(o?) die zur Ûberlagerung JSl2 von K gehôrende Funktion auf
© mit Werten in fi1/^1- -^r festes a e © ist c1(x a) — cx(x) konstant
auf Restklassen von © nach §2 ; es ist daher c1(X a) — C1(Z) (Ie®/§2)
in natiirlieher Weise erklârbar. Aus der zweiten Charakterisierung der
Wege w\ folgt leicht : Beginnt der Weg w\ im Eckpunkt O2(X), so gehôrt
c\ zur Restklasse c1 (X a) — c1 (X). Es ist daher

UC1 •c1=:C1-U-1c1 C1- Ecl^C1 • v [cM-ï a) - c1^)]

(die letzte Summe ist zu erstrecken ûber die Restklassen X e ^J^) •

Weiter gilt :

[cx{Xa) - CX{X)] 2 C1 • [

wir haben daher gezeigt : Gehôrt zum Cozyklus C1 in K2 die Funktion
f(x) aus #(©,i?)2)> so gehôrt zu UC1 in K1 die Funktion F(x) aus

j), die folgendermaBen definiert ist:

[f(Xa)-f(X)]

3.5. Wir fassen das Ergebnis in einer Définition und eineni Satz zu-
sammen. Die nicht bewiesenen Behauptungen ergeben sich fur Gruppen
©, die als Fundamentalgruppen eines endlichen Komplexes auftreten,
unmittelbar aus der geometrischen Interprétation ; die entsprechenden
Beweise kônnen aber auch leicht fur beliebige Gruppen algebraisch ge-
fùhrt werden.

Définition : © sei eine Grappe, ^ (i 1, 2) seien Untergruppen von
©, §2 Untergruppe von ^±. V sei der folgendermaBen definierte Homo-
morphismus von $(®,§2) in ^(©,§i):

[f(Xa)-f(X)]

(Die Summe, die ûber aile Restklassen X von © nach £>2 m Ôi zu er"
strecken ist, ist endlich.)

F bildet die Gruppe &2{$>$)%) m ^a(©>Si) ab und induziert daher
einen — auch mit F bezeichneten — Homomorphismus von i?(©, §2) in
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Satz II. Der endhche zusammenhangende Komplex K werde von den

Komplexen K1 und K2 uberlagert, K2 uherlagere K1 Die zu den Vberlage-

rungen gehorenden Untergruppen $)t (i 1, 2) der Fundamentalgmippe ©
von K seien so gewahlt, dafi §2 TJnteujrnppe von $)1 ist U bezeichne den

natw lichen Homomorphismus der ersten Cohomologiegruppe Bl(K2) von
K2 in die erste Cohomologiegruppe jB1(jfiC1) ton K1 Dann gibt es solche Iso-
morphismen \% von JS^JK?) auf B((S, §J (i 1, 2), daji xx U Ft2.

3 6 Ist K em endlicher zusammenhangender Komplex mit der Fun-
damentalgruppe (5, so ist nach Satz I B1^) 0((5, ©)/^2(©? ©)
<Z>(®, ©) ist die Gruppe dei homomorphen Abbildungen von © m /,
^2(®5 ©) 1S^ die Nullgruppe Die Gruppe Bl(K) ist daher isomorph der
Gruppe der homomorphen Abbildungen von © m J (B Eckmann [1],
S 267)

Es sei K eme endhche Uberîagerung von K, die zur Unteigruppe §
von © gehort, da § Fundamentalgruppe von K ist, so ist jB1(jfiC) iso
morph dei Giuppe der homomorphen Abbildungen von § m J Der
naturliche Homomorphismus von BX(K) in BX{K) laBt sich folgender-
maBen beschreiben

Es sei v(x) die Verlagcrurg von © m § (vgl H Zassenhaus [21],
S 131), v(x) ist eme homomorphe Abbildung von © m die abelsch ge
maehte Gruppe $ von § Die Cohomologieklasse C1 mduziere auf § den
Charakter f(x), dann mduziert die Piojektion C7 C1 von C1 m ^ auf ©
den Charakter f(v(x))

Der Beweis folgt leicht aus Satz II

4. Die erste Cohomologiegruppe eines Komplexes

Salz III. Die erste Cohomologiegruppe eines Komplexes, berechnet

unter Zugrundelegung ganzzahhger endlicher Ketten, ist eme freie abelsche

Gruppe

Der Inhalt dièses Abschmttes besteht îm wesentlichen îm Beweis
dièses Satzes Wir duifen uns dabei ohne Emschrankung der Allgemem-
heit auf zusammenhangende Komplexe beschranken

4 1 K sei em zusammenhangender Komplex, der Cohomologie-
theone werde em behebiger Koeffizientenbereich J (und endhche Ketten)
zugrunde gelegt Wir wollen die Untergruppe El der ersten Cohomologiegruppe

B1 von K (Définition m 1 3) auf eme neue Art charakterisieren
Es sei W die Gruppe der nulldimensionalen (endlichen oder unend-

lichen) Ketten C° mit Koeffizienten aus J, deren Corand endlich ist Es
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sei Q die Untergruppe derjenigen Elemente von W, die nur auf endlich
vielen Eckpunkten einen Wert haben, der nicht gleich einer gewissen
Konstanten ist. Dann ist die Gruppe E1 isomorph der Faktorgruppe
WjQ, und zwar lâBt sich ein Isomorphismus von WjQ auf E1 folgender-
maBen definieren : Es bezeichne ô die Corandbildung, h den natiïrlichen
Homomorphismus der Gruppe der Cozyklen Z1 (K) auf J51 (K) ; dann
bildet h ô die Gruppe W homomorph auf E1 ab, und der Kern dièses

Homomorphismus ist 12.

Der Beweis bietet keine Schwierigkeiten.

4.2. Es sei C° eine Kette aus W. Durch C° wird die Menge der Eck-
punkte von K in Klassen solcher zerlegt, auf denen C° einen konstanten
Wert hat. Man sieht leicht, daB die Anzahl dieser Klassen endlich ist.

Bemerkung : Eine Kette, die auf den Eckpunkten einer dieser Klassen
einen konstanten Wert, auf allen andern Eckpunkten den Wert 0 hat,
gehôrt zu W ; daraus folgt, daB jede Cohomologieklasse von E1 rein (von
erster Art) ist.

4.3. Im folgenden sei der Koeffizientenbereich die additive Gruppe
der ganzen Zahlen. Wir zeigen vorerst, daB die Gruppe E1 eine freie
abelsche Gruppe ist. Wir stiïtzen uns dabei auf den folgenden bekannten
Hilfssatz (vgl. Pontrjagin [15], S. 168 ; der Satz ist dort etwas anders

formuliert) :

Daflir, daB eine abelsche abzâhlbare Gruppe eine freie abelsche Gruppe
ist, sind die beiden folgenden Bedingungen hinreichend :

1) sie enthâlt kein Elément endlicher Ordnung ;

2) jede ihrer Untergruppen endlichen Ranges besitzt endlich viele Er-
zeugende.

Bemerkung : Eine abelsche nicht-abzàhlbare Gruppe braucht nicht
frei zu sein, auch wenn sie die Bedingungen 1) und 2) erfûllt.

Die Gruppe E1 ist abzâhlbar. Wir zeigen, daB WjQ die Bedingungen 1)

und 2) erfûllt.

ad 1) Es sei C° eV, nC° eQ (n ganze Zahl) ; es hat nC° auf fast
allen Eckpunkten denselben Wert. Dann hat auch C° selbst auf fast
allen Eckpunkten denselben Wert, d. h. C° e Q. W/Q enthâlt demnach
kein Elément endlicher Ordnung.

ad 2) Es sei T eine Untergruppe endlichen Ranges von WjQ. T
enthâlt solche linear unabhângige Elemente al5 (T2?..., op, daB fur jedes
g € T die Elemente a, al9..., ap linear abhângig sind.

318



C\ (i 1,.. ,,p) seien Reprâsentanten von at in W. Jedes C\ gibt
gemâB 4.2 AnlaB zu einer Klasseneinteilung {50lf} (k 1,..., qt) der
Eckpunktmenge. {9lfe} (& 1,..., n) sei die Superposition dieser
Klasseneinteilungen, d. h. die folgendermaBen definierte Klasseneinteilung

: Zwei Eckpunkte gehôren genau dann zur selben Klasse $V, wenn
sie in jeder Klasseneinteilung {SOtf} zur selben Klasse gehôren.

Es gibt — wie leicht zu sehen — in 9t? nur endlieh viele Eckpunkte,
die mit einem Eckpunkt, der nicht zu $V gehôrt, durch eine Kante ver-
bunden sind. Ist daher F® die charakteristische Funktion von 9t* (F\ hat
auf den Eckpunkten von 91* den Wert 1, sonst den Wert 0), so gehôrt
F\ zu W. Es seien rt die Restklassen von W/D, zu denen die Ketten F\
gehôren. Wir zeigen, daB T eine Untergruppe der von den rt erzeugten
Gruppe ist.

Zu a € T gibt es Zahlen t, t%, so daB

ta JS tt at t # 0
i

Es sei C° ein Représentant von a in W ; dann gibt es eine endliche Kette
E° und eine Kette D°, die auf fast allen Eckpunkten denselben Wert hat,
so daB

t C° £ tt C\ + E° + D°

Es sei (g die Menge der Eckpunkte, auf denen E° einen von 0 verschiede-
nen Wert hat ; (£ ist endlieh. Die Ketten C\ haben auf den Eckpunkten
von yV einen konstanten Wert ; es hat daher t C° auf den Eckpunkten
von W^(g einen konstanten Wert, und dasselbe gilt auch fur C° selbst.
C° habe in den Eckpunkten von 91^ (g den Wert st ; fails 91* ^ (g leer
ist, sei st beliebig.

Die Ketten C° und SstF\ unterscheiden sich hôchstens in Werten
auf den Eckpunkten von (g ; die entsprechenden Elemente und Z st r{
von W/Q sind daher gleich. Die Gruppe T besitzt als Untergruppe einer
abelschen Gruppe mit endlieh vielen Erzeugenden selbst endlieh viele
Erzeugende. Damit ist gezeigt, daB die Gruppe E1 eine freie abelsche

Gruppe ist.

4.4. Wir zeigen nun, daB die Gruppe B1^1 eine freie abelsche

Gruppe ist. Dièse Gruppe ist abelsch und abzàhlbar ; wir werden wieder
den Hilfssatz au s 4.3 verwenden.

^&X(K) sei die erste Homologiegruppe von K (berechnet unter Zu-
grundelegung ganzzahliger endlicher Ketten) ; jedes Elément von B1

gibt AnlaB zu einem Charakter von S1 (d. h. einer Abbildung von S1
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in die additive Grappe der ganzen Zahlen). Und zwar geben genau die
Elemente von E1 AnlaB zum Nullcharakter. Die Gruppe BxjEl ist daher
isomorph einer Untergruppe X der Charaktergruppe von SB1. Als Gruppe
von Charakteren besitzt X kein Elément endlicher Ordnung. Sei weiter
U eine Untergruppe endlichen Ranges von X. Es gibt in U solche
Elemente ft (i — 1,..., m), da8 es zu jedem Elément / e U Zahîen t, t%

(i 1,..., m) gibt, so daB

Der Kern des Homomorphismus ft von S1 in die Gruppe der ganzen
Zahlen sei <$>l ; die Faktorgruppe SB1/©* ^ zyklisch. Daraus folgt leicht,
daB die Faktorgruppe von SB1 nach demDurchschnitt A%5t der Gruppen
33

e endlich viele Erzeugende besitzt. Jeder Charakter der Form 2ttft
besitzt auf den Elementen von A5Bl den Wert 0 ; das&elbe gilt von ailea
Charakteren aus U. U ist daher isomorph einer Untergruppe der Charak-
terengruppe von ^B1/AfBt und besitzt folglich nach bekannton Sdtzen endlich

viele Erzeugende.

4.5. Aus der Tatsache, daB B1jE1 und E1 freie abelsche Gruppen
sind. folgt unmittelbar, daB auch B1 selbst eine freie abelsche Gruppe ist.

5. Die Gruppen Bl und E1 und die Enden eines Komplexes

Zur Endentheorie vergleiche man H. Freudenthal [7] und H. Hopf
[10]. Die Kenntnis dieser Arbeiten ist fur das Yerstândnib des folgenden
nicht unbedingt notig ; denn der grundlegende Satz, den wir diesen
Arbeiten in 5.1 entnehmen, kann auch als Définition der Sprechweise
?,der zusammenhângende Komplex K hat n (unendlich viele) Enden1'

aufgefaBt werden.

5.1. Ist K! Teilkomplex des Komplexes K, so verstehen wir unter
K — K' den folgendermaBen defmierten Teilkomplex von K : Ein Sim-

plex von K gehôrt genau dann zu K — K', wenn es (echie oder unechte)
Seite eines Simplexes ist, das nicht zu K' gehort.

Satz (Définition) : K sei ein zusammenhângender Komplex. K hat
mindestens n Enden, wenn es einen solchen endlichen Teilkomplex Kr
von K gibt, daB K — Kf mindestens n unendliche Komponenten
besitzt. K hat n Enden, wenn er mindestens n und nicht mindestens n + l
Enden hat ; K hat unendlich viele Enden, wenn fur aile n gilt, daB K
mindestens n Enden hat.
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Es folgt unmittelbar : Ein unendlicher zusammenhangender Komplex
hat entweder eine bestimmt endliche Anzahl ^ 1 oder unendlich viele
Enden ; ein endlicher Komplex hat 0 Enden.

5.2. Satz IV. Der Rang der Untergruppe E1 der ersten Cohomologie-

gruppe eines unendlichen zusammenhangenden Komplexes (berechnet unter
Zugrundelegung endlicher ganzzahliger Ketten) ist gleich der um 1 vermin-
derten Anzahl der Enden des Komplexes, d. h. n — 1, wenn der Komplex
n Enden hat, unendlich, wenn er unendlich viele Enden hat.

Bemerkung : Die Grappe E1 eines endlichen Komplexes ist die Null-
gruppe. Tst die erste Homologiegruppe eines Komplexes die Nullgruppe,
so ist die erste Cohomologiegruppe B1 gleich E1 ; es ist also in diesem
Palle B1 durch die Endenzahl bestimmt.

Beweis von Satz IV. Es genugt zu zeigen : Besitzt der Komplex K
mindestens n Enden, so ist der Rang von E1 mindestens gleich n — 1

ist der Rang von E1 mindestens gleich m, so hat K mindestens m -\- 1

Enden.
Wir benutzen beim Beweis die in 4.1 ausgesprochene Isomorphie

je* ~ 370.
K habe mindestens n Enden, d. h. es gebe einen solchen endlichen

Teilkomplex Kr von K, daB K — Kf mindestens n unendliche Kompo-
nenten Kt (i 1,. n) besitzt. Es sei C\ die charakteristische Funk-
tion der Menge der Eckpunkte von K%, d. h. C\ habe auf den Eckpunkten
von Kt den Wert 1 und auf alien andern Eckpunkten den Wert 0. Der
Corand von C°% ist endlich, demi er ist eineKette aus K1 ; die Ketten Cj
gehoren daher zu W. Die Elemente C® (i 1,..., n — 1) sind modulo Q

n—1

linear unabhangig. Die Kette ^ ttC\, t3 # 0, gehort namlich nicht zu

Q, da sie auf den Eckpunkten von K3 den Wert t3 und auf den Eckpunkten

von Kn den Wert 0 hat. Die Gruppe WjQ hat somit mindestens den

Rang n — 1.

Die Gruppe WjQ von K habe mindestens den Rang m. Es seien 0°

(i 1,. m) m Elemente von W, die modulo Q linear unabhangig sind.
Kf sei der Vereinigungskomplex der Komplexe | ôG\ \ ; K! ist endlich. Die
Ketten C\ haben auf den Eckpunkten einer Komponente von K — K!
einen konstanten Wert ; sind nâmlich P und Q zwei solche Eckpunkte, so

gibt es eine ganzzahlige endliche Kette c1 mit den folgenden Eigen-
schaften :1c1! ist fremd zu K! und de1 — P — Q, und es ist daher
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Es seien D? (i 1,..., p) die charakteristischen Funktionen der Eck>

punktmengen der unendlichen Komponenten von K—Kr ; die den Ketten
J)® (i 1,..., p — 1) entspreehenden Restklassen von WjQ erzeugen
eine Untergruppe, die die Untergruppe umfaBt, welche von den
Restklassen der CJ (i 1,..., m) erzeugt wird ; es ist daher p — 1 > m,
d. h. K hat mindestens m + 1 Enden. Damit ist der Beweis von Satz VI
beendet.

5.3. Korollar : K sei ein endlicher zusammenhângender Komplex mit
der Fundamentalgruppe © ; K sei eine Ùberlagerung von K, die zur
Untergruppe £> von © gehôrt. Dann ist die Anzahl der Enden von K
durch die Grappe © und ihre Untergruppe § bestimmt.

Beweis : Nach Satz I (in 2.6) ist die Grappe EX{K) durch © :> §
bestimmt, und -B1(K) bestimmt die Endenzahl von K.

Bemerkungen : 1. In der Endentheorie wird einem zusammenhângen-
den Komplex K ein gewisser topologischer Raum (E, der Endenraum, zu-
geordnet. Zwisehen der Grappe E1 und dem Endenraum von K besteht
der folgende Zusammenhang : Die Gruppe E1 (berechnet unter Zugrunde-
legung eines beliebigen Koeffizientenbereiches J) ist isomorph der Faktor-
gruppe der stetigen Funktionen auf ® mit Werten in J nach der
Untergruppe der konstanten Funktionen. Dièse Faktorgruppe kann als die
reduzierte milite Cohomologiegruppe von (£ aufgefaBt werden.

Der am Anfang dieser Nummer ausgesprochene Satz làfît sich folgen-
dermaBen verschârfen : Es sei K ein endlicher zusammenhângender Komplex

mit der Fundamentalgruppe ©, K eine tîberlagerung von K, die zur
Untergruppe § von © gehôrt ; dann ist der Endenraum von JSl durch
© :> § bestimmt.

2. Dieser letzte Satz ist bekannt, wenn K regulâre tîberlagerung von
K ist ; und zwar ist (E dann sogar durch die Faktorgruppe ©/£> bestimmt.
Es kann daher in natûrlicher Weise die Endenzahl einer Gruppe definiert
werden, die als Decktransformationengruppe der regulàren Ûberlagerung
eines endlichen zusammenhângenden Komplexes auftritt (H. Hopf [10],
S. 96). Aus Satz IV folgt, daB die Gruppe E1 einer regulàren Ûberlagerung

durch die Decktransformationengruppe bestimmt ist ; unabhângig
vom Endenbegriff folgt dies aus der leicht zu beweisenden Isomorphie :

*i (®, $)/<*• (©, S) ~ *i «5/S, 3)/*. (©/S, 3) •

(<r> ist Normalteiler von ©, 3 die Gruppe, die nur aus dem Einheits-
element besteht.)
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3. Naeh H. Hopf [10], S. 93 besitzt jede regulâre Ûberlagerung eines
endlichen zusammenhângenden Komplexes (und damit jede Gruppe, fur
die die Endenzahl definiert ist) 0, 1, 2 oder unendlich viele Enden.

5.4. Satz V. Die unter Zugrundelegung ganzzahliger Ketten berech-

nete erste Cohomologiegruppe B1 und die Untergruppe E1 von B1 der regu-
lâren unendlichblâttrigen Uberlagerungen eines endlichen zusammenhangen-
den Komplexes sind freie abelsche Gruppen vont Range 0, 1 oder unendlich.

Beweis. Die Gruppen B1 und E1 sind nach Satz III freie abelsehe

Gruppen. Aus dem in Bemerkung 3 zitierten Satz von H. Hopf und aus
Satz IV folgt dîe Behauptung fur die Gruppe E1. DaB auch B1 nur einen
der angegebenen Range haben kann, zeigen wir, indem wir beweisen, daB
die Gruppe B^E1 den Rang 0 oder unendlich hat. Nach 4.4 ist die
Gruppe BX\EX isomorph einer Gruppe X von Charakteren der ersten
Homologiegruppe 331 der Ùberlagerung K. Es seien C] (i 1,..., n)
Cozyklen, f{ die ihnen entsprechenden Homomorphismen von 331 in die
additive Gruppe der ganzen Zahlen ; f1 bilde 33 * nicht auf die Nullgruppe
ab. Nach 4.4 gibt es eine solche Untergruppe 23J von 231, daB 931/93J

endlich viele Erzeugende besitzt und daB jeder Homomorphismus S tt fi
die Elemente von 33£ auf 0 abbildet. Es seien ff (i 1,..., m) Homo-
logiezyklen, die ein Erzeugendensystem von S1/©^ reprâsentieren ; c]
seien Zyklen, die die fe reprâsentieren. Es gibt eine solche Decktrans-
formation a von K, daB |aC11 fremd ist zu allen Teilkomplexen \c]\.
Zu aC1 gehôrt ein Homomorphismus g von S1 in die Gruppe der ganzen
Zahlen, der nicht aile Elemente auf 0 abbildet ; wohl aber hat g auf den

Homologiezyklen Ç{ den Wert 0. Es kann daher g nicht aile Elemente
von 93J auf 0 abbilden ; g liegt nicht in der von den f{ erzeugten
Untergruppe. Damit ist gezeigt : B1\E1 hat entweder den Rang 0 oder den

Rang unendlich.
Bemerkung : Satz V làBt sich folgendermaBen verschàrfen : Die

Gruppen B1 und E1 der regulàren unendlichblâttrigen Uberlagerungen
eines (endlichen oder unendlichen) zusammenhângenden Komplexes sind
freie abelsche Gruppen vom Range 0, 1 oder unendlich.
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II. Anwendungen auf Mannigîaltigkeiten

6. Die zweite Homotopiegruppe von dreidimensionalen

gesehlossenen Mannigfaltigkeiten

6.1. M]l sei eine orientierbare unberandete ?i-dimensionale Mannig-
faltigkeit ; Mn kann endlich oder unendlich sein. Der Homologie- und
Cohomologietheorie von Mn legen wir endliche ganzzahlige Ketten zu-
grunde. Den durch die Dualitât induzierten Isomorphismus der &-ten

Cohomologiegruppe Bk auf die (n — k)-te Homologiegruppe SB11"^ be-
zeichnen wir mit A. Der Isomorphismus A ist vertauschbar mit den
durch einen Automorphismus von Mn induzierten Isomorphismen der
Homologie- und Cohomologiegruppen. Ist Mn eine Ùberlagerung von Mn,
so ist A vertauschbar mit den durch die Projektionsabbildung induzierten

Homomorphismen der Homologie- und Cohomologiegruppen.

Aus Satz III in 4.1 foîgt daher :

Die {n — l)-te Homologiegruppe (berechnet unter Zugrundelegung
endlicher ganzzahliger Ketten) einer orientierbaren unberandeten
%-dimensionalen Mannigfaltigkeit ist eine freie abelsche Gruppe.

Aus Satz II in 3.5 folgt :

Mn sei die universelle Uberlagerung der orientierbaren geschlossenen
^-dimensionalen Mannigfaltigkeit Mn mit der Fundamentalgruppe (S.

Dann sind die {n — l)-ten Homologiegruppen von Mn und Mn sowie der
durch die Projektion von Mn auf Mn induzierte Homomorphismus der
(n — l)-ten Homologiegruppe von M* in die (n — l)-te Homologiegruppe

von Mn durch © bestimmt ; insbesondere sind also auch das Bild
und der Kern dièses Homomorphismus (als Untergruppen der entspre-
chenden Gruppen) durch ® bestimmt.

(Dabei ist die Homologiegruppe von Mn aufzufassen als Gruppe, die
die Deckentransformationengruppe als Automorphismengruppe besitzt.)

Aus Satz IV in 5.2 und Satz V in 5.4 folgt :

Ist Mn regulâre unendlichblâttrige Uberlagerung einer geschlossenen
orientierbaren w-dimensionalen Mannigfaltigkeit, so ist die (n — l)-te
Homologiegruppe von Mn (berechnet unter Zugrundelegung endlicher
ganzzahliger Ketten) eine freie abelsche Gruppe vom Range 0, 1 oder
unendlich ; ist Mn universelle Uberlagerung, so ist dieser Rang gleich der

um eins verminderten Anzahl der Enden der Fundamentalgruppe der

Grundmannigfaltigkeit.
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6.2. Es sei K ein zusammenhângender Komplex. Der Homologie-
theorie von K und seiner Ûberlagerungen legen wir endliche ganzzahlige
Ketten zugrunde. Unter den Homotopiegruppen von K verstelien wir
die Homotopiegruppen des zu K gehôrenden Polyeders K. Naeh S.Eilen-
berg [5] kann die Fundamentalgruppe © von K aufgefaBt werden als

Automorphismengruppe der Homotopiegruppen IJn von K. Es existiert
ein natiirlicher Homomorphismus h der n-ten Homotopiegruppe 23n in
die n-te Homologiegruppe IIn von K ; den Kern von h bezeichnen wir
mit Fn, dasBild von TIn bei h mit Qn. Ksci die universelle Ûberlagerung
von K ; die Fundamentaîgruppe © von K kann aufgefaBt werden als

Decktransformationengruppe von K und daher auch als Automorphismengruppe

der Homologiegruppen 23n(K) von K, Den durch die Projek-
tionsabbildung induzierten Homomorphismus vonfBn(K) in <$>n{K)
bezeichnen wir mit P. Sind die Homotopiegruppen TIm von K fiir 2 ^ m

^ N — 1 Nullgruppen, so existiert ein solcher Operatorisomorphismus i
der iV-ten Homotopiegruppe TIN (K) auf die JV-te Homologiegruppe

daB Pi h.

6.3. Aus den Sâtzen von 6.1 und 6.2 ergibt sich nun umnittelbar :

Satz VI. Die zweite Homotojnegruppe einer geschlossenen dreidimen-
sionalen Mannigfaltigkeit M3 ist eine freie abelsche Gruppe vom Range 0,
1 oder unendlich ; der Rang ist 0, wenn die Fundamentaîgruppe © von Mz
endlich ist oder ein Ende hat, er ist 1 oder unendlich, je nachdem © zwei oder
unendlich viele Enden hat.

Dieser Satz ist von H. Hopf in [9] ohne Beweis ausgesprochen worden ;

die Aufgabc, ihn zu beweisen, bildete den AnstoB fur die vorliegende
Arbeit.

Weiter folgt aus 6.1 und 6.2:
Die Mannigfaltigkeit Jf3 ist genau dann asphârisch (d. h. es ist genau

dann IJm Nullgruppe fur m > 2), wenn ihre Fundamentaîgruppe ein
Ende hat.

Die zweite Homotopiegruppe einer orientierbaren M3 ist als Gruppe
mit dem Operatorbereich © durch © bestimmt ; auch der naturliche
Homomorphismus der zweiten Homotopiegruppe in die zweite
Homologiegruppe ist durch © bestimmt, insbesondere also auch die Unter-
gruppe F2 der Homotopiegruppe FI2, die Untergruppe S2 der
Homologiegruppe 232 und die Faktorgruppe 932/S2.

Die nâhere Beschreibung dieser Abhàngigkeiten ist Satz II in 3.5 zu
entnehmen.
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7. Die zweite Homotopiegruppe
einer dreidimensionalen berandeten Mannigfaltigkeit

7.1. In diesem Abschnitt betrachten wir dreidimensionale orientier-
bare Mannigfaltigkeiten ; M3 bezeichne stets eine solche Mannigfaltigkeit.
Unter einer „berandeten Mannigfaltigkeit" verstehen wir eine
Mannigfaltigkeit mit nicht-leerem Rand. Der Homologie- und Cohomologie-
theorie werden ganzzahlige endliche Ketten zugrunde gelegt.

Der folgende Dualitâtssatz darf als bekannt gelten :

Die zweite Homologiegruppe einer Mannigfaltigkeit Ms ohne endliche
Randflâchen ist isomorph derjenigen Untergruppe der ersten Cohomo-
logiegruppe von M3, deren Elemente Cozyklen enthalten, die auf den
Kanten der Randflâchen den Wert 0 haben.

Ferner werden wir uns wiederholt auf den folgenden Satz von H. Kne-
ser [14] zu stiitzen haben : Auf einer endlichen und von der Kugel ver-
schiedenen Randflâche einer M3 gibt es einen solchen eindimensionalen
Zyklus z1, daB n z1 (n ganz) nur fur n 0 in M3 berandet. Insbeson-
dere ist die Fundamentalgruppe einer if3, die eine endliche und von der
Kugel verschiedene Randflâche besitzt, unendlich.

7.2. Satz VII. Dafûr, dafi eine dreidimensionale orientierbare be-

randete endliche Mannigfaltigkeit asphârisch ist, ist hinreichend, daji sie

keine Kugeln als Randflâchen besitzt und ihre Fundamentalgruppe ein oder

zwei Enden hat.

Bemerkung : Eine endliche Mannigfaltigkeit M3 mit Kugeln als
Randflâchen ist offenbar genau dann asphârisch, wenn sie nur eine Randflâche
besitzt und einfach zusammenhângend ist.

Beweis von Satz VII : Die universelle Ûberlagerung M3 der
Mannigfaltigkeit Mz besitzt keine Kugeln als Randflâchen ; Mz besitzt nâmlich
nach Voraussetzung keine Kugeln und, da M3 orientierbar ist, auch keine

projektiven Ebenen als Randflâchen. Nach dem Satz von Kneser besitzt
M3 daher iiberhaupt keine endlichen Randflâchen. Wenn wir gezeigt
haben, daB ein eindimensionaler Cozyklus von M3, der auf den Kanten
der Randflâchen den Wert 0 hat, Corand ist, so folgt aus dem Dualitâtssatz,

daB die zweite Homologiegruppe von M3 die Nullgruppe ist. Da die
hôherdimensionalen Homologiegruppen trivialerweise Nullgruppen sind,
so folgt dann (nach dem, in 6.2 erwâhnten Satz), daB M3 asphârisch ist.
Um zu zeigen, daB jeder eindimensionale Cozyklus von M3, der auf den
Kanten der Randflâchen den Wert 0 hat, Corand ist, unterscheiden wir
zwei Fâlle :
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1. Die Fundamentalgruppe © von M3 habe ein Ende. Da ein ein-
dimensionaler Cozyklus von M3 auf allen Zyklen den Wert 0 hat, ist die
erste Cohomologiegruppe B1 von M3 gleich ihrer Untergruppe E1, nach
Satz IV in 5.2 also die Nullgruppe.

2. Die Fundamentalgruppe © von M3 habe zwei Enden. Nach H. Hopf
[10], S. 97, besitzt © eine unendlich zyklische Untergruppe von end-
lichem Index ; daraus folgt, daB jede unendlich zyklische Untergruppe
von © endlichen Index in © hat. Wir wâhlen den Pol der Fundamentalgruppe

© auf einer Randflâche ; nach dem Satz von Kneser gibt es einen
solchen geschlossenen Weg w auf dieser Randflâche, daB das w ent-
sprechende Elément a der Fundamentalgruppe eine unendlich zyklische
Untergruppe erzeugt. Es sei nun C1 ein Cozyklus der universellen tïber-
lagerung M3 von M3, der auf den Kanten der Randflâchen den Wert 0

hat. Wir bestimmen gemâB 2.2 die Funktion f(x) aus 0(©, 3), die zum
Cozyklus C1 gehôrt. (Dabei bezeichnet 3 die Gruppe, die aus dem Eins-
element von © besteht.) Aus der C1 auferlegten Bedingung und der Kon-
struktion von a folgt, daB f{an) 0 fur aile n. Die Elemente von ©
lassen sich darstellen in der Form an at (i 1,..., m ; at e ©). Es ist
(bei festem 6 e©) f(xb) — f(x) fur fast aile x e © ; daher ist f(an a{)

f(an) 0 fur fast aile n, d. h. (da es nur endlich viele Elemente a{
gibt) f(x) 0 fur fast aile x e © : f(x) ist Elément von ^2(©> 3) un(i
C1 nach 2.52 Corand.

7.3. Satz VIII. Die zweite Homotopiegruppe einer dreidimensionalen
orientierbaren endlichen Mannigfaltigkeit, deren nicht leerer Rand aus Ring-
flâchen {d. h. geschlossenen orientierbaren Flâchen vont Oeschlecht 1) besteht,

ist die Nullgruppe oder die freie abelsche Gruppe vom Rang unendlich, je
nachdem die Fundamentalgruppe der Mannigfaltigkeit endlich (d. h. ein oder

zwei) oder unendlich viele Enden hat.

Beweis : Hat die Fundamentalgruppe der Mannigfaltigkeit ein oder
zwei Enden, so ist die zweite Homotopiegruppe nach Satz VII die

Nullgruppe. Wir haben daher nur noch Mannigfaltigkeiten zu betrachten,
deren Fundamentalgruppen unendlich viele Enden haben. M3 sei die
universelle Ûberlagerung der Mannigfaltigkeit Mz ; die zweite
Homotopiegruppe von M3 ist isomorph der zweiten Homologiegruppe von M3.
Nach dem Dualitâtssatz ist die zweite Homologiegruppe von M3 isomorph
einer gewissen Untergruppe der ersten Cohomologiegruppe von M3 ; sie

ist daher als Untergruppe einer freien abelschen Gruppe (Satz III in 4.1)
eine freie abelsche Gruppe. Wir haben zu zeigen, daB ihr Rang unendlich
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ist. Die Mannigfaltigkeit M3 wird von Zylindern und Ebenen berandet ;

denn nach dem Satz von Kneser kann eine Ringflâche nicht Randfiache
einer einfach zusammenhângenden Mannigfaltigkeit sein. Wir unter-
scheiden nun zwei Palle :

1. Unter den Randflâchen von M3 gibt es nur endlich viele Zylinder. Es
sei K2 der Komplex der Randflâchen von M3. Wir betrachten den natur-
lichen Homomorphismus der ersten Cohomologiegruppe B1(MZ) in die
erste Cohomologiegruppe B1^2) (vgl. Hurewicz-Wallman [13], S. 115).
Der Kern 2?J(M3) dièses Homomorphismus besteht aus denjenigen Co-

homologieklassen, die Cozyklen enthalten, die auf allen Kanten von K2
den Wert 0 haben. Nach dem Dualitâtssatz ist daher die zweite Homolo-
giegruppe von M3 isomorph £J(M3), und wir haben nur noch zu zeigen,
da8 der Rang von jBJ(M3) unendlich ist. Der Rang von J51(M3) ist nach
Satz IV in 5.2 unendlich ; der Rang der Faktorgruppe B1 (M3)/5j (M3) ist
endlich, denn dièse Gruppe ist isomorph einer Untergruppe von BX{K2),
deren Rang endlich ist (nâmlich gleich der Anzahl der Komponenten von
K2, die einem Zylinder homoomorph sind). Daraus folgt unmittelbar, daB

der Rang von J5j(M3) unendlich ist.

2. Unter den Randflâchen von M3 gibt es unendlich viele Zylinder.
Wir werden hier die Voraussetzung uber die Fundamentalgruppe von
M3 nicht benutzen, sondern im AnschluB an J. H. C. Whitehead [20],
S. 163, allgemeiner zeigen : Wird die universelle Ûberlagerung M3 einer
endlichen Mannigfaltigkeit von n Zylindern und (mindestens) einer weite-
ren Flâche berandet, so ist der Rang der zweiten Homologiegruppe von
M3 mindestens gleich n. Wir wahlen ein zweidimensionales Simplex X%

auf einer (von den n Zylindern verschiedenen) Randflache und zwei-
dimensionale Simplexe X\ auf den Zylindern 32 (i 1,..., w) ; x\ sei

der Eckpunkt der dualen Zellteilung im Corand Xf von Xl (k 0,..., n).
Wir bestimmen solche eindimensionale Ketten c* (i 1,..., n) der dualen

Zellteilung, daB de] x°% — #J ; | c\ \ ist fremd zu den Randflâchen.
C\ sei ein eindimensionaler Zyklus von 3t> dessen Homologieklasse die
erste Homologiegruppe von 3 e erzeugt ; B\ sei eine solche zweidimensio-
nale Kette, daB dD\ C\ (i 1,..., n). Es gibt Decktransformationen

at und bt von M3 mit den folgenden Eigenschaften : at und bt bilden 3z
auf sich ab ; \atD\\ und \btDl\ sind fremd zu |cj| und \X%\ ; es gibt
eine solche zweidimensionale Kette B\ von 3*> daB dB\ — atC\ — b^l
und X2% in B2% mit dem Koeffizienten ± 1 auftritt (i,j— 1,.. n ;

h 0,..., n). Die Kette atD2% — 6tDj — BJ Z\ ist ein zweidimen-
sionaler Zyklus, in dem X\ mit dem Koeffizienten i 1 und Xl {k ^ i)
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mit dem Koeffizienten 0 auftritt ; \Z\\ ist fremd zu |cj|. Wir zeigen,
daB die Homologieklassen der n Zyklen Z\ linear unabhângig sind. Es sei

EtQZ) dC3; XI tritt in C3 mit dem Koeffizienten 0, X* mit dem
Koeffizienten ¦±:tl auf (i 1,..., w). Wir berechnen die Sehnittzahi
der (dualen) Kette c] mit Et3Z)\

o - c\.zt3z) c\.dc* - a^-c3 - « - ^)-c3 - ±tt

d. h. die Homologieklassen der Z^ sind linear unabhângig. Damit ist
Satz VIII bewiesen.

Bemerkungen : 1. Spezielle Mannigfaltigkeiten des betrachteten Typus
sind die AuBenraume von Verschlingungen in der dreidimensionalen
Sphare S3 ; insbesondere ist daher in Satz VIII enthalten :

Die Vermutung ,,Der Aujienraum eines Knotens in S3 ist asphârisch" —

(vgl. S. Eilenberg [4], J. H. C. Whitehead [20]) — ist aquivalent der alge-
braischen Vermutung ,,Alle Knotengruppen haben ein oder zwei Enden".

Als Anwendung beweisen wir : Der AuBenraum eines Torusknotens ist
asphârisch.

Das Zentrum der Fundamentalgruppe des AuBenraum s enthàlt nâmlich
ein Elément unendlicher Ordnung (Seifert-Threlfall [17], S. 179/180).
Eine solche Gruppe besitzt nach H. Hopf [10], S. 97, und H. Freuden-
thal [8], S. 31, ein oder zwei Enden ; der AuBenraum ist daher asphârisch.

2. Der erste Teil von Satz VIII lâBt sich folgendermaBen verschârfen :

Die zweite Homotopiegruppe einer endlichen Mannigfaltigkeit M3 ist
eine freie abelsche Gruppe ; ihr Rang ist 0 oder unendlich auBer in den
beiden folgenden Fallen : Erstens : Die Mannigfaltigkeit ist geschlossen
und ihre Fundamentalgruppe hat zwei Enden ; dann ist der Rang eins.
Zweitens : Die Mannigfaltigkeit wird nur von Kugeln berandet und ihre
Fundamentalgruppe ist endlich ; in diesem Fall laBt sich der Rang leicht
aus der Anzahl der Randflâchen und der Ordnung der Fundamentalgruppe

berechnen.

8. Die Fundamentalgrappen dreidimensionaler Mannigîaltigkeiten

8.1. Auf Grund der Ergebnisse des letzten Abschnittes sollen Be-

dingungen angegeben werden, denen eine Gruppe genugt, die als Fun-
damentalgiuppe einer dreidimensionalen endlichen orientierbaren (i. a.

berandeten) Mannigfaltigkeit auftritt. Zu jeder Mannigfaltigkeit M3 gibt
es eine Mannigfaltigkeit M%, die dieselbe Fundamentalgruppe wie M3
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und keine Kugeln als Randflâchen besitzt ; eine solche Mannigfaltigkeit M%

erhâlt man, indem man an die Kugelrandflàchen von M3 Vollkugeln
ansetzt. Wir diirfen daher in der Herleitung der Resultate annehmen, da8
die Mannigfaltigkeiten M3 von keinen Kugeln berandet werden, und die
Sâtze trotzdem fur allgemeine Mannigfaltigkeiten aussprechen. Der Ho-
mologietheorie werden ganzzahlige endliche Ketten zugrunde gelegt.

8.2. Die Grappe © mit einem oder zwei Enden sei Fundamental-

gruppe einer M3 ; falls © zwei Enden hat, sei M3 eine berandete Mannig-
faltigkeit. Dann ist nach Satz VI in 6.3 und Satz VII in 7.2 M3 asphâ-
risch. Nach P. Smith [19] besitzt die Fundamentalgruppe eines asphâri-
schen Raumes kein Elément endlicher Ordnung. Nach W. Hurewicz [12],
S. 215—224, sind die Homologiegruppen eines asphârisehen Raumes
durch dessen Fundamentalgruppe bestimmt ; wir bezeichnen die Gruppe,
die als n-te Homologiegruppe eines asphârisehen Raumes mit der
Fundamentalgruppe © auftritt, mit ©w(©). Ist © Fundamentalgruppe einer
asphârisehen berandeten M3, so ist ©^(©) die Nullgruppe fur n ^3.
Ist © Fundamentalgruppe einer geschlossenen asphârisehen M3, so ist
©^(S) die Nullgruppe fur n ^ 4 ; ferner ist in diesem Fall auf Grund
des Dualitâtssatzes die Faktorgruppe ©J(©) der Gruppe ©*(©) nach der
Untergruppe der Elemente endlicher Ordnung von ©1(©) isomorph der
Gruppe ©2(©). Wir fassen zusammen :

Die Gruppe © habe ein oder zwei Enden und sei Fundamentalgruppe
einer dreidimensionalen orientierbaren endlichen Mannigfaltigkeit M3 ;

falls © zwei Enden hat, werde M3 nicht nur von Kugeln berandet ; dann
erfûllt © die folgenden Bedingungen : © besitzt kein Elément endlicher
Ordnung ; die Gruppen ©n(©) sind Nullgruppen fur n ^ 4. Wird die
Mannigfaltigkeit M3 nicht nur von Kugeln berandet, so ist ©3(©) die

Nullgruppe; wird sie nur von Kugeln berandet, so ist ©J(©) isomorph
©2(©).

8.3. Als Anwendung soll untersucht werden, welche abelschen Gruppen

© als Fundamentalgruppen von Mannigfaltigkeiten M3 auftreten
kônnen. Als Fundamentalgruppe besitzt © endlich viele Erzeugende ;

nach H. Hopf [10], S. 97 und 99, besitzt eine unendliche abelsche Gruppe
mit endlich vielen Erzeugenden ein oder zwei Enden, und zwar zwei
Enden genau dann, wenn sie den Rang eins hat. Ist © die freie abelsche

Gruppe vom Range n, so ist ©™(©) unendlich zyklisch und ©w+1(@) die
Nullgruppe (W. Hurewicz [12], S. 222). Wie in 7.1 bemerkt wurde, ist
die Fundamentalgruppe einer M3, die nicht nur von Kugeln berandet
wird, unendlich. Wir erhalten somit :
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Satz IX. Ist © abelsche Fundamentalgruppe einer berandeten drei-
dimensionalen orientierbaren endlichen Mannigfaltigkeit, die nicht nur von
Kugeln berandet wird, so ist © die freie abelsche Gruppe vom Range eins oder

zwei.
Dièse beiden Gruppen treten auch wirklich auf als Fundamental-

gruppen von Mannigfaltigkeiten der verlangten Art. Die freie abelsche

Gruppe vom Range eins ist Fundamentalgruppe des Volltorus ; die freie
abelsche Gruppe vom Range zwei ist Fundamentalgruppe des topologi-
schen Produktes von Torus und Strecke.

Bei abelschen Fundamentaîgruppen von dreidimensionalen orientierbaren

endlichen Mannigfaltigkeiten, die nur von Kugeln berandet werden,

kônnen wir schlieBen : Ist der Rang von (5^2, so ist © die freie
abelsche Gruppe vom Range drei (P. A. Smith hat in [18] gezeigt, daB

der Rang einer abelschen Gruppe, die als Fundamentalgruppe einer ge-
schlossenen dreidimensionalen Mannigfaltigkeit auftritt, nicht grôBer als
drei ist ; unser Beweis kann als Ausgestaltung desjenigen von P. A. Smith
aufgefaBt werden.) K. Reidemeister hat in [16] (mit anderen Methoden)
die abelschen Gruppen aufgezàhlt, die als Fundamentaîgruppen von ge-
schlossenen orientierbaren dreidimensionalen Mannigfaltigkeiten auf-
treten : es sind dies die zyklischen Gruppen und die freie abelsche Gruppe
vom Range drei. Zusammen mit Satz IX ergibt dies :

Satz IX'. Ist © abelsche Fundamentalgruppe einer dreidimensionalen
orientierbaren endlichen Mannigfaltigkeit, so ist © zyklisch oder die freie
abelsche Gruppe vom Range zwei oder drei.

8.4. Aus Satz IX folgt leicht der folgende Satz von R. H. Fox
([6], S. 46) :

Das Polyeder P sei in die dreidimensionale Sphâre eingebettet und
habe eine abelsche Fundamentalgruppe © ; dann ist © die freie abelsche

Gruppe vom Range 0, 1 oder 2.

Beweis : Eine geeignet gewâhlte abgeschlossene Umgebung von P ist
eine Mannigfaltigkeit M3 mit derselben Fundamentalgruppe wie P ; wird
Mz nur von Kugeln berandet, so ist ihre Fundamentalgruppe die Null-
gruppe, wie leicht aus dem Satz ûber die Fundamentalgruppe eines zu-
sammengesetzten Komplexes geschlossen werden kann (Seifert-Threlfall
[17], S. 179).

Aus Satz IX' folgt : Das Polyeder P sei in eine dreidimensionale orien-
tierbare Mannigfaltigkeit eingebettet und habe eine abelsche Fundamentalgruppe

© ; dann ist © zyklisch oder die freie abelsche Gruppe vom
Range zwei oder drei.
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Bemerkung : Fur die Gûltigkeit des letzten Satzes genûgt es, wenn P
ira Kleinen eineindeutig in die Mannigfaltigkeit eingebettet ist.

8.5. Ohne Beweis geben wir noch zwei weitere Sâtze ûber die Fun-
damentalgruppen von Mannigfaltigkeiten M3 an :

1. Ist die Gruppe © mit zwei Enden Fundamentalgruppe einer drei-
dimensionalen orientierbaren endlichen Mannigfaltigkeit, so ist © un-
endlich zyklisch oder das freie Produkt von zwei zyklischen Gruppen der
Ordnung zwei. Die unendlich zyklische Gruppe ist Fundamentaîgruppe
des topologischen Produktes von Kreis und Kugel, das freie Produkt von
zwei Gruppen der Ordnung zwei Fundamentalgruppe der topologischen
Summe (Seifert-Threlfall [17], S. 218) zweier drcidimensionaler projek-
tiver Râume.

2. Ist die Gruppe © mit unendlich vielen Enden Fundamentalgruppe
einer dreidimensionalen endlichen Mannigfaltigkeit, so besteht das Zen-
trum von © nur aus dem Einselement.

Der Beweis von (1) kann rein gruppentheoretisch gefuhrt werden,
wenn man bedenkt, da6 nach Satz IX' jede abelsche Untergruppe
endlichen Indexes von © unendlich zyklisch ist. (2) kann mit den Methoden
bewiesen werden, die P. A. Smith in [19] entwickelt hat.

(Eingegangen den 5. Januar 1949.)
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