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Die erste Cohomologiegruppe von Uber-
lagerungen und Homotopie-Eigenschaften
dreidimensionaler Mannigfaltigkeiten
Von ERNST SPECKER, Ziirich

Einleitung

Die erste Cohomologiegruppe B! eines endlichen (zusammenhingenden)
Komplexes K ist durch die Fundamentalgruppe ® von K bestimmt :
Wird der Cohomologietheorie die abelsche Gruppe J als Koeffizienten-
bereich zugrunde gelegt, so ist B! isomorph der Gruppe der homomorphen
Abbildungen von ® in J ; die natiirliche Isomorphie dieser beiden Grup-
pen hat die folgende Bedeutung : Der Charakter, der einer Cohomologie-
klasse zugeordnet ist, bat auf einem Gruppenelement g ¢ ® den Wert,
den die Cohomologieklasse auf der g entsprechenden ganzzahligen Homo-
logieklasse hat (B. Eckmann [1], S. 267).

Dieser Satz wird folgendermaflen verallgemeinert : Der endliche Kom-
plex K mit der Fundamentalgruppe ® werde vom Komplex K iiber-
lagert, und zwar gehore die Uberlagerung zur Untergruppe § von ®.
Dann ist die erste Cohomologiegruppe B! von K — berechnet unter Zu-
grundelegung endlicher Ketten mit Koeffizienten aus der abelschen
Gruppe J — durch die Inklusion von § in ® bestimmt. Wir werden auch
hier eine Gruppe B(®, $) definieren (und zwar in Abhingigkeit von J
und $ ¢ ®) und zeigen, dafl B! dieser Gruppe isomorph ist.

Die Decktransformationengruppe D einer Uberlagerung K des Kom-
plexes K kann in natiirlicher Weise aufgefaflt werden als Automor-
phismengruppe der ersten Cohomologiegruppe B! von K. (Zum Begriff
der Decktransformationengruppe einer beliebigen Uberlagerung ver-
gleiche man H. Seifert und W. Threlfall [17], S. 198.) Wir werden dem-
nach auch die Gruppe B(®, ) als Gruppe mit der Automorphismen-
gruppe D erkliren und die Operatorisomorphie von B! und B(®, )
beweisen. Diese Ergebnisse sind im wesentlichen in zweil inzwischen er-
schienenen Arbeiten von B. Eckmann [2] und [3] enthalten ; es werden
in diesen Arbeiten auch hoherdimensionale Cohomologiegruppen be-
trachtet.
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Wird die Uberlagerung K des endlichen Komplexes K ihrerseits von
einem Komplex K iiberlagert, so gibt die Projektionsabbildung von K
auf K Anlaf} zu einem Homomorphismus der ersten Cohomologiegruppe
von K in diejenige von K ; diesen Homomorphismus werden wir alge-
braisch beschreiben, und zwar in Abhéingigkeit von der Fundamental-
gruppe von K und den Untergruppen, die zu den Uberlagerungen ge-
horen. Sind K und K endliche Komplexe, so steht dieser Homomorphis-
mus in enger Beziehung zum gruppentheoretischen Begriff der Verlage-
rung (H. Zassenhaus [21], S. 131).

Wir betrachten nun wieder eine einzige Uberlagerung K des endlichen
Komplexes K, die zur Untergruppe § der Fundamentalgruppe ® von
K gehort. Die Elemente von B(®, §) sind Klassen von Funktionen auf
® mit Werten in J, und sie sind durch die damit in natiirlicher Weise
gegebene Addition verkniipft ; auf § haben alle Funktionen einer Klasse
denselben Wert. Bezeichnet E(®,$) die Untergruppe derjenigen
Klassen, deren Elemente auf den Elementen von § den Wert 0 haben,
so darf die Faktorgruppe B(®,9H)E(®,$) als Gruppe von Funk-
tionen auf $ mit Werten in J aufgefalit werden. In diesem Sinne ist
B(®, 9H)E(®,H) eine Gruppe von homomorphen Abbildungen von £
in J — und zwar ist sie identisch mit der durch die erste Cohomologie-
gruppe B! von K induzierten Charakterengruppe der (als Fundamental-
gruppe von K aufgefallten) Gruppe § ; beim natiirlichen Isomorphismus
von B(®, H) auf B! wird ndmlich E(®, $H) auf die Gruppe E' der-
jenigen eindimensionalen Cohomologieklassen abgebildet, die auf allen
Zyklen den Wert 0 haben. Durch die Inklusion $ ¢ ® sind daher neben
B! auch die Gruppen E! und B/E' bestimmt.

Wir werden die Untergruppe E!' der ersten Cohomologiegruppe bei
beliebigen Komplexen nidher untersuchen; in Komplexen, deren erste
Homologiegruppe die Nullgruppe ist, ist £' gleich der ersten Cohomo-
logiegruppe ; in endlichen Komplexen ist £! die Nullgruppe. (Im folgen-
den sei der Homologie- und Cohomologietheorie die additive Gruppe der
ganzen Zahlen als Koeffizientenbereich zugrunde gelegt.) Bei unend-
lichen Komplexen steht E! in enger Beziehung zur Endentheorie, wie
sie von H. Freudenthal in [7] entwickelt worden ist: Der Rang der
Gruppe B! und die Anzahl der Enden eines Komplexes bestimmen sich
gegenseitig. Im Zusammenhang mit dem Beweis dieses Satzes werden
wir zeigen, dal} die erste Cohomologiegruppe eines beliebigen Komplexes
eine freie abelsche Gruppe ist.

Gehort die Uberlagerung K des endlichen Komplexes K mit der
Fundamentalgruppe & zur Untergruppe $ von ®, so ist die Gruppe K1
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von K und damit auch die Endenzahl von K durch § ¢ ® bestimmt ;
das ist die Verallgemeinerung eines Satzes der Arbeit [10] von H. Hopf,
der besagt, daB die Endenzahl einer reguliren Uberlagerung eines end-
lichen Komplexes durch die Decktransformationengruppe bestimmt ist.
Wie in der Arbeit [10] weiter gezeigt wird, ist die Endenzahl einer solchen
Uberlagerung gleich 0, 1, 2 oder unendlich ; wir werden daraus schlieBen :
Der Rang der ersten Cohomologiegruppe einer regulidren unendlichblatt-
rigen Uberlagerung eines endlichen Komplexes ist gleich 0, 1 oder un-
endlich ; fiir nicht-regulire unendlichblittrige Uberlagerungen braucht
der entsprechende Satz nicht zu gelten.

In einem zweiten Teil wenden wir diese KErgebnisse an auf die Unter-
suchung von dreidimensionalen endlichen (berandeten oder unberande-
ten) orientierbaren Mannigfaltigkeiten. (Die Beschrankung auf orientier-
bare Mannigfaltigkeiten ist in den meisten Fillen nicht notig und wird
nur der Einfachheit halber durchgefiibrt.) Eine solche Anwendung ist bei
unberandeten Mannigfaltigkeiten durch die Dualitdt nahegelegt. Auf
Grund der bekannten Isomorphie der zweiten Homotopiegruppe eines
Komplexes und der zweiten Homologiegruppe seiner universellen Uber-
lagerung konnen wir zum Beispiel beweisen, dafl die zweite Homotopie-
gruppe einer dreidimensionalen geschlossenen Mannigfaltigkeit durch
ihre Fundamentalgruppe bestimmt ist. H. Hopf hat diesen Satz in [9]
ohne Beweis ausgesprochen.

Etwas weniger naheliegende Anwendungen erhalten wir, wenn wir
berandete dreidimensionale Mannigfaltigkeiten betrachten. Auch hier
ist ndmlich noch ein Rest der Dualitdt vorhanden, der in gewissen Fillen
gestattet, iiber die zweite Homologiegruppe der universellen Uberlagerung
etwas auszusagen. So gelingt es, eine solche Klasse & von Gruppen an-
zugeben, dall jede dreidimensionale endliche (berandete) Mannigfaltig-
keit, unter deren Randflichen sich keine Kugel befindet und deren Fun-
damentalgruppe zu K gehort, asphirisch ist. Unter weiteren Einschréin-
kungen sind schéirfere Aussagen moglich : Die zweite Homotopiegruppe
einer endlichen dreidimensionalen Mannigfaltigkeit, deren nicht leerer
Rand aus Ringflichen besteht, ist durch die Fundamentalgruppe der
Mannigfaltigkeit bestimmt. Besonders interessante Mannigfaltigkeiten
dieser Art sind die AuBlenriume von Verschlingungen in der dreidimen-
sionalen Sphire.

Nach einem Satz von W. Hurewicz [12] sind die Homologiegruppen
eines asphiirischen Komplexes durch seine Fundamentalgruppe bestimmt.
Folgt daher einerseits aus der Struktur einer Gruppe ®, dafl eine drei-
dimensionale endliche Mannigfaltigkeit mit der Fundamentalgruppe ®
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asphérisch ist, wenn sich unter ihren Randflichen keine Kugel befindet ;
konnen anderseits die Homologiegruppen eines asphéirischen Komplexes
mit der Fundamentalgruppe ® nicht Homologiegruppen einer solchen
Mannigfaltigkeit sein, so diirfen wir schliefen, da3 ® nicht Fundamental-
gruppe einer dreidimensionalen endlichen Mannigfaltigkeit ist. Als An-
wendung zdhlen wir die abelschen Gruppen auf, die als Fundamental-
gruppen solcher (berandeter oder unberandeter) Mannigfaltigkeiten auf-
treten ; daraus ergeben sich dann weiter notwendige Bedingungen fiir die
Einbettbarkeit zweidimensionaler Komplexe in beliebige dreidimen-
sionale Mannigfaltigkeiten.

Herrn Professor H. Hopf danke ich fiir Anregung und Ermunterung.

I. Die erste Cohomologiegruppe von Uberlagerungen

1. Vorbereitende Bemerkungen

1.1. K sei ein beliebiger Komplex (simplizialer Komplex oder Zellen
komplex). Der Homologietheorie von K legen wir ganzzahlige endliche
Ketten zugrunde. £*, 37, H*, B" = J"/H" bezeichnen die Gruppen der
n-dimensionalen Ketten, Zyklen, Rinder, Homologieklassen. Die Ele-
mente von £" bezeichnen wir mit kleinen lateinischen Buchstaben mit
hochgestelltem Dimensionsindex : ¢*. Die Elemente der Faktorgruppe
L2*/9H" werden mit kleinen fetten Buchstaben bezeichnet : c¢™.

1.2. J sei eine abelsche Gruppe. Der Cohomologietheorie von K
legen wir endliche Ketten mit Koeffizienten aus J zugrunde. L»,Z*, H",
B* = Z"/H" bezeichnen die Gruppen der n-dimensionalen Ketten, Co-
zyklen, Corénder, Cohomologieklassen. Die Ketten aus L" bezeichnen
wir mit groflen lateinischen Buchstaben: C™.

Da die additive Gruppe der ganzen Zahlen und die Gruppe J beziig-
lich J ein Gruppenpaar bilden, ist der Kroneckersche Index eines Ele-
mentes von L auf einem Element von £" definierbar. Er ist ein Element
von J ; wir schreiben ihn als Produkt. Jede Kette aus Z” hat auf den
Elementen von $™ den Wert 0; es wird daher in natiirlicher Weise ein
Produkt der Elemente von Z™ mit den Elementen von £7/$" induziert.

1.3. Die n-dimensionalen Cozyklen, die auf allen Zyklen den Wert 0
haben, bilden eine Untergruppe 4™ von Z", die H" enthilt ; wir setzen
A"/ H™ = E™. Die Gruppe 4! 148t sich auch folgendermafien beschreiben :
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C*' gehort genau dann zu A', wenn es eine solche 0-dimensionale, even-
tuell unendliche Kette C° mit Koeffizienten aus J gibt, dafl der Corand
von (° die Kette C! ist.

1.4. Ist der Komplex K gegeben als Komplex mit einer Automor-
phismengruppe ®, so werden die in der Homologie- und Cohomologie-
theorie auftretenden Gruppen stets aufgefafit als Gruppen, die ® als
Operatorgruppe besitzen. Dies wird insbesondere dann der Fall sein,
wenn K gegeben ist als Uberlagerungskomplex eines Komplexes K’ ; die
Gruppe ® ist dann die Decktransformationengruppe von K.

1.5. Zu den im folgenden beniitzten Sitzen aus der Uberlagerungs-
theorie vergleiche man Seifert-Threlfall [17], 8. Kapitel. Wir erinnern
nur kurz an folgendes:

Es sei K Uberlagerungskomplex des zusammenhingenden Komplexes
K . Im folgenden bedeute ,,Weg* stets ,, Kantenweg®. Ist w ein Weg in K
mit dem Anfangspunkt O, O ein O iiberlagernder Punkt von K, dann
gibt es genau einen Weg w mit dem Anfangspunkt O, der w iiberlagert.
Jedem Weg w von K ist auf natiirliche Weise ein Element c'(w) der
Kettengruppe ! von K zugeordnet. Es seien v und w homotope Wege
von K mit dem Anfangspunkt O, v und w die entsprechenden Uber-
lagerungswege mit dem Anfangspunkt O; dann sind die Ketten c!(v)
und c'(w) homolog (d. h. ihre Differenz liegt in $!(K)); es haben also
insbesondere v und w denselben Endpunkt.

Es sei nun in K ein Eckpunkt O, in K ein O iiberlagernder Eckpunkt O
ausgezeichnet ; zu Wegen mit dem Anfangspunkt O betrachten wir Uber-
lagerungswege mit dem Anfangspunkt O. Der Eckpunkt O sei der Pol
der Fundamentalgruppe ® von K. Reprisentieren v und w ein Element
ae®, so sind c'(v) und ¢! (w) homolog ; wir kénnen daher einem Ele-
ment a ¢ ® in natiirlicher Weise ein Element ¢!(a) der Gruppe L2Y/$!
von K zuordnen. Die Elemente 2 von ®, die die Eigenschaft haben, daf3
c!(h) ein Homologiezyklus ist, bilden eine Untergruppe $ von &%. Sind
a und b zwei Elemente von ®, so haben ¢'(a) und ¢! (b) genau dann den-
selben Rand, wenn @ und b in derselben rechtsseitigen Restklasse von $
nach ® liegen. Die Menge der rechtsseitigen Restklassen von ® nach $)
bezeichnen wir im folgenden mit ®/$ und verstehen unter einer ,,Rest-
klasse* stets eine ,rechtsseitige Restklasse®. Alle Wege, die Représen-
tanten von Elementen einer Restklasse X von ®/$) iiberlagern, besitzen
denselben Endpunkt. Wir bezeichnen ihn mit O (X) ; O(X) iiberlagert O.
Verschiedenen Restklassen werden dadurch verschiedene Eckpunkte zu-
geordnet. Fiir Elemente he$ und ae® ist cl(ha) = cl(h) 4+ c'(a),
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denn ein % reprasentierender Weg wird von einem geschlossenen Weg
iiberlagert.

1.6. Nur endlich viele der Wege w, von K, die einen Weg w von K
iiberlagern, haben mit einem vorgegebenen endlichen Teilkomplex von
K einen nicht leeren Durchschnitt.

Beweis : Es geniigt zu zeigen, dafl ein Eckpunkt P von K nur Eckpunkt
von endlich vielen der Wege w, ist. Die Eckpunkte von w seien in ihrer
Reihenfolge P,, ..., P,. Ist P, Projektion von P, so gibt es genau einen

n

Weg w;,, dessen k-ter Eckpunkt P ist.

2. Satz 1.

2.1. K sei Uberlagerungskomplex des endlichen und zusammen-
hingenden Komplexes K ; in K sei ein Eckpunkt O, in K ein O iiber-
lagernder Eckpunkt ausgezeichnet. Nach Auszeichnung dieser Eck-
punkte gehort zur Uberlagerung eindeutig eine gewisse Untergruppe $
der Fundamentalgruppe ® von K. Der Satz I besagt in einer vorldufigen
Formulierung, dall die Gruppen B'(K) und E!'(K) durch & und ihre
Untergruppe $ bestimmt sind (und zwar als Gruppen mit der Deck-
transformationengruppe als Operatorgruppe).

2.2. Es sei Z* die Gruppe der Cozyklen von K. Wir bilden Z! homo-
morph ab in eine Gruppe von Funktionen auf ® mit Werten in J. Nach
1.5 gehort zu jedem Element a ¢ ® eindeutig ein Element c!(a) der
Gruppe £Y/$H! von K.

Dem Cozyklus C'eZ! ordnen wir die Funktion f(a) = C'-c'(a) auf
® zu. Wird die Addition von Ifunktionen auf ® mit Werten in J wie
iiblich erkldrt, so ist diese Zuordnung ein Homomorphismus f) von Z!
auf eine Gruppe von Funktionen auf ®. Es soll nun untersucht werden,
welche Funktionen beim Homomorphismus § Bild eines Cozyklus sind.

2.21. Es sei f(x) eine Funktion auf & mit Werten in J, die beim
Homomorphismus ) Bild eines Cozyklus C* ist. Dann ist fiir 2 ¢$ und

ae®
f(ha) = f(h) + f(a) .
Beweis: f(ha) = C-¢'(ha) = C'-[c(h) + c(a)]
= C'-¢l(h) + C'-c'(a) = f(h) + f(a) .
2.22. Nach 2.21 ist die Funktion F(x)= f(zxa) — f(x) (a festes
Element von ®) konstant auf den Restklassen von ® nach §, wenn f(z)

Bild eines Cozyklus ist. Es ist daher F (x) in natiirlicher Weise eine Funk-
tion auf den Restklassen von &/§ zugeordnet; wir bezeichnen diese
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Funktion mit F (X). Wir zeigen nun, daf} es nur endlich viele Restklassen
gibt, auf denen F (X) einen von O verschiedenen Wert hat. Diesen Sach-
verhalt werden wir auch folgendermafien ausdriicken : Es ist F(X) = 0
fiir fast alle X ¢ /9. Dieselbe Sprechweise verwenden wir auch in
anderem Zusammenhang.

Beweis : Es sei w ein das Element a der Fundamentalgruppe reprisen-
tierender Weg : w(X) sei der w iiberlagernde Weg mit dem Anfangspunkt
O(X) und c'(X) die zum Wege w(X) gehorende Kette. Fiir C! e Z1
ist dann: C'-[¢'(xa) — ¢'(z)] = C'-c'(X), e X. Nach 1.61ist | C1|
fremd zu fast allen Wegen w(X), d. h. F(X) = C*-¢}(X) = 0 fiir fast
alle X e®/9.

2.3. Es sei &(®,$H) die Gruppe der Funktionen f(x) auf ® mit
Werten in J, die die beiden folgenden Bedingungen erfiillen :

1) Fir 29 und ae® ist f(ha)= f(h) + f(a).
Bei festem a ist daher die Funktion f(za) — f(x) konstant auf den

Restklassen von ®/$ und es kann die Funktion f(X a) — f(X) auf
®/9 betrachtet werden.

2) f(Xa)— f(X)=0 fir fast alle X ¢ B/H.

In 2.2 wurde gezeigt, dal der Homomorphismus ) die Gruppe Z! in
D(®, ) abbildet; wir zeigen nun, dafl h eine Abbildung von Z! auf
DG, H) ist.

Den Beweis zerlegen wir in die folgenden Nummern :

2.31. In K werde jeder Eckpunkt P durch einen Weg v(P) mit O
verbunden ; v (0) sei der Nullweg. Ist P ein Eckpunkt von K, so sei v(P)
der Weg in K mit dem Anfangspunkt P, der v(P) tiberlagert ; der End-
punkt von »(P) ist ein Eckpunkt O(X). Wir ordnen jedem Eckpunkt P
diejenige Restklasse X (P) zu, dafl O (X (P)) der Endpunkt von »(P) ist.
Es sei w ein Weg von K mit dem Anfangspunkt P und dem Endpunkt Q ;
wir setzen X (w) = X (P). Die Projektion des Weges v—1(P)w v(Q) ist
ein geschlossener Weg in K mit dem Anfangspunkt 0 ; es gehort also zu
ihm ein gewisses Element @ = a(w) der Fundamentalgruppe von K.
Man sieht leicht, daB die Funktionen X (w) und a (w) die folgenden Eigen-
schaften besitzen :

a) Besitzen v und w dieselbe Projektion, so ist a(v) = a(w).

b) Besitzen v und w verschiedene Anfangspunkte mit derselben Pro-
jektion, so ist X(v) # X (w).

¢) Ist w homotop 0 (also insbesondere geschlossen), so ist a(w) gleich
dem Kinselement von ®: a(w) =e.
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d) Sind v und w zwei Wege, die miteinander multipliziert werden
konnen (d. h. ist der Endpunkt von v gleich dem Anfangspunkt von w),
so ist

Xvw)=X@w), X@aw)=X(w), alvw)=a(v)a(w) .

2.32. Es sei nun f(x) ein Element von @(®, $). Wir ordnen f(x)
die folgende Funktion auf den Wegen von K mit Werten in J zu:

Ct(w) = f(X (w) a(w)) — (X (w)) .

Wir leiten nun einige Eigenschaften der Funktion C!(w) her :
a) Ist der Weg w homotop 0, so ist C''(w) = 0.

Beweis: Wenn w homotop 0 ist, so ist a(w) = e.

b) Sind v und w zwei Wege, die miteinander multipliziert werden
kénnen, so ist C'(v w) = C'(v) + Cl(w).
Beweis :
Cllvw) = f(X(vw)a(ww)) — (X (v w))
= [(X(v) a@)) — { (X @) + (X @) afo) a(w)) — f (X(¢) a(v))
= C(v) + f(X (w) a(w)) — (X (w))
= Cl(v) + C'(w) .

c) Aus a) und c) folgt unmittelbar: C!'(w=1) = — C'(w).

d) Sind w, Wege mit derselben Projektion aber verschiedenen An-
fangspunkten, so ist C'(w,) = 0 fir fast alle w,.

Beweis: a(w;) =a, X(w,) = X,; fir ¢ #7 ist X, # X,.
Cl(w;) = f(X,; a) — f(X,), und diese Differenz ist 0 fiir fast alle 7.

2.33. Eswerde nun der Funktion C* (w) folgendermaflen eine Funk-
tion C! auf den Kanten von K mit Werten in J zugeordnet : Der Wert
von (! auf der Kante z! sei gleich C'(w), wobei w der Weg ist, der die
Kante 2! einmal in der gegebenen Orientierung durchlduft. Nach 2.32
c) ist C* eine ungerade Funktion der Kanten, es kann daher C* aufgefaf3t
werden als Kette. Die Kette C! ist endlich : Nach 2.32 d) besitzt C! nur
auf endlich vielen Kanten mit derselben Projektion einen von 0 ver-
schiedenen Wert, und da der Komplex K endlich ist, folgt daraus die
Behauptung. Aus 2.32 b) folgt : Gehort zum Wege w die Kette cl, so ist
Ct-c! = CY(w).

Die Kette C! ist ein Cozyklus.
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Beweis : Zu einer zweidimensionalen Zelle z2? gibt es einen Weg w mit
folgenden Eigenschaften: w ist homotop 0, und die Kette, die zu w
gehort ist der Rand dx? von 22. Nach 2.32 a) hat C! auf dx% den Wert 0;
es hat daher der Corand 4C* von C* auf der Zelle x? den Wert 0: C* ist
Cozyklus.

2.34. Wir zeigen, daf} der in 2.2 definierte Homomorphismus § den
Cozyklus C! auf die Funktion f(x) abbildet, von der wir ausgegangen
sind. Es sei ae®; w sei ein Weg von K mit dem Anfangspunkt O,
dessen Projektion zu a gehort. Ist ¢! die dem Wege w entsprechende
Kette, so ist der Wert von §) ! auf a gleich C'-c'. Aus a(w) =a und
X(w) =9 folgt:

Crct = Ct(w) = [($ a) — [($) = f(a) -

Damit ist gezeigt, daB3 ) die Gruppe Z* der Cozyklen von K auf die Gruppe
P (®, H) abbildet.

2.4. 9,(®,9) sei die Untergruppe derjenigen Funktionen von
®(®, ), die auf den Elementen von § den Wert 0 haben. Das Urbild
von &,(®, ) beim Homomorphismus § ist die Gruppe A!(K) (Defini-
tion in 1.3).

Beweis: 2.41. Essei Cle AL Ist he$, soist ¢!(h) ein Homologie-
zyklus. Es ist daher C!'.c!(h) = 0, d. h. das Bild von (' beim Homo-
morphismus b gehort zu @,(®, H).

2.42. Es sei hOl = f(2) e D(®, D). Zu jedem Zyklus ¢! in K
existiert ein ke %, so daB ¢! in c'(h) liegt

Ctcl = Clgi(h) = f(h) =0, d.h OteAdl.

2.5. Fir f(2)e®(6,9) ist (he$)fha)=f(h) + f(a) = f(a),
d. h. f(«) ist auf Restklassen von ® nach $ konstant ; es gehort daher zu
f(x) eine Funktion f(X) definiert auf den Restklassen X ¢ ®/$H. Es sei
D,(®, 5) die Untergruppe derjenigen f(x) von @,(®, $H), zu denen es
ein solches c¢eJ gibt, daB f(X) = ¢ fiir fast alle X ¢ /9.

Das Urbild von @,(®, $) beim Homomorphismus }) ist die Gruppe
der Cordnder H!(K).

Beweis: 2.51. Essei C! Corand : C' = §C° Nach 2.4 gehort f(x) =
HC' zu D,(G,$H). Liegt a in der Restklasse 4, so ist

f(@) = f(4) = C'-¢cl(a) = 6C° ¢l(a) = (°.dct(a) = C°-0(4) — C°-0
und da C° endlich ist, ist f(4) = — C°-O fiir fast alle Restklassen 4.
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2.52. Es gehore anderseits das Bild von (' beim Homomorphismus §
zu D(®, ). Zu jedem Eckpunkt P werde eine Kette d!'(P) so be-
stimmt, dall od'(P) =P — O. Wir definieren eine nulldimensionale
Kette F'° (mit Koeffizienten aus J) durch F°.P = C1.d1(P). Fist un-
abhingig von der speziellen Wahl von d!(P), denn nach 2.4 hat C! auf
allen Zyklen den Wert 0. Mau sieht leicht, dal 6F° = C. Die Kette F°
braucht nicht endlich zu sein ; wir zeigen aber, dall I7° auf fast allen Eck-
punkten denselben Wert c¢eJ hat.

Nach Definition von | C' = f(x) ist

[(X) = C1-d (0(X)) = F*-O(X) ,

und da f(2) e P,(6, H), soist F°.-O(X) = ¢ fiir fast alle Restklassen
X € /9. Escgeien P, die Eckpunkte von K, die einen Eckpunkt P von K
iiberlagern ; es sei w ein Weg von O nach P, w, seien die Uberlagerungs-
wege von O;; nach P, und ¢; die zu w, gehorigen Ketten. Es ist FO-P; —
F°.0;, = C'- ¢; ; nach 1.6 sind fast alle w, fremd zu | C'|, es ist
daher Cl.¢; = 0 fiir fast alle ¢. F°hat auf fast allen Eckpunkten P,
den Wert ¢, und da K endlich ist iiberhaupt auf fast allen Eckpunkten P.
Es sei E° die Kette, die auf allen Eckpunkten den Wert ¢ hat ; die Kette
(F° — E% ist endlich, und es ist §(F° — E° = 6F° = C1, d. h. C! ist
Corand.

Wir haben damit gezeigt: Der Homomorphismus § bildet Z' auf
P(®,H) ab; die Urbilder der Gruppen @,(®, %) und @,(®, ) bei
dieser Abbildung sind die Gruppen 4 und H!. § induziert daher einen
Isomorphismus i der Cohomologiegruppe B! = Z'/H' von K auf die
Gruppe @ (6, H)/P,(®, H)= B(®, H), der die Untergruppe £ = A/H?
von B! auf die Gruppe @,(®, 9H)/D,(®, H) = E(G, H) abbildet.

2.6. Wir fassen zusammen :

Definition. Es sei: ® eine (multiplikativ geschriebene) Gruppe, $) eine
Untergruppe von ®; J eine abelsche (additiv geschriebene) Gruppe ;
P (G, H) die Gruppe der Funktionen f(z) auf ® mit Werten in J, die die
folgenden beiden Eigenschaften haben :

1) Fir he$ und ae® ist f(ha)= f(k) + f(a),

2) fiir festes a e ® ist f(xa) = f(x) fur alle x e ® mit Ausnahme
der x aus hochstens endlich vielen (rechtsseitigen) Restklassen von ®
nach $;

?,(®, H) die Gruppe derjenigen Funktionen aus @ (G, ), die auf
den Elementen von § den Wert 0 haben; @,(®,$) die Gruppe der-
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jenigen Funktionen aus @,(®, ), die auf allen Elementen — mit Aus-
nahme derjenigen aus endlich vielen (rechtsseitigen) Restklassen von ®
nach $ — einen konstanten Wert haben.

Satz I. K sei ein endlicher zusammenhingender Komplex mit der
Fundamentalgruppe & ; K sei eine Uberlagerung von K, die zur Unter-
gruppe 9 von & gehort. Dann gibt es einen Isomorphismus der ersten Co-
homologiegruppe B von K (berechnet unter Zugrundelegung endlicher Ketten
und des Koeffizientenbereiches J) auf die Gruppe D (G, H)/P(®, H) =
B(®,9), der die Gruppe E* der eindimensionalen Cohomologieklassen, die
auf allen Zyklen den Wert 0 haben, auf die Qruppe @,(®, H)/DP(G, H) =
E(®, H) abbildet.

2.7. Gehort die Uberlagerung K von K zur Untergruppe $ von &,
so ist die Decktransformationengruppe von K (d. h. die Gruppe derjeni-
gen Automorphismen von K, die mit der Projektion von K auf K ver-
tauschbar sind) isomorph zur Faktorgruppe RN/$H des Normalisators N
von $ in ® nach § (Seifert-Threlfall [17], S. 198). Die Decktransforma-
tionengruppe gibt Anlafl zu Automorphismengruppen der in der Homo-
logie- und Cohomologietheorie von K auftretenden Gruppen. Alle jene
Gruppen identifizieren wir.

2.8. Es soll nun die Faktorgruppe /9 als Automorphismengruppe
von B(®,$) erklirt werden ; dazu erkldren wir zunidchst M als Auto-
morphismengruppe von @(®, ).

Ist a e M und f(x) e @(®, H), so sei

af(x) = flaza) .

Man zeigt leicht, dal} mit f(z) auch a f(x) zu D(®,$H) gehort; die
Elemente von N sind damit als Automorphismen von @ (%, §) erklirt,
und zwar bilden sie die Gruppen @,(®,$9) (¢ = 1,2) auf sich ab.

Die Elemente von § bilden f(x) e @ (®,5) in eine modulo @,(®, ©)
kongruente Funktion ab.

Beweis: KEs ist zu zeigen, dal} fir he$

f(@) —hf(x) e Dy(B, H) .
1) Sei ke$; dann ist

f(k) — hfk) = fk)y —f(h~*kh) =f(k)+f(h)—[(k)—[(k) =0,
2) HX)— R f(X) = f(X) — f(h7* X h) = f(X) — [(X h)
und diese Differenz ist gleich 0 fiir fast alle X ¢ /9.
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Es ist demnach die Gruppe N/$ in natiirlicher Weise als Automor-
phismengruppe von @(6, H)/P,(6®, H) = B(G, H) erkldarbar ; die Auto-
morphismen von MN/$H bilden die Untergruppe E' auf sich ab.

Satz I'. K sei ein endlicher zusammenhiingender Komplex mit der Fun-
damentalgruppe ® ; K sei eine Uberlagerung von K, die zur Untergruppe
$H von & gehort. Dann existiert ein Operatorisomorphismus der Gruppe
BY(K) auf die Gruppe B(®, 9), der E*(K) auf E(®, ) abbildet. Dabei
st die Faktorgruppe N|$H des Normalisators N von § tn ® nach $ die ge-
meinsame Operatorgruppe.

Dem Beweis schicken wir einen Hilfssatz voraus : Es sei f(z)e®@(®,$),
n e N (Normalisator von § in ®); dann ist » f(x) — (f(n~' x) — f(n™1))
€ ¢2((§ ’ 5) .

Beweis: 1) Es sei he$; dann ist auch n'hne§.
fr=th) — f(n7) = f(nthnnt) — f(n )
=f(mthn)+ f(r ") — f(r7) =nf(h) .

2) Esist f(X n) — f(X) = 0 fiir fast alle X € /9 ; mit ¥ durchlduft
n~1 Y die Restklassen von ®/$, und es ist daher f(n-* Y n) — f(n1 Y)
= 0 fiir fast alle Y ¢ ®/9.

fin=tY n) — (fn 1Y) — f(n 1)) = f(n1) = ¢ fir fast alle ¥ ¢ G/$H.
Beweis von Satz I’ : Wir zeigen, dafl der durch den in 2.2 definierten
Homomorphismus induzierte Isomorphismus von B'(K) auf B(®, $)
operatortreu ist. Es sei C'e¢Z1, h 0! = f(z), n e N; die Restklasse von

n in N/ bezeichnen wir mit (r). (n) fassen wir auf als Automorphismus
von Z, 2Y$H! usw. Es sei h(n) C* = g(z); dann ist

g(a) = (n) C'-¢'(a) = C'-(n)~* c'(a) .
Aus der Definition von c¢!(a) folgt unmittelbar :
(n)~* ¢l(@) = ¢! (" a) — c'(n7)

und es ist daher g(a) = f(rn'a) — f(n~'); nach dem Hilfssatz sind
g(x)und n f(x) modulo @,(®, $H) kongruent, d. h. der durch f) induzierte
Isomorphismus von B! auf B(®,$) ist operatortreu.

3. Projektion. Satz II.

3.1. Der Komplex K iiberlagere den Komplex K. Die Projektions-
abbildung von K auf K ist mit der Rand- und Coranbildung in K und K
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vertauschbar ; sie induziert daher Homomorphismen der in der Homo-
logie- und Cohomologietheorie auftretenden Gruppen von K in die ent-
sprechenden Gruppen von K. Alle diese Homomorphismen bezeichnen
wir mit U.

3.2. K2 iiberlagere K!, K! iiberlagere den endlichen zusammen-
hingenden Komplex K. Es soll in diesem Abschnitt der Homomorphis-
mus von B1(K?)in B'(K') auf Grund der Fundamentalgruppe ® von K
und der Untergruppen von &, die zu den beiden Uberlagerungen gehoren,
beschrieben werden.

O sei der Pol der Fundamentalgruppe ® von K ; O! sei ein Eckpunkt
von K!, der O iiberlagert, 02 sei ein Eckpunkt von K2, der O' und damit
auch O iiberlagert. Es seien ), (+ = 1, 2) die Untergruppen von ®, die
zu den Uberlagerungen K’ und den ausgezeichneten Eckpunkten O¢ ge-
héren. Da O? den Eckpunkt O! iiberlagert, ist §, Untergruppe von §),.
Durch die Wahl von O? ist der im letzten Abschnitt konstruierte Iso-
morphismus i, von B'(K?%) auf B(®, $,) eindeutig bestimmt. Wir be-
schreiben den Homomorphismus U von B'(K?) in B!'(K!), indem wir
den Homomorphismus V =i, Ui;! von B(®,$,) in B(®,H, be-
schreiben.

3.3. Es sei C! eine endliche Kette (mit Koeffizienten aus J) in K2,
UC" ihre Projektion in K'; c! sei eine (endliche oder unendliche) ganz-
zahlige Kette in K!, U-'¢! ihr vollstdndiges Urbild in K2 Dann ist
UCr.ct =Cr- Ut

3.4. Zum Cozyklus C! in K? gehore die Funktion f(x) aus &(6,9,),
zu seiner Projektion in K! die Funktion F (x) aus @(®, £,). Wir zeigen,
wie die Funktion F (x) aus f(x) berechnet werden kann. Um den Wert
der Funktion F (z) auf einem Element @ ¢ ® zu berechnen, haben wir
in K einen a reprisentierenden Weg w zu wihlen, diesen Weg in den ihn
iiberlagernden Weg w mit dem Anfangspunkt O! in K* durchzudriicken
und das dem Weg w entsprechende Element ¢! von £! (K) zu bestimmen ;
dann ist F(a) = UC'-cl.

Wir betrachten nun die im allgemeinen unendliche Kette U-! ¢! von
K2, Sind w3 die Wege von K2, die den Weg w iiberlagern, und gehoren
zu den Wegen w? die Ketten ¢}, soist U-1c! = ¥ c}. Die Wege w} lassen

?
sich auch folgendermaflen charakterisieren : Sie iiberlagern den Weg w

und beginnen in einem Eckpunkt O02?(X) von K2 wobei X eine Rest-
klasse aus £),/9, ist (dabei bezeichnet $,/$, die Menge der Restklassen
von ® nach $,, die in §, liegen).
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Es sei ¢1(x) die zur Uberlagerung K? von K gehorende Funktion auf
® mit Werten in 8YH!. Fiir festes a e ® ist ¢'(za) — ¢'(x) konstant
auf Restklassen von & nach §, ; es ist daher ¢!(X a) — ¢1(X) (X e®/$H.)
in natiirlicher Weise erklirbar. Aus der zweiten Charakterisierung der
Wege w? folgt leicht : Beginnt der Weg w? im Eckpunkt 0?(X), so gehort
c; zur Restklasse ¢'(X a) — ¢!(X). Es ist daher

UCt.ct=0C"-U1lcd=C"-Fcp=0C"- X [c¢'(X a) — e (X)]
(die letzte Summe ist zu erstrecken iiber die Restklassen X € $,/9,).

Weiter gilt :

0. Y [c(Xa) —c(X)]= 3 - [c(Xa)—c'(X)]
X€H1/He XeH1/ He

Y [f&Xa) —{(X)];

XeH1/ 9

|

wir haben daher gezeigt : Gehort zum Cozyklus C! in K? die Funktion
f(x) aus @(®,$H,), so gehort zu UC! in K' die Funktion F(x) aus
D (®, ), die folgendermalien definiert ist:

Fa= X [{Xa)—{(X)].
Xe€H1/ D2

3.5. Wir fassen das Irgebnis in einer Definition und einem Satz zu-
sammen. Die nicht bewiesenen Behauptungen ergeben sich fiir Gruppen
®, die als Fundamentalgruppen eines endlichen Komplexes auftreten,
unmittelbar aus der geometrischen Interpretation ; die entsprechenden
Beweise konnen aber auch leicht fiir beliebige Gruppen algebraisch ge-
fithrt werden.

Definition : ® sei eine Gruppe, $, (1 = 1, 2) seien Untergruppen von
®, 9. Untergruppe von §,. V sei der folgendermallen definierte Homo-
morphismus von @(®, H,) in (G, H,):

Vi@/iea=_X [[(Xa)—{X)].

Xe€eH1/ D2

(Die Summe, die iiber alle Restklassen X von & nach £, in £, zu er-
strecken ist, ist endlich.)

V bildet die Gruppe D,(®, $H,) in D,(®, H,) ab und induziert daher
einen — auch mit V bezeichneten — Homomorphismus von B(®, §,) in

B(®, $)-
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Satz II. Der endliche zusammenhiingende Komplex K werde von den
Komplexen K' und K2 iiberlagert ; K2 iiberlagere K. Die zu den Uberlage-
rungen gehdrenden Untergruppen &, (v = 1, 2) der Fundamentalgruppe &
von K seien so gewdhlt, daf 9, Untergruppe von ), ist. U bezeichne den
natiirlichen Homomorphismus der ersten Cohomologiegruppe B'(K2?) wvon
K2 in die erste Cohomologiegruppe B (K') von K. Dann gibt es solche Iso-
morphismen i, von BY(K*) auf B(®,9,) (@ =1,2), da i, U = Vi,.

3.6. Ist K ein endlicher zusammenhéingender Komplex mit der Fun-
damentalgruppe ®, so ist nach Satzl B (K) = ?(6, ©)/D,(G, G).
D (®, ®) ist die Gruppe der homomorphen Abbildungen von ® in J ;
D,(®, ®) ist die Nullgruppe. Die Gruppe B(X) ist daher isomorph der
Gruppe der homomorphen Abbildungen von ® in J (B. Eckmann [1],
S. 267).

Es sei K eine endliche Uberlagerung von K, die zur Untergruppe $
von ® gehort; da $ Fundamentalgruppe von K ist, so ist B!'(K) iso-
morph der Gruppe der homomorphen Abbildungen von § in J. Der
natiirliche Homomorphismus von B'(K) in B'(K) lafit sich folgender-
mafen beschreiben :

Es sei v(x) die Verlagerung von ® in § (vgl. H. Zassenhaus [21],
S. 131); v(«x) ist eine homomorphe Abbildung von ® in die abelsch ge-
machte Gruppe $ von §. Die Cohomologieklasse ¢! induziere auf § den
Charakter f(x); dann induziert die Projektion U (! von (' in K auf G
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