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Uber Wertverteilung
gebrochener rationaler Funktionen

Von Gyula v. Sz. Nagy, Szeged (Ungarn)

1. Die nicht reduzierbare rationale Funktion

— /() _ a,2"+a,2"1+...+4+a,
PO =Gy = het b7t +0

ist vom n-ten Grad, wenn |a,| + | by | % O ist. Der Punkt z, ist eine
Z-Stelle bzw. ein Pol der Funktion F(z), je nachdem F(z,) = Z bzw.
F (zy) =00 ist.

Diese Arbeit beschéftigt sich um die Lage der Z-Stellen der Funktion
(1) beziiglich ihrer Nullstellen und Pole und verallgemeinert einige Sitze
von mir iiber Polynome?). So beweise ich die Sitze :

(1)

I. Bezeichnet o bzw. f eine (endliche) Nullstelle bzw. einen (endlichen)
Pol der rationalen Funktion F(z) n-ten Grades

/()
F (2) =
9=970
und sind o
(B)
C=-"—-"""- und Z|<|C| , 2
e 1Z1<|C| @)
so besitzt die Funktion F (z) mindestens eine Z-Stelle im Innern des Kreises
2—o Z |n
—7|=|e| =< 3)

oder simitliche Z-Stellen auf diesem Kreis.

1) Qy. Sz. Nagy, Uber die Lage der A-Stellen eines Polynoms beziiglich seiner
Nullstellen, Acta Scientiarum Math. Szeged 11 (1947), S. 147—151.

Andere Ergebnisse iiber Wertverteilung gebrochener rationaler Funktionen befinden
sich in den Arbeiten:

M. Fekete, Uber Wertverteilung bei rationalen Funktionen einer kom-
plexen Veréanderlichen, Acta Scient. Math. Szeged 4 (1929), S. 234—243.

@Qy. Sz. Nagy, Uber den Wertvorrat gebrochener rationaler Funktionen in
Kreisbereichen, Hungarica Acta Math. 1, Nr. 3 (1948), S.1—13.
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Dasselbe gilt im Falle |Z | >| C | fir die Z-Stellen von F (2) im Kreise

z—p C’Dl?
7z —« = Z |
II. Ist
. —7Z | —2Z - g(x)
O<a)——-l|arc 0 ~\—‘1arc-7—(—3)*- <xm, (4)

so enthdlt das Kreiszwereck K (oc, B ,%) , von dessen Punkten aus die
Strecke (o, B) unter je einem Winkel = % erscheint, mindestens eine

Z-Stelle der Funktion F(z) im Innern oder jede Z-Stelle von F(z) am
Rande.

Die Z-Stellen der rationalen Funktion F(z) sind Nullstellen des Poly-
noms

() = f(2) — Zg(2) =k§”0 (@y — Zb)an* = (ag — Zbo) I (2 — %) . (5)

k=1

Im Falle ay — Zb, = 0 hat das Polynom ¢(z) die Form

n—p
p()=(a, —Zb,) Il (z —2,), a,—2Zb,#0,

k=1
a, —2Zb, =0 (k=0,1,...,p—1;p<n).

Dann ist 2z,=72, ,=---=2, ,,,=oc0 eine (p-fache) Z-Stelle von
F (z). Daraus folgt die Gleichung

—— = JI , 6
C 12— P ©)
weil
@ (x) — 7 g (x) Z nox — 2 noZp— &
RSNk (. AR § RS N §
@ (B) 1(B) C k=1 B — 2 k=1 2 — B
ist und weil im, Falle p>0, alsoim Falle z, =2, , =---=2,_,,; =00,
zk_“
= I, k=n,n—1,...,n—p-+1
Pa— ( p+1)
sind.

Liegt keine Z-Stelle von F(z) im Innern des Kreises (3), so sind

R — & Rp — &

2e— P

>t (k=1,2,..., nd ﬁ
z—PB | ( K : k=1

-[3]-r.
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Diese Relationen bestehen zugleich nur dann, wenn die Ungleichungen
mit lauter Gleichungszeichen gelten. Damit ist der Satz I bewiesen, weil
sein zweiter Absatz aus dem ersten folgt, wenn man die Funktion F(z)
durch ihre Reziproke ersetzt.

Enthilt das Kreiszweieck K (rx, B %) keine Z-Stelle (Z £ 0, co) von

F(z) im Innern, so bestehen die Ungleichungen

o Tl WL 1 —Z _
amzk—~ﬂ’=n—n arc — ‘ (k=1,2,...,n) . (7)
Diese Ungleichungen und die aus (6) folgende Ungleichung
e Z i 2 — & " Zp — & ‘
= = | > arc = >
w arc 0 } ;kél 2 — B __k%l arc 2 — B

enthalten nur dann keinen Widerspruch, wenn jede Ungleichung (7) mit
Gleichungszeichen besteht. Damit ist der Satz IT bewiesen.

2. Sind die Nullstellen der Polynome f(z) und ¢(z) bekannt, so
gelten die Séatze :

III. Sind
F(z):—_ﬁz"“" , O<t<1l, t":|U|=—~—1-——, (8)
k=1 2 — P | V]

80 enthdilt dive Gesamtheit der n Kreisscheiben

Z2— &
1<t bzw.

<t (k=1,2,...,7) (9

z2— P
jede U-Stelle bzw. jede V-Stelle der rationalen Funktion F(z) wvon (8).

IV. Ist 4
O<w=|arcW|Zx , (10)

8o enthdlt die Gesamtheit der n Kreiszweiecke K (zxk, B %—) (k=1,2,...,n)
jede W -Stelle der Funktion F(z) von (8).

Die Annahme, daB eine U-Stelle 4 bzw. eine V-Stelle v der Funktion
F (z) auBerhalb jeder Kreisscheibe der ersten bzw. zweiten Gesamtheit
von (9) liegt, filhrt zu einem Widerspruch. Aus (8) und aus den Un-
gleichungen
U — oy,
u — Py

“kl -
e <t1 k=1,2,...,n
”"'ﬂkl ( )

>t bzw.
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folgt némlich die falsche Ungleichung

U —
t"=|U|=|F@)|=II Ll >t
UI=1F @)= 1| 2=
baw. th=|V|=|F@)|= IT| 2% | <
k=1]| v — By
Ahnlicherweise fiithrt die Annahme, da F(z) eine W-Stelle w auBer-

halb jedes Kreiszweieckes K (oc,c, B ,—(Z—) (k=1,2,...,n) besitzt, zu

einem Widerspruch. Wiren ndmlich

w

k
arc S k=1,2....,n
o g < k=12...m
SO waren
L W — g, 2 w — &
w=|arcF (w)| =| ¥ arc < ) |arc <w.
l (w) | é% w— B | =& w0,

Damit sind die Satze III und IV bewiesen.

3. Bezeichnet B einen konvexen Bereich der komplexen z-Ebene und
ist 0<t<l bzw. 0<¥=m, so hat der Bereich B({) bzw. K(B;d)
die Eigenschaft :

Sind « und g zwei beliebige Punkte von B, so enthilt B die Kreis-
scheiben 2 — B

2 —

2 — «
z—p
Von einem, beliebigen Punkte des Bereiches K (B;#) aus erscheint der

konvexe Bereich B unter einem Winkel =4.
Bedeutet B die Kreisscheibe |z — (|<r, so ist K(B;?#) bzw.

B(t) die Kreisscheibe |z — {|=7r cosec }; bzw.
|z —C|=r(1+1)(1 — o).

Die erste Behauptung ist klar, auch die zweite 146t sich leicht ein-
sehen. Sind nédmlich |6« — {|<Zr, |f— {|=r und

<t und

=t .

Y 2 — . o — Bt e
== < ¢ - — 4 . . - : ’
2 F | t, <t, also P t,etv , d.h. z 1 feiv
so ist
DR Ny R (et LU PPN PR d VBt A
1 —1t, e = 1— ¢,
r+rt 141

|

1—¢  "1=¢ "
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Aus den Sétzen IIT und IV folgt also der Satz

V. Enthdlt der konvexe Bereich B jede Nullstelle und jeden Pol der ratio-
nalen Funktion F(z) n-ten Grades von der Form

2" +a, 2 - - ta,
2"+ by 2" A by
und sind |U|=|V|1=t"<]l bzw. O0<|arcW | = w=<xn, so enthill

der Bereich B(t) bzw. K (B;-al) jede U-Stelle, jede V-Stelle bzw. jede W -
Stelle der Funktion F(z). "
Bedeutet B die Kreisscheibe |z — (|<r, so st B(t) bzw. K (B; %))

F(2) = (11)

die Kreisscheibe |z —C|<r(l1 +1%)(1 —¢) bzw. |2—{| = r cosec 2wn

Dieser Satz 1i8t sich auch in der Form ausdriicken :

VI. Bezeichnet T die durch die Gleichung
Z = F(2) (12)

bestimmte konforme Abbildung der komplexen Z-Ebene auf die z-Ebene, wo
die rationale Funktion F(z) die Form (11) besitzt, so hat T die Eigen-
schaften :

Liegen die Nullstellen und die Pole von F (z) in einem konvexen Bereich
()

B, so enthilt der Bereich B(t) (0<t<<l) bzw. K(B;—n—) O<w=m)

die Abbildung beider Kreisbereiche der Z-Ebene |Z |=R, = t"<1 und
|Z|=R, =t">1 bzw. die Abbildung des Winkelraumes

7" —w=<arcZ <n+ w.

4. Die duBere bzw. innere Seite eines Kegelschnittes K besteht aus den
Punkten, die an K zwei verschiedene bzw. keine Tangenten senden. Mit
dieser Benennung lassen sich die Sitze einer fritheren Arbeit?) von mir
in der Form ausdriicken und zusammenfassen :

VIIL. Liegen die Nullstellen bzw. Pole der Funktion F(z) von der Form
(11) em Kreisbereich K, bzw. K, , so kann man in folgenden Fillen evnen von
Kegelschnitt begrenzten Bereich B der z-Ebene angeben, der das Abbild evner
Kreisscheibe | Z | <t™ in sich enthdlt.

. 2) Gy.de Sz. Nagy, Generalisation of certain theorems of G. Szegé ontheloca-
tions of zeros of polynomials, Bull. of the Amer. Math. Soc. 53 (1947), S. 1164—1169.
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1. Sind K;: |z2—C|=r, Ky |z2—C]<r,, t<§1, s0ist B:

ry — 7,1 2
IZ”C|;>~:‘1 2

14 ¢

2. Sind K,: |z— ¢ |=ry, Ky |z2—0 =], t<1l und
| &4 — & | <<ry — 7y, S0 tst B dupfere Seite der Ellipse mit der Haupt-
achsenlinge r, — r, und mit den Brennpunkten {, und (,.

3. Sind K,: |z—(|Sr, Kyt |2 — 0|, t<l und | E; — & >
>r,+1,, soliegt B auferhalb der £, enthaltenden inneren Seite der Hyper-
bel mit der Hauptachsenlinge r, + r, und mit den Brennpunkten {, und ¢, .

4. Ist K,: |z — {|=r, st K, eine Halbebene mit der Randgeraden g,
e+ 1

haben K, und K, keinen Punkt gemeinsam und vst = e + T S0

enthdlt B die innere Seite eines Kegelschnitts mit der numerischen Exzen-
tritdt e, der in [ ewnen Bremnpunkt und wn g die zugehorige Leitgerade be-
sitzt, wenn 0 den Abstand zwischen { und g bedeutet.

(Eingegangen den 10. Juli 1948.)
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