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Kurzer Beweis
des gruppentheoretischen Satzes von Hajos

Von L. REpEer, Szeged (Ungarn)
Mit Dank und Liebe meiner Frau gewidmet.

§ 1. Einleitung

Bezeichne @ eine endliche Abelsche Gruppe. Das Einselement bezeich-
nen wir mit 1 und nehmen stets G = 1 an. Kleine griechische und latei-
nische Buchstaben (auch mit Indizes versehen) bezeichnen Elemente von
G bzw. ganze Zahlen ; eine Ausnahme macht ,,z“.

Einen Komplex von der Form

o], = (1, ,...,a%71) (e=2) (1)

nennen wir ein (e-gliedriges) Simplex, wobei wir stets annehmen, daf} die
Elemente verschieden sind, d. h. die Ordnung von « gréfler oder gleich e
ist. Meistens schreiben wir kurz [«] fiir [«],, kommen dann aber gleich-
zeitig mehrere Simplexe [«], [#],... vor, so soll das nie bedeuten, da@3
die Gliederzahlen gleich sein miifiten. Es ist klar, dal (1) dann und nur
dann eine Gruppe ist, wenn « die Ordnung e hat.

Der Satz von Hajds?!), wohl einer der wichtigsten in der Theorie der
endlichen Abelschen Gruppen, lautet so :

Gilt fiir evne endliche Abelsche Gruppe G eine ,,Simplexzerlegung‘
G = [o]. . .[ox] (n=1) , (2)

s0 ist mindestens ein Faktor der rechten Seite eine Gruppe. Man nenne (2)
auch eine Hajéssche Zerlegung.

1) @. Hajés: Uber einfache und mehrfache Bedeckung des n-dimensionalen
Raumes mit einem Wirfelgitter. Math. Zeitschr. 47 (1942), S. 427—467, insbeson-
dere S. 442. Frither auch ungarisch erschienen als ,,T6bbméretii terek befedése kockaracs-
csal‘‘. Mat. fiz. lapok 45 (1938), S. 171—190 und ,,Tébbméretii terek egyszeres befedése
kockaréaccsal‘‘. Mat. fiz. lapok 48 (1941), S. 37—64.
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Selbstverstdndlich ist (2) so zu verstehen, dafl bei dem Ausmultipli-
zieren der rechten Seite alle Elemente von G genau einmal entstehén.

Ich denke, daBl Hajés’ Satz bisher noch nicht geniigend Gemeingut
geworden ist, weshalb ich hier kurz einiges iiber ihn bemerke.

In expliziter Form lautet der Satz so: Immer wenn

k k . g
oyt o (k;=0,...,e,—1; t=1,...,n)

alle verschiedenen Elemente von @ sind, dann hat ein «; die Ordnung e, .
(In dieser Formulierung diirfen e,,...,e, (=1) beliebig sein.) Dies
zeigt eine groBe formale Ahnlichkeit mit dem Fundamentalsatze auf
(man denke an die Basisdarstellung von (), und zwar handelt es sich im
Satz offenbar um eine Art Umkehrung des Fundamentalsatzes. (Dieses
Verhiltnis beider Sitze zueinander wird noch deutlicher, wenn man den
Fundamentalsatz so ausspricht : G hat eine Simplexzerlegung (2), in der
alle Faktoren Gruppen sind.

Man ist geneigt, ,,Strukturfragen® aller Art der endlichen Abelschen
Gruppen mit dem Fundamentalsatze prinzipiell erledigt anzusehen. Ha-
jos’ Satz stiirzt eine solche Meinung zu Haufen, vielmehr wird man nach
einer niheren Beschiiftigung mit dem Satze zur Uberzeugung gebracht,
dafl der Satz vom Fundamentalsatze vollig unabhingig ist, diesem an
Tiefe nicht hintersteht, und ihn an den Schwierigkeiten des Beweises viel-
fach tbertrifft. Ein Beleg fiir diese Meinung ist selbst der (bisher einzig
vorhandene) Originalbeweis von Hajés voll mit scharfsinnigen Uber-
legungen, der dabei vom Fundamentalsatze keinen Gebrauch macht.

Die Wichtigkeit des Satzes ragt weit iiber die Gruppentheorie hinaus,
denn — wie das ebenfalls Hajos gezeigt hat — in einer anderen (dquiva-
lenten) Form als Satz von Minkowski-Hajés spricht der Satz die Rich-
tigkeit der beriihmten (vor Hajos unbewiesenen) Vermutung von Min-
kowski iiber den ,,Grenzfall“ von Diophantischen homogenen linearen
Ungleichungen (in einer weiteren Form handelt es sich um ,,raum-
zerlegende Wiirfelgitter®)2).

Aus diesen Griinden war sehr erwiinscht, den umfangreichen und
komplizierten Beweis von Hajos durch einen leichteren zu ersetzen. Das
gliickte mir iiber Erwartung. Der hier mitzuteilende Beweis ist durch
eine Reihe inhaltlicher und formaler Vereinfachungen des Hajosschen
Beweises entstanden, dabei blieb der tiefe Grundgedanke des Beweises
unberiihrt und tritt jetzt viel deutlicher zur Geltung.

Ich beabsichtige auf verschiedene Fragen (auch Anwendungen) im

2) Naheres hieriiber s. bei Hajos!).
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Zusammenhange mit dem Satz zuriickzukommen. Insbesondere fand ich
einen (ebenfalls ,,fundamentalsatzfreien“) Weg, wie man den Satz von
Hajos mit einfachen Mitteln auf den Fall von p-Gruppen zuriickfiihren
kann. Deshalb scheinen mir die eigentlichen Schwierigkeiten des Satzes
im Fall der p-Gruppen konzentriert zu sein. (In den Hajésschen Beweis
spielt der Begriff von p-Gruppen gar nicht hinein.)?3)

§ 2. Der Ring der Komplexe

Zum Beweis des Satzes von Hajos ist es notig, daB wir die Komplexe
verallgemeinern und dann ihre Menge zu einem Ring machen. Die Ver-
allgemeinerung geschieht so, daBl wir den Elementen eine beliebige (posi-
tive oder negative) ganzzahlige Multiplizitdt zukommen lassen, genauer
fassen wir das in die folgende :

Definition 1. Unter einem (allgemeinen) Komplex K (von G) ver-
stehen wir ein (doppeltes) System von verschiedenen Elementen

Gys...,0, der Gruppe G und von beliebigen ganzen ,Multiplizitits-
zahlen“ ¢,,...,¢, (% 0), in Zeichen:
K= (c;0%5...,C,0,) (n=0) , (3)

wobei die Reihenfolge der ,,Glieder aufler acht zu lassen ist. Die «,; nen-
nen wir die Elemente von K und schreiben hierfiir «; e K (t = 1,..., n).
Nur im Fall » = 0 hat K keine Elemente, dann setzen wir K = 0. Ist
K 5 0 und sind alle ¢, positiv, so nennen wir auch K positiv und setzen
K >0. Eingliedrige Komplexe (n = 1) bezeichnen wir kurz als c«
statt (cx). Den Fall ¢, =---=¢, =1 von (3) identifizieren wir mit
K = (x,...,%,), und dann sind diese ,,gewohnlichen“ Komplexe als
Spezialfille unter den allgemeinen Komplexen enthalten. (Auch wenn
einige ¢, = 1 sind, lassen wir diese ¢; in (3) fort.)

Es soll ausdriicklich bemerkt werden, daf3 die Elemente von K stets
einen gewohnlichen Komplex bilden ; dieser ist gleich 0, wenn K = 0
gilt. Es ist auch wichtig, daBl insbesondere alle Untergruppen von @ unter
den (allgemeinen) Komplexen vorkommen.

Bequemlichkeitshalber heben wir die Einschrinkung auf, dafl die «;
untereinander und die ¢; von 0 verschieden sind (und behalten auch dann
die Bezeichnung (3)), vereinbaren wir uns aber, dafl zwei Glieder ax, bx

3) Zu den obigen siehe noch: L. Rédei: Zwei Liickensatze iiber Polynome in
endlichen Primkorpern mit Anwendung auf die endlichen Abelschen Grup-
pen und die GauBischen Summen. Acta Math. 79 (1947), S. 273—290.
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durch das Glied (@ + b) « ersetzt und die Glieder Ox gestrichen werden
diirfen. Dann 148t sich jeder Komplex auf die ,,Normalform* (3) bringen
(wobei namlich, die «; voneinander und die ¢; von 0 verschieden sind), die
offenbar (bis auf die Reihenfolge der Glieder) stets eindeutig bestimmt
ist. Selbstverstdndlich nennen wir zwei Komplexe gleich, wenn ihre
Normalformen iibereinstimmen, und so sind alle verschiedenen Kom-
plexe schon die oben definierten. Man merke sich wohl: Ist (3) nicht
die Normalform von K, so sind auch die x, nicht die Elemente von K
(diese sind nach wie vor von der Normalform abzulesen).

Um nun die Menge aller Komplexe zu einem Ring zu machen, den wir
mit (G) bezeichnen werden, definieren wir vor allem Summe und Produkt
von zwei eingliedrigen Komplexen mit den Regeln :

ax + bf = (ax, bp) , ax-bf = ab-af .

Indem wir diese mit zweiseitiger Distributivitdt ergéinzen, so haben
wir den gewiinschten Ring (G) festgelegt*). Die Buchstaben H, K (auch
mit Indizes versehen) bezeichnen nachher stets Elemente von (@). Sum-
me, Produkt und Differenz bezeichnen wir mit H + K, HK, H — K.
Beispiele :

(— 30,9) + (&, 28, — ) = (— 20, 2) ,

(1,0)(3, —20) = (3,0, — 202) .

Selbstverstdandlich bezeichnet ¢K (¢>0) die Summe K +---+ K (mit
¢ Summanden).
Offenbar 1aBt sich fiir (3) auch

K=co +--+c,x, (4)

schreiben, denn das Resultat der Addition fiihrt auf (3) zuriick. Im fol-
genden bevorzugen wir diese ,,additive Schreibweise®.

Fiir das spétere fiihren wir noch zwei einfache, aber wichtige Begriffe
ein :

Definition 2. Unter der Ordnung O(K) von K verstehen wir (nach
(3) oder (4))
O(K)=c,+-+¢, . (5)

4) Im wesentlichen stimmt (@) mit dem sogenannten ,,Gruppenring (von @) iiber dem
Ring der ganzen Zahlen‘‘ iiberein, wovon wir aber keine Notiz nehmen wollen, cbwohl
die Ubereinstimmung nach (4) auch formal vollkommen gemacht wird.
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Definition 3. Unter dem Gewicht ¢g(K) von K verstehen wir die
Anzah] aller (nicht nur der verschiedenen) Primfaktoren der Ordnung
O(K) von K. Dabei soll O(K) # 0 angenommen werden, einem K mit
O(K) = 0 schreiben wir kein Gewicht zu.

Es ist klar, daBl in (5) gleichgiiltig ist, ob K in der Normalform oder
anders angenommen wurde. Kurz gesagt : O(K) und daher auch g(K)
sind durch K (invariant) bestimmt. Offenbar gelten?5):

O(HK) =0(H)O(K) , g(HK)=g(H)+ g(K) .

Man bemerke, dal O(K) insbesondere fiir eine Untergruppe K mit
der ,,Gruppenordnung® zusammenfillt. Es ist auch klar, daB fiir irgend-
zwei Untergruppen H, K jede der Aussagen ©)

HC K, OWH)IOK), gH)=9(K),

die nachstehende impliziert.

§ 3. Primsimplexe

Das Simplex (1) diirfen wir nunmehr auch als

[l =14 0o+ -+ o (6)

schreiben. Neben (6) werden auch noch die Komplexe (gleich additiv
geschrieben)

1 —a (x5 1) (7)

eine Fiihrerrolle spielen, weshalb wir (7) auch ein Simplex nennen. (Da-
bei sind (6) und (7) zugleich die Normalformen aller Simplexe.)
Unter einem Primsimplex verstehen wir ein Simplex, dessen Glieder-
zahl eine Primzahl ist 7). Das sind die (6) mit einer Primzahl e = p und
alle (7). Entsprechend ist die Ordnung gleich p oder 0 (zuféllig ebenso wie
die moglichen Korpercharakteristiken). Ubrigens entstehen die Prim-
simplexe auch so, daBl man aus den Polynomen 1 — x? die irreduziblen
Faktoren 1 4+ x 4 ...+ 2?71, 1 — x bildet, und x = & einsetzt.

5) Es gilt auch O(H + K) = O(H) + O(K), wovon wir aber keinen Gebrauch machen
werden.

¢) Es bezeichne ,,a| b und ,,a Jb¢: ,,a Teiler von b bzw. ,,a Vielfaches von b*. (Die
kleine Schrage in den ,,{, | richtet sich stets nach dem Teiler hin.)

7) Die Benennung ,,Primsimplex‘‘ soll keine Teilbarkeitseigenschaft suggerieren. Es ist
iibrigens klar, daB alle Simplexe und Untergruppen (2 1) Nullteiler in (G) sind.
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Fiir beliebige Simplexe folgt aus (6), (7) sofort :

[“]ef - [O"]e [‘xe]f (e» fg 2) ’ (8)

[6]e(l — o) =1 —a° . (9)

Zur Giltigkeit von (8) mufl bemerkt werden, dafl mit der linken Seite
zusammen stets auch die Faktoren der rechten Seite aus verschiedenen
Gliedern bestehen und folglich mit ihr zusammen auch Simplexe sind.

§ 4. Reduktion des Satzes von Hajos auf den Fall von
Primsimplexzerlegungen

Wir nennen (2) eine Primsimplexzerlegung von G, wenn alle Faktoren
[«;,] Primsimplexe sind, und beweisen folgendes :

Ist der Satz von Hajés fiir Primsimplexzerlegungen richtig, so ist er all-
gemewn richtig.

Betrachten wir nédmlich eine beliebige Simplexzerlegung (2) von G.
Aus (8) folgt sofort, dal jedes Simplex [«] sich in ein Produkt von Prim-
simplexen [#] zerlegen 1iBt. Ersetzen wir jeden Faktor [«;] in (2) durch
ein solches (ihm gleiches) Produkt. So entsteht eine Primsimplexzerle-
gung von (@, in der nach der Voraussetzung mindestens ein Faktor eine
Gruppe sein mull. Folglich ist mindestens ein Faktor auch in der ur-
spriinglich vorgelegten Gleichung (2) eine Gruppe und somit unsere Be-
hauptung richtig, wenn folgendes gilt :

Ist in etner Qlerchung

[x]e = K[B], (10)

der Faktor [f], eine Gruppe, so mufl auch [x], eine Gruppe sein.

Um dies zu beweisen, bemerken wir, dal /=1 gilt. Wenn wir also
(10) zuerst mit 1 — B, dann mit 1 — « multiplizieren, so entsteht
nach (9):

[6],(1 =B =0, (A—o)(1—-p =0, B+a*=1+af.

Wegen f £ 1 ergibt die letzte Gleichung sofort «¢ = 1. Dies bedeutet
eben, dal [«], eine Gruppe ist, womit wir alles bewiesen haben.
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§ 5. Weitere Vorbereitungen zum Beweis des Satzes von Hajés

Wegen der eben erfolgten Reduktion werden wir es im folgenden unter
allen Simplexen nur noch mit den Primsimplexen [x] = [x],, 1 — « zu
tun haben. Fiir diese fiithren wir auch eine (stark abgekiirzte) gemeinsame
Bezeichnung ein, die uns sehr gute Dienste leisten wird. Und zwar er-
klidren wir das (mehrdeutige) Symbol x so, daBl dies stets ein bestimmtes
aller Primsimplexe [x],, 1 — & bezeichnen soll. (Dabei ist stets o 7% 1
und p eine Primzahl, die die Ordnung von « nicht ibertrifit.)

Ferner fithren wir die wichtige Bezeichnung {H,..., K} ein, und ver-
stehen darunter die durch die Elemente von H,...,K erzeugte Unter-
gruppe von G'; dabei soll stets H,..., K 7~ 0 sein. (Selbstverstindlich
diirfen einige der H,..., K auch Elemente von @ sein, denn diese sind
zugleich eingliedrige Komplexe.)

Fir O({}) und ¢g({}) schreiben wir kurz O {} und g¢g{}; beide sind
scharf von O() und ¢() zu unterscheiden.

Sofort sieht man die Richtigkeit der folgenden Formeln ein :

{H,...,Ky={{H},....{K} (H,.,K+#0), (11)
(H...K}c {H,..., K} (H... K #£0) , (12)
{a} = {a} . (13)

Aus (11), (13) folgt auch
{(K,oy,..y00,) = {K,0,...,0} (K #0) . (14)
Wir zeigen noch die folgende Formel

g{K, 0, ..,0 — g{K, 00, .., 0}
SP{E 0ye e ety Opprseees iy — g{K 0q. . 000}, (15)

wobei K x;...x; # 0 gelten soll.
Offenbar gilt ndmlich fiir beliebige Untergruppen H,,H, mit H, D H,:

O{H,, w;,..., 0w, }[]OH,) | O{H,, wq,..., 0 }]OH,) .
Hieraus folgt
g{H,, ©y,..., 0} — g(H,))Sg{H,, w;,..., 0,3 —g(H,) .
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Wegen (12) kann man dies mit
H, = {K,x;,...,04} , H,= {K «,...0,}

anwenden. Setzt man gleichzeitig auch noch «;,,,...,«, fir o,,..., o,
ein, so entsteht (wegen (11)) die Formel (15).

§ 6. Ein Hilfssatz iiber die Gleichung K«,...x =0

Betrachten wir ein Produkt «,...x, (3% 0) von Primsimplexen. Ist
dann K ein Komplex, so kann das Produkt K «,...x, unter Umstinden
0 oder eine Untergruppe von G sein (die zweite Moglichkeit kann selbst-
verstindlich nur fir K «x,...x, = K[x,]...[«,] eintreten, d.h. kein
«; =1 —«; kann dabei vorliegen). Uber diese Probleme enthiilt der
folgende Hilfssatz 1 bzw. der Hilfssatz 2 im § 7 je eine Aussage, die der
Form nach sehr dhnlich sind, sich aber sehr verschiedenartig beweisen
lassen werden. Beide Hilfssétze geben dann im § 8 den Beweis des Satzes
von Hajos in die Hand.

Hilfssatz 1. Gilt eine Gleichung
Ka,...5, =0 (r=1) (16)

und Lift sich hier (ohne Zerstorung der Qleichheit) kein Faktor o, streichen, so
gilt
gi{iK, x5 .00 —g{K}<r . (17)

Den Beweis fangen wir mit dem Fall r =1 an. Jetzt haben wir
g{K,o0,} =g{K}, d.h. &, e {K} zu zeigen. Ist zuerst «; =1 — «;, so
lautet (16) als K&, = K, und so gibt es eine Gleichung f«, =y
B,y e K), woraus in der Tat «, ¢ {K} folgt. Dann sei o, = [x],
(p = Primzahl). Aus (16) und (9) folgt K(1 —af) = 0, und so gilt
wegen des vorigen gewil

of e {K} . (18)

Andererseits 148t sich (16) auch als K(x, +---a?~') = — K schreiben,
und so gibt es eine Gleichung Boai =y (8,7 K; 1=<i<p — 1). Hier-
aus folgt of ¢ {K}. Dies und (18) ergeben wieder o, ¢ {K}, und so ist
Hilfssatz 1 fiir » = 1 richtig.

Im iibrigen Teil des Beweises machen wir einen Induktionsschlufl nach

g} +---+ gfn} . (19)
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Ist (19) gleich 1, so mul 7 = 1 sein, und so ist dies ein eben erledigter
Fall. Nachher sei (19) grofler als 1 und es werde die Richtigkeit von
Hilfssatz 1 fiir die ,,kleineren” Werte von (19) vorausgesetzt. Nach (16)
gilt

(K 0ty...0p) Kpype- -0, =0 (1Zksr — 1), (20)

und hier 148t sich kein Faktor o,.,,..., «, streichen. Die Anwendung
von Hilfssatz 1 auf (20) ergibt

G{K 0o 0y Ogygreees O} — giK 0y o} <r — k
Wegen (15) gilt noch mehr
G{K, 0,0 .,0} —g{K,xq,...,00}<r —k (1=k=sr—1). (21)
Sind zundchst alle Glieder von (19) gleich 1, so gilt offenbar
g{K, 00,00 ,0,_}—g{K}=Sr—1.

Addiert man hierzu den Fall £ = r — 1 von (21), so entsteht eben (17).

Im restlichen Fall darf g{x,} =2 angenommen werden. Hieraus folgt
mit hochstens zweimaliger Anwendung von (9), daB «, in beiden Fillen
o, = [%,],, ] —x, mit einem passenden Faktor multipliziert in ein Prim-
simplex 1 — f iibergeht, wofiir

I=sg{f=9g{x}—1 (=) (22)

gilt. Da (16) bei Ersetzung von «, durch 1 — 8 noch mehr richtig ist, so
gewinnt man nach Streichung einiger Faktoren und Umnumerierung der
%ys. .., 0_, eine Gleichung

Ka,. .. x,(1—B)=0 0<I<sr — 1), (23)

in der sich nunmehr kein Faktor «; streichen 148t. Wegen der Annahme
iiber (16) 148t sich 1 — B auch nicht streichen. Zu (23) gehort wegen
(22) ein ,kleinerer Wert von (19), und so folgt aus der Voraussetzung

g{K, o0, .., 00,8 — g{K}<I . (24)

Zuerst sei [ = 0. Aus (24), (22) folgt ¢g{K,x,} —g{K} =<1, diesund
Fall £=1 von (21) ergeben (17). Dann sei 1 <I<r—1. Nach
Weglassen von f§ gilt (24) noch mehr. Wenn noch der Fall k=1 von (21)
addiert wird, so entsteht wieder (17), womit Hilfssatz 1 bewiesen ist.
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§ 7. Ein Hilfssatz iiber die Untergruppen
von der Form K [«,] ... [xr]
Hilfssatz 28). Ist das Produkt K(w,]...[x,] von esinem K (>0) und

den Primsimplexen [n,],..., [x,] eine Gruppe, selbst K aber keine Gruppe,

8o gilt
g{K,o,...,0}—g{K}<r . (25)

Zuerst zeigen wir
Klo ], . Joee] = {K, 1500050} . (26)

Hierzu nehme man ein g e¢ K. Da die linke Seite von (26) die Elemente
B,Bx; also auch «, (¢=1,...,7) enthilt, so ist (26) mit ,,.D“ (statt

19 [13

,,=") richtig. Andererseits ist (26) mit ,,&“, und so auch mit ,,=
richtig.
Multipliziert man (26) mit { K}, so folgt aus {K} K = O(K){K}:

O(K){K}[oy]. . .[06,] = O{K}{K,00p,...,04} .
Dies ergibt O (K)|O{K} also
{K}[xq].. . [or] = a{K,q,...,07} (@a>0) . (27)

Wegen der Annahme haben alle Elemente von K die Multiplizitit
1, und so gilt wegen K #{K} gewil O(K)<O{K}. Dies und (26),
(27) ergeben a>1, also nach (27)

g{K} +r>g{K,xy,...,0.} .

Hiermit haben wir Hilfssatz 2 bewiesen.

§ 8. Beweis des Satzes von Hajos
Nunmehr beweisen wir Hajos’ Satz. Wegen § 4 geniigt es zu zeigen,
daB3 in jeder Primsimplexzerlegung
G = [x]...[x] (r=1) (28)

von G mindestens ein Faktor eine Gruppe ist.

Im Fall r =1 ist das richtig. Im Fall r>1 setzen wir das fiir die
,kleineren“ r voraus und nehmen an, daB gegen die Behauptung kein
[«;] eine Gruppe ist. Aus (28) folgen sofort

g(G) =r, (29)
G = {&y,. .., 0} - (30)

8) Obiger Hilfssatz wiirde seine Giiltigkeit auch ohne die Annahme K > 0 behalten
(s. Hajést), Satz 29).
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Wird (28) mit 1 — «, multipliziert, so entsteht links 0, folglich gilt
nach (9)
(o] - [ ](l — a?) = 0, (31)

wobei die Primzahl p die Gliederzahl von [«,] bezeichnet. Wegen der
Annahme ist der letzte Faktor in (31) 5 0, und so gibt es bei passender
Numerierung der «,,...,«,_; eine Gleichung

[]. - . [0 ](1 — &) = 0 (l<k<r—1), (32)

in der sich kein Faktor streichen 14aBt.
Wenden wir auf (32) Hilfssatz 1 (mit K =1, r=4%4k+ 1) an:

g{xy,. .., 0,0l <k 4+ 1.
Noch mehr gilt dann
g{oy, ..., 001k . (33)

K = [«,]...[;] ist keine Gruppe, denn dann miilite wegen 1=k
=<r — 1 nach der Voraussetzung ein Faktor [«,] eine Gruppe sein, was
falsch ist. Andererseits ist K[x,,,]...[«,] nach (28) eine Gruppe, und so
folgt aus Hilfssatz 2:

g{loa]. . - [oa]s x5 - s 00} — g{lonl. o]} <r — k.
Die Anwendung von (15) ergibt
G{oysee sty — g{xyse 3 <r —k .

Dies zu (33) addiert ergibt nach (30) g(G)<r. Dies widerspricht (29),
womit wir den Satz von Hajés bewiesen haben.

(Eingegangen den 4. Oktober 1948.)
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