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Ellîptische Système

von partiellen Differentialgleichungen
mit konstanten Koeffizienten

Von Adolf kriszten, Zurich

Einleitung
In den Zurcher Arbeiten uber hyperkomplexe Funktionen1) wird im

allgemeinen eine Cliffordsche Algebra zugrunde gelegt. Die Elemente
dieser Algebra seien

In dem Linearsystem (£ (c0?..., cw-1) werden die hyperkomplexe Variable

m-l
z Z chxh

und die hyperkomplexe c-Funktion

m—l

w(z) Z chwh\x09..., x^ù

eingefuhrt. Eine c-Funktion w(z) heiBt links-analytisch (nach der fruhe-
ren Bezeichnung also links-regular), falls

und rechts-analytiseh, falls

mv dw
—

h=0 VXh

x) Em vollstandiges Literaturverzeichnis findet sich am Schlufi der Arbeit von H. O.

Hafeh, Hyperkomplexe Differentiale, Comm. Math. Helv., vol. 20, fur Cliffordsche
Algebren speziell P. Bofihard: Die Cliffordsehen Zahlen, îhre Algebra und îhre
Funktionentheorie, Dissertation Zurich 1940 Die Bezeichnungen links- und rechts-
regular der zitierten Arbeiten smd m dieser Arbeit durch die sinngemafieren Bezeichnungen
links- und rechts-analytisch ersetzt.
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Bedeutet v(z) eine rechts-analytische, w(z) eine links-analytisehe
c-Funktion, ist weiter E eine gesehlossene, orientierbare Hyperflâche im
Raume der x0,..., xm_x, dZ ihr orientiertes hyperkomplexes Flâchen-
element, so gilt ein erster Integralsatz der Form

$v(z)dZw{z) 0

wâhrend die Existenz des zweiten Integralsatzes in seiner allgemeinen
Form

w(z) Jc$v(z, Ç)dZw(Ç)

v(z, C) geeignete Hilfsfunktion, z im Innern von E

von dem gewâhlten Linearsystem (£ abhângt.
Die Gleichung r

E ak zk + a0 0
k=l

sei die Hauptgleichung einer beliebigen GrôBe z aus (£, dann ist

fm-l g Kk

ein reeller Differentialoperator, und jede Komponente wt einer (links-
oder rechts-) analytischen Funktion w(z) ist eine Lôsung derDifferen-
tialgleichung r-ter Ordnung

/ r

Die Gûltigkeit des zweiten Hauptsatzes hângt von der Differential-
gleichung (a) ab ; er gilt nur dann, wenn (a) eine Differentialgleichung
zweiter Ordnung (r 2) voi* elliptischem Typus ist. Das bedeutet aber
in einer Clifïordschen Algebra, da6 fur z e (£ eine konjugierte GrôBe z

existiert mit der Eigenschaft, da8

_ m-i
zz E glk xt xk

Die gtk sind reell, die Form ist positiv définit, z~z =n(z) heifit die Norm
von z. Speziell ist

g v W_l g

ein reeller, elliptischer Differentialoperator zweiter Ordnung.
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Die Existenz einer elliptischen Norm ist eine Bedingung fur das

Linearsystem (£ ; ihre geometrische Bedeutung liegt darin, daB die cha-
rakteristischen Kegel dieser Dififerentialgleichung von zweiter Ordnung
und imaginâr sind.

Die so definierten analytischen c-Funktionen wurden eingehend stu-
diert (speziell die analytischen Quaternionenfunktionen), und es wurden
bereits weitreichende Resultate erzielt.

In dieser Arbeit wird nun ein ganz anderer Zugang zu den hyper-
komplexen Funktionen erschlossen. Wir gehen aus von einem System
von partiellen Dififerentialgleichungen mit konstanten Koeffizienten

ro-1 n fa.
Z S afk -=-*- 0 (k 1,. n)

oder in leicht verstandlicher Matrizenschreibweise

0 (b)

Setzen wir voraus, da8 das System einen Multiplikator2) erster Ordnung
besitzt : m_1

das heiBt, dafi das Produkt

VVA* d
A

d - Va d%

E

eine Diagonalmatrix ist, so genugen die einzelnen Funktionen ut der ska-
laren Dififerentialgleichung zweiter Ordnung

9»*âiîr
h,1^0 °%h0Xk

Wir werden im folgenden voraussetzen, daB die Differentialgleichung (c)

elliptisch ist. Dann lâBt sie sich auf die Form

A ut 0 (A Laplace-Operator)

bringen. Wird dièse Transformation auch in (b) durchgefuhrt, so ergibt
sich eine neue Dififerentialgleichung

2) Dieser Begriff und verschiedene Entwicklungen in I. finden sich m analoger Form
m der Arbeit von H. Malmheden: A Class of Hyperbohc Systems of Linear Diffe-
rential Equations, Communications du Sém. Math, de l'Umv. de Lund, vol. 8.
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ebenso ein neuer Multiplikator

Dièse neuen Matrizen Ch bilden das erzeugende Linearsystem (£ einer

Cliffordschen Algebra und die Ch sind die konjugierten GrôBen zu den Ch

(Ch Cn + 1), so daB die Norm

wird, d. h. die Bedingung, daB ein linearer Multiplikator M existiert,
und die Bedingung, daB die Norm des Operators (b) reell ist, sind àqui-
valent.

Damit werden wir in ganz zwangloser Weise auf die bereits bestehende
Théorie der hyperkomplexen Funktionen gefûhrt, und es besteht die
Môglichkeit, Système von partiellen Differentialgleiehungen mit funk-
tionentheoretischen Hilfsmitteln zu behandeln. Insbesondere kônnen
ihre Singularitâten untersucht werden.

In der vorliegenden Arbeit betrachten wir die allgemeinen elliptischen
Système von partiellen Differentialgleichungen mit konstanten Koeffi-
zienten ohne Stôrungsfunktion

n m—1 fa. n
0 (k=l,...,n). (d)

Die einzelnen Komponenten uh genûgen der skalaren, partiellen Diffe-
rentialgleichung zweiter Ordnung

(A + o>2) uh 0

Es ist das Ziel der Arbeit, die Potenzreihen der komplexen Funktionen-
théorie auf die Lôsungsfunktionen von (d) zu verallgemeinern. Wir
folgen dabei dem Gedankengang, der zur Reihenentwicklung der Quater-
nionenfunktionen fûhrte. Die Reihenentwicklung fur Quaternionen-
funktionen, wie auch die meisten andern wesentlichen Begriffe der
hyperkomplexen Funktionentheorie stammen von Bud.Fueter, der durch
seine grundlegenden Arbeiten dièse ganze Théorie entwickelt hat.

1. In einem m-dimensionalen, reellen Raum Rm mit den Koordinaten
xo> • • • 9 xm-\ betrachten wir das folgende System von n partiellen
Differentialgleichungen fur die n Funktionen uly..., un:
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» m-l flu n

-S 2fliÎTr+lM» 0 (4=1,...,n). (1)

Die GrôBen a^ und bhk seien réelle Konstante, dementsprechend die
Funktionen uh réelle Funktionen der reellen Variabeln x0.. .xm_lt Zur
einfachern Schreibweise fiihren wir die folgenden Matrizen ein :

ànl...bj
Das System (1) kann in Matrizenform als

0 (2)

geschrieben werden. Ist JS 0, so nermen wir es homogen, im allge-
meinen Fall B ^ 0 inhomogen. Da es sich um ein System mit konstan-
ten Koeffizienten handelt, existiert immer ein Matrixoperator, der, von
links her auf die Gleichung (2) angewendet, die vollstandige Trennung
der unbekannten Funktionen uh herbeifûhrt. Ein derartiger Operator
heiBt nach der Bezeichnung von Malmheden ein Multiplikator der
Gleichung (2). Zum Beispiel ist immer die zur Matrix

m—1 a

i=o oxi

adjungierte Matrix3) ein Multiplikator. Die dadurch erhaltene, skalare

Differentialgleichung, der die einzelnen Funktionen uh genugen, wird im
allgemeinen n-tev Ordnung sein. Unter gewissen Bedingungen fur das

System (1) ist es môglich, dièse Trennung der Funktionen uh schon in
einer Differentialgleichung niedrigerer Ordnung herbeizufûhren. Wir
werden uns im folgenden immer auf den Fall beschrànken, daB bereits
ein Multiplikator erster Ordnung existiert, und werden dafûr eine not-
wendige und hinreichende Bedingung aufstellen. Dieser Multiplikator
erster Ordnung, dessen Existenz wir voraussetzen, sei

m~1
* d

M £ A* h B* ;

wenden wir M auf (2) an, so erhalten wir
r m—1 22 m—i a

8) adjungiert im Sinne der Determinantentheorie.
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Wir haben vorausgesetzt, daB in dieser Gleichung die Komponenten u{
getrennt seien, also mu8 jeder einzelne Summand Diagonalform haben ;

es sei

A*Ah + A*Ak 2ghh-E A*B + B*Ah 2dhE B*B cE;
E bedeutet die Einheitsmatrix. Jede der Funktionen u{ genugt somit
der Differentialgleichung

/ m-l g2 m-1 g

Définition, Das System (1) heifit ein elliptisches System, wenn die
Gleichung (3) eine elliptische Differentialgleichung ist.

Damit ein System (1) elliptisch ist, ist daher notwendig und hinrei-
chend, daB die quadratische Form, gebildet mit den GrôBen ghk als Koef-
fizienten positiv définit ist. Setzen wir dies voraus, so existiert immer
eine lineare Transformation

m—1

yh=: Ethkxk (A O,...,fn-l) \thk\ ^0
die den Differentialoperator

auf Diagonalform bringt. Fiihren wir dièse Transformation in (2) durch,
so erhalten wir

(m—1
^ \ m-l

15^ +^ 0 Bh= SthkAk (4)

und es wird weiter
wî—l pj m—1

M=SB*-^- + B* B*= ZthkA*

Dièse neuen Matrizen Bh und B* genûgen den Gleichungen

und

Indem wir die Gleichung (4) von links mit B* B^1 multiplizieren und
statt yh wieder xh schreiben, erhalten wir
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Wir setzen B^1 Bh Ch und statt B^XB schreiben wir wieder B, das

ergibt

Dièse Gleichung hat den Multiplikator
m—1 3

auch hier fuhren wir neue Bezeichnungen ein und setzen B* Bo Ch,

statt B * BQ schreiben wir wieder B * ; es wird also

m—l _ g

Zwischen den Matrizen Ch und Ch bestehen die einfachen Beziehungen

f) ^ 0 ¦" î ^ h ~~~~ ^ 7i \ '" /^ " / î ^ Z» ^ t" I O ^ \J h \f \fv -7— Ki) •

Ci Ci T1

Die einzelnen Komponenten ut von u genugen einer Differentialgleichung
der Form

/ w—1 a

dabei bedeutet A den m-dimensionalen Laplaceoperator
m—1 ^2

Die Koeffizienten c und dft haben in dieser Gleichung im allgemeinen einen
andern Wert als die gleich bezeichneten GroBen in (3) Setzen wir end-
lich noch

m—1

- S dhxh

Wt^e h=° -te,

und verstehen wir unter w die Spaltenmatrix gebildet aus den wt, so ge-
nugt w der Differentialgleichung

/m-l g m-1

der Multiplikator dieser Gleichung ist

m—1 o^
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Die einzelnen Komponenten w{ von w geniigen der Differentialgleichung

(A + a)*) wt 0

œ ist eine réelle oder rein imaginâre Konstante, und es ist
m—1

co2 c - Z d\

Setzen wir
l m—î

Cm — {B- ZdhCh)
<*> h=0

UIld
_ 1 m-l _

so erhalten wir
m-l g j (6)

(7)

und die Matrizen Ch geniigen den Gleichungen

C0 C0, Ch=-Ch (A l,...,m)
ChCh C0 E (h=0,...,m) (8)

ChCk + GkCh 0 (h * k)

Wir nennen (6) die Normalform des Gleichungssystems (l)4). Es ist viel-
leicht nutzlich, darauf hinzuweisen, da8 die (réelle oder rein imaginâre)
Konstante co nur in der Fornx (o2 oder in der Kombination co Cm und

co Om auftritt.

2. 3ï sei eine Cliffordsche Algebra der Ordnung 2m mit den Basis-
elementen

c0 bedeutet die Haupteinheit ; die cj geniigen den Relationen

4 Co 1 o) — c0 — 1 (; 1,..., m)

CoCj^CjCo ti*h=—Wi (h k= l,...,m; jf ^ fc).

4) Fur ein homogènes (hyperbolisches) System hat McUmheden die analoge Normalform
hergeleitet.
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Unter den zu den c$ konjugierten GrôBen ci verstehen wir

c0 c0 'ôj — Cj (j 1,..., m)

es gelten die Beziehungen
2 c0 (h h)
0 (h ^zk)

Die Zahlen a der Algebra 2Ï haben die Form

a a0 c0 + &i ^ + • • • + am cm + a12 c12 + • • • + ax m cx m

Die Komponenten a0 ;... ;alm seien reeife Zahlen5). Unter dem Be-

trag von a verstehen wir

| a | (a20 + al +.. •+ < + a^2 +. •+ a*...J* (9)

die konjugierte Zahl a sei

a aQ Cq -)- • • • -f- a^ m c± m \

dabei ist nach Définition

hk l — l* ' 'Je h *

Das Produkt a "â (im allgemeinen nicht gleich â a) nennen wir die
Norm von a : n(a) a ~a. n(a) ist im allgemeinen nicht reell ; ist jedoch
a etwa speziell eine Zahl aus dem fur uns im folgenden wichtigen Linear-
system (£ (cOî..., cn), so gilt

n (a) a a — a ^ — ^ H h &m >

und weiter ist
\a\ (nia))^ ae(£

Dièse Beziehung zwisehen a und n(a) làBt sich verallgemeinern auf
Zahlen a nicht in (E. Es gilt namlich der

1. Hilfssatz. Ist n(a) reell, so gilt

n(a) aïx, a a
und es ist

|a| (n(a))*.

6) Es werden spàter vorûbergehend rein imaginâre Komponenten auftreten, man sieht
jedoch sofort, dafi in diesem Fall die ganzen Entwicklungen ihre Gûltigkeit bewahren;
es lohnt sich deshalb nicht, die kompliziertere Schreibweise fur komplexe Koeffîzienten
in Kauf zu nehmen.
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Beweis. Es ist
__ (l...w)

n(a) aa= Z a\ ch ch + \ E ahak(ch ck + ck ch)

damit n(a) reell ist, ist es notwendig und hinreichend, daB

ch~Ck + ck~Ch — ® (h ïé k, wenn ch und ck in a auftreten).

Weiter ist
Ch~ëh 1 (h 0,...,m,..., l...m)

Ist jetzt also w(a) reell, so gilt
(1...W)

w(a) S a\ |a|2

Beachtet man die leicht zu verifizierende Beziehung zwischen zwei

Zahlen a und 6 und ihren Konjugierten a und 6 :

ab b a

so ist dieser Hilfssatz speziell giiltig fur ein Produkt von Zahlen ax,..., an,
die aile dem Linearsystem £ angehôren. Es ist

| ax.. .an |2 n(ax.. .aj n(at).. .7i(aJ | ax \K .| an\* (10)

3. Wir kehren jetzt zur Betrachtung des Systems (1) von 1 zuriick.
Aus dem Vorangegangenen erkennt man leicht die Gûltigkeit des Satzes :

1. Hauptsatz. Ein System von partiellen Differentialgleichungen (1)

tm-\ g

ist dann und nur dann ein System mit linearem Multiplikator

wenn die Matrizen Ah, aujgefajit als ahstrakte hyperkomplexe Zahlen, eine

Cliffordsche Algebra 91 erzeugen. Die Matrizen A* sind dann die, im Sinne
der Cliffordschen Algebra, konjugierten Grôfien zu den Matrizen Ah

Das System (1) ist speziell elliptisch, wenn die Norm einer Zahl aus % —

sofern dièse Norm reell ist — positiv définit ist.
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Es sei jetzt inuner vorausgesetzt, daB das System (1) auf die ellipti-
sche Normalform (6)

/m—1 a

transformiert sei. Es gilt also

C\= -Co (A=l,...,m)
Der Multiplikator ist rn_1

M ]£ Un~-— + cû~Cm

wo _
Co Co E und Ch= — Ch (h 1,..., m)

Weiter wollen wir vorlaufig voraussetzen, daB co reell sei. Es bedeute

1 \ /0>

0,

dann laBt sich w schreiben als
n

w S ivk Ek

Die Matrizen Gh (h 0,..., m) und Ek (k 1,..., n) fassen wir im
folgenden als abstrakt definierte, hyperkomplexe Zahlen auf, und schreiben

statt Ch ch und statt Ek ek. Die Zahlen 1 co,cl5...,cm erzeugen
eine Cliffordsche Algebra 21 der Ordnung 2W, wie wir sie in 2 betrachtet
haben. Die Zahlen el9...,en bilden ein Linearsystem G (e1,...5en),
welches unter der Linksmultiplikation mit den GrôBen aus 21 invariant
ist ; denn die Produkte ch ek sind durch die entsprechenden Matrizen-
produkte Ch Ek erklârt. Dièse Multiplikation ist also auch assoziativ,
d. h. es gilt

Die m reellen Variabeln x0,..., xm_1 fassen wir zu der einen, hyper-
komplexen Variabeln

Z Cq Xq -f- • • • -f- Cm_i Xm_i

zusammen und schreiben statt w(x0,..., a;w_1) w(z). Da
n

w(z) Z ekwk
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eine GrôBe aus CE bedeutet, nennen wir w(z) eine e-Funktion der hyper-
konxplexen Variabeln z.

Zur Abkûrzung fûhren wir die folgende Operatorschreibweise ein

# ^~ + cocw; (11)

der Multiplikator ist jetzt einfach, der zu D konjugierte Operator

__ m—1 o

D= 2ïh-â-r + coïm, (12)

und es wird
__ ___

(13)

Définition. JK^e e-Funktion
n

w(z) Z ekwk

Aei^S^ linksanalytisch, wenn sie der Differentialgleichung

^ 0

Je nachdem co 0 oder co ^ 0 gilt, nennen wir w(z) (wenn die
Unterscheidung wesentlich ist) auch homogen oder inhomogen
linksanalytisch

Bie linksanalytischen e-Funktionen sind somit identisch mit den Lô-
sungsfunktionen des Systems (6). Die Komponenten wh von w sind Lô-
sungen der skalaren Differentialgleiehung

(A + co2) wk 0

4. Wir fassen die m + 1 reellen Funktionen Fo,..., Vm der m
reellen Variabeln xo...xm_1 zu der c-Funktion

V(z) E chVh

zusammen und definieren den zu

m-l

adjungierten Operator6)

6) vgl. Kriszten, Funktionentheorie und Randwertproblem der Diracschen
Differentialgleichungen, Comm. Math. Helv., vol. 20, S. 333.
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m~1

ebenso

Ë=m£ch~ -œem
Es ist

n(E) A + co2 n(D)

Wâhrend der Operator n(D) selbstadjungiert ist, braucht dies fur D
selbst nieht der Fall zu sein. Ist co speziell gleich Null, so ist auch D
selbstadjungiert.

Définition. Die c-Funktion V(z) heifit adjungiert-linksanalytisch in
einem Punkte z, wenn

/m—l

-c»cm)V 0
/U=0

entsprechend adjungiert-rechtsanalytisch, faits

m—l fly
a=o dxh

Die eckige Klammer gibt an, daB der Operator E auf die Funktion in
dieser Klammer angewendet werden soll.

2. Hilfssatz. Die adjungiert-linksanalytischen c-Funktionen V(z) sind
auch adjungiert-rechtsanalytisch und umgekehrt. Jede in einem einfach zu-
sammenhângenden Oebiet des Baumes der x0,..., xm_1 adjungiert analy-
tische c-Funktion besitzt ein skalares Potential 0 (z), d. h. es existiert eine
réelle Funktion 0 derart, dafi

V(z) E 0(z) und (A -f- co2) 0 0. (14)

Beweis. Indem man die Gleichungen

EV 0 und [VE] 0

in Komponenten schreibt, erkennt man die Âquivalenz ; weiter ist das
erhaltene System genau die Integrationsbedingung fur die Existenz einer
Funktion 0 mit den Eigenschaften

E 0 V
und

(A + co2) 0 0
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Wir betrachten gleichzeitig eine c-Funktion V (z) und eine e-Funktion
w(z). Sind beide Funktionen in einem m-dimensionalen Gebiet G und
auf dessen Randhyperflàche E stetig und stetig differenzierbar, so ist
nach dem GauBschen Satz

G

Es ist nh die a^-Komponente des innern Einheitsnormalenvektors von
E, da das Hyperflâchenelement von E und dr das ra-dimensionale
Volumenelement von Wir setzen

m—1

dZ E ch nh da

und erhalten
w—1

Es ist
J S (Vch w)M dr= - J VdZw
G A=0 2

m—1 m—1 m—1

Z (Vch w)M E V™ ch) w + V Z ch w^)
h=0 h=0 h=Q

Cl V(h)ch-V a>cm)w +V(m£ chw{h) + œcmw)

[VE]w+V [Dw]

Eingesetzt ergibt sich

§{[VE]w+V [Dw]}dr= - J VdZw

Satz. Die c-Funktion V sei in einem Gebiet G und auf seinem Rand E
adjungiert-analytisch ; entsprechend sei die e-Funktion dort linksanalytisch.
Dann gilt

J F dZ w 0 (1. Integralsatz) (15)

Beweis. Es ist Dw 0 und [VE] 0, nach der obigen Formel ist
der Satz bewiesen.

Um den zweiten Integralsatz zu erhalten, mûssen wir in (15) fur V eine

geeignete Funktion von zwei hyperkomplexen Variabeln
w—1

z E ch xh

und
w—1
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V(z, f) einsetzen. Nach dem 2. Hilîssatz lâBt sich jede adjungiert-ana-
lytische Funktion V erzeugen als

V Ë0
Wir wahlen als <P(z, f) eine Funktion, die nur von

Q=\Z-C\
abhangt. Die Funktion &(q) genugt dann der Besselschen Differential-
gleichung

__
+ 0

Fur 0(q) machen wir den Ansatz

wo / und g analytische Funktionen der reellen Variabeln q bedeuten
sollen. Eingesetzt in die Differentialgleichung (16) ergibt sich

qf + (3 - m)/' + cQ*Qf + 2Q™-*g> + (m
g™-1

œ*g\ 0 (17)+
Wir wollen ^

g{g) Z ghgh

so bestimmen, daB in (17) der Koeffizient von log g verschwindet, das

ergibt fur die gh die Rekursionsformel

— co2

Die beiden Koeffizienten g0 und gx sind also noch frei zu wahlen. Wir
setzen w

und gehen mit den beiden Funktionen g und / in (16) ein, es muB also

gelten
Q f + /7(3 ~ m) + co2 Q f + 2 en^ gr+(m- 2) e"^ g 0

7) Die Funktion 0(z, f &(q) ist die Elementarlosung, îhre Existenz und îhre
wesentlichen Eigenschaften sind aus den Arbeiten von Hadamard (Leçons sur le
Problème de Cauchy, Paris, Hermann 1932) bekannt. Wir ziehen es jedoch vor, die Funktion

<&(q) hier direkt zu konstrmeren, uni den exakten Freiheitsgrad, der fur 0 noch
besteht, zu bestimmen

17 Commcntarn Mathematici Helvetici



das gibt fur die Koeffizienten gh und fk die Bedingungen

fkk(k - m + 2) + co2 /w + ff^^É + 2 - m) 0 (& 2,...
Wir haben verschiedene Falle zu unterscheiden :

1. Es sei m ungerade, daim ergibt (19)

x (2 k + 2 - m)) (20)

Wir wâhlen fo^O und fx 0, ebenso kônnen wir g (g) 0 setzen,
dann verschwinden aile Koeffizienten fh mit ungeradem A und die
Koeffizienten der geraden Potenzen von g sind durch die Rekursionsformel (20)
eindeutig bestimmt. Es ist weiter leicht zu zeigen, da6 f(g) eine ganze
Funktion von g ist. Fur ungerades m erhalten wir somit

$(z,C)

wo f(g) eine gerade Funktion von g bedeutet, die bis auf einen konstan-
ten Faktor bestimmt ist.

2. Es sei m gerade. In diesem Fall dûrfen wir g (g) nicht identisch
Null voraussetzen. Fur k<m — 2 ist

f -1 ^h~ k(k-m+2) °>h-2 '

aile dièse fk sind durch /0 und /x bestimmt. Setzen wir in (19) k m — 2,
so ist auch g0 bestimmt als

dadurch sind nach (18) auch aile gh mit geradem h bestimmt. Aus der
Gleichung (19) fur k m — 1 erkennt man, da8 gx frei gewàhlt werden
darf. Ist endlich k^m, so bestimmen wir die fk eindeutig aus den gh

und aus fk^2. Man erkennt wieder sehr leicht, da8 die so definierten
Funktionen f(g) und g(g) ganze Funktionen von q sind. Fur gerades m
erhalten wir

dabei kônnen die Koeffizienten /0, ft und gx noch beliebig (/0 =£ 0) ge-
wâhlt werden, speziell kônnte man also f1 gx 0 wâhlen.
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Setzen wir speziell oj 0, so erhalten wir

Wir normieren jetzt 0 noch, so, daB

]xm q1*-1 0'{q) 1 (21)

das ergibt fur /0 den Wert

/o- m__2 *

Wir bilden die Funktion

V(z, f) ï?<ç> <P(e) (J57<^> : Ableitungen nach den

Man sieht sofort ein, daB V(z, £) den beiden Differentialgleichungen

E
und

genugt, d. h. V (z, f) ist als Funktion von f adjungiert-analytisch und
als Funktion von 2 analytisch. Es ist klar, was es bedeutet, daB eine

c-Funktion analytisch ist.
2J sei eine geschlossene, orientierbare Hyperflâche mit stetigem Nor-

malenfeld, z ein Punkt im Innern von £ und Kr eine Hyperkugel um z

mit so kleinem Radius r, daB Kr ganz im Innern von .Zliegt. In bekannter
Weise ergibt sich

JV{z, C)dZw(£) + $V(z, QdZw(Ç) 0

Weiter ist, wegen der Normierung (21),

lim $
r->0 Kr

wo Km die Oberflâche der Einheitshyperkugel des m-dimensionalen
Raumes bedeutet. Es folgt der

Satz. Die e-Funktion w(z) sei im Innern einer geschlossenen, orientier-
baren und genûgend regularen Hyperflâche Uund auf derselben linksanaly-
tisch. Dann gilt fur jeden Punkt z im Innern von £
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W(z) --L- Cv(ziC)dZw(C) (2. Integralsatz) (22)

Es ist

und 0(q) ist die konstruierte Elementarlôsung der Gleichung

(A + o>2) 0 0

Gilt speziell co 0, d.h. ist w(z) homogen-analytisch, so ist

Auch im 2. Integralsatz tritt die GrôBe co nur in der Form co2 oder in der
Verbindung co cm auf.

5. Um die Reihenentwicklung der linksregulâren e-Funktionen zu
finden, mûssen wir den Kern V(z, £) in der Darstellungsformel (22) des

zweiten Integralsatzes in eine Reihe entwickeln. Als Funktion von z ge-
nûgt V(z, C) der Difïerentialgleichung

D<*V(z, f) 0

ist also eine analytische c-Funktion. Wir wollen das allgemeinere Problem
lôsen, eine beliebige analytische c-Funktion in eine Reihe zu entwickeln.

Fur die analytischen c-Funktionen beweist man ohne weiteres die
beiden Integralsatze

Sâtz. Die c-Funktion V (z) sei in einem Gebiet G und auf seinem Rand

£ adjungiert-analytisch ; entsprechend sei die c-Funktion W(z) dort analy-
tisch. Dann gilt

j VdZ W 0 (1. Integralsatz)
und 2

Satz. Die c-Funktion W(z) sei im Innern einer geschlossenen, orien-
tierbaren und genûgend regulâren Hyperflâche £ und auf derselben analy-
tisch. Dann gilt fur jeden Punkt z im Innern von £

W(z) ~ Ç V(z,Ç)dZW(Ç) (2. Integralsatz) (23)

v
Es ist

__

y (z^ f) E^0(p) g | C z\

und 0 (q) ist die konstruierte Elementarlôsung der Gleichung

(A + co2) 0 0
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Wir betrachten zuerst die homogène Gleichung fur eine gerade Dimen-
sionszahl m ; die allgemeine Reihenentwicklung werden wir durch eine
Art Absteigemethode auf diesen Fall zurûckfûhren. Es sei also

m-1 0
E D X ch-x— ; m gerade.

Nach dem Vorbild der regulàren Quaternionenfunktionen bringen wir
die Funktion

m—1 ^ j y

V{z,Ç) £ ch-^- -^-(m2)(n(f)) 2 n(C

in Verbindung mit der Funktion

Es ist

^ — _ -_ _ 2 h (m —

(Zl : Ableitungen nach % oder |^)
daraus folgt

m~2

und es bedeutet
m—2 t

2m-2|

Ist | z | <| f |, so besteht fur (C — 2)-1 die Reihenentwicklung (geo-
metrische Reihe) ^

(Ç-z)-*= i7f-i(2f-i)* (24)

Die Reihe konvergiert absolut und gleichmâBig in jeder Hyperkugel
| z | <r < | f |, denn ftir die einzelnen Summanden gilt nach dem 1. Hilfs-
satz

1 ^~l U f--\\k I
1 ^ »

I * Vz t, J | — -, j .fc+1 •

Man zeigt leicht, daB die Reihe beliebig oft gliedweise partiell nach den

xh oder |fc differenziert werden darf, ohne die gleichmâBige und absolute

Konvergenz zu stôren. Speziell konvergiert also die Reihe

4 (y
Az bedeutet, die Ableitungen sind nach den xh zu bilden.
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Satz. Die Funktionen
m—2

aKe ira Linearsystem (£ tmd siwd m den beiden Variabeln z und f

Beweis. Wir fuhren die réelle Hilfsvariable £ (0<£<l) ein und be-
trachten die Funktion

dièse Reihe konvergiert jedenfalls im betraehteten Gebiet | z \ < \ C |.
Die Funktion (£ — t z)-1 liegt in (£, also auch ihre Ableitungen beliebi-

ger Ordnung nach der reellen Variabeln t. Es ist

eine Funktion in (£ und damit auch

m—2 k

Weiter ist

[wt—2
-i oo r- m—2 -i

Die Ableitungen in D kônnen nach den xh oder £h genommen werden. In
Komponenten geschrieben, erhalten wir lauter konvergente, identisch
verschwindende Potenzreihen nach t ; somit muB jeder einzelne Koeffi-
zient verschwinden und die Funktionen

m—2

Z-1 ÂS~(z £+)* (4 0,1,...)

sind analytiscbe c-Funktionen von z und f.
Die Summanden der Reihenentwicklung von V(z, C) sind Formen in

den xh; wir untersuchen deshalb allgemein analjrtische Formen. Eine
m—l

c-Funktion F(z)= £ chVh heiBt eineForm n-texDimension, wenn ihre

Komponenten Vo,.. ,,Vm^1 Formen w-ter Dimension in den xh sind.
Bedeutet t ein reeller Parameter, so gilt
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Nach dem Eiîlersehen Satz erhalten wir

und dureh Subtraktion der mit x0 multiplizierten Regularitâtsbedingung

Die Ableitungen einer Form sind wieder Formen ; wir kônnen dièses Ver-
fahren n mal anwenden und erhalten

ni J! (Z) — Z,4 \Z) [Xhi — Chi XQ) {Xhn — Chn Xo)

Die auftretenden Koeffizienten F{hl'"hn) sind Konstante. Nehmen wir
an, unter den hx.. .hn trete v 71,,-mal auf, so tritt der entsprechende
Koeffizient j^(1-1»2-..2,...,m-i,...,m-1) so o^ au^ ajg wjj, ^e Zahlen

1,..., 1,...m — l,...,m — 1 permutieren kônnen. Dièse Zahl sei n.
Wir fassen aile Glieder mit demselben Koeffizienten zusammen und
setzen

Nach dieser Schreibweise ist

ebenso zeigt man, daB

Da im ganzen n-mal differenziert wurde, muB fur die nv die Beziehung
gelten

Ui _| y Um_x n #

Wie im Falle der Quaternionen sei

Vo o(z) 1» un(i fstlls mindestens ein np<0: p n (2) 0

Wir stellen einige fur spâter wichtige Sâtze uber die p-Funktionen
zusammen ; die Beweise sind ganz analog zu denjenigen fur die regularen
Çuaternionenfunktionen.

Eine Rekursionsformel : Es ist
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Satz. Die Formen p liegen in(&. *

Beweis. Durch Induktion. Nach der Rekursionsformel ist

(Summe der beiden rechten Seiten der Rekursionsformel).

Die einzelnen Glieder dieser Summe sind von der Form. ab + ba, wobei
sowohl a als auch b (nach der Induktionsvoraussetzung) in (£ liegen. Dann
liegt aber auch ab + ba in (£, womit der Satz bewiesen ist.

Ebenfalls aus der Rekursionsformel folgen die Difïerentiationsregeln

C^H ^)
Satz. Die Polynôme pni nm_i (z) sind im ganzen m-dimensionalen

Raum analytische Funktionen.

Beweis. Unter Anwendung von (25) schreibt sich die Rekursionsformel

anderseits ergibt die Eulersche Formel

Subtrahiert man die zweite Gleichung von der ersten, so findet man die
gesuchte Gleichung.

Abschâtzung : Fur die p-Funktionen gilt die Abschâtzung

I on (?\ I <T V I 3v — c^ rr. ln* \ cr. -

(26)

Genau wie fur Quaternionenfunktionen beweist man den Binomischen
Satz:

v1=0 vwî_i=O

Wir wenden die erhaltenen Resultate auf die Reihenentwicklung der
Funktion V(z, Ç) an. Die einzelnen Summanden

OT—2
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sind als Funktionen von z analytische Formen n-ter Dimension. Somit ist

«1+ +»m—1=
und

V (z, t) V X PBl ^ (*) „„_, (0 • (27)
0 +n=0

Da dièse Reihe fur | z \ < r < \ f | absolut und gleichmaBig konvergiert
(bezuglich der Summation nach n), konnen wir gliedweise nach den xk
differenzieren und erhalten speziell

4-nm-i

Es ist weiter klar, daB die pni nm_x (z) und qHi nm i (C) in (27) in
ihrer Gesamtheit vertauscht werden durfen.

Satz. Die Funktionen qni nm_i (C) sind ira ganzen Rm mit Ausnahme
des Punktes £ 0 analytisch und liegen im Linearsystem C

Beweis. Die Funktion T

liegt in (£ und ist analytisch, also nach (28), auch die Funktionen
qni nm_i (C). Aus Gleichung (28) sind auch die folgenden Differentia-
tionsregeln klar

0£

Weiter gilt fur die g-Funktionen die folgende grobe Abschâtzung

I <?„, ^ (0 I < (» + m) | C |~("+t)
• (29)

Fur eine regulare c-Funktion f(z) gilt der zweite Integralsatz

/(*) 4- (V(z,Ç)dZf(Ç)

durch Einsetzen der Reihe (27) ergibt sich

/(Z)= v
n=0
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und es bedeutet

/(n/(ni "»-*> (0) (30)

2. Hauptsatz. /s£ eme c-Funktion w f (z) in einem Punkte z a
analytisch, so laflt sie sich eindeutig in eine Reihe nach den Funktionen
p(z — a) entwickéln.

Dièse Reihe konvergiert absolut und gleichmafîig irn Innern jeder Hyper-
kugel

\z — a \<r<q
dabei bedeutet q den Abstand des Punktes z vont nachsten singularen Punkt
von f(z). Umgekehrt stellt jede derartige, absolut und gleichmajiig konver-

gente Reihe eine linksanalytische c-Funktion dar. Dièse Funktion liegt
speziell in (£, wenn die Summen

aile in (£ liegen ; in diesem Fall kônnen die Funktionen pni flfn_i (z) und
die Koeffizienten dni nmr_x in ihrer Gesamtheit vertauscht werden.

Beweis. Die Eindeutigkeit folgt aus den Formeln (30), sind die
Koeffizienten dni nm_i so vorgegeben, daB die Reihe in einer Hyperkugel
absolut und gleichmâBig konvergiert, so ist dieselbe linksanalytisch, da
dies fur jeden Summanden der Fall ist. Liegt die Funktion f(z) in (£, so

liegt auch f(tz) in (£, wo | 11^ 1 ein reeller Parameter ist. Es ist

n y\ pM „ (z) dM

also muB jede dieser Summen in (£ liegen ; damit ist gezeigt, daB dièse

Bedingung fur die Koeffizienten notwendig und hinreichend ist dafûr,
daB f(z) in (£ liegt. Dièse Bedingung ist jedoch nicht notwendig, damit
f(z) beidseitig analytisch ist, man kann leicht Beispiele konstruieren fur
beidseitig analytische Funktionen, die nicht in (£ liegen.

Als Anwendung der besprochenen Reihenentwicklung betrachten wir
die Elementarlôsung V{z, C) fur die ungerade Dimensionszahl m — 1.
Formai ist V(z, £) als Funktion von z Lôsung der Differentialgleichung
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Dabei denkt man sich die ursprûnglich vorliegende Cliffordsche Algebra
mit den Basiselementen c0, cx,.. cm_2J ^ c25... um das Basiselement

cm-i erweitert ; xm_x ist eine réelle Hilfsvariable. Ftihren wir auch fur
ungerade Dimensionszahlen m — 1 die Schreibweise

(0 m—1

ein, so ergibt sich fur | z \ < \ Ç \ die folgende Reihenentwicklung

Man zeigt leieht, daB die Sâtze und Formeln fiir die Reihenentwicklun-
gen bei gerader Dimensionszahl m im Fall der ungeraden Dimensions-
zahl m — 1 wôrtlich ubernommen werden kônnen.

Fiir die p- resp. g-Funktionen gelten die Abschatzungen (26) und (29),
die Reihe °°

X E \pni
0

konvergiert also im Innern der Hyperkugel

1 ' ^ m __ i
und darf dort beliebig umgeordnet werden8).

Auch der allgemeine Fall der nichthomogenen Gleichungssysteme ordnet
sich dem bisher Besprochenen unter : Wir betrachten die Elementar-
lôsung V(z, C) der inhomogenen, m-dimensionalen Gleichung. Als Funk-
tion von z — x0 + C\ xx -f- • • • + cm_x xm_x ist F (z, Ç) regulâr, das
heiBt es gilt /mr_1 d

Wir setzen

z* c0 x0 -\ (- cm_x a:m_1 + cm xm (xm : réelle Hilfsvariable)

und multiplizieren V (z, £) mit e"^™ dann ist das Produkt Lôsung der
m -{- 1 dimensionalen, homogenen Gleichung

8) Der analoge Beweis fur Quaternionenfunktionen findet sich in der Vorlesung von
R.Fueter: Théorie der reg. Funktionen einer Quaternionenvariablen (Winter-
semester 1936/37).
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Somit existiert ftir | z* \ < \ £ | die Reihenentwicklung

n—0

und es bedeutet

Es sei im folgenden vorausgesetzt, da6

1 ' m— 1

ist, dann darf die Reihe umgeordnet werden zu

n—0 niH hnfn—1=« \k=0

Wir setzen xm 0 (z* z) und definieren

Damit ergibt sich fur V(z, C) die folgende Reihenentwicklung

Ich vermute, dafi die Reihe sogar in der Hyperkugel | z | < | C | kon-
vergiert, es ist mir jedoch noch nicht gelungen, dies zu beweisen.

3. Hauptsatz. Die Funktionen <pni.,.nm_1(z) sind im ganzen endlichen
171 (inhomogen) analytische Funktionen von z :

Entsprechend sind die Funktionen y>ni nw_i (C) mit Âusndhme des Punktes
C 0 im ganzen endlichen Em adjungiert-analytisch :

m-l

i6 Funktionen <p und xp liegen in (£.

Beweis. Es ist

4=0
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Da die Funktionen p homogen analytisch sind, gilt also

m—1

- C

setzen wir in dieser Gleichung xm 0, so finden wir

Da8 die Funktionen %p adjungiert-analytisch sind, geht sofort aus der
Tatsache bervor, dafi sie die partiellen Ableitungen einer adjungiert-
analytischen Funktion sind. Offensichtlich liegen auch aile betrachteten
Funktionen im Linearsystem (£ (c0?..., cm).

Die c-Funktion f(z) sei in und auf der Hyperkugel K : \z\<R um
den Nullpunkt inhomogen-analytisch

(m—1
^

^=0 0%h

Es gilt also der 2. Integralsatz

22
und fur I z I < —11 — 1

oo

E E <Pni

wobei

fl^i ^nTi / (2)
\oa;l • • • axm-\ z=0

4. Hauptsatz. /^^ eine c-Funktion f (z) in einem Punkte a — £ ahch

(inhomogen) analytisch, so la(it sie sich in diesem Punkte eindeutig in
eine gleichmdflig und absolut konvergente Eeihe nach den Funktionen

(z — a) entwickeln

n=0

\ 07^ OXm_1 J 2==a
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Umgekehrt stellt jede derartig, absolut und gleichma/tig konvergente Reihe
eine links-analytische Funktion dar.

Der Konvergenzradius der Reihe ist (mindestens) gleich dem (m — 1).

Teil des Abstandes des Punktes a vom nâchstgelegenen, singulàren Punkt
von f(z).

Die Reihen fur die homogen-analytischen Funktionen sind ein Spezial-
fall dieser allgemeinen Reihe, da

Satz (Verallgemeinerter binomischer Satz) : Es ist

«1 Wjw-l

Beweis. Es sei wieder

2* 2 + Cm Xm f*

daim gilt nach dem binomischen Satz

m h

P»i,...fii«-if*(** + f*)== -S -2 Pin-.*!,...

also

X P*i,...,ik«-i,r(2*)®r '

Wegen der absoluten und gleichmâBigen Konvergenz der Reihe ist dies

gleich (^(ï)Setzen wir o;m fm 0, so erhalten wir (31).
Es ist leicht einzusehen, daB aile Ergebnisse ihre Gultigkeit behalten,

wenn co rein imaginâr ist, wie dies fur die Differentialgleichung

(A - | m |2) u 0

zutrifft. Immerhin sind dièse komplexen GrôBen stôrend. In der Reihen-
entwicklung der Elementarlôsung (und damit in allen Reihen) tritt die
komplexe GrôBe co i \ co | nur in der Verbindung co2 und cmi\ co \

auf. Setzen wir •
__

•
__ * • _ -*cmi — i cm — cm ; cm % — cm
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so bleiben aile Beziehungen zwischen den ch und c* erhalten, mit der
einen Ausnahme c* c* — 19). Schreiben wir auch in diesem Fall
statt c* wieder cm, so ândert sich nichts an der Schreibweise, und es

treten keine komplexen GroBen mehr auf.
AbschlieBend lâBt sich also sagen *

Die hergeleiteten Reihenentwicklungen sind fur aile elhptischen Differen-
tialgleichungen ohne Einschrankung gultig.

6. Die von uns eingehend untersuchten c-Funktionen treten als Hilfs-
funktionen îm 2. Integralsatz der e-Funktionen auf. Es ist somit klar,
wie sich die Resultate von 5 sinngemâB ubertragen lassen. Wir be-
schrânken uns auf die Formulierung des folgenden Satzes :

m-l
5. Hauptsatz. Ist eme e-Funktion w(z) in einem Punkte a £ ahch

analytisch

6*o laflt sie sich in diesem Punkte eindeutig in eme gleichmaflig und absolut

konvergente Reihe nach den Funktionen <pni nn^i(z)

dnlt ,nm ^-g- Wn1: n^ (C - «) dZ W (C —^ -— W (z)\
Ji.

Die einzelnen Summanden dieser Reihe sind analytische e-Funktionen.
Umgekehrt stéllt jede derartige, absolut und gleichmàfîig konvergente Reihe
eine analytische e-Funktion dar, wenn die Koeffizienten d im iÂnearsystem
der ex,..., en liegen.

Der Konvergenzradius der Reihe ist (mindestens) gleich dem (m — 1).

Teil des Abstandes des Punktes a vont nachstgelegenen, singularen Punkt
von w(z).

Ich gehe hier nicht auf weitere Entwicklungen (Konvergenzradius,
Laurentsche Reihe, usw.) ein, behalte mir aber vor, auf dièse Problème
zuruckzukommen.

(Eingegangen den 12. November 1948.)

9) Die Algebra der ch ist — entsprechend îhrer Erzeugung — eme Algebra von Matrizen,
es treten jetzt also emfach Matrizen mit komplexen Elementen auf.
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