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Elliptische Systeme
von partiellen Differentialgleichungen
mit konstanten Koeffizienten

Von ADOLF KRISZTEN, Ziirich

Einleitung

In den Ziircher Arbeiten iiber hyperkomplexe Funktionen?!) wird im
allgemeinen eine Cliffordsche Algebra zugrunde gelegt. Die Elemente
dieser Algebra seien

Co=1,C1,C050csCp15CrmsesesCy M=m—1.

In dem Linearsystem € (c,,. .., ¢,,_,) werden die hyperkomplexe Variable

m—1
z== 2 &0,
h=0

und die hyperkomplexe c-Funktion

m—1 .
w(z) = 2 ¢, wy(Xgye - or Tpyy)
h=0
eingefiihrt. Eine c-Funktion w(z) heilt links-analytisch (nach der friihe-
ren Bezeichnung also links-regulir), falls

*

m—1 aw
=0,
Z h a x,
und rechts-analytisch, falls
m—1 Jw
Sy —c¢=0
o 0xy

1) Ein vollstdndiges Literaturverzeichnis findet sich am Schlu der Arbeit von H.G.
Hifeli: Hyperkomplexe Differentiale, Comm. Math. Helv., vol. 20; fiir Cliffordsche
Algebren speziell P. Bofhard: Die Cliffordschen Zahlen, ihre Algebra und ihre
Funktionentheorie, Dissertation Ziirich 1940. Die Bezeichnungen links- und rechts-
regulér der zitierten Arbeiten sind in dieser Arbeit durch die sinngemé#Beren Bezeichnungen
links- und rechts-analytisch ersetzt.
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Bedeutet wv(z) eine rechts-analytische, w(z) eine links-analytische
c-Funktion, ist weiter 2’ eine geschlossene, orientierbare Hyperfliche im
Raume der z,,..., z,_,, dZ ihr orientiertes hyperkomplexes Flichen-
element, so gilt ein erster Integralsatz der Form

fv(2)dZw(z) =0 ,
b
wihrend die Existenz des zweiten Integralsatzes in seiner allgemeinen

Form
w(z) = k}!v(z, $)dZw ()

v(z, {) geeignete Hilfsfunktion, z im Innern von J

von dem, gewidhlten Linearsystem ¢ abhéngt.

Die Gleichung ,
Qa2+ a,=0
k=1

sei die Hauptgleichung einer beliebigen Gréfe z aus ¢, dann ist

r m—1 0 k
E%(Ech )
k=1

ox;,

ein reeller Differentialoperator, und jede Komponente w, einer (links-
oder rechts-) analytischen Funktion w(z) ist eine Losung der Differen-
tialgleichung r-ter Ordnung

T m—1 0 k
(ZerZeam) oo g

Die Giiltigkeit des zweiten Hauptsatzes hidngt von der Differential-
gleichung (a) ab ; er gilt nur dann, wenn (a) eine Differentialgleichung
zweiter Ordnung (r = 2) vom elliptischem Typus ist. Das bedeutet aber
in einer Cliffordschen Algebra, daBl fiir z ¢ € eine konjugierte GroBe z
existiert mit der Eigenschaft, daf}

_ m—1
= X Jix ; Ty, «
i,h=0

Die g, sind reell, die Form ist positiv definit, z 2 = n(2) heiit die Norm
von z. Speziell ist

m—1 a m—1 ag
n ( Z Cy, ) = 2 Jir 3=

heo = 0% i,k=0 0x; 0y,

ein reeller, elliptischer Differentialoperator zweiter Ordnung.
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Die Existenz einer elliptischen Norm ist eine Bedingung fiir das
Linearsystem @ ; ihre geometrische Bedeutung liegt darin, daBl die cha-
rakteristischen Kegel dieser Differentialgleichung von zweiter Ordnung
und imagindr sind.

Die so definierten analytischen c-Funktionen wurden eingehend stu-
diert (speziell die analytischen Quaternionenfunktionen), und es wurden
bereits weitreichende Resultate erzielt.

In dieser Arbeit wird nun ein ganz anderer Zugang zu den hyper-
komplexen Funktionen erschlossen. Wir gehen aus von einem System
von partiellen Differentialgleichungen mit konstanten Koeffizienten

m—1 n

T 3 af o

=0, (k=1,...,n)
1=0 h=0 hk ax

oder in leicht verstindlicher Matrizenschreibweise
m—1
( > A, 9 )u =0 . (b)
=0 a

Setzen wir voraus, dafl das System einen Multiplikator2) erster Ordnung
besitzt :

u="s a4z 0
_—h§) b oxy,

das heif3t, daB das Produkt

m—1 m—1 a 0 m—1 02

eine Diagonalmatrix ist, so geniigen die einzelnen Funktionen u, der ska-
laren Differentialgleichung zweiter Ordnung

S Ims—s—=0. (c)
Wir werden im folgenden voraussetzen, daf3 die Differentialgleichung (c)
elliptisch ist. Dann 148t sie sich auf die Form
Au;, =0 (4 Laplace-Operator)

bringen. Wird diese Transformation auch in (b) durchgefiihrt, so ergibt
sich eine neue Diﬂerentialgleichung

Y‘O

=0
h ’
k=0 axh

%) Dieser Begriff und verschiedene Entwicklungen in I. finden sich in analoger Form
in der Arbeit von H. Malmheden: A Class of Hyperbolic Systems of Linear Diffe-
rential Equations, Communications du Sém. Math. de I'Univ. de Lund, vol. 8.
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ebenso ein neuer Multiplikator
m—1 __ a

M= €y~
h:‘% "aa:,,

Diese neuen Matrizen C), bilden das erzeugende Linearsystem @ einer
Cliffordschen Algebra und die C,, sind die konjugierten GroBen zu den C,
(C,C, = +1), so daB die Norm

m—1 a
(‘E Ca axh) 4

wird, d. h. die Bedingung, da8 ein linearer Multiplikator M existiert,
und die Bedingung, dafl die Norm des Operators (b) reell ist, sind dqui-
valent.

Damit werden wir in ganz zwangloser Weise auf die bereits bestehende
Theorie der hyperkomplexen Funktionen gefiihrt, und es besteht die
Moglichkeit, Systeme von partiellen Differentialgleichungen mit funk-
tionentheoretischen Hilfsmitteln zu behandeln. Insbesondere koénnen
ihre Singularitdten untersucht werden.

In der vorliegenden Arbeit betrachten wir die allgemeinen elliptischen
Systeme von partiellen Differentialgleichungen mit konstanten Koeffi-
zienten ohne Storungsfunktion

E Ea’h‘k”a“;“"'*‘zbhkuh:o (k=1,...,n) . (d)

Die einzelnen Komponenten u, geniigen der skalaren, partiellen Diffe-
rentialgleichung zweiter Ordnung

(44 0*)u, =0 .

Es ist das Ziel der Arbeit, die Potenzreihen der komplexen Funktionen-
theorie auf die Losungsfunktionen von (d) zu verallgemeinern. Wir
folgen dabei dem Gedankengang, der zur Reihenentwicklung der Quater-
nionenfunktionen fiihrte. Die Reihenentwicklung fiir Quaternionen-
funktionen, wie auch die meisten andern wesentlichen Begriffe der hyper-
komplexen Funktionentheorie stammen von Rud. Fueter, der durch
seine grundlegenden Arbeiten diese ganze Theorie entwickelt hat.

1. In einem m-dimensionalen, reellen Raum R™ mit den Koordinaten
Zg,..., X, betrachten wir das folgende System von n partiellen Diffe-
rentialgleichungen fiir die » Funktionen u,,..., u,:
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n m-1 . au
> Xl
hel ie0 dx;

+h2bhkuh=0 (k=1,...,n). (1)
=1

Die GroBen af) und b,, seien reelle Konstante, dementsprechend die
Funktionen u, reelle Funktionen der reellen Variabeln z,...x,_,. Zur
einfachern Schreibweise fithren wir die folgenden Matrizen ein :

ag:!i) ¢« o 0 ag’l'z bll " e e blﬂ ul
Ai == 5 B = s U =
a(f:]), * e o a'(lt”)’ b,nl o e o b.n,n u,n

Das System (1) kann in Matrizenform als

m—1 a

geschrieben werden. Ist B = 0, so nennen wir es homogen, im, allge-
meinen Fall B # 0 ¢nhomogen. Da es sich um ein System mit konstan-
ten Koeffizienten handelt, existiert immer ein Matrixoperator, der, von
links her auf die Gleichung (2) angewendet, die vollstandige Trennung
der unbekannten Funktionen wu, herbeifiihrt. Ein derartiger Operator
heifit nach der Bezeichnung von Malmheden ein Multiplikator der Glei-
chung (2). Zum Beispiel ist immer die zur Matrix

m—-lA a
Edigg T8

adjungierte Matrix?) ein Multiplikator. Die dadurch erhaltene, skalare
Differentialgleichung, der die einzelnen Funktionen u, geniigen, wird im
allgemeinen n-ter Ordnung sein. Unter gewissen Bedingungen fiir das
System (1) ist es moglich, diese Trennung der Funktionen w, schon in
einer Differentialgleichung niedrigerer Ordnung herbeizufiihren. Wir
werden uns im folgenden immer auf den Fall beschrinken, dafl bereits
ein Multiplikator erster Ordnung existiert, und werden dafiir eine not-
wendige und hinreichende Bedingung aufstellen. Dieser Multiplikator
erster Ordnung, dessen Existenz wir voraussetzen, sei

m—1
M=x A} ai + B* ;
1=0 )

wenden wir M auf (2) an, so erhalten wir

T L(A*A 4 A%4) O N (ar £4).9 1 BB
> L(4f4,+ 43 k)m'*-h (4 B+ B h)—éa-:;-i- u=0.

h,k=0 =0

3) adjungiert im Sinne der Determinantentheorie.
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Wir haben vorausgesetzt, daf in dieser Gleichung die Komponenten u;
getrennt seien, also muf} jeder einzelne Summand Diagonalform haben ;
es sei

A¥A, + A¥A, = 2, E, A*B+ B*4,=2d,E, B*B—c-E ;

E bedeutet die Einheitsmatrix. Jede der Funktionen u; geniigt somit
der Differentialgleichung

m—1 02 m—l a

T 2 clu,=0 . 3

(h,kgoghk 0%, 0 + " O, u ) (5)

Definition. Das System (1) hevft ein elluptisches System, wenn die Qlei-
chung (3) eine elliptische Differentialgleichung ist.

Damit ein System (1) elliptisch ist, ist daher notwendig und hinrei-
chend, dafl die quadratische Form, gebildet mit den GroBen g,, als Koef-
fizienten positiv definit ist. Setzen wir dies voraus, so existiert immer
eine lineare Transformation

m—1

yh::kzthkxk (hzo,...,m"’"l) Ithkl#(),
=0

die den Differentialoperator
m—1 az

o Tnn g

B, k=0 0x;, 0y,

auf Diagonalform bringt. Fiihren wir diese Transformation in (2) durch,
so erhalten wir

m—1 a m—1
(EB;,—-————FB)’LL:O B;;: EthkAk ’ (4)
h=0 Yy k=0
und es wird weiter
m—1 m—1

M= };B a + B* B,j‘:k,_z;thkA,;".

Diese neuen Matrizen B, und By geniigen den Gleichungen

Bf B, + Bf B, = 2F h=kFk
und
BfB,+ BfB,=0 h+k.

Indem wir die Gleichung (4) von links mit B} = B;! multiplizieren und
statt y, wieder x, schreiben, erhalten wir

0 0 0

(B;lBoa—x;JrBo—lBl%-l- 4 By By +B;,—13)u..—-=o .

m—l
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Wir setzen B;'B, = C, und statt B;*' B schreiben wir wieder B, das
ergibt

m—1 0
( 0, 2 T B) w=0 .
Diese Gleichung hat den Multiplikator
m—1 a
M= X B} By—— + B*B,;
h=0 oy,

auch hier fithren wir neue Bezeichnungen ein und setzen By B, = C,,
statt B* B, schreiben wir wieder B*; es wird also

m-—1 a

M= >;0 o T B

Zwischen den Matrizen (), und C’h bestehen die einfachen Beziehungen

Co=Cp=E, C,=—0C, h#0), C,C.+CC,=0, (h#k),
C,C,=E .

Die einzelnen Komponenten u,; von u geniigen einer Differentialgleichung
der Form

m—1 a
(A-{—ZEdh +c)u —0,

dabei bedeutet 4 den m-dimensionalen Laplaceoperator

m—1 a2

AME axh

Die Koeffizienten ¢ und d, haben in dieser Gleichung im allgemeinen einen
andern Wert als die gleich bezeichneten Groflen in (3)! Setzen wir end-
lich noch
m—1
_2 dh Ty

w; =e¢e h=0 - U;

1

und verstehen wir unter w die Spaltenmatrix gebildet aus den w,, so ge-
niigt w der Differentialgleichung

m—1 a m—1
(Zoh“—'+B— Edhoh)w”—‘"o 5
h=0 oy, h=0

der Multiplikator dieser Gleichung ist
m—1 __ a m—1
X Gy + (B* = =4, C) .
h....
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Die einzelnen Komponenten w; von w geniigen der Differentialgleichung

w ist eine reelle oder rein imagindre Konstante, und es ist

m—1

w=c— 2 d .
h=0
Setzen wir
m—1
Cp=— (B ).7 dy, Cy)
und

m—1

—_ _1 .
O = (B*— T drCy) ,

so erhalten wir

(glo,,—ai—h i wo,,,) we9 . (6)
M =X Cypt 0T (1)
und die Matrizen C, geniigen den Gleichungen
Cy=C, , C,= —C, h=1,...,m)
C,C,=C,=E (h =0,...,m) (8)

C,0, +C.C,=0 (b #Ek) .

Wir nennen (6) die Normalform des Gleichungssystems (1)¢). Es ist viel-
leicht niitzlich, darauf hinzuweisen, da3 die (reelle oder rein imaginéire)
Konstante o nur in der Form «? oder in der Kombination o C,, und

w C,, auftritt.

2. A sei eine Cliffordsche Algebra der Ordnung 2™ mit den Basis-
elementen
Co=1;C1,00.,Cn;Cla=20CCo5...5C n=Cy...Cp .

¢, bedeutet die Haupteinheit ; die ¢; geniigen den Relationen
G=cy=1, G =—cCg=—1 (G =1,...,m)

COC"::C"CO s C,Ckz—-—ckc, (?.,k'———:].,...,m; j#k).

1) Fiir ein homogenes (hyperbolisches) System hat Malmheden die analoge Normalform
hergeleitet.
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Unter den zu den c; konjugierten GroBen ¢, verstehen wir

-60:00, E."z*"‘C’- (j:].,...,m),

es gelten die Beziehungen
2¢, (P = k)
0 h #Ek) .

Die Zahlen a der Algebra A haben die Form

Ch Cx T € Cp =

@=@QyCy+ a; ¢+ -+ ApCp + ACia+--+ . uCi . . -

Die Komponenten a,;...;a, , seien reelle Zahlen3). Unter dem Be-
trag von a verstehen wir

ja|=(@+al+ - +ay+ah++al b, (9)
die konjugierte Zahl @ sei

@ =0ayCo+ "+ wCi. m:>

dabei ist nach Definition

Cik,..u = €+ -Ci Cp -
Das Produkt a @ (im allgemeinen nicht gleich @ a) nennen wir die
Norm von a:n(a) =a a. n(a) ist im allgemeinen nicht reell ; ist jedoch

a etwa speziell eine Zahl aus dem fiir uns im folgenden wichtigen Linear-
system & (cq,. .., C,), SO gilt

n@ =aa =aa

2 2
e i

|

und weiter ist

lalz(n(a))% ae® .

Diese Beziehung zwischen a und n(a) liBt sich verallgemeinern auf
Zahlen a nicht in €. Es gilt ndmlich der

1. Hilfssatz. Ist n(a) reell, so gilt

n(@ =aa=aa,
und es 1st

la| = (n(a)? .

5) Es werden spéter voriibergehend rein imaginire Komponenten auftreten, man sieht
jedoch sofort, daB in diesem Fall die ganzen Entwicklungen ihre Giiltigkeit bewahren;
es lohnt sich deshalb nicht, die kompliziertere Schreibweise fiir komplexe Koeffizienten
in Kauf zu nehmen.
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Bewers. Es ist

_ (1...m) _ _ _
n@=aa= 2 ayc,c,+3 2 a,a,(c,c; + ¢ cy)
h=0 hzk

damit n(a) reell ist, ist es notwendig und hinreichend, daB

¢, Cy+ € Cp =0 (h %k, wenn ¢, und ¢, in a auftreten).

Weiter ist
¢y Cp=1 (h=0,....m,...,1...m) .

Ist jetzt also m(a) reell, so gilt
n(a) = 2 O‘«h =lal*.
Beachtet man die leicht zu ver1ﬁz1erende Beziehung zwischen zwei
Zahlen a und b und ihren Konjugierten @ und b:
ab=ba,
so ist dieser Hilfssatz speziell giiltig fiir ein Produkt von Zahlen a,,...,a,,
die alle dem Linearsystem ¢ angehoren. Es ist

| a;...a, |2 =mn(a,...a,) =n(a,)...n(a,) =]|a,*...]a,]?. (10)

3. Wir kehren jetzt zur Betrachtung des Systems (1) von 1 zuriick.
Aus dem Vorangegangenen erkennt man leicht die Giiltigkeit des Satzes :

1. Hauptsatz. Ein System von partiellen Differentialgleichungen (1)
( b A o 9 + B) u=20
Oy,
18t dann und nur dann ein System mit linearem Multiplikator

M= }:A + B* |

a

wenn die Matrizen A, , aufgefaft als abstrakte hyperkomplexe Zahlen, eine
Cliffordsche Algebra W erzeugen. Die Matrizen AF sind dann die, im Sinne
der Cliffordschen Algebra, konjugierten Qriflen zu den Matrizen A,

£ T
» = An-

Das System (1) ist speziell elliptisch, wenn die Norm einer Zahl aus W —
sofern diese Norm reell ist — positiv definit ist.
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Es sei jetzt immer vorausgesetzt, dall das System (1) auf die ellipti-
sche Normalform (6)

m—1 d
(35 0y o0n) o=
transformiert sei. Es gilt also
Co=1FE , c,C.+0C.C,=0 (h#£k,h,k=1,...,m),
c: = —C, (h=1,...,m) .

Der Multiplikator ist m—1
M = E _CTh a0 + w Om 3
h=0

WO

Co=0Cy=E ud C,=-06, ((h=1,...,m).

Weiter wollen wir vorldufig voraussetzen, dal w reell sei. Es bedeute

1 0

0 .
E=|-|,....., E,=|:.1},

) 0

0 1

dann 14Bt sich w schreiben als
n

w= 22 w,E, .
k=1
Die Matrizen ¢, (h =0,...,m) und K, (k= 1,...,n) fassen wir im
folgenden als abstrakt definierte, hyperkomplexe Zahlen auf, und schrei-
ben statt C, ¢, und statt E,e,. Die Zahlen 1 = ¢,, ¢,,..., c,, erzeugen

eine Cliffordsche Algebra W der Ordnung 2™, wie wir sie in 2 betrachtet
haben. Die Zahlen e,,...,e, bilden ein Linearsystem € (e,,...,e,),
welches unter der Linksmultiplikation mit den Grofen aus U invariant
ist ; denn die Produkte c, e, sind durch die entsprechenden Matrizen-
produkte C, E, erklirt. Diese Multiplikation ist also auch assoziativ,

d. h. es gilt
ci(c er) = (c; ) € -

Die m reellen Variabeln z,,..., z,_, fassen wir zu der einen, hyper-
komplexen Variabeln
2=1Co%pt+ 1 Cpy Ty

zusammen und schreiben statt w(z,,..., z,—,;) w(z). Da
n
w(z) = 2 e, w,
k=1
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eine Grofle aus € bedeutet, nennen wir w(z) eine e-Funktion der hyper-
komplexen Variabeln z.
Zur Abkiirzung fithren wir die folgende Operatorschreibweise ein

m—1 a

D= Ec,,a + wey ; (11)
der Multiplikator ist jetzt einfach der zu D konjugierte Operator

— m—1 0 _

= ¥ ¢, ——

D h:.:] 7 axh + W Cyp (12)

und es wird L
4+ o*=n(D)= DD = DD . (13)

Definition. Eine e-Funktion

w(z) = 2’:" €, Wy
=1

heift linksanalytisch, wenn sie der Differentialgleichung
Dw =0
geniigt.

Je nachdem w = 0 oder w # 0 gilt, nennen wir w(z) (wenn die
Unterscheidung wesentlich ist) auch homogen oder inhomogen links-
analytisch.

Die linksanalytischen e-Funktionen sind somit identisch mit den Lo-

sungsfunktionen des Systems (6). Die Komponenten w, von w sind Lo-
sungen der skalaren Differentialgleichung

(4 + o?)w, =0 .

4. Wir fassen die m 4+ 1 reellen Funktionen V,,...,V, der m
reellen Variabeln w=,...x,_, zu der c-Funktion

V() = 2 ¢V,
h=0

zusammen und definieren den zu

m—1

d
c wC,y,
E h . axh +
adjungierten Operator 8)

8) vgl. Kriszten, Funktionentheorie und Randwertproblem der Diracschen
Differentialgleichungen, Comm. Math. Helv., vol. 20, S. 333.
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h=0
ebenso
_— m——l_ a _
E=XYc¢,5——wec,
h=0 Ly
Es ist

n(B) =4 + o* = n(D) .

Wihrend der Operator =n(D) selbstadjungiert ist, braucht dies fiir D
selbst nicht der Fall zu sein. Ist w speziell gleich Null, so ist auch D
selbstadjungiert.

Definition. Die c-Funktion V (z) heifft adjungiert-linksanalytisch in
esmem Punkte z, wenn

EV S 4 V
= Chs— — WCy =0 ,
(h‘:::) haxh @ )

entsprechend adjungiert-rechtsanalytisch, falls

m—1
[VE]= X ——a—Kch—— Vwe,=0.
h—o 0%,
Die eckige Klammer gibt an, dafl der Operator £ auf die Funktion in
dieser Klammer angewendet werden soll.

2. Hilfssatz. Die adjungiert-linksanalytischen c-Funktionen V (2) sind
auch adjungiert-rechtsanalytisch und wmgekehrt. Jede in einem einfach zu-
sammenhdngenden Gebiet des Raumes der x,,..., x,_, adjungiert analy-
tische c-Funktion besitzt etn skalares Potential @ (z), d. h. es existiert eine
reelle Funktion @ derart, daf3

Vi) =E®(z) und A+ 0?)®=0. (14)
Beweis. Indem man die Gleichungen
EV=0 wund [VE]=0

in Komponenten schreibt, erkennt man die Aquivalenz ; weiter ist das
erhaltene System genau die Integrationsbedingung fiir die Existenz einer
Funktion @ mit den Eigenschaften

E®d=7V
und
A4+ )P =0 .



Wir betrachten gleichzeitig eine c-Funktion ¥ (z) und eine e-Funktion
w(z). Sind beide Funktionen in einem m-dimensionalen Gebiet G und
auf dessen Randhyperfliche 2 stetig und stetig differenzierbar, so ist
nach dem GaufBlischen Satz

ox,,

f 0V cpw)™ dr= [ (Ve,w)Wdr = — [Ve,mwds .

< el b
Es ist m, die z,-Komponente des innern Einheitsnormalenvektors von
2, do das Hyperflichenelement von 2’ und dr das m-dimensionale
Volumenelement von G. Wir setzen

m—1

dZ = 2 ¢, mdo ,
und erhalten "=

fi (Ve, w)® dr = --‘f VdZ w .
Es ist & R~0 2

m—1 m—1

m—1
2 (Ve,w)® = (X VWe)yw+V (2 ¢, w™)
h=0 h=0 h=0

m—1 m—1
= (X VWe, —Voc,)w +V (2 ¢, w™ + wec, w)

h=0 h=0
= [VE]w +V [Dw] .
Eingesetzt ergibt sich
[{IVE]w+V [Dwl}dr = — [ VdZw .

Satz. Die c-Funktion V sei in einem Gebiet G und auf seinem Rand 2
adjungiert-analytisch ; entsprechend ser die e-Funktion dort linksanalytisch.
Dann gilt

fVvdZw=0 . (1. Integralsatz) (15)

Bewets. Esist Dw = 0 und [VE] = 0, nach der obigen Formel ist

der Satz bewiesen.

Um den zweiten Integralsatz zu erhalten, miissen wir in (15) fir V eine
geeignete Funktion von zwei hyperkomplexen Variabeln

m—1
T = 2 Ch xh
h=0
und
m—1
= 2 ¢, &
h =0
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V(z, {) einsetzen. Nach dem 2. Hilfssatz 148t sich jede adjungiert-ana-
lytische Funktion V erzeugen als

V=E® .
Wir wihlen als @(z, {) eine Funktion, die nur von
e=|z—2¢|
abhingt. Die Funktion ®(p) geniigt dann der Besselschen Differential-

gleichung m— 1

@ @ + D=0 . (16)

Fir @(p) machen wir den Ansatz
¢(e)=g;(—?:)g+g(@)10ge I

wo f und g analytische Funktionen der reellen Variabeln ¢ bedeuten
sollen. Eingesetzt in die Differentialgleichung (16) ergibt sich

of"+ @B —m)f + w2of+ 29m 29" + (m — 2) g™ 3yg

Qm—-— 1

—#bge@”+%m——h%;+wﬁg)=0- (17)
Wir wollen -
g (o) = 2 n 0"

h=0
so bestimmen, daf} in (17) der Koeffizient von log ¢ verschwindet, das
ergibt fiir die g, die Rekursionsformel

a2

gh: h(h_{_m___2) Ih—2 -

(18)

Die beiden Koeffizienten g, und g, sind also noch frei zu wihlen. Wir
setzen

Ho) = 2 oo
h=0

und gehen mit den beiden Funktionen g und f in (16) ein, es muf} also
gelten

of "+ 1B —m)+ 0?of+ 20m29 + (m —2)g™2g=0,

7} Die Funktion @(z, () = @ (g) ist die Elementarlosung; ihre Existenz und ihre
wesentlichen Eigenschaften sind aus den Arbeiten von Hadamard (LLegons sur le Pro-
bléme de Cauchy, Paris, Hermann 1932) bekannt. Wir ziehen es jedoch vor, die Funk-
tion @D (p) hier direkt zu konstruieren, um den exakten Freiheitsgrad, der fiir @ noch
besteht, zu bestimmen.
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das gibt fiir die Koeffizienten g, und f, die Bedingungen
fkk(k —m—42)+ 0 fi o+ gk+2~—m(2k +2—-m)=0(k=2,...) (19)
Wir haben verschiedene Fille zu unterscheiden :

1. Es sei m ungerade, dann ergibt (19)

h= g @t G @E+2—m) (20

Wir wihlen f, 5% 0 und f, = 0, ebenso konnen wir ¢(p) = 0 setzen,
dann verschwinden alle Koeffizienten f, mit ungeradem A und die Koef-
fizienten der geraden Potenzen von g sind durch die Rekursionsformel (20)
eindeutig bestimmt. Es ist weiter leicht zu zeigen, dall f(p) eine ganze
Funktion von g ist. Fiir ungerades m erhalten wir somit

b, 0)— f (o)

m—2 2
0

wo f(o) eine gerade Funktion von g bedeutet, die bis auf einen konstan-
ten Faktor bestimmt ist.

2. Es sei m gerade. In diesem Fall diirfen wir g(p) nicht identisch
Null voraussetzen. Fir k<m — 2 ist
o= @/
kE— k(k—m+2) W” Jg—2 >

alle diese f, sind durch f, und f, bestimmt. Setzen wir in (19) £ = m — 2,

so ist auch g, bestimmt als
—1
Yo=""95 s

dadurch sind nach (18) auch alle g, mit geradem A bestimmt. Aus der
Gleichung (19) fiir k¥ = m — 1 erkennt man, daB g, frei gewéhlt werden
darf. Ist endlich £=m, so bestimmen wir die f, eindeutig aus den g,
und aus f,_,. Man erkennt wieder sehr leicht, daB die so definierten
Funktionen f(p) und g(p) ganze Funktionen von g sind. Fiir gerades m
erhalten wir

&, 0) = ’,ff’_L + (0 loge ,

dabei kénnen die Koeffizienten f,, f, und g, noch beliebig (f, # 0) ge-
wihlt werden, speziell konnte man also f, = g, = 0 wihlen.
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Setzen wir speziell o = 0, so erhalten wir

fo

Qm—-z )

D(z,0) =

Wir normieren jetzt @ noch so, daB3

lim ™1 @' (p) = 1 , (21)

e->0

das ergibt fiir f, den Wert

Wir bilden die Funktion
V(z,t) =EQ®(p) (E®: Ableitungen nach den £,)

— E—7 _ =
Man sieht sofort ein, da V(z, {) den beiden Differentialgleichungen

E®V(z,0)=0
und
DOV (z,¢) =0

geniigt, d. h. V(z, ) ist als Funktion von { adjungiert-analytisch und
als Funktion von z analytisch. Es ist klar, was es bedeutet, dal eine
c-Funktion analytisch ist.

2 sei eine geschlossene, orientierbare Hyperfliche mit stetigem Nor-
malenfeld, z ein Punkt im Innern von 2 und K, eine Hyperkugel um z
mit so kleinem Radius r, daB K, ganz im Innern von X'liegt. In bekannter
Weise ergibt sich

SV 0 dZw(@) + [V(, )dZw(l) =0 .

Weiter ist, wegen der Normierung (21),

lim (V(z,¢)dZw(l) = K,w() ,

r—->0 Kr

wo K, die Oberfliche der Einheitshyperkugel des m-dimensionalen
Raumes bedeutet. Es folgt der

Satz. Die e-Funktion w(z) set im Innern einer geschlossenen, orientier-
baren und geniigend reguliren Hyperfliche X und auf derselben linksanaly-

tisch. Dann gilt fir jeden Punkt z im Innern von X
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1

we =g,

J“ V(z,0)dZw() (2. Integralsatz) . (22)
3

V(z, () =E© ®(9) o= —z]|

Es 1st

und D(o) st die konstruierte Elementarlosung der Gleichung
(4 4+ 0?) @ =0 .

Gilt speziell w = 0, d. h. ist w(z) homogen-analytisch, so ist

1 {—z
w(z) = Km'zfn(é_uz)dew(C).

Auch im 2. Integralsatz tritt die GroBle w nur in der Form w? oder in der
Verbindung o c,, auf.

b. Um die Reihenentwicklung der linksreguliren e-Funktionen zu
finden, miissen wir den Kern V(z, {) in der Darstellungsformel (22) des
zweiten Integralsatzes in eine Reihe entwickeln. Als Funktion von z ge-
niigt V(z, {) der Differentialgleichung

D@AV(z,0) =0,

ist also eine analytische c-Funktion. Wir wollen das allgemeinere Problem
l6sen, eine beliebige analytische c-Funktion in eine Reihe zu entwickeln.

Fir die analytischen c-Funktionen beweist man ohne weiteres die
beiden Integralsitze

Satz. Die c-Funktion V (z) sei in einem Gebiet G und auf sesnem Rand
2 adjungiert-analytisch ; entsprechend sei die c-Funktion W (z) dort analy-

tisch. Dann gult
fVdzw =0 (1. Integralsatz)
3

und

Satz. Die c-Funktion W (2) sei im Innern eimer geschlossenen, orien-
tierbaren und gewiigend reguliren Hyperfliche 2 und auf derselben analy-
tisch. Dann gilt fir jeden Punkt z im Innern von X

W () = —K%; f V(z,0)dZW () (2. Integralsatz) . (23)
Es st * _
V(, 0) =E®OP(), eo=|—2z]
und D(p) st die konstruierte Elementarlosung der Gleichung
4+ 0*) D=0 .
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Wir betrachten zuerst die homogene Gleichung fiir eine gerade Dimen-
sionszahl m ; die allgemeine Reihenentwicklung werden wir durch eine
Art Absteigemethode auf diesen Fall zuriickfiihren. Es sei also

m—1

0
E=D= Yc¢,—; mgerade.
h%() haxh g

Nach dem Vorbild der reguliren Quaternionenfunktionen bringen wir
die Funktion

m—1 . —
V(Z’C)::Ech a 1 ﬂ = C zm
OO m—2)(nc—2) T n@—2*

in Verbindung mit der Funktion

2 C—=
(C—'*Z) —n(C—Z) J

C—z {—2z
Am" —-——2]0(’”&—2]0) n(C—-z)kH

(4 : Ableitungen nach z, oder &) ,

Es ist

daraus folgt

m—2
Vi, )=42* (—21-C,
und es bedeutet

m—2 1

C=(—1) 2 2m_2(m”2 ')2 ,
5= |

Ist |2]|<<| |, so besteht fur ({ — 2)~! die Reihenentwicklung (geo-
metrische Reihe)

(€ —2 1= 3 1z E)e . (24)
k=0

Die Reihe konvergiert absolut und gleichmiBig in jeder Hyperkugel
| z]|<r<| ¢ |, denn fiir die einzelnen Summanden gilt nach dem 1. Hilfs-
satz 2 |

| E)* | = TEP

Man zeigt leicht, dafl die Reihe beliebig oft gliedweise partiell nach den
z, oder &, differenziert werden darf, ohne die gleichméfBige und absolute
Konvergenz zu storen. Speziell konvergiert also die Reihe

V(z,5)=0-k§:—m?—‘“<zc—l)k (zl<r<|Cl) .

A, bedeutet, die Ableitungen sind nach den z, zu bilden.
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Satz. Die Funktionen
m—2

E14,% (2CY)k (k=0,1,...)

liegen alle ym Linearsystem © und sind wn den beiden Variabeln z und (
analytisch.

Beweis. Wir fiihren die reelle Hilfsvariable ¢ (0<<t<1) ein und be-
trachten die Funktion
(C—ta)t= X th Lz L)k,
k=0
diese Reihe konvergiert jedenfalls im betrachteten Gebiet |z|<| ]|.

Die Funktion ({ — t2z)! liegt in €, also auch ihre Ableitungen beliebi-
ger Ordnung nach der reellen Variabeln £. Es ist

dk
3 (C—t2) o =Fk! (2 {7Y)*

eine Funktion in ¢ und damit auch

m—2

£14,% (2 1,”‘1),c .

Weiter ist
m—2 o0 m—2
[DAT (& —t2) ] = Eﬂ t"[l) 14,7 (2 cj—l)k] =0 .

Die Ableitungen in D konnen nach den z, oder &, genommen werden. In
Komponenten geschrieben, erhalten wir lauter konvergente, identisch
verschwindende Potenzreihen nach ¢; somit mufl3 jeder einzelne Koeffi-
zient verschwinden und die Funktionen

m—2

14,7 () (k=0,1,...)

sind analytische c-Funktionen von z und ¢.
Die Summanden der Reihenentwicklung von ¥V (z, {) sind Formen in
den =z,; wir untersuchen deshalb allgemein analytische Formen. Eine

m—1

c-Funktion F(2) = X ¢,V, heiBt eine Form n-ter Dimension, wenn ihre
h=0

Komponenten V,,...,V,,_, Formen n-ter Dimension in den z, sind.

Bedeutet ¢ ein reeller Parameter, so gilt

F(tz)=1t"F(z) .

262



Nach dem Eulerschen Satz erhalten wir

nF(z) = mle M (2) z, ,

A=0
und durch Subtraktion der mit x, multiplizierten Regularitdtsbedingung

nF(z) = "EIF‘h’ () (x, — ¢, 2y) -

h=1

Die Ableitungen einer Form sind wieder Formen ; wir konnen dieses Ver-
fahren » mal anwenden und erhalten

n! F (2) = X F® 2 (2) (2, — cp, %) . . . (Th, — Cn, To) -

Die auftretenden Koeffizienten F(*1---*» sind Konstante. Nehmen wir
an, unter den h,...h, trete » n,-mal auf, so tritt der entsprechende
Koeffizient F®---1:2--2..om—L....,m=1) g4 oft auf, als wir die Zahlen

I,...,1,...m —1,...,m — 1 permutieren kénnen. Diese Zahl sei =.
Wir fassen alle Glieder mit demselben Koeffizienten zusammen und
setzen 1

Pry...0m— (Z) = "‘7;"‘41? (xhl — Cpy xo) o (xkn — Chy xo) .

Nach dieser Schreibweise ist
F (z) - 2 FL-es 1,..., m—1,..., m—1) Pry...vms (z) ,
ebenso zeigt man, dafl

F(z —— Z pn1...nm——1 (z) F(l,...,l ..... m—1,...,m—1) .

Da im ganzen n-mal differenziert wurde, muf fiir die n, die Beziehung

gelten
n+-+n,,=n.

Wie im Falle der Quaternionen sei

Do, o(2) = 1, und falls mindestens ein 7,<0: (2) =0 .

pm e nm_l

Wir stellen einige fiir spiter wichtige Sitze iiber die p-Funktionen zu-
sammen ; die Beweise sind ganz analog zu denjenigen fiir die regulédren
Quaternionenfunktionen.

Eine Rekursionsformel: Es ist

» pﬂx- . -1 (z)‘: (xl — G xo) pnl—l, fN2...Mm (z)+ T + (xm-—l — Cp—1 xo) pnl, . M2 , Bp—1—1 (z)

= Ppy—1,..., %ma (2) (2, — ¢, ) ++-+ Pa,...nm1—1 (T — Cm—1 %) -
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Satz. Dre Formen p liegen in €. »
Beweis. Durch Induktion. Nach der Rekursionsformel ist
R)=1x9

(Summe der beiden rechten Seiten der Rekursionsformel).

n pﬂl...nm_]_

Die einzelnen Glieder dieser Summe sind von der Form ab + ba, wobei
sowohl a als auch b (nach der Induktionsvoraussetzung) in € liegen. Dann
liegt aber auch ab + ba in €, womit der Satz bewiesen ist.

Ebenfalls aus der Rekursionsformel folgen die Differentiationsregeln

0

a—xl-pﬂl. .o RMm—1 (z):: pgl)...ﬂm_l (Z):'—- pﬂl—‘l, g ... N Mm—1 (z) usw. (25)

Satz. Die Polynome p, . .. (2) sind im ganzen m-dimensionalen

Raum analytische Funktionen.

Bewets. Unter Anwendung von (25) schreibt sich die Rekursionsformel
wie folgt —_

< ok
npnl...nm_l (z) = E p(nl)...nm_1 (z) (xh _..._ ch xO)

anderseits ergibt die Eulersche Formel

m—1
0 ~ A
npnlnwl(z)=p$a1)nm_1(z) xo + }—’ psq)...nm_l xh *

Subtrahiert man die zweite Gleichung von der ersten, so findet man die
gesuchte Gleichung.

Abschitzung : Fir die p-Funktionen gilt die Abschidtzung

1
Ipnl...nm._l (2) | g;{" Sl —cay|™. . | Ty — Cpy T [P

1

<
S
nd.. g !

K2 (26)

Genau wie fir Quaternionenfunktionen beweist man den Binomischen
Satz :

ny Nm—1
pn;... N1 (z + C) - E ¢t 2 pvl...l’m_l (C) pnl-—-vl...nm_l—-—vm_l (z) *
v1=0 vm,_1=0

Wir wenden die erhaltenen Resultate auf die Reihenentwicklung der
Funktion V¥V (z, {) an. Die einzelnen Summanden

m—2

Ce14,% (22
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sind als Funktionen von z analytische Formen n-ter Dimension. Somit ist

m—2
> pnl...nm_l (z) qﬂl...ﬂm__l (C)

0114, (= X
n1t+-Hm—r1=n
und o
h) E pnl...ﬂm._1 (z) qﬂl. Ry (C) (27)

Vi, = X
n=0 M1+ - +Am—1=n

Da diese Reihe fiir |z |<r<| (| absolut und gleichmiBig konvergiert
(beziiglich der Summation nach »), kénnen wir gliedweise nach den z,

differenzieren und erhalten speziell

oMt tnem—
oxh oxnm-1 4 (z ’ C) ‘2=0 =qn,...nm (C)
1. 0T
oMt tem— F
. (28)

"m—1 bl
2

= (=1 —,
6511 P 85,,,,__1 n(c)

B (2) und Qns.. . nm1 (€) in (27) in

Es ist weiter klar, dal} die p,
ihrer Gesamtheit vertauscht werden diirfen.
£) sind vm ganzen R™ mit Ausnahme

Satz. Die Funktionen q, .. (
des Punktes { = 0 analytisch und liegen im Linearsystem §.

Die Funktion Z‘
7 (£)
auch die Funktionen

liegt in € und ist analytisch, also nach (28)
(). Aus Gleichung (28) sind auch die folgenden Differentia-

Bewezs.
mw
2

qnl .o M1
tionsregeln klar

0
'—a‘g’:qnl...nm_l (C) = ..., Rh—1, PA—1; RRhp1...; Pemy (C)

Weiter gilt fiir die g-Funktionen die folgende grobe Abschétzung
7)
(29)

n+—§—

|G, amy (O | < (4 m) ! m"(

Fiir eine reguldre c-Funktion f(z) gilt der zweite Integralsatz

[0 =4 (Ve 0dz1Q) .

durch Einsetzen der Reihe (27) ergibt sich
f(Z) = E 2 pn;...nm_l (z) dﬂl...nm—j_ 4
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und es bedeutet

ont FAm—1

1 L]
ons = T T A2 IO = it e - [ V(e 00481

= fmmmeD) () (30)

2. Hauptsatz. Ist eine c-Funktion w = f(z) in einem Punkte z=a
analytisch, so lifit sie sich eindeutig in eine Reihe nach den Funktionen
plz — a) entwickeln.

o

f(z) — 2 E pﬁl..."m_l(z_.a) dm...nm—l °
n=0 B+ ---+np—1=n

Drese Reihe konvergiert absolut und gleichmdfig im Innern jeder Hyper-

kugel
e |z —a|<r<p,

daber bedeutet o den Abstand des Punktes z vom nichsten singuliren Punkt
von f(z). Umgekehrt stellt jede derartige, absolut und gleichmdfig konver-
gente Reihe eine linksanalytische c-Funktion dar. Diese Funktion liegt
speziell in €, wenn die Summen

> P, nm_l(z)d amy, (M=0,1,...)

ny+--- +nm___1= n
alle vn € liegen ; in diesem Fall konnen dve Funktionen p,
drve Koeffizienten d

Ry...m—

Beweis. Die Eindeutigkeit folgt aus den Formeln (30), sind die Koef-
fizienten d, . = so vorgegeben, daB die Reihe in einer Hyperkugel
absolut und gleichmifBig konvergiert, so ist dieselbe linksanalytisch, da
dies fiir jeden Summanden der Fall ist. Liegt die Funktion f(z) in ¢, so
liegt auch f(tz) in €, wo |£|<1 ein reeller Parameter ist. Es ist

L1 =11 S b @ ey

z2=0 nit--Fam—g=n

oo M1 (Z) und

in threr Gesamitheit vertauscht werden.

also muB jede dieser Summen in ¢ liegen ; damit ist gezeigt, daB diese
Bedingung fiir die Koeffizienten notwendig und hinreichend ist dafiir,
daB f(z) in @ liegt. Diese Bedingung ist jedoch nicht notwendig, damit
f(z) beidseitig analytisch ist, man kann leicht Beispiele konstruieren fiir
beidseitig analytische Funktionen, die nicht in € liegen.

Als Anwendung der besprochenen Reihenentwicklung betrachten wir
die Elementarlosung V(z, {) fiir die ungerade Dimensionszahl m — 1.
Formal ist V¥V (z, {) als Funktion von z Losung der Differentialgleichung

Zch V(z =0 .
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Dabei denkt man sich die urspriinglich vorliegende Cliffordsche Algebra
mit den Basiselementen c,,c,,..., ¢, 5, ¢, C,... um das Basiselement
Cm—y €Tweitert; z, , ist eine reelle Hilfsvariable. Fiithren wir auch fiir
ungerade Dimensionszahlen m — 1 die Schreibweise

oM+t - +nm (—2z

Qn,...nm_g (C) = ) Nm—o m—1
ozyt. . . 0x,™; (n(C—2) 7 2=0

ein, so ergibt sich fiir |z|<| (| die folgende Reihenentwicklung
V(z’ C) == 20 E pnl...nm_zo(z)qM...nm_g(C)
=

- 2 E pnl...ﬂm_.z (z) qnl...ﬂm_g (g)
n=0

Man zeigt leicht, daf3 die Sdtze und Formeln fiir die Reihenentwicklun-
gen bei gerader Dimensionszahl m im Fall der ungeraden Dimensions-
zahl m — 1 wortlich iibernommen werden konnen.

Fiir die p- resp. g-Funktionen gelten die Abschétzungen (26) und (29),
die Reihe ®

E E l pn]_,. ey My (z) q'nl ..... Nm—1 (C) ‘
n=0 R+ ---+Npy1=n

konvergiert also im Innern der Hyperkugel

1]
—1

und darf dort beliebig umgeordnet werden 8).

Auch der allgemeine Fall der nichthomogenen Gleichungssysteme ordnet
sich dem bisher Besprochenen unter: Wir betrachten die Elementar-
losung V (z, {) der inhomogenen, m-dimensionalen Gleichung. Als Funk-
tion von z=2y+ ¢, 2, +---+€p_y T,y ist V(z, ) reguldr, das
heifit es gilt

2] <= 2

m—1 a
(h.gcra};-{—cmw) Vz,0)=0.

Wir setzen
¥=0Co%+ F+ Cp1 T+ Cp Tm (2,,: reelle Hilfsvariable)

und multiplizieren V (z, {) mit e¢“*m , dann ist das Produkt Losung der
m + 1 dimensionalen, homogenen Gleichung

o a wWZTm —
,,E,,c"gxue V(i,)=10 .

h

8) Der analoge Beweis fiir Quaternionenfunktionen findet sich in der Vorlesung von
R. Fueter: Theorie der reg. Funktionen einer Quaternionenvariablen (Winter-
semester 1936/37).
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Somit existiert fiir |2*|<| | die Reihenentwicklung

e“’xm V (z J C) - E 2 pnl ..... nm (z*) w”m '/’nl, NN (I} (C) ’

und es bedeutet

an
= vV
w‘nl ,,,,, nm—1 (C) ( ax?]_ . ax‘nm_l (z ? C)) .

Es sei im folgenden vorausgesetzt, daf

<o lCl

ist, dann darf die Reihe umgeordnet werden zu

ewzm V (z ’ ) Z E ( E pnl ..... Nm—1 > k (z*) wk) tI)ill,. ooy NM—1 (C) ¢

ni+- - +nm—y=n \k=0

Wir setzen z, = 0 (2* = 2) und definieren

[ o}

(Pnl ..... nm-—-1 (z) = ( E pﬂ.l,. e o s m—1 k (z*) wk)

k=0 2¥=2

Damit ergibt sich fiir V(z, {) die folgende Reihenentwicklung

Ve, 0=5 X gu a @) vn nm_,<c)(lz|< '“)

-----
n=0 n1+---+np—1=1n

Ich vermute, dafl die Reihe sogar in der Hyperkugel |z|<| {| kon-
vergiert, es ist mir jedoch noch nicht gelungen, dies zu beweisen.

3. Hauptsatz. Die Funktionen ¢, .,  (2) sind im ganzen endlichen
Rm™ (inhomogen) analytische Funktionen von z :

m—1 a
(S or g + on00) Fun.ams @ =0

Entsprechend sind die Funktionen vy, ., () mit Ausnahme des Punkies
¢ =0 im ganzen endlichen R™ adjungiert-analytisch :

m—:l 0 0
(h%o ch-a?h— - me) %,...nm_l (C) - b

Die Funktionen ¢ und y liegen in €.

Bewers. Es ist

o0 [~ <]
* — Y * k
Cm a B pﬂl...nm——lk (z )wk__‘ cmw 2—‘ pnl...nm_lb (z )w *
Tm k=0 k=9
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Da die Funktionen p homogen analytisch sind, gilt also

m—1 [}

}: Ch pnl. ..am— k (z*) wk + cmw ‘\.: pnl‘ coam— k (z*) wk = 0 "
h=0 axh k=0

setzen wir in dieser Gleichung =z, = 0, so finden wir

m—1 0
(2.0;: +C w)‘pnl nm_l(z)zo *

DaB3 die Funktionen p adjungiert-analytisch sind, geht sofort aus der
Tatsache bervor, dafl sie die partiellen Ableitungen einer adjungiert-
analytischen Funktion sind. Offensichtlich liegen auch alle betrachteten
Funktionen im Linearsystem € (c,,...,¢c,,). .

Die c-Funktion f(z) sei in und auf der Hyperkugel K: |z| <R um
den Nullpunkt inhomogen-analytisch

m—1 3
(S'o g+ cea =0

a L,

Es gilt also der 2. Integralsatz

j@ =4 [V 0dzfQ
m K

und fir -
n—1
f(Z) A—/ E (pnl ..... nm—1 (2) ‘ dnl,. ceam—1 ?
n=0 ny+.--+np_1=1n
wobei
d L g dzf(e) = (T
MNysenns Nm—1 E (J TPnl ..... No—1 ( ) ( ) - (ax?l ] ax;’ﬁ_‘f (z)) =0 .
K
m—1
4. Hauptsatz. Ist eine c-Funktion f(z) in einem Punkte a = X a,c,

h=0
(tnhomogen) analytisch, so lifit sie sich in diesem Punkte eindeutig in

etne gleichmdfig und absolut konvergente Reihe nach den Funktionen

Py, umy (2 — @) entwickeln
f(Z) = E E (pnl ..... Nm—1 (Z - a') dnl ,,,,, nm—1
n=0 n1+---+npm—1=n
1
dnl ..... m—1 - _}___{;: . y)nl ,,,,, Nm—1 (C - a) de (C)
K
oM+ t+nm—

= == @) -

axl ' axmtn—l z=a
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Umgekehrt stellt jede derartig, absolut und gleichmdifig konvergente Reihe
etne links-analytische Funktion dar.

Der Konvergenzradius der Reihe tst (mindestens) gleich dem (m — 1).
Teil des Abstandes des Punktes a vom ndchstgelegenen, singuliren Punkt
von f(z).

Die Reihen fiir die homogen-analytischen Funktionen sind ein Spezial-
fall dieser allgemeinen Reihe, da

pﬂ.l ..... -1 (Z) = (¢n1 ..... nm—-1 (z))w=0 *

Satz (Verallgemeinerter binomischer Satz): Es ist

ny m—1

(pﬂl,...,nyn_.l(z_!_ C) = E t e E (pnl-—hl ..... fm—1— hm—1 (C) .(phl ..... }Mn._l(z) (31)

h1=0 hm_1=0
Beweis. Es sei wieder
2*=Z+mem, C*:C_*‘cmém?

dann gilt nach dem binomischen Satz

ng k
pm,...,nm_l,k (z* + é'*) = E 2 pnl—hl,...,ﬂm_l—-hm_l, k——r(c*) ) phl ..... hm-1 (z) ’

hi=0 r=0
also
k

[~ <] o ne
k_— =
zpnl,...,nm__,,k(c*"*“z,k)w - E 2 Epnl—hl,...,nm_l——hm_l,k—r(c*)wk r X
k=0 k=0 hi=0 r=0

X Dhy,..., b, r (FF) 07

Wegen der absoluten und gleichméBigen Konvergenz der Reihe ist dies
gleich

ng o0 (o) .
Z (5 B s pma 99 (5 g 290)
1= = r=

Setzen wir z,, = £, = 0, so erhalten wir (31).
Es ist leicht einzusehen, daf3 alle Ergebnisse ihre Giiltigkeit behalten,
wenn o rein imagindr ist, wie dies fiir die Differentialgleichung

(4—]oPu=0

zutrifft. Immerhin sind diese komplexen GroBen storend. In der Reihen-
entwicklung der Elementarlosung (und damit in allen Reihen) tritt die
komplexe GroBle w = t¢| w| nur in der Verbindung w?® und ¢, 7| w |

auf. Setzen wir . * .
Cpnt =1Cp =2Cpy —Cpt=Cp ,
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so bleiben alle Beziehungen zwischen den ¢, und ¢ erhalten, mit der
einen Ausnahme ¢, c) = — 1?). Schreiben wir auch in diesem Fall
statt ¢} wieder c,,, so dndert sich nichts an der Schreibweise, und es
treten keine komplexen Groflen mehr auf.

AbschlieBend 148t sich also sagen :

Dre hergeleiteten Reihenentwicklungen sind fiir alle elliptischen Differen-
tialgleichungen ohne Einschrinkung giiltig.

6. Die von uns eingehend untersuchten c-Funktionen treten als Hilfs-
funktionen im 2. Integralsatz der e-Funktionen auf. Es ist somit klar,
wie sich die Resultate von b sinngemifl iibertragen lassen. Wir be-

schrinken uns auf die Formulierung des folgenden Satzes :
m—1
5. Hauptsatz. Ist eine e-Funktion w(z) in esnem Punkte a = X a,c,
analytisch (m-—-l h=0

0
}‘_,cha z, + ¢ w)w(z):O

so lapt sie sich in diesem Punkte eindeutig in exne gleichmdifig und absolut
konvergente Reihe nach den Funktionen ¢, (z) entwickeln :

< -1
(e o]
w(z): E E (Pnl,,..,nm__l(zma) dnl,...,nm,_l?
n=0 ety =n
o1t +nma
dnl,---,’ﬂm -1 m ‘f’lpnl: ”m-l a) dZ?,U(C) = ( ax;“ axnm-il w(z)) ‘
m— z=a

Dre einzelnen Summanden dieser Reihe sind analytische e-Funktionen.
- Umgekehrt stellt jede derartige, absolut und gleichmdfig konvergente Reihe
etne analytische e-Funktion dar, wenn die Koeffizienten d im Linearsystem
der e,,...,e, liegen.

Der Konvergenzradius der Reihe ist (mindestens) gleich dem (m — 1).
Teil des Abstandes des Punktes a vom ndchstgelegenen, singulidren Punkt
von w(z).

Ich gehe hier nicht auf weitere Entwicklungen (Konvergenzradius,
Laurentsche Reihe, usw.) ein, behalte mir aber vor, auf diese Probleme
zuriickzukommen.

(Eingegangen den 12. November 1948.)

%) Die Algebra der ¢, ist — entsprechend ihrer Erzeugung — eine Algebra von Matrizen,
es treten jetzt also einfach Matrizen mit komplexen Elementen auf.
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