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Die linearen vollkommenen Riume
der Funktionentheorie

Von Orro TorrLITZ T, Jerusalem?)

Einleitung

Faft man die Koeffizienten einer ganzen Funktion z(w)= X z,w?!
p=1

zu einem Vektor x = {x,,7,,...} zusammen, so bildet die Menge die-

ser Vektoren einen vollkommenen Raum z_ im Sinne von K.T.2), der

dazu duale Raum ist g,, der Raum der Potenzreihen mit einem von

Null verschiedenen Konvergenzkreis. Ebenso ist der Raum =, der Po-

tenzreihen mit einem Konvergenzradius =7 dual zum Raum g1
. . 1 r
der Potenzreihen vom Radius > P

Die Untersuchung beginnt mit der Bestimmung der beschrinkten
Mengen in diesen Réumen (§1) und der Konvergenz (§2). In allen
diesen Raumen fallen die schwache und die starke Konvergenz zusam-
men. Beschranktheit und Konvergenz in x, sind Begriffie aus der all-
gemeinen Theorie der vollkommenen Réume, sie erweisen sich jedoch
in § 3 identisch mit der gleichmaBigen Beschranktheit bzw. der gleich-
maBigen Konvergenz im Inneren von |w|<r, den aus der Funktionen-
theorie bekannten Begriffen. Der Vitalische Satz der Funktionentheorie
erscheint so als Spezialfall eines Satzes, der in allen vollkommenen
Réumen gilt, in denen jede beschrankte Menge eine schwach konver-
gente Teilfolge enthalt.

In § 4 werden die linearen Transformationen der Raume x, und p,

1) Aus dem NachlaB des am 15. Februar 1940 in Jerusalem verstorbenen Verfassers,
herausgegeben von Gottfried Kéthe in Mainz. Die vorliegende Studie iiber die funktionen-
theoretischen Réume g, und &, stammt aus dem Jahre 1937. Der Herausgeber hat sie
aus mehreren Niederschriften und Notizen zusammengestellt, triagt also fiir den Text im
einzelnen die Verantwortung.

%) Auf folgende Arbeiten wird gelegentlich verwiesen: K. T., G. Kéthe und O. Toeplitz,
Journ. f. reine angew. Math. 171 (1934), S. 193—226, K, G. Kéthe, Math. Annalen 114
(1937), S.91—125.
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in sich bestimmt, sie lassen sich sowohl durch unendliche Matrizen,
wie durch komplexe Integrale der Gestalt

s B 1) =0

darstellen, B (w,z) eine in einem geeigneten Bereich um 0 analytische
Funktion zweier Variablen.

§ 5 beginnt mit dem Studium zweier einfacher Typen von solchen
linearen Transformationen, die ihrer funktionentheoretischen Bedeutung
halber von Interesse sind.

Der Verfasser erhoffte sich von der Fortfiilhrung dieser Untersuchun-
gen einen neuen Zugang zur Wachstumstheorie der ganzen Funktionen,
iiberhaupt eine gegenseitige Befruchtung der Funktionentheorie und
der Theorie der linearen Raume in Fragestellung und Methode.

Eine Verallgemeinerung einiger hier gegebener Sidtze auf allgemeinere
lineare Raume gab kiirzlich der Herausgeber?), Verwandtschaft besteht
ferner mit den Untersuchungen von L. Fantappié iber analytische
Funktionale ).

y (w) =

§ 1. Die Grundlagen

Es soll bedeuten:
7. den Raum der ganzen transzendenten Funktionen z(w)= 2 z,w™?,
n=1

7, den Raum der Potenzreihen x (w), deren Konvergenzradius =r>0,

o, den Raum der Potenzreihen wu (2) = ' u,2"!, deren Konvergenz-
radius >r>0, =

0, den Raum der Potenzreihen u (z), deren Konvergenzradius > 0 ist.
Als Koordinatenrdume mit den Stellen
xl"——{wl,xz...} bZW. 11"-—‘-‘{’11:1,%2,...}

sind diese Raume also charakterisiert

7, durch Hr;ln/mz(), 7, durch i—l_l;l-ln/lwnié';‘ ;

n-» oo nr»xo

3) Die Stufenraume, eine einfache Klasse linearer vollkommener Réaume, Math. Z. 51
(1948), S. 317—345.

1) Vgl. etwa Jahresbericht DMV 48 (1934), S.1—25.
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—_— R n__
o, durch lim V]| xn}<%, gy durch lim V]u,|< oo .
n

Wir setzen |x|=sup Vm und |u|=sup ln/’—m .

Satz 1. n, und g1 (r < oo) sind zuernander dual, also vollkommen.

1. Ist x eine Stelle aus @, (r < c0), so gibt es zu jedem ¢ >0 ein

n
7 _ 1 : " . .
n,,s0 daB V]z,|<—+¢ ist fir n=n,; ist u eine Stelle von g,
r

n
(s=0), so gibt es ein >0 und dazu ein n,, so da ¥ lunl = 8_}{
n
ist fiir n=mn,. Ist n, die groBere der beiden Zahlen =, n,, SO ist fiir

n=mn, —1——!—8 n
|z, | < | T .
! s+
Ist nun " < s, so folgt
n
Iu"x"lé(::j-—;) fiir n=n(e,n) .

Es sei >0 festgelegt. Wahlt man dann &< # und bestimmt danach

n, m,,n,, s0ist X |u,x,| konvergent,d.h.

n=1

’)7’

: 1 ‘g ‘
1. wenn % in z, und wenn s = — 80 ist jede Stelle von g, im dualen

Raum 7;* gelegen, d. h. es ist o1 <z}, o, < 7k ;
r

: 1 s .
2. wenn U in g, und wenn 7 = > 80 ist jede Stelle von =, in oF ge-

legen, d. h. es ist 71 < of, 7=, < of -
8

2. Gibe es ein u in #f (r < oo), das micht in o1 liegt, so gibe es

ein ¢ >0 und eine Folge n,,n,,..., so dafl r
ny 1 ng
Vl'“nklg"“‘“jc“ fir r<oco  bzw. ]/|u,,k[gk fir r= o0
1 y
ist. Sei dann ., = PR aber z,=0 fir n#mn;, soist
nk
A 1 ] " 1
Vi, | < 1 bzw. V|, | < - also  lim V]z,| < -~
n->oo
r —
k
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d.h. x in 7, und trotzdem wire X |u,x,| divergent,da es unendlich
n—1
viele Summanden 1 enthilt, das widerspricht der Annahme, dafl u in

nyf . Also af =1 .
2

3. Géibe es ein x in gj;_ (r < o), das nicht in =, liegt, so gibe es

r ng 1
ein ¢>0 und eine Folge n,,n,,..., so daB V’xni|‘_2-7+3 .
Sei dann y
Up; = —F, U, =0 fir nH#n,;,
| Tn; |
n__ 1 —_—r
SO wiire l/[ u,| < -——— fir jedes n, also lim V'|u,|<r, d.h. u
I 1 n->»oo
e

in g1 gelegen;aber X |u,x,| divergiert. Also ist gi =m,, 0f = M-
r n=1 r
Satz 2,. Eine Menge U wvon Stellen u aus g, ist dann und nur dann
beschrinkt, wenn |u| fir alle u aus U beschrinkt ist.
Eine Menge U von Stellen u aus g, (r>0) ist dann und nur dann
beschrinkt, wenn sie

1. koordinatenweise beschrinkt ist und wenn es

2. ein 6>0 und dazu ein m,(0) gibt,so daf V]iu,| < —r~|1-6
fair alle u aus U und n = n,(8) gult.

1. Ist in g, der Betrag |u| fiir alle u aus U beschrankt, < M, so
ist |u,| < M" fir alle n und daher

\uxlzg zj\unxnlzg zflxn\ﬂln!
n=1 n=1

d. h. fiir jedes x aus m, unter einer vom einzelnen u aus U unabhéin-
gigen Grenze gelegen.

2. Ist in g, die zweite Bedingung erfiillt, so gibt es ein 6 >0 und

dazu ein m, (8), so daB |u,|<-—— — fir n=n,(8) und alle u

(r 4 9)"

aus U gilt. Ist also x irgendeine Stelle aus ¢ = 1, mithin fir ¢>0

Vie,|<r+e¢, wenn n>mn,(s), so folgt \unxnlé(:ig) fiir

n=my, WO N, die groBere der beiden Zahlen n,,n, ist. Wahlt man

r+e ot
r—i—6<1 und n:‘,;zlunxnl kon-

das frei vorgegebene ¢<d, so ist
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vergent und = M (d,&,n,(c)), also unter einer vom einzelnen u aus
U unabhingigen Schranke. Wegen der ersten Bedingung ist aber auch

ﬂg=1
2 |u,z,| unter einer vom einzelnen u unabhéngigen Schranke gele-

gen, also auch |uzx|, d.h. U ist beschrankt.

3. Istin g,(r =0) die Menge U beschrankt, so ist die 1. Bedingung
erfiillt und es handelt sich nur um den Beweis der 2. Bedingung. Ist u
irgendeine Stelle aus g,, so gilt

1
lim l/lunl<"'

fn-> oo
d. h. es gibt ein 4 >0 und ein #n,(d), so daB l/lu,, | < —-—+ + 3 fir
n = ny(6,u). Géibe es nun nicht ein 8 fir alle ueU und dazu ein
no (6), so gibe es eine Folge u®, u®,... in U und dazu eine Folge
n<ny<---, sodaB
l/|u<1> L Vi@ > ”a|uggf)|g LI
r+1 r+3 e
Sei dann
N "
I“(a)l z, =0 fir n#£n,,
80 ist

Vlwnal=—;;}/—@——§l/ﬁ:(r+%) ,
Vu®]

. n
also lim V'|z,|<7r, d.h. ¥ in @1 gelegen. Andererseits ist, wenn

n->» o0
u={lu|,|ul,...} gesetzt wird, u(‘” ¥ = |up) | #ng = my—>o00, also

U@ x> 00, d.h.dienormale Hiille U von U unbeschrankt, nach K. T.
§ 5, Satz 2 also U selbst unbeschrankt gegen die Voraussetzung.

Satz 2,. Eine Menge X in =, (r < oo) 18t dann und nur dann be-
schrinkt, wenn sie

1. koordinatenweise beschrinkt ist und wenn es

2. zu jedem &£>0 ein mn,(c) gibt, so daf I/I x,,]s + & a8t far
n=ny(e) und alle x aus X.
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1. Ist u irgendeine Stelle aus =)} =p1, soist lim Viu,|<r,
n->r> o0

also fiir ein passendes § > 0 gibt es ein 7, (8), so daB3

Viu,| <

_+,5

gilt, wenn 7 =n,(6). Ist nun die 2. Bedingung erfiillt, so gibt es zu
jedem &>0 ein n,(e), so daB

l”/\x,,lg_—:j—{-s fiir n =n, ()

und alle ¥ aus X, also
| Uy, | < 11 (—i—-}-s) .
7o

Wihlt man speziell e<d, so wird Y |u,z,|, wo n, die groBere der

n="nsg
beiden Zahlen n,,7n, bedeutet, konvergieren und unter einer vom ein-
no—1
zelnen x unabhangigen Schranke liegen. Ebenso Y |u, xz,| wegen der
n=1

1. Bedingung. Also ist X beschrinkt.

2. Ist umgekehrt X beschriankt, so ist zuerst die 1. Bedingung erfiillt.
Ware die 2. Bedingung nicht erfiillt, so wire fiir ein ¢ das n,(c), das es
zu jedem ¥ aus x, gibt und fiir das

Vi, g—i--ﬁ; fir n=mn,(e)

gilt, nicht fiir alle ¥ aus X gleichmiBig dasselbe, sondern es gabe eine
Folge x"), n, <m,< ... aus X, so daB

V\x(” —;1;-{—8, l/[xm = —I—s,...

Dann wire |x‘°‘) = ( )na.
Sei dann n
Uny = fx(z)l , u,=0 fir ns#n,,
L
80 wiire o o
l |u"a I é Vna 1 ’
7 Te
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. n B 1
also i V] < 5

7> oo
— €
T

d.h.uin p1 =aF. Andererseits wire |un, | =n,—oc0, also
-— &
T

|lu¥®| oo, d. h.die normale Hiille X unbeschrankt, mithin wegen
K. T. §5, Satz 2, auch X unbeschrinkt gegen die Voraussetzung.

Satz 3. In =x, (r < oo) g¢ibt es zu jeder beschrinkten Menge X eine
majorisierende Stelle ) mit lauter reellen, nichtnegativen Koordinaten, so
dap fir jedes x aus X qilt |z, | <y, . Dasselbe gilt fiir o, (r=0) .

1. Zuerst ist X als beschrinkte Menge koordinatenweise beschrinkt.
Sei m;, =sup |z, | fir alle x aus X GemafB Satz 2, ist fiir alle x

aus X und k= n, (s) glelchmaﬁlg l/lxk\ < — ! -+ ¢, daher gilt auch

fiir das supremum l/mk + e . Diese Tatsache driickt man ein-

fach aus durch lim mG S — und sie besagt, dafl die Stelle m =

k> o0
{m,, my,...} eine Stelle aus =z, ist. Sie hat offenbar die gewiinschte

Majoranteneigenschaft.

2. Fiir g, schlieBt man analog aus Satz 2,. Hier erhdlt man ein 9,

Q-

k
fir das Vm, < T—}{;—g wird bei k = n,(6) und dies besagt, dal} die

Stelle m in g, liegt.

§ 2. Grenzstellen und Héufungsstellen in 7z, und p,

Aus § 1, Satz 3, konnen wir jetzt leicht folgern, dafl sowohl in den
n, wie auch in den g, (schwache) Konvergenz und starke Konvergenz
identisch sind (zu ihrer Definition vergleiche K. T. § 3 und § 5).

Satz 1. In @, (r < oo) st jede konvergente Folge stark konvergent.

Da die =z, nach § 1, Satz 1, vollkommen, nach K. T. § 3 also voll-
standig sind, geniigt es, die Behauptung fiir Folgen x*’ zu beweisen,
die gegen p konvergieren.

Die Menge X aller x») ist beschrankt, 1y sei eine nach § 1, Satz 3, exi-
stierende majorisierende Stelle. Ist nun eine beliebige beschrankte Menge

U aus g1 gegeben, w eine majorisierende Stelle von U, soist |wy|=
T

2 v, Y, <oo. EslaBt sich also zu jedem vorgegebenen ¢ >0 ein n,(¢)
n=1
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so bestimmen, daBl 2 v, yn<% ist. Wegen der koordinatenweisen

No
Konvergenz von x? gegen p laB3t sich ferner ein p,(¢) so bestimmen,
no—1 g

daB auch XY v,|2®|< 3 fiir jedes p =p,(¢) . Daraus ergibt sich
n=1
fir p = po
o no—1 o) g e
sup [ ux®? | < Yo, el | = X v a0+ X vy <5 +5=c¢,
uelU n=1 n=1 n=ng 2 2

also die starke Konvergenz von x'” gegen p.

Vertauschung von 7, und g1 in dieser Uberlegung fiihrt zu
r

Satz 2. In o, (r = 0) st jede konvergente Folge stark konvergent.
Aus K 1, § 1, Satz 3, ergibt sich sofort die

Folgerung. In allen =, und o, ¢ilt der Grenmzstellensatz, d. h. jede be-
schrinkte unendliche Teilmenge enthdlt eine konvergente Teilfolge.

Nach K. T. § 5, Satz 6, ist ferner eine Folge aus =z, oder g, dann
und nur dann konvergent, wenn sie beschriankt ist und koordinatenweise
konvergiert.

Satz 3. Die Folge x™ aus n, konvergiert dann und nur dann gegen
x, wenn lim|x —x™| =0 st

n->» oo

1. Ist x™ konvergent — eskann lim ¥/ = p angenommen werden —

n-> oo

so ist es zunichst eine beschrankte Folge. Nach § 1, Satz 2, kann man

n
daher, falls ¢>0 vorgegeben ist, n,(¢) so bestimmen, daf} Vie® | <e
ist fiir alle p und 7 = n,(¢) . Sodann folgt aus der Konvergenz von
x'? die koordinatenweise Konvergenz; man kann also p, so wahlen, daf3

1, 2, ne—t
Vie®|, Via®|,..., l/lx(n”o’__l\_é_e fir p=p,(e) .
n
Alsdann ist sup V| by | =1xP | e fir p=p(e) .
n
2. Ist lim [x®| =0, so ist ¥ koordinatenweise beschrinkt.
P> n

Ferner gibt es zu jedem &>0 ein p,, so daB V0aW| <& fiir alle

nund p=p,. Aber fir p=1,...,p,— 1 ist lim V|2® | =0 fiir

n-»oo
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jedes einzelne p, da x® in =z, liegt; also gibt es ein n,(¢), so daB

n
Vi|a®| <& fir n=n,(c) undalle p. Also ist ¥® nach § 1, Satz 2,,
beschrankt. Da x'® iiberdies koordinatenweise konvergiert, ist sie nach
der Bemerkung vor Satz 3 konvergent.

In allen anderen z, und p, ist die Bedingung von Satz 3 offenbar
hinreichend, aber nicht notwendig.

Zur (schwachen) Konvergenz im vollkommenen Raum A gehort die
Topologie, die durch die Umgebungen U,q) . ,m, (¥'?) aller ¥ mit

,,,,,

lu(l) (x __x(O))|<8’.. . lu(n) (x.__x(ﬁ))|<8 , u(i)el*

gegeben wird. Entsprechend wird die starke Topologie durch die Umge-

bungen Uy, (x') aller x mit sup|u(x —x'?)|<e, V eine beschriankte
uev

Menge aus A* gegeben (vgl. K. T. Anm. 11 und 15 und K. 1, § 5).

Zu diesen beiden Topologien gehéren Haufungsstellenbegriffe, die wir
als (schwache) Haufungsstelle und starke Haufungsstelle auseinander-
halten.

Satz 4. In allen n, und o, gibt es Mengen, die o zur Hdufungs-
stelle haben, aber nicht zur Grenzstelle und nicht zur starken Hdaufungsstelle.

1. X sei die Menge aller Stellen aus z, mit [uz]= 2 |%,z,| =1,
n=1

wo u irgendeine gegebene Stelle aus z* ist. Dann schlieBt man wie in

K1, §5, daB o (schwache) Haufungsstelle von X ist. Da die normale

Hiille der Stelle u (vgl. K. T. § 5, Satz 2) in g1 eine beschrankte Menge

ist, bilden alle x aus &, mit [ux]<<e eine starke Umgebung von p. Sie
enthilt fir ¢e<1 keine Stelle aus X, also ist p nicht starke Hiufungs-
stelle von X. o ist aber auch nicht Grenzstelle, denn nach Satz 1 wire
sie dann starke Grenzstelle.

Dieselbe Uberlegung gilt auch fiir die Menge U aller u aus p, mit

[ux] =1, =z irgendeine Stelle aus o = =1 .
r

Satz by, In =z, (r < oo) st jede starke Hiufungsstelle Grenzstelle, also
auch jede Grenzstelle von Grenzstellen.

Sei X eine Menge aus =,, die o zur starken Grenzstelle hat, und sei
U (6) die Menge aller Stellen aus =z =p1 mit

r

0>0 ,
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so ist U (6) gemiB § 1, Satz 2,, beschrinkt. Fiir jedes x aus X, fiir

das sup |ux|<1 ist, gilt lx|§—1—+6. Denn wire \£|>—1—+6,
ueU®) r r

[+ 4
so gibe es ein «, so dall V| Z, | >—i—+ 0 wire; wire dann u diejenige
Stelle aus U (6), bei der

Via] =4
FR
und die arcus der %, denen der z, entgegengesetzt sind, so wire
1 a
(++9)
]

1 [ 4
(++2)
im Widerspruch zu sup |uz|<1 .
ueU(d) 1\ .
Sei jetzt U, die Menge aller u aus p1, die aus U (—77) und den

UX = Uy Ty >

endlich vielen Einheitstellen e,,...,e¢, besteht. Dann kann man, da U,

beschrankt ist, nach Voraussetzung in X ein '™ finden, fiir das sup |ux™ |
| : . e
< "y ist. Es ist dann a fortiori sup |ux™|<1 also, wie bewiesen,

wer(2)

1 1 . 1 . .
|#™ | < — 4+ —, und auBerdem ist |2 |<— fir ¢=1,...,n,
r ' w n

die Folge '™ also koordinatenweise konvergent. Nach § 1, Satz 2x,
ist sie auch beschrinkt, also konvergent gegen o, also ist o Grenzstelle
von X.

Satz By. In o, (r = 0) gibt es Grenzstellen von Grenzstellen, die nicht
selbst Qremzstellen sind, und daher Hdiufungsstellen, die zugleich starke
Hiufungsstellen sind, aber nicht Grenzstellen.

Sei namlich 1

u®.9 = —(m)”; ¢y +

1

( N 1\»+¢ pta
7“ St
7)

und sei U die Menge aller dieser u®»?, so gilt:

: 1 4
1 tim (555 e =0 ,

denn fiir
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18t

V@] =0

(r)
V!up‘__ _{__6)

sonst, also ist die Folge nach § 1, Satz 2, beschrinkt und koordinaten-
weise gegen p konvergent.

2. Ist eine Teilfolge u®® y®2%  vyon U konvergent, so miissen
die p; beschrinkt sein. Ware namlich p,— oo, so wire bei der Stelle

(i, q7)
uee pitai 1 1

(vi, ) —
V\ “p’mi 1 e r

T N
+Pz

Es gidbe also kein solches d, wie es § 1, Satz 2, fordert.

3. Jede konvergente Teilfolge von U zerfillt also in hochstens end-
lich viele Unterfolgen mit festem p. Fiir jede derselben gilt aber gemif3
Satz 2, lim u®? =yu@,

)

4. Daher kann o nicht Grenzstelle von U sein, sondern nur die Stellen

1 . . .
u®” =————¢_ . Diese ihrerseits haben nach 1. p zur Grenzstelle.

(r + 9)¥

o ist also Grenzstelle von Grenzstellen, aber nicht selbst Grenzstelle.

§ 3. Der Vitalische Satz

Das skalare Produkt ux gestattet eine einfache funktionentheore-
tische Deutung.

Satz 1. Ist x eine Stelle aus =,, U aus =} =p1 (r < oo0), so ist

L fron) s

r—=t

ux =

(¢t r= o0, so werde r —e gleich R>0 gesetzt), wo
x(t)= X x, "1, ut)= X u,t"1.
n=1 n=1

Ebenso ist fur u aus o,, X aus o =m1 (r =0)
r

ux—_:zglm. ﬁu(t) (t)—c-i— (1)

r+€
Die Integrale sind iber die Kreise vom Radius r —e bzw. r4+¢ um 0
zu erstrecken, die so zu bestimmen sind, daf3 auf ihnen die Reihen fir

U (——i—) bzw. u (t) moch absolut konvergieren.
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Ist u aus g1, so hat u(f) einen Konvergenzradius
also ist r

1
m, 6>0,

oo

auflerhalb des Kreises vom Radius » — ¢ konvergent. z (f) = ¥ z,, ™
m=1

konvergiert im Kreis vom Radius 7. Ist ¢ <4, so erhidlt man also auf

1

dem Kreis vom Radius r — ¢ die Laurententwicklung von x(f)u (%—) ¥

durch gliedweises Ausmultiplizieren, der Koeffizient von 3 ist dann
gerade 1x. Ebenso beweist man (1’). Man kann es auch durch Uber-

1 1
gang zur neuen Variablen - aus (1) fiir - statt r erhalten.

Damit ergibt sich leicht auch fiir die in den §§ 1 und 2 betrachteten
Begriffe der Beschranktheit und Konvergenz, die aus der allgemeinen
Theorie der linearen Ridume stammen, ihre funktionentheoretische
Deutung:

Satz 2. Ist x'® eine konvergente Folge aus =, (r < oo), so st die
Funktionenfolge «® (w) gleichmifig konvergent in jedem Kreis |w| =
s<r wund umgekehrt.

1. Ist limx® =x, soist limux®” =ux fir jedes u aus g1,

N r
speziell fir u=mw,={1,w,, wy,...} mit |w,|<r . Daher ist

lim z® (w) =  (w) fiir jedes |w|<r und diese Konvergenz ist gleich-
>0

mifig fir |w|<s<r, da alle die zugehorigen w eine beschrinkte
Menge in p1 bilden, also nach § 2, Satz 1 sup |z'® (w) —x (w) | den

r jw|<8
Limes 0 hat.

2. TIst umgekehrt z'® (w) gleichmaflig gegen x(w) konvergent fiir
jedes s<r, |w| <s, und ist u aus 91 , 80 wird nach (1)

e -9 =5 @ ()‘m

< KMax | 2P (t) —z(t)] .
Wihlt man s=r —¢, so erhidlt man wegen der gleichméafligen Kon-
vergenz von z‘P (f) gegen x (f) auf dem Kreise vom Radius r — ¢ fiir
P = Po(e)

luE? —zx)|<e ,

also lim ux® =ux fir alle u aus p1 .

P> r
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Satz 2,. Ist u® eine konvergente Folge in ¢, (r =0), so gibt es
einen Kreis |z| <s, s>r, indem die Funktionenfolge u'® (z) gleich-
mdfig konvergiert und umgekehrt.

1. Ist u® konvergent, so konvergiert es koordinatenweise gegen
ein U aus g, und es gibt nach § 1, Satz 2,, ein 6 >0 und dazu ein
7y (6), so dafl

" 1
()
Vied| =
und
Viwn] < —
4] <
fir n = n,(d) und alle p ist. Also wird fir |z| <s, r<s<r+ 6
o u® gn-1 < bl ( K] )<£ , o unzn-—l <_§_ ,
|”=E+1 " | n=§+1 r+49 3 ln=§+1 | 3

wenn nur m geniigend grof} ist.
Aus der koordinatenweisen Konvergenz von u'®? gegen u folgt schlies3-
m
lich | X (u® —u,)zm1| <<
n-1 3
samt also |[u® (2) —u(z)|<e firalle |z|<Zs.

fir geniigend groles p =p,(¢), insge-

2. Die Umkehrung beweist man wie oben mit Hilfe von (1’) statt (1).

Satz 3,. Ist X eine beschrinkte Menge in m, (r < oo), so ist die
Menge der zu den x aus X gehorigen Funktionen x(w) gleichmdifig be-
schrinkt in jedem Kreise |w| < s<r, und umgekehrt.

Satz 3,. Ist U eine beschrankte Menge in ¢, (r=0), so ist die Menge
der zu den x aus X gehorigen Funktionen wu(z) gleichmdfig beschrinkt
wn einem Kreise |z| <s, s>r, und umgekehrt.

Die Beweise verlaufen analog.

Satz 4. (Der Vitalische Satz.) A sei ein vollkommener Raum, in dem
der Grenzstellensatz gilt, u™ sei eine Folge von Stellen aus 2* wvon der
Art,dafaus UM x=0 (n=1,2,...) folgt x=0. Ist nun x? eine
beschrimkte Folge von Stellen aus A, fiir die lim u™ x® fir alle n existiert,
8o st die Folge P konvergent. P>

Die Behauptung besagt, da8 fiir jedes u aus A* der lim ux® exi-

p->o0

stiert. Gesetzt fiir irgendein u aus A* wire dies nicht der Fall. Dann
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hitten die Werte ux®’, die beschrinkt sind, mindestens zwei Haufungs-

stellen a,b. Aus einer Teilfolge x'? der x, fir die lim ux‘? =a
g> o
ist, kann man, da sie beschrankt ist, eine konvergente Teilfolge heraus-

greifen, gemdf dem Grenzstellensatz; sei 1 der Limes dieser konvergen-
ten Teilfolge; ebenso kann man eine Teilfolge ¥ der x® finden, fiir
die lim ux” =5 ist; sei 3 ihr Limes. Dann wire u(y —3)=a —b

7-»00
#0, aber u”(y—3)=0 (n=1,2,...), also nach Voraussetzung
y =3, was ein Widerspruch ist.

Der Satz erscheint hier als Verallgemeinerung des Satzes, da} in einem
vollkommenen Raum, in dem der Grenzstellensatz gilt, eine beschrinkte
und koordinatenweise konvergente Folge konvergiert: an die Stelle der
¢, sind hier die u'™ getreten.

Wendet man ihn andererseits auf =, an, so erhilt man vermoge der
Satze 2, und 3, den ,,Vitalischen Satz¢ der Funktionentheorie in dem
Wortlaut:

Ist die Funktionenfolge f,(2) in |z|<R gleichmdifig beschrinkt und
konvergiert sie an unendlich vielen Stellen z,, deren Limes z, im Innern
von |z| < R liegt, so ist die Folge in jedem Kreis |z| <r<<R gleich-
mdpig konvergent.

§ 4. Lineare Transformationen

Wird jedem x aus 7, (r < oo) eine komplexe Zahl wu (x) zugeordnet,
so daf} fiir beliebige o, f stets

u(xx+fy)=ou(x)+ pu(y)
gilt, und ist die so erklirte Linearfunktion iiberdies stetig, d. h.
lim w (™) = % (lim ™) |

so ist damit ein lineares Funktional auf =, erklirt. Nach K.T., § 3,
Satz 6 wird jedes lineare Funktional durch eine Stelle u aus # =1

erzeugt, u(x)=ux. Nach §3, Satz 1 kann w(x) auch als Integral
in der Form (1) geschrieben werden. Entsprechendes gilt fiir stetige
Linearfunktionen auf den p, (r = 0).

Nach K. T., § 8, wird entsprechend jede stetige lineare Abbildung
vp=A(u) von g, in g, durch eine Matrix A vermittelt, 1= Wu.
Thre Transponierte A’ bildet 71 in #1 ab. A bildet nach K. T. § 8,

r! r
Satz 3 jede beschrinkte Menge aus g, in eine beschrankte Menge aus
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o, ab. Ist also U(s) die Menge aller u mit |u,| < 8§>r, S0

gibt es nach § 1, Satz 2, eine Zahl N (s)>7', so daB von einem ge-

wissen p, ab

bt 1 1
N7 <
Sl = g

[

gilt, also ist die Potenzreihe

Ay, u)= 2 Xa,y*ur?

p=1 g=1

absolut konvergent in jedem Bereich

B@:luls+<t, |yl<N@, N>

Ist umgekehrt A eine Matrix, zu der eine solche Potenzreihe gehort,
und ist u in p,,
n->oo

also 2 |a,,u,| fiur jedes p konvergent, das
=1
Produkt »=u kann also gebildet werden. Nach Voraussetzung ist

ferner

soist |u,|<C

ql’

o0 o0 o0
’U(z) = 2 vpzp_l = X ( 2 a’pauq) zp-1
p=1 p=1 ¢=1

fiir alle |2]| < N (s) konvergent, v also eine Stelle aus g,.. U stellt also
nach K. T. § 8, Satz 2 eine stetige lineare Abbildung von g, in g,, dar.
Durch Umordnen ergibt sich

[= -] [= =]

v (z) = 2 ( Za’pqu_l)uqz 2?'xquq .
g=1

Die z, sind die Koeffizienten der Funktion

z(w)= Ya,wit= 3 (3 a, 2P wi )= A4 (z,w)
g=1 ¢=1 p=1

aus 71, wir erhalten also durch Anwendung von § 3, Satz 1

27” «.¢‘A( 1)u(t

r4+-€

v(2) =

wobei das ¢ noch von u () und z abhingig ist.
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Satz 1,. Jede lineare stetige Abbildung v= A1) wvon o, (r 20)
m o, (r'=0) wird durch eine analytische Funktion zweier Variablen
A(y,u) erzeugt, die eine Potenzreihenentwicklung

Aly,wy= 2 Xa, yrtut?
p=1 q¢=1
besitzt, die fiir jedes s >r in einem Bereich B (s):|u|< L , Y| <N(s),
N (s)>r", absolut konvergiert. Es ist mit N = (a,,) °

v=Au oder v(z) = ——-1—.— QS‘ A (z, %) u (t) _‘ii . (20
T+t
Umgekehrt wird durch eine diese Bedingung erfiillende Matrix bzw. Funk-
tion stets eine stetige lineare Abbildung von o, in o, erzeugt.

Ist y=Bzx eine lineare Abbildung von =, in =, , sofihrt B'g1
in p1 iber und umgekehrt. Also gilt fiir die entsprechende analytische

r
Funktion o oo
Bw,z)= 2 X b, vPlat?,

p=1 ¢=1

daB sie fiir jedes s< 7’ in einem Bereich

CE) :|v|=s, |z|l<s7—, N@E<r,

1
N(s)
absolut konvergiert. § 3, Satz 1 ergibt den noch fehlenden Teil von

Satz 1,. Jede lineare stetige Abbildung ©vy= B (x) wvomn =, (r =< o)
m m, (r < oo) wird durch eine analytische Funktion zweier Variablen
B (v, x) erzeugt, die eine Potenzrethenentwicklung

oo [> ]
Bw,2)= 2% Xb, v tat!
p=1 ¢g=1

besitzt, die fiir jedes s<<r' imeinem Bereich € (s):|v| s, |x|< w57+
N (s) <r, absolut konvergiert. Es ist

p=Bx oder y (w) = l. ﬁB(w,——i—)x(t)f—?-. (24)

2w

1
N’

r—=¢e

Wie oben gilt die Umkehrung.

Folgerung. Mit W= (a,,) st stets auch A = (|ayq|) eine stetige
lineare Abbildung von ¢, in o, bzw. m, in =, .



Die Abbildungen von =z, bzw.in g, lassen sich auch matrizenmiBig
einfach charakterisieren.

Satz 2. Jede lineare stetige Abbildung von o, (r =0) in o, wird durch
etne Matriz W erzeugt, fir die

My () =sup V|@p |8+ |G|+ @y |+ - - (3)

n->»oo

fiir jedes 0<s <% endlich ist und umgekehrt.

Jede lineare stetige Abbildung von =, itn xn, (r < oo) wird durch eine
Matrix B erzeugt, fir die

My (s)=sup V|by,|s+ by, |88+ | by, |82+ - (3")

n->»oco

fiir jedes 0 <s<r endlich ist und umgekehrt.

Es geniigt, die erste Halfte zu beweisen, die zweite ergibt sich dar-
aus durch Ubergang zur transponierten Matrix.

1. Die Notwendigkeit der Bedingung (3) folgt daraus, daB3 jede be-
schrinkte Menge in p,, speziell also auch die Menge der u mit

u, ] =82, 8< —» ineine beschriankte Menge in g, iibergeht.

. . . . 1
2. Ist u eine Stelle aus p,, so gibt esein C >0 und ein s <—r— ,

- <]
sodaB |u,|<Cs” ist. Da X |a,,|s? < oo ist, existiert Au. Ks
ist ferner p=1

l@u |+ ||+« - =C[la, 184 |a,lsd4-- 1= C[My(9)]",

also liegt Au in g,. Zieht man K. T. § 8, Satz 2 heran, so folgt, daBl
(3) hinreichend ist.

§ 5. Die Mengen W,

Hat a(w)= X a,wP? den Konvergenzradius r, so entsteht durch
p=1

Multiplikation jeder Funktion z(w) aus x, mit a(w) wieder eine

Funktion a(w)z (w) aus =,. Diese lineare Transformation ven =, in

sich wird durch die Matrix
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a, 0 O

a a;, 0 . bzw. die Funktion 4 (v,z) =a (v) .
o, a; a }—ov2x

(4)
erzeugt.
Hat a(w) in |w|<r die «,-fache Nullstelle w,, die x,-fache Null-
stelle w, usf., so bilden wir die Stellen:

A =

w, = {1, w,;,w},uwl,...}
w, ={0,1,2w,;,3u?,...}

w® = {0,...0, p! (g)’p! (P-;l) w;, gl (27‘;2) wi,...}, p=o;—1.

Die Menge aller dieser Stellen aus g1 werde mit W, bezeichnet. Jede

;
Stelle aus W, ist Losung der Gleichung A u=o .
Wir bestimmen in 7z, den Orthogonalraum zu W,. Ist eine Stelle x

aus z, zu allen Stellen w,, w;,... orthogonal, so ist
T+ row, + w4 =0, 2+ 2xw,+3xui .- =0,...,
1=1,2...,

d.h. z(w)= X z,wP! ist eine Funktion, die alle Nullstellen von a (w)
p=1

in mindestens derselben Vielfachheit enthilt, also durch a(w) teilbar,
also eine Stelle aus u = WA (n,). Der Orthogonalraum zu W, ist daher
p=UA(m,). Andererseits ist der Losungsraum 7 von U u=p gleich
dem Orthogonalraum p (vgl. etwa die Einleitung von K), also gleich

der orthogonalabgeschlossenen Hiille Wa von W,. Nach dem Orthogo-
nalraumsatz (vgl. K 1, § 6, Satz 2) ist also % gleich der vollabgeschlos-
senen linearen Hiille von W,, d.h. 7 besteht aus den endlichen linearen
Verbindungen der w;, w;,... und deren Haufungsstellen.

Satz 1. Ist a(w) in =, die zugehirige Matriz, so ist der Bildraum
W (n,) der Raum derjemigen Stellen aus n,, deren zugehirige Funktionen
durch a(w) teilbar sind. Der Raum 7 der Lisungen von W u=o in
01 st die vollabgeschlossene lineare Hille der Menge W, .

Bisher sind wir von @ (z) ausgegangen und haben seine Nullstellen
w; und die zugehorige Menge W, behandelt. Wir wollen jetzt umgekehrt
von einer solchen Menge W ausgehen.
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Sei R, (r < oo) die Menge simtlicher Stellen w = {1, w, w?,...},
w ={0,1,2w,...},..., die sich ergeben, wenn w alle komplexen
Zahlen |w|<r durchliuft (auch w=0). Mit R bezeichnen wir die
aus den finiten linearen Verbindungen der Stellen aus R, bestehende
lineare Hiille von R,.

Wir iiberlegen, welche Funktionen aus p1 zu den Stellen der Menge

=
R® gehoren. Zu w gehort die Funktion 5 ! ~» zu W' ihre Ablei-

1 : . .
tung T —wat usf., zu WV die Funktion T=wa® bis auf kon-

stante Faktoren. Zu jeder linearen Verbindung davon gehort eine ratio-
nale Funktion, die fir |z| < % regulir ist. Umgekehrt lehrt der Satz
von der Partialbruchzerlegung, dal jede rationale Funktion, die fiir
|z| < ;—regulér ist, auf diese Weise darstellbar ist, also:

1

Zu RV gehért die Menge aller rationalen Funktionen, die fir |z| < —
reguldr sind.

Die Nullstellen w, einer Funktion @ (z) aus z, haufen sich nicht in
|w|<r. Sei allgemein w,,w,,... eine Folge komplexer Zahlen, die
sich nicht in |w|<r héaufen, und sei zu jeder eine Vielfachheit «;
gegeben, so sei W die Menge der Stellen w,, w;,...w{™, i=1,2,...
W jhre lineare Hiille. Dann gilt

Satz 2. WW st vollabgeschlossen.
Folgerung. In Verschirfung von Satz 1 gilt: 7 = W .

Sei a(z) =2 a,z*! gemill Weierstrall eine Funktion aus =,, die
p
die w; in der vorgegebenen Vielfachheit «; zu Nullstellen hat und sonst

keine Nullstellen. Wir haben dann zu zeigen, daB der Raum 7 der Lo-
sungen von A u=op gleich W ist. Ist u eine Losung, so ist

Uy Ay + Uy Ay + Ug Ay - - - =0
Ug Oy Uz Qg+ - - =0
QL3a1+" '-~O
Dann bilde man
1 1 -
‘P(z)=u1+u2“z‘+‘ua’z?+ (3)
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1
<T_‘13 , also |z|>r—e¢. Das

Produkt a (2)¢ (2) kann daher fir r —e<|z| <r als Doppelreihe,
die absolut konvergiert, umgeordnet werden, es wird

Diese Reihe konvergiert fiir ‘;1

a@) e =z2(@u +auy~+---)+22(azu, +agu,+---)+---,

die iibrigen Glieder fallen geméafl Voraussetzung weg. Die Reihe rechts,
eine Potenzreihe, konvergiert fiir r —e<|z| <r also fir |z|Zr,
b (2)
a (2)
eine in |z| <r bis auf die Nullstellen von a(2) regulire Funktion.
Auflerdem ist sie, wie aus (5) hervorgeht, fir |z|>7 —¢ in co regu-

stellt also eine Funktion b(z) aus =, dar. Daher ist ¢ (2) =

lar. Sie ist daher eine rationale Funktion. Also ist auch ¢ (—i—) = u, +
: 1 . .
Uy 2 + U322+ - - - rational und fiur |z| = - reguldr, also ist u eine

lineare Verbindung solcher w,w’,..., diezuden Nullstellen von ¢ (i) ,
die Pole von a (z) sind, gehéren, d. h. u liegt in W 3) g
Die zur Abbildung (4) transponierte Abbildung W’ fiihrt die Stelle w

aus g1 in die Stelle @ (w)w iiber. Bezeichnen wir die Menge aller Viel-

fachen der Stellen aus R, mit ¢ R,, so ist also A’ eine Abbildung von
¢ R, in sich. Wir wollen alle diese Abbildungen B bestimmen.

Da wir sie nur unter den Abbildungen von g1 in sich suchen, mul}

zuerst jede Zeile von B in =, liegen. Sei 2 b, w? ! =0b,(w), so sind
g=1

also alle b,(w) in m,. Soll B jede Stelle w aus R, in eine Stelle ¢ =

{c,cv,ce?,...} mit |v|<r tberfithren, so mul b,(w) =cv?P! sein:
b, (w) =c, by(w) =cuv, by (w) =c??,...
und daher identisch in w:

b (w) = by () by (), b3 (w) = b2 (w) by(w) , b (1) = b (w) by (w) ...

5) Da nach § 4, Satz 5 der in Anm. 3 zitierten Arbeit bereits jeder nur in bezug auf die
Limesbildung abgeschlossene lineare Teilraum von g1 orthogonal abgeschlossen ist,

T
geniigt es zum Beweis von Satz 2, die Abgeschlossenheit von W(I) zu zeigen, was wesent-
lich einfacher und ohne Heranziehung funktionentheoretischer Hilfsmittel moglich ist
(vgl. § 7 der angegebenen Arbeit). Die Folgerung von Satz 2 haben bereits F. Schiirer
(Berichte d. Siachs. Gesellsch. d. Wiss. Leipzig 70 (1918), S.185—240) und O. Perron
(Math. Ann. 84 (1921), 8. 1—15, Satz 1) bewiesen durch Zurickfithrung auf einen Satz
uber lineare Differenzengleichungen mit konstanten Koeffizienten.
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Ist w; irgendeine a-fache Nullstelle von b, (w), so muB sie also auch
Nullstelle von b, (w) sein, und wenn sie eine b-fache Nullstelle von b, (w)
ist, mull

a<2b, 2a<3b, 3axi4b,...
sein, d. h. der Reihe nach
3 4
a<2b, a§~2—b, a___<_,§~b,...

Da a,b ganze Zahlen sind, folgt ¢ <b. b,(w) muB also in =, ein
Teiler von b, (w) sein, b, (w)=b,(w)c(w), wo auch ¢ (w) eine Funk-
tion aus =, ist, und es ist b, (w) =b, (w)[c (w)]P~t . Setzen wir also
bequemer b, (w)=a (w), so haben wir

bw)=aw), bw =awew), b(w)=a@w)lcw}],...

Dabei muBl |c(w)|<r sein fir |w|<r.
Die zugehorige Funktion ist B(z, w) =

2 2o, P wt = a w) + zaw)e(w) +2Faw)[c @)+ - -
Die zugehorige Matrix 8 hat offenbar die Form

1 0 0 . a, a, a,
C; C C3 . 0 a a

% — 1 2 3 1 2 — @/ QI/ . 6
¢ @ @ . 0 0 a (6)

A’ ist Transponierte zu (4), € ist eine Matrix, in deren Spalten die
Koeffizienten der Potenzen von c(w) stehen. y = Cx bedeutet in =,
den Ubergang von z(w) zur Funktion z(c(w)), die wegen |c(w)|<r
fir |w|<r in =z, liegt. AEC bedeutet also die lineare Abbildung
x (w)—>a (w)x (c (w)) von m, in sich, also fithrt auch jede Matrix B =
€’ A g1 in sich iiber, speziell ¢R, in sich.

r

Satz 3. Die Transformationen von g1 in sich, die ¢ R, in sich tiber-

fihren, haben die Gestalt (6), wo a(w) = Y a,w?P! und c(w)= X c,wr?
in m, liegen, auferdem |c(w)|<<r fir \w|<r ist.

(Eingegangen den 3. Oktober 1948)
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