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Die linearen vollkommenen Râume
der Funktionentheorie

Von Otto Tobplitz f, Jérusalem*)

Einleitung
oo

FaBt man die Koeffizienten einer ganzen Funktion x (w) £ xp
P=i

zu einem Vektor x {xx, x2,...} zusammen, so bildet die Menge die-
ser Vektoren einen vollkommenen Raum tz^ im Sinne von K.T.2), der
dazu duale Raum ist q0 der Raum der Potenzreihen mit einem von
Null verschiedenen Konvergenzkreis. Ebenso ist der Raum nr der
Potenzreihen mit einem Konvergenzradius ^r dual zum Raum qx

1 r
der Potenzreihen vom Radius > —

r
Die Untersuchung beginnt mit der Bestimmung der beschrànkten

Mengen in diesen Ràumen (§ 1) und der Konvergenz (§ 2). In allen
diesen Ràumen fallen die schwache und die starke Konvergenz zusammen.

Beschrànktheit und Konvergenz in nr sind Begriffe aus der all-
gemeinen Théorie der vollkommenen Ràume, sie erweisen sich jedoch
in § 3 identiseh mit der gleiehmàBigen Beschrànktheit bzw. der gleich-
mâBigen Konvergenz im Inneren von \w\<r, den aus der Funktionentheorie

bekannten Begriffen. Der Vitalische Satz der Funktionentheorie
erscheint so als Spezialfall eines Satzes, der in allen vollkommenen
Ràumen gilt, in denen jede beschrànkte Menge eine schwach konver-
gente TeUfolge enthàlt.

In § 4 werden die linearen Transformationen der Ràume nr und qr

*) Aus dem NachlaÛ des am 15. Febraar 1940 in Jérusalem verstorbenen Verfassers,
herausgegeben von Gottfried Kothe in Mainz. Die vorliegende Studie uber die funktionen-
theoretisohen Raume gr und nr stammt aus dem Jahre 1937. Der Herausgeber hat sie
aus mehreren Niederschriffcen und Notizen zusammengestellt, tragt also fur den Text im
einzelnen die Verantwortung.

2) Auf folgende Arbeiten wird gelegentlich verwiesen: K. T., G. Kàthe und 0. Toeplitz,
Journ. f. reine angew. Math. 171 (1934), S. 193—-226, K, 0. Kàthe, Math. Annalen 114
(1937), S. 91—125.
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in sich bestimmt, sie lassen sich sowohl durch unendliche Matrizen,
wie durch komplexe Intégrale der Gestalt

dt
t

darstellen, B (w, z) eine in einem geeigneten Bereich um 0 analytische
Funktion zweier Variablen.

§ 5 beginnt mit dem Studium zweier einfacher Typen von solchen
linearen Transformationen, die ihrer funktionentheoretischen Bedeutung
halber von Interesse sind.

Der Verfasser erhofïte sich von der Portfiihrung dieser Untersuchun-
gen einen neuen Zugang zur Wachstumstheorie der ganzen Funktionen,
tiberhaupt eine gegenseitige Befruchtung der Funktionentheorie und
der Théorie der linearen Râume in Fragestellung und Méthode.

Eine Verallgemeinerung einiger hier gegebener Sâtze auf allgemeinere
lineare Râume gab kûrzlich der Herausgeber3), Verwandtschaft besteht
ferner mit den Untersuchungen von L. Fantappiè iiber analytische
Funktionale4).

§ 1. Die Grrundlagen

Es soll bedeuten:

n^ den Raum der ganzen transzendenten Funktionen x (w) £ xn w11"1,

nr den Raum der Potenzreihen x (w), deren Konvergenzradius ^ r > 0,
oo

Qr den Raum der Potenzreihen u(z) £ unzn~x, deren Konvergenz¬
radius > r > 0, n==1

g0 den Raum der Potenzreihen u (z), deren Konvergenzradius > 0 ist.

Als Koordinatenràume mit den Stellen

sind dièse Ràume also charakterisiert

n n i
nw durch lim l/| xn | 0 nr durch lim V\ xn | ^ —

s) Die Stufenràume, eine einfache Klasse linearer vollkommener Râume, Math. Z. 51

(1948), S. 317—345.

4) Vgl. etwa Jahresbericht DMV 43 (1934), S. 1—25.
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çr dureh lim qq

71

durch lim j/| un | < oo

Wir setzen sup und
n

sup y | wn |

Satz 1. nT und qi^ (r ^ oo) sind zueinander dual, also vollkommen.
r

1. Ist x eine Stelle aus nr (r ^ oo), so gibt es zu jedem e > 0 ein
n i

ne, so daB \^\xn ^ h e ist fur n ^ ne ; ist u eine Stelle von qs

(5^0), so gibt es ein r\ > 0 und dazu ein nn so daB l/| i*n | ^
ist fur n^nn. Ist n0 die grôBere der beiden Zahlen ne, nn, so ist fur

7+-V

Ist nun — ^ «s so folgt

Es sei ?2 > 0 festgelegt. Wàhlt man dann e < rj und bestimmt danach
00

ne ntj>no> so îst Z\unxn konvergent, d. h.
n=l

1. wenn x in jrr und wenn s ^ —, so ist jede Stelle von g8 im dualen

Raum 7r* gelegen, d. h. es ist qi_ ^ n*, q0 ^ ;r* ;

r

2. wenn u in gs und wenn r ^> — so ist jede Stelle von jrr in £* ge-

legen, d. h. es ist ni ^ gf, n^ ^ ^*

2. Gâbe es ein u in tt* (r 5£ oo), das nicht in q± liegt, so gâbe es

ein e > 0 und eine Folge r^ t&2 > • • • > so

r ^ fur r < oo bzw. ]/| wnjfc | ^ i fur r oo

ist. Sei dann aber #n 0 fur n =fink so ist

1

T
bzw. cn, I <: -y-, also lim

224



d.h. x in nr und trotzdem wàre Z,\unxn\ divergent, da es unendlich
n—1

viele Summanden 1 enthâlt, das widerspricht der Annahme, daB u in
7T* A1SO 71? Q±

r

3. Gàbe es ein x in ci (r ^ ex?), das nicht in nr liegt, so gâbe es
~r ni jein e > 0 und eine Folge nx, n2,..., so daB \/\xni\ ^ \-e

Sei dann

un 0 fur n ^ n,

so
n t n

wàre \^\un\ ^ fiir jedes ri, also lim V\ un | < r d. h. u

+

in qi_ gelegen ; aber 27 | un xn | divergiert. Also ist qi_ =7ir, g* n^.
r n=l r

Satz 2ç>. Eine Menge U von Stellen u aus gQ ist dann und nur dann
beschrânkt, wenn \ u \ fur aile u aus U beschrânkt ist.

Eine Menge U von Stellen u aus gr (r > 0) ist dann und nur dann
beschrânkt, wenn sie

1. koordinatenweise beschrânkt ist und wenn es
n 1

2. ein <5 > 0 und dazu ein n0 (ô) gibt, so dafi ]/| un | ^ ——«-
fur aile u aus U und n^ no(ô) gilt,

1. Ist in @0 der Betrag | u | fiir aile u aus U beschrânkt, ?g M, so

ist | un | ^ Mn fiir aile n und daher

liirl< Y \ n r I < Vlr I MnI u x | ^ Zt \ un Xn \ ^ Zj I %n I m i
w=l n=l

d. h. fur jedes 3e aus n^ unter einer vom einzelnen u aus U unabhàn-
gigen Grenze gelegen.

2. Ist in qr die zweite Bedingung erfûllt, so gibt es ein à > 0 und

dazu ein n0 (ô), so daB \un\ ^ fiir n^n0 (ô) und aile u

aus U gilt. Ist also X irgendeine Stelle aus q* — m^ mithin fur s > 0
n r /y 1 ç \nl/l #„ I < r + e wenn n>n* (e), so folgt 1 un xn I ^ —:—j-1 fiir

^ ^ n2, wo 7i2 die grôBere der beiden Zahlen n0, W! ist. Wàhlt man
r -\~ e

°°

das frei vorgegebene e < ô, so ist —;—r < 1 und 27 i un xn I kon-
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vergent und ^ M (ô, e, nx (s)), also unter einer vom einzelnen u aus
U unabhàngigen Sehranke. Wegen der ersten Bedingung ist aber auch

2J | un xn | unter einer vom einzelnen u unabhàngigen Sehranke gèlent

gen, also auch | UX |, d. h. U ist beschrànkt.

3. Ist in Qr (r ^ 0) die Menge U besehrànkt, so ist die 1. Bedingung
erfullt und es handelt sieh nur um den Beweis der 2. Bedingung. Ist u
irgendeine Stelle aus gr, so gilt

n ilim V\un\ <--
n->-oo r

» id. h. es gibt ein ô > 0 und ein n0 (ô), so da6 V | un \ < - fur

7i ^ n0 (ô, u). Gâbe es nun nicht ein ô fur aile u c U und dazu eiw

^0 (ô), so gâbe es eine Folge u(1), u(2),... in U und dazu eine Folge
' •, so daB

ltt<2)l

OC

Sei dann

^--r^r- *» ° fûr

so ist

(a)|

n
also lim V\ xn \ ^ r d. h. ï in ^ gelegen. Andererseits ist, wenn

5 {| ^i |, | u21,...} gesetzt wird, ïï(ot) ï ^ | u™ \ xn(x na-> oo also

ïï(a) X-> oo, d. h. die normale Huile U von [7 unbesehrànkt, nach K. T.
§ 5, Satz 2 also E7 selbst unbeschrànkt gegen die Voraussetzung.

Satz 2^. Eine Menge X in nT (r S oo) ist dann und nur dann be-

schrânkt, wenn sie

1. koordinatenweise beschrânkt ist und wenn es

2. zu jedem e > 0 ein n0 (s) gibt, so dafî V\ xn | s£ h e ^ /#r
ft ^ w0 (e) t^/wi aZïe x aus X.
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1. Ist u irgendeine Stelle aus Ttf qi_, so ist lim V\un\ <r
also fur ein passendes ô > 0 gibt es ein nx (à), so daB

gilt, wenn n ^ nx (ô). Ist nun die 2. Bedingung erfullt, so gibt es zu
jedem e > 0 ein n0 (e), so da8

und aZZe 3e aus X, also

0

Wàhlt man speziell s < ô, so wird U \unxn\, won2 die grôBere der
n=n2

beiden Zahlen n0, 7ix bedeutet, konvergieren und unter einer vom ein-

zelnen x unabhângigen Schranke liegen. Ebenso £ \ un xn \ wegen der

1. Bedingung. Also ist X beschrânkt.

2. Ist umgekehrt X beschrânkt, so ist zuerst die 1. Bedingung erfullt.
Wàre die 2. Bedingung nicht erfullt, so wâre fur ein e das n0 (e), das es

zu jedem x aus nr gibt und fur das

]/[^Jl^~ + e fur n
T

gilt, nieht ftir aile x aus X gleiehmâBig dasselbe, sondern es gàbe eine

Folge x{n^,n1<n2< aus X, so daB

Dann wâre

Sei dann
UnQL r~r— Un 0 fur

so wâre n<* n<*
T

» r 't'a ~^ >

1
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n
also lim ]/| un\ ^

d. h. u in £_i_ 7r* Andererseits wàre | w«a #(wa) | ^> 7ia-> oo also|

|llï(a) |->oo d. h. die normale Huile X unbeschrânkt, mithin wegen
K. T. § 5, Satz 2, auch X unbeschrânkt gegen die Voraussetzung.

Satz 3. In nr (r ^ oo) gibt es zu jeder beschrànkten Menge X eine

majorisierende Stelle X) mit lauter reellen, nichtnegativen Koordinaten, so

dafi fur jedes X aus X gilt \ xn \ ^ yn Dasselbe gilt fur qr (r ^ 0)

1. Zuerst ist X als beschrànkte Menge koordinatenweise beschrànkt.
Sei mk sup | xk | fur aile x aus X. GemàB Satz 2W ist fur aile x

aus X und k ^ n0 (e) gleichmàBig y \ xk \ ^ \- e daher gilt auch

fur das supremum Vmk ^ \- e Dièse Tatsache drûckt man ein-

fach aus durch lim Vmk ^ — und sie besagt, daB die Stelle rrt

{m1, m2,...} eine Stelle aus nr ist. Sie hat ofïenbar die gewunschte
Majoranteneigenschaft.

2. Fur qr schlieBt man analog aus Satz 2Q. Hier erhàlt man ein ô,
k

fur das Vmk fg r- wird bei k ^ n0 (ô) und dies besagt, daB die

Stelle m in gr liegt.

§ 2, Grenzstellen und Hâufungsstellen in nr und gr

Aus § 1, Satz 3, kônnen wir jetzt leicht folgern, daB sowohl in den

nr wie auch in den £r (schwache) Konvergenz und starke Konvergenz
identisch sind (zu ihrer Définition vergleiche K. T. § 3 und § 5).

Satz 1. In 7tr (r ^ oo) ist jede konvergente Folge stark konvergent.

Da die nr nach § 1, Satz 1, vollkommen, nach K. T. § 3 also voll-
stândig sind, genugt es, die Behauptung fur Folgen x{p) zu beweisen,
die gegen o konvergieren.

Die Menge X aller x{p) ist beschrànkt, r) sei eine nach § 1, Satz 3, exi-
stierende majorisierende Stelle. Ist nun eine beliebige beschrànkte Menge
U aus qi gegeben, w eine majorisierende Stelle von U, so ist | w î) [

OO T

X vn Vn < °° • Es lâBt sich also zu jedem vorgegebenen e > 0 ein n0 (e)
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e
so bestimmen, daB U vnyn<— ist. Wegen der koordinatenweisen

n0

Konvergenz von xip) gegen o lâBt sich ferner ein po(e) so bestimmen,

daB auch Z vn \ x(p) \ < — fur jedes p ^p0 (e) Daraus ergibt sich

fiir v ^ Vn

n=l n=l n=n0 L L

also die starke Konvergenz von x{p) gegen o.
Vertauschung von nr und gi in dieser Ùberlegung fûhrt zu

r

Satz 2. In gr (r ^ 0) ist jede konvergente Folge stark konvergent.

Aus K 1, § 1, Satz 3, ergibt sich sofort die

Folgerung. In allen nr und qr gilt der Grenzstellensatz, d. h. jede be-

schrânkte unendliche Teilmenge enthàlt eine konvergente Teilfolge.

Nach K. T. § 5, Satz 6, ist ferner eine Folge aus nr oder gr dann
und nur dann konvergent, wenn sie beschrànkt ist und koordinatenweise
konvergiert.

Satz 3. Die Folge x{n) aus n^ konvergiert dann und nur dann gegen
X, wenn lim | x — x{n) \ 0 ist.

1. Ist x{n) konvergent — es kann lim x(n) o angenommen werden—

so ist es zunâchst eine beschrânkte Folge. Nach § 1, Satz 2W, kann man

daher, falls e>0 vorgegeben ist, no(e) so bestimmen, daB

ist fur aile p und n ^ n0 (e) Sodann folgt aus der Konvergenz von
Xiv) die koordinatenweise Konvergenz ; man kann also p0 so wàhlen,daB

Vï^A^e fur

Alsdann ist sup j/| xfn) \ | x{p) \ ^ e fiir p ^ p0 (s)
n

2. Ist lim | x{p) | 0, so ist x{p) koordinatenweise beschrànkt.

Ferner gibt es zu jedem e > 0 ein p0, so daB V\ x^ \ ^ e fur aile
n

n und p^pQ. Aber fiir p 1,.. .,pQ — 1 ist lim ]/| a;^ I 0 fûr
n->oo
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jedes einzelne p, da X{p) in n^ liegt ; also gibt es ein n0 (e), so daB

e fur n â ^o («) und aile p. Also ist x{p) nach § 1, Satz 2ff,
beschrànkt. Da x(p) iiberdies koordinatenweise konvergiert, ist sie nach
der Bemerkung vor Satz 3 konvergent.

In allen anderen nr und qr ist die Bedingung von Satz 3 offenbar
hinreichend, aber nicht notwendig.

Zur (schwachen) Konvergenz im vollkommenen Raum A gehôrt die
Topologie, die durch die Umgebungen Î7u(i) u(n). £ (x{0)) aller x mit

i U(1) (X - X(o)) | < e,.. | U<n> (I - S<°>) | < e u«> € A*

gegeben wird. Entsprechend wird die starke Topologie durch die
Umgebungen UV;£(xi0)) aller x mit sup | u (x — x{0)) \ < €, F eine beschrânkte

Menge aus A* gegeben (vgl. K. T. Anm. 11 und 15 und K. 1, § 5).
Zu diesen beiden Topologien gehôren Hâufungsstellenbegriffe, die wir

als (schwache) Hâufungsstelle und starke Hâufungsstelle auseinander-
halten.

Satz 4. In allen nr und Qr gibt es Mengen, die o zur Hâufungsstelle

haben, aber nicht zur Grenzstelle und nicht zur starken Hâufungsstelle.

00

1. X sei die Menge aller Stellen aus nr mit [uï] E \ unxn \ ^ 1

n=l
wo il irgendeine gegebene Stelle aus nf ist. Dann schlieBt man wie in
K 1, § 5, daB o (schwache) Hâufungsstelle von X ist. Da die* normale
Huile der Stelle u (vgl. K. T. § 5, Satz 2) in q± eine beschrânkte Menge

r
ist, bilden aile x aus nr mit [ui]<e eine starke Umgebung von 0. Sie
enthâlt fur e < 1 keine Stelle aus X, also ist o nicht starke Hâufungsstelle

von X. o ist aber auch nicht Grenzstelle, denn nach Satz 1 wâre
sie dann starke Grenzstelle.

Dieselbe Ûberlegung gilt auch fur die Menge U aller u aus gr mit
[nx] ^ 1, x irgendeine Stelle aus q* ni

Satz 5a. In nr (r fg oo) ist jede starke Hâufungsstelle Grenzstelle, also
auch jede Grenzstelle von Grenzstellen.

Sei X eine Menge aus nr, die o zur starken Grenzstelle hat, und sei
U (ô) die Menge aller Stellen aus tt* g i mit

r

|U|£-T-Î— ô>0
T + ô
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so ist U (ô) gemâB § 1, Satz 2e, beschrânkt. Fur jedes x aus X, fur

das sup|uï|<l ist, gilt \x\^> \-d. Dennwâre \x\> h ô
B r r

so gâbe es ein <%, so daB y \ #a \ > \- à wâre ; wàre daim u diejenige
Stelle aus U (à), bei der

und die arcus der un denen der xn entgegengesetzt sind, so wâre

im Widerspruch zu sup | u x \ < 1

Sei jetzt Un die Menge aller u aus qi_, die aus Ui — I und den

endlich vielen Einheitstellen ex,..., en besteht. Dann kann man, da Un
beschrankt ist, nachVoraussetzung inX ein x{n) finden, fur das sup 1 uï(n) |

l< — ist. Es ist dann a fortiori sup | u X{n) \ < 1 also, wie bewiesen,
71

fï)11 1
I *(n) | ^ 1 und auBerdem ist \xf>)\< — fur i 1,..., nt TV *yi

die Folge k(n) also koordinatenweise konvergent. Nach § 1, Satz 2n,
ist sie auch beschrankt, also konvergent gegen 0, also ist 0 Grenzstelle

von X.

Satz 5b- In gr (r ^ 0) gibt es Grenzstellen von Grenzstellen, die nicht
selbst Grenzstellen sind, und daher Hâufungsstellen, die zugleich starke

Hâufungsstellen sind, aber nicht Grenzstellen.

Sei nâmlich

" (r + d)* p '

und sei U die Menge aller dieser uip'q), so gilt :

1. lim

denn fur
(1 \p
r + 0 }

u<p)
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ist
1/1 »ap) i

r + ô '

sonst, also ist die Folge nach § 1, Satz 2Q beschrankt und koordinaten-
weise gegen o konvergent.

2. Ist eine Teilfolge u(Pli Ql), uiP2>Qi)... von U konvergent, so mûssen
die p{ beschrankt sein. Wàre nàmlich pà• -> oo so wàre bei der Stelle
** Pi+Qi 1 i

Es gâbe also kein solches <5, wie es § 1, Satz 2Q fordert.

3. Jede konvergente Teilfolge von U zerfâllt also in hôchstens end-
lich viele Unterfolgen mit festera p. Fur jede derselben gilt aber gemàB
Satz 2Q lim u{p>Q)

4. Daher kann o nicht Grenzstelle von U sein, sondern nur die Stellen

u(*>) I^~eî) • Dièse ihrerseits haben nach 1. o zur Grenzstelle.

o ist also Grenzstelle von Grenzstellen, aber nicht selbst Grenzstelle.

§ 3. Der Vitalische Satz

Das skalare Produkt ux gestattet eine einfache funktionentheore-
tische Deutung.

Satz 1. Ist x eine Stelle ans nr, u ans tz* @i_ (r ^ cx>) so ist

ux=zY^Ï <PX®U\7)T (1)

r—e

(ist r oo so werde r — e gleich E>0 gesetzt), wo
OO 00

V / """"" jtm* n V / <c i * n '

Ebenso ist fur u aus qr, x aus o* — n± (r ^ 0)

Die Intégrale sind liber die Kreise vom Radius r — e bzw. r -\- e um 0

zu erstrecken, die so zu bestimmen sind, dafi auf ihnen die JReihen fur

u l — i bzw. u(t) noch absolut konvergieren.
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Ist u aus qi^ so hat u (t) einen Konvergenzradius — ô > 0

also ist r

auBerhalb des Kreises vom Radius r — ô konvergent. x (t) J£ x

konvergiert im Kreis vom Radius r. Ist e < ô, so erhâlt man also auf

dem Kreis vom Radius r — e die Laurententwicklung von x (t) u \-r\-r
l \ * I t

durch gliedweises Ausmultiplizieren, der Koeffizient von —- ist dann

gerade ux. Ebenso beweist man (1'). Man kann es auch durch Ûber-

gang zur neuen Variablen — aus (1) fur — statt r erhalten.

Damit ergibt sich leicht auch fur die in den § § 1 und 2 betrachteten
Begriffe der Beschrânktheit und Konvergenz, die aus der allgemeinen
Théorie der linearen Râume stammen, ihre funktionentheoretische
Deutung :

Satz 2<7r. Ist x(p) eine konvergente Folge aus nr (r ^ oo) so ist die

Funktionenfolge x{p) (w) gleichmâfiig konvergent in jedem Kreis \ w \ 5^

s < r und umgekehrt.

1. Ist lim xip) x so ist lim uxiP) UX fur jedes u aus qi_,
p+<x> r

speziell fur u to0 {1, w0, w\, } mit \wo\<r Daher ist
lim x{p) (w) x (w) fur jedes \w\<r und dièse Konvergenz ist gleich-

mâBig fur | w \ ^ s < r da aile die zugehôrigen tD eine beschrânkte
Menge in ^i bilden, also nach § 2, Satz 1 sup | x{p) (w) — x (w) \ den

r j w |<T«

Limes 0 hat.

2. Ist umgekehrt x{p) (w) gleichmàBig gegen x (w) konvergent fur
jedes s<r, \w\ ^s, und ist u aus qi^, so wird nach (1)

dt

r—e

^ K Max | xW (t) - x (t)

Wàhlt man s r — e so erhâlt man wegen der gleichmâBigen
Konvergenz von x{p) (t) gegen x (t) auf dem Kreise vom Radius r — e fur

also lim nx{p) UX fur aile u aus £i
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Satz 2^. Ist u{p) eine konvergente Folge in or (r 2^0), so gibt es

einen Kreis \ z | ^ s s > r, in dem die Funktionenfolge u{p) (z) gleich-
mâpig konvergiert und umgekehrt.

1. Ist u(î>) konvergent, so konvergiert es koordinatenweise gegen
ein u aus qr und es gibt nach § 1, Satz 2^, ein <$>0 und dazu ein
n0 (ô), so daB

\u\.<*> I

n ¦ - r + ô

und

fur n ^ n0 (ô) und aile p ist. Also wird tiir \z\ ^s r<s<r-\-ô

wenn nur m geniigend groB ist.
Aus der koordinatenweisen Konvergenz von u(p) gegen u folgtschlieB-

| J£ (^nP) ~~ un) %n~x I < y fur geniigend groBes p ^p0 (s), insge-

samt also | u{p) (z) — u (z) \ < e fur aile | z \ ^ s

2. Die Umkehrung beweist man wie oben mit Hilfe von (V) statt (1).

Satz 3;*. Ist X eine beschrânkte Menge in nr (r <£ oo), so ist die
Menge der zu den x aus X gehorigen Funktionen x (w) gleichmâ/iig be-

schrânkt in jedem Kreise \w\ <s<r, und umgekehrt.

Satz 3^. Ist U eine beschrânkte Menge in gr (r ^ 0), so ist die Menge
der zu den x aus X gehorigen Funktionen u (z) gleichmâ/iig beschrânkt

in einem Kreise \ z \ <£ s s>r, und umgekehrt.

Die Beweise verlaufen analog.

Satz 4. (Der Vitalische Satz.) X sei ein vollkommener Baum, in dem
der Orenzstellensatz gilt, u(n) sei eine Folge von Stellen aus A* von der

Art, dafî aus u(n) ï 0 (n 1, 2,... folgt x o Ist nun xip) eine
beschrânkte Folge von Stellen aus A, fur die lim u(n) X{p) fur aile n existiert,
so ist die Folge xip) konvergent. p*°°

Die Behauptung besagt, daB fur jedes u aus A* der lim uxip)

existiert. Gesetzt fur irgendein u aus A* wàre dies nicht der Fall. Dann
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hâttendieWerte ux{p), die beschrânkt sind, mindestens zwei Hâufungs-
stellen a, b. Aus einer Teilfolge x{q) der x{p), fur die lim uxiq) a

ist, kann man, da sie besehrànkt ist, eine konvergente Teilfolge heraus-
greifen, gemaB dem Grenzstellensatz ; sei X) der Limes dieser konvergen-
ten Teilfolge; ebenso kann man eine Teilfolge x(r) der xip) finden, fur
die lim uxir) b ist ; sei 3 ihr Limes. Dann wâre u (X) — 3) a — b

r->oo

^ 0, aber u(n) (x) — 3) 0 (n 1, 2,...) also nach Voraussetzung
t) 3 was ein Widerspruch ist.

Der Satz erscheint hier als Verallgemeinerung des Satzes, da6 in einem
vollkommenen Raum, in dem der Grenzstellensatz gilt, eine beschrânkte
und koordinatenweise konvergente Folge konvergiert : an die Stelle der

tp sind hier die u(n) getreten.
Wendet man ihn andererseits auf nr an, so erhâlt man vermôge der

Sâtze 2^ und 3^ den ,,Vitalischen Satz" der Funktionentheorie in dem
Wortlaut :

Ist die Funktionenfolge fp (z) in \ z \ < R gleichmàfiig beschrânkt und
konvergiert sie an unendlich vielen Stellen z{, deren Limes z0 im Innern
von | z | ^ R liegt, so ist die Folge in jedern Kreis \z\ ^r<R gleich-

md^ig konvergent.

§ 4. Lineare Transformationen

Wird jedem x aus nr (r ^ 00) eine komplexe Zahl u (x) zugeordnet,
so dafi fur beliebige oc, /? stets

u (oc x + p X)) oc u (x) + P u {\))

gilt, und ist die so erklârte Linearfunktion iiberdies stetig, d. h.

\imu(x{n))=-u{\imx{n))

so ist damit ein lineares Funktional auf nr erklart. Nach K.T., §3,
Satz 6 wird jedes lineare Funktional durch eine Stelle u aus n? gx

r
erzeugt, u(x) ux. Nach § 3, Satz 1 kann u (x) auch als Intégral
in der Form (1) geschrieben werden. Entsprechendes gilt fur stetige
Linearfunktionen auf den £r (r ^ 0)

Nach K. T., § 8, wird entsprechend jede stetige lineare Abbildung
0 A (u) von Qr in £r, durch eine Matrix 31 vermittelt, t) îf u
Ihre Transponierte %r bildet ni^ in ni_ ab. % bildet nach K. T. § 8,

r' r
Satz 3 jede beschrânkte Menge aus £r in eine beschrânkte Menge aus
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or, ab. Ist also U(s) die Menge aller u mit \uq\ S—-~f, s>r, so

gibt es nach § 1, Satz 2O eine Zahl N (s) >rf, so daB von einem ge-
wissen p0 ab

gilt, also ist die Potenzreihe

A{y,u)= S Z
p=l «=1

absolut konvergent in jedem Bereich

Ist umgekehrt 31 eine Matrix, zu der eine solche Potenzreihe gehôrt,
und ist u in £r,

— lim V\un\
o n->oo

1 °°

so ist \uq\ g G also 27 l«3>a^| fur jedes p konvergent, das

Produkt t> 31U kann also gebildet werden. Naeh Voraussetzung ist
ferner

v (2) Z vpz^ f £ a,,«9) 2»-1

fur aile 12; 1 < N (s) konvergent, t) also eine Stelle aus gr,. îl stellt also
nach K. T. § 8, Satz 2 eine stetige lineare Abbildung von gr in qr, dar.

Durch Umordnen ergibt sich

v (z) X E a

Die xq sind die Koeffizienten der Funktion

x(w)= 2JxQw^~1= Z £ a^z^w*-1) A (z ,w)
q l q=l jt?=l

aus ni wir erhalten also durch Anwendung von § 3, Satz 1

r+e

wobei das e noch von u (t) und z abhàngig ist.
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Satz \(). Jede lineare stetige Abbildung o A (u) von gr (r ^> 0)

in qr, (rf ^ 0) wird durch eine analytische Funktion zweier Variablen
A (y, u) erzeugt, die eine Potenzreihenentwicklung

A(y,u)= E E%qy^u^

besitzt, die filr jedes s>r in einem Bereich 93(s) : |u\ < — \ y \ <N(s),
N (s) > r', absolut Jconvergiert. Es ist mit 31 (apq)

* 3(u «fer ^(2) y^ ^
Umgekehrt wird durch eine dièse Bedingung erfattende Matrix bzw. Funktion

stets eine stetige lineare Abbildung von qt in qr, erzeugt.

Ist X) S X eine lineare Abbildung von nr in 7rr,, so fuhrt $5' q i
in ^j^ ûber und umgekehrt. Also gilt fur die entsprechende analytische

r
Funktion °o «>

B(v,x)= E Eb

da6 sie ftir jedes s < rf in einem Bereich

absolut konvergiert. § 3, Satz 1 ergibt den noch fehlenden Teil von

Satz 1T. Jede lineare stetige Abbildung X) B (x) von nr (r^oo)
in nr, (rf ^ oo) wird durch eine analytische Funktion zweier Variablen
B (v, x) erzeugt, die eine Potenzreihenentwicklung

B(v,x)= E Ê b^v*-1 a*'1

besitzt, die fur jedes s<rf in einem Bereich (£ (s) : | v \ g s \x\< „N (s) <r absolut konvergiert. Es ist

9 93ae oder y(w) ^J (f) B {*>,tyx® ~ • (^)
r—s

Wie oben gilt die Umkehrung.

Folgerung. Mit % (a^) ist stets auch % | avq \ eine stetige
lineare Abbildung von gr in qt, bzw. nr in nr,
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Die Abbildungen von n^ bzw. in q0 lassen sich auch matrizenmâÛig
einfach charakterisieren.

Satz 2. Jede lineare stetige Abbildung von gr (r ^> 0) in qq wird durch
eine Matrix 31 erzeugt, filr die

M% (s) sup V/K1|s+K2|^+|an3i*3 + --- (3)
n->oo

filr jedes 0<s<— endlich ist und umgekehrt.

Jede lineare stetige Abbildung von n^ in nT (r «g oo) wird durch eine

Matrix 93 erzeugt, fur die

\8+\b2n\8*+\bZn\8* + ..- (30
n->oo

fur jedes Q<s<r endlich ist und umgekehrt.

Es genûgt, die erste Hâlfte zu beweisen, die zweite ergibt sich dar-
aus durch Ûbergang zur transponierten Matrix.

1. Die Notwendigkeit der Bedingung (3) folgt daraus, daB jede be-
schrânkte Menge in gr, speziell also auch die Menge der u mit
| uQ | fg sq s < —, in eine beschrànkte Menge in £0 ûbergeht.

2. Ist U eine Stelle aus ^r, so gibt es ein C>0 und ein s<—
oo r

so dafi \uP\ ^Csv ist. Da E \anjt\sp <oo ist, existiert % u Es
ist ferner p=tl

also liegt $Ill in £0. Zieht man K. T. § 8, Satz 2 heran, so folgt, dafi
(3) hinreichend ist.

§ 5. Die Mengen Wa

Hat a (w) Z ap wp-x den Konvergenzradius r, so entsteht durch

Multiplikation jeder Funktion x(w) aus nr mit a(w) wieder eine
Funktion a (w) x (w) aus nr. Dièse lineare Transformation von nr in
sich wird durch die Matrix
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/«! 0 0 A

31 {
a* ai ° "

| bzw. die Funktion A(v,x) a(v) —i
l az a2 ax J

v v 1 — v x
\ '

W
erzeugt.

Hat a (w) in | w \ < r die oc1-fache Nullstelle wx, die oc2-fa>ehe Null-
stelle w2 usf., so bilden wir die Stellen:

Die Menge aller dieser Stellen aus qi_ werde mit Wa bezeichnet. Jede

Stelle aus Wa ist Lôsung der Gleichung W u 0

Wir bestimmen in nr den Orthogonalraum zu Wa. Ist eine Stelle X

aus 7tr zu allen Stellen wt, tX)(,... orthogonal, so ist

- =0 a^+2a?8ti;t + 3a:3ti^ + • • =0,.

d. h. x(w)= £ xp wp~x ist eine Funktion, die aile Nullstellen von a (w)

in mindestens derselben Vielfachheit enthàlt, also dureh a (w) teilbar,
also eine Stelle aus p % {nr). Der Orthogonalraum zu Wa ist daher

li 31 (nr). Andererseits ist der Lôsungsraum r\ von %! u 0 gleich
dem Orthogonalraum // (vgl. etwa die Einleitung von K), also gleich

der orthogonalabgeschlossenen Huile Wa von Wa. Naeh dem Orthogo-
nalraumsatz (vgl. Kl, § 6, Satz 2) ist also rj gleich der vollabgeschlos-
senen linearen Huile von Wa, d. h. rj besteht aus den endlichen linearen
Verbindungen der mt, tD^,... und deren Hâufungsstellen.

Satz 1. Ist a(w) in nr,% die zugehorige Matrix, so ist der Bildraum
31 (nr) der Raum derjenigen Stellen aus nf, deren zugehorige Funktionen
durch a (w) teilbar sind. Der Raum rj der Losungen von %f u 0 in
qi^ ist die vollabgeschlossene lineare Huile der Menge Wa.

T

Bisher sind wir von a (z) ausgegangen und haben seine Nullstellen
wt und die zugehorige Menge Wa behandelt. Wir wollen jetzt umgekehrt
von einer solchen Menge W ausgehen.
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Sei Rr (r ^ oo) die Menge samtlicher Stellen w {1, w, w2,...},
te/ {0, 1, 2 w,...},..., die sich ergeben, wenn w aile komplexen
Zahlen \w\<r durchlauft (auch w=0). Mit iî^ bezeichnen wir die
aus den finiten linearen Verbindungen der Stellen aus Br bestehende
lineare Huile von Rr.

Wir uberlegen, welche Funktionen aus qi^ zu den Stellen der Menge
T

1

gehoren. Zu xo gehort die Funktion zu mf ihre Ablei-

tung -rz rr usf., zu tt)u~1) die Funktion -^ r_ bis auf kon-6 (1 — wz)2 (1 — wz)v
stante Faktoren. Zu jeder linearen Verbindung davon gehort eine ratio-

nale Funktion, die fur | z | <^ — regular ist. Umgekehrt lehrt der Satz

von der Partialbruchzerlegung, da8 jede rationale Funktion, die fur
| z | ^ — regular ist, auf dièse Weise darstellbar ist, also :

Zu R(rl) gehort die Menge aller rationalen Funktionen, die fur \ z \ g —

regular sind.

Die Nullstellen wt einer Funktion a (z) aus nr haufen sich nicht in
| w | < r. Sei allgemein w\, w2,... eine Folge komplexer Zahlen, die
sich nicht in | w \ < r haufen, und sei zu jeder eine Vielfachheit (xz

gegeben, so sei W die Menge der Stellen to,, w[,.. .xd^1"1^ i 1, 2,
W{1) ihre lineare Huile. Dann gilt

Satz 2. W{1) ist vollabgeschlossen.

Folgerung. In Verscharfung von Satz 1 gilt : rj W(a/}.

Sei a(z) Z av zv~x gemaB WeierstraB eine Funktion aus nr, die
v

die wt in der vorgegebenen Vielfachheit oct zu Nullstellen hat und sonst
keine Nullstellen. Wir haben dann zu zeigen, da6 der Raum rj der Lo-
sungen von W u 0 gleich W^ ist Ist u eine Losung, so ist

Dann bilde

ux a

man

1 + ^2 a2

u2a,

z) u -f

-\-u~a~A

+ us a2 4

- %2 h ^

z

-.

1

3?

0

0

0
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Dièse Reihe konvergiert fur — < also I z I > r — e Das° z r — s
Produkt a (z) (p (z) kann daher fur r — e < \ z \ ti r als Doppelreihe,
die absolut konvergiert, umgeordnet werden, es wird

a (z) cp {z) z{a2ul~\- azu2~\- * • • + z2 (azux -f- <L\w2 -j- ...)-)-... 5

die ubrigen Glieder fallen gemaB Voraussetzung weg. Die Reihe rechts,
eine Potenzreihe, konvergiert fur r — e < \ z \ ^ r also fur | z | <£ r
stellt also eine Funktion b (z) aus nr dar. Daher ist ç? (z) —~~

a (2)
eine in | » | ^ r bis auf die Nullstellen von a (z) regulare Funktion.
AuBerdem ist sie, wie aus (5) hervorgeht, fur | z \ > r — e in 00 regu-

lar. Sie ist daher eine rationale Funktion. Also ist auch ^1 — 1=^4-
u2 z + uz z2 + • • • rational und fur | z \ ^ — regular, also ist u eine

lineare Verbindung solcher m, œ;,..., die zu den Nullstellen von çp I — J

die Pôle von a(z) sind, gehoren, d. h. u liegt in Wil).5)
Die zur Abbildung (4) transponierte Abbildung W fuhrt die Stelle t»

aus ££ in die Stelle a (w) xo uber. Bezeichnen wir die Menge aller Viel-
r

fachen der Stellen aus Rr mit c Rr, so ist also W eine Abbildung von
cRr in sich. Wir wollen aile dièse Abbildungen 93 bestimmen.

Da wir sie nur unter den Abbildungen von gi in sich suchen, muB
00 r

zuerst jede Zeile von 23 in nr liegen. Sei 2J b^qW^1 bv (w), so bind

also aile bv (w) in nr. Soll S jede Stelle to aus Rr in eine Stelle cv
{c, c v, c v2,. .} mit | v | < r uberfuhren, so muB bv (w) c vp~x sein *

und daher identisch in w:

bt (w) bt (w) bs (w) bl (w) 6^ (w) bt (w) b\ (w) 6» (w) bb(w),...

s) Da nach § 4, Satz 5 der m Anm. 3 zitierten Arbeit bereits jeder nur m bezug auf die
Limesbildung abgeschlossene hneare Teilraum von q± orthogonal abgeschlossen ist,

r
genugt es zum Beweis von Satz 2, die Abgeschlossenheit von TF(O zu zeigen, was wesent-
lich emfacher und ohne Heranziehung funktionentheoretischer Hilfsmittel moghch ist
(vgl § 7 der angegebenen Arbeit). Die Folgerung von Satz 2 haben bereits F, Schurer
(Benchte d. Sachs. Gesellsch. d. Wiss. Leipzig 70 (1918), S. 185 — 240) und O. Perron
(Math Ann 84 (1921), S. 1—15, Satz 1) bewiesen durch Zurackfuhrung auf einen Satz
uber hneare Differenzengleichungen mit konstanten Koeffizienten.
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Ist w4 irgendeine a-faehe Nullstelle von b± (w), so muB sie also auch
Nullstelle von 62 (w) sein, und wenn sie eine 6-fache Nullstelle von 62 (w)
ist, muB

^2b 2^36 3^46
sein, d. h. der Reihe nach

3 4

Da a, b ganze Zahlen sind, folgt a fg b» bx(w) muB also in nf ein
Teiler von b2 (w) sein, 62 (w;) 6j (w) c (w), wo auch c (w) eine Funk-
tion aus nr ist, und es ist bp(w) bl(w)[c(w)]p-1 Setzen wir also

bequemer bx (w) a(w), so haben wir

bx (w) a(w) b2 (w) a (w) c (w) b3 (w) a (w) [c (w)]2,...

Dabei muB \c(w)\<r sein fur | w \ <r
Die zugehôrige Funktion ist B (z, w)

"1 a(w) + za(w)c (w) + z2a(w)[c

Die zugehôrige Matrix S hat offenbar die Form

1

ît' ist Transponierte zu (4), (£ ist eine Matrix, in deren Spalten die
Koeffizienten der Potenzen von c(w) stehen. X) (£x bedeutet in 7tr
den Ûbergang von x(w) zur Funktion x(c(w)), diewegen | c (t^) | < r
fur j w | < r in nr liegt. 31 (£ bedeutet also die lineare Abbildung
x (w)->a (w) x (c (w)) von nr in sich, also fiihrt auch jede Matrix 58

Œ/STg^ in sich ûber, speziell cBr in sich.
r

Satz 3. Die Transformationen von g i in sich, die c Br in sich ilber-
r

filhren, haben die Oestalt (6), wo a(w) Z <*>j, w2*"1 und c(w)= £
in nr liegen, au/ierdem \ c (w) \ < r fur \w\<r ist.

(Eingegangen den 3. Oktober 1948)
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