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Les sous-groupes fermés de rang maximum
des groupes de Lie clos*)

Par A. Borel, Zurich, et J. De Siebenthal, Lausanne

Dans un groupe de Lie compact G, tout sous-groupe abélien maximum
est clos, puisqu'il est fermé, et de plus connexe1); c'est donc un produit
direct de l groupes clos à un paramètre2), appelé toroïde à l dimensions ;

l ne dépend que de G et non du sous-groupe abélien considéré et définit
le rang de G (au point de vue global).

L'objet de ce travail est l'étude des sous-groupes fermés (donc de Lie)
connexes d'un group de Lie clos possédant le même rang que le groupe,
ou, si Ton veut, ayant avec le groupe un toroïde maximum commun. Ils
sont complètement caractérisés par le théorème suivant, démontré au
N° 6:

Soient G! un sous-groupe fermé connexe de rang maximum d'un groupe
de Lie clos G et Zf le centre de G' ; alors, G1 est la composante connexe du
normalisateur dans G de Zf.

Par normalisateur dans G d'un sous-groupe Z\ nous entendons ici,
selon l'usage habituel, l'ensemble des éléments x de G pour lesquels :

c'est un sous-groupe fermé de G, de rang maximum si Z* est abélien.
On peut aussi dire qu'un sous-groupe connexe de rang maximum est

entièrement défini par son centre.
Cette étude se fera à l'aide du diagramme .ou, ce qui revient au même,

des vecteurs racines de G, dont nous rappelons les définitions et principales

propriétés au N° 1. Leur emploi mène rapidement au but ici grâce
au fait que les vecteurs racines d'un sous-groupe de même rang sont

*) Un résumé de cet article a paru dans les Comptes Rendus, t. 226 (1948) p. 1662/4.

*) H. Hopf, Ûber den Rang geschlossener Liescher Gruppen, Comm. Math.
Helv. 13 (1940—41), p. 119—143, N<> 23.

2) E. Cartan, La théorie des groupes finis et continus et Tanalysis situs,
Mémorial Se. Math. XLII, Paris 1930, N<> 42.
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aussi vecteurs racines du groupe (Théorème 2), ce qui n'est en général
pas vrai pour les sous-groupes de rangs inférieurs à celui du groupe.
Cette proposition nous conduit à chercher un critère pour qu'un système
de vecteurs racines pris parmi ceux de G corresponde à un sous-groupe
fermé. Nous donnons à cet effet au N° 4 une condition nécessaire (Théorème

3) d'où nous déduisons une borne supérieure pour le nombre des

paramètres d'un sous-groupe de même rang. Ensuite, une propriété des

vecteurs racines démontrée au N° 2, jointe au théorème 3, nous permet
d'obtenir au N° 5 une condition nécessaire et suffisante, qui équivaut à

l'énoncé donné plus haut. Enfin, le N° 7 est consacré à la détermination
explicite des plus grands sous-groupes de même rang des groupes simples
clos.

En nous proposant l'examen des sous-groupes fermés, nous nous
plaçons automatiquement à un point de vue global, et effectivement
nous considérons dans ce travail toujours les groupes ,,en grand" ; mais
il est à remarquer que l'on pourrait traiter le problème par la méthode
infinitésimale car tout sous-groupe de Lie local d'un groupe clos G qui est

de rang maximum, c'est-à-dire contient un noyau de sous-groupe abélien
maximum dans G, est le noyau d'un sous-groupe en grand fermé dans G.
Nous reviendrons sur ce point au N° 8.

Dans ce mémoire, nous nous occupons exclusivement des sous-groupes
de même rang que le groupe, nous réservant pour plus tard l'étude des

sous-groupes de rang quelconque. Mentionnons cependant que les
considérations du N° 4 s'étendent avec peu de modifications au cas général,
ce qui n'est pas le cas pour le N° 5.

Il nous est agréable de remercier ici MM. H. Hopf et E. Stiefel de
leurs conseils. C'est directement à l'instigation de ce dernier que l'un de

nous (A. Borel) s'est occupé de la question traitée ici, à l'étude de

laquelle J. de Siebenthal a été amené par l'examen de problèmes topologiques

proposés par M. Hopf.

1. Dans la suite G désignera toujours, même si nous ne le mentionnons

pas expressément, un groupe de Lie compact connexe et G' un sous-

groupe fermé connexe de rang maximum de G.
Soit Tl un toroïde maximum de G. On peut toujours rapporter un

entourage U(e) de l'élément neutre à des coordonnées orthogonales
canoniques xx, x2,..., xn (de première espèce) dans lesquelles3) :

8) Pour les théorèmes de ce paragraphe, voir E. Stiefel, Ûber eineBeziehungzwi-
schen geschlossenen Lieschen Gruppen und Comm. Math. Helv. 14, 1941/42,

p. 350—379.
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a) le groupe adjoint linéaire de G est orthogonal.

b) xl9..., xx sont les coordonnées de Tl ^ U(e) ; la multiplication
dans Tl est représentée par l'addition des coordonnées et l'image de Tl
dans le groupe adjoint linéaire de G est formée par des matrices du type :

0
Di(x)

D ___
/cos 27i&i (x) — sin 2n'&i (x)\

0 * ' ^' ~~
\sin 2 n #, (x) cos 2 n &{ (x)j

\ Dm(

dz #i (x)> zfc #2 (#) > • • • > ± #™ (#) étant des formes linéaires en ^x,..., xl ;

ce sont les paramètres angulaires de G ; deux paramètres #t-, #,-

quelconques sont linéairement indépendants.
Prenons xlf..., xx comme coordonnées dans un espace Rl à l dimensions

; l'addition vectorielle fait de Rl le groupe de recouvrement universel
simplement connexe de Tl ; réciproquement, on obtiendra Tl à partir
de Rl en identifiant entre eux les points équivalents par rapport à un
réseau à l dimensions, le réseau unité, qui est le noyau de Fhomomor-
phisme de Rl sur Tl. Cette correspondance entre Rl et Tl permet de
considérer un système (xl9..., xt) comme caractérisant indifféremment un
point de Rl ou un élément de Tl, ce dont nous ferons constamment usage.
Les plans à l — 1 dimensions :

#,(#) 0 (modulo 1) i 1, 2,..., m

définissent dans Rl le diagramme de G que nous noterons D(G). Ces

plans contiennent les éléments singuliers de Tu), c'est-à-dire ceux dont
le normalisateur dans G est plus grand que Tl ; si un point se trouve
sur h plans, son normalisateur connexe possède l + 2k paramètres.

Nous considérerons Rl comme un espace euclidien, avec la métrique
#i + %l + • * * + #? ; l©s symétries aux plans du diagramme laissent ce

dernier et le réseau des points équivalents à l'élément neutre invariants.
En tant que transformations de Tl, elles sont fournies par des auto-
morphismes intérieurs de G laissant Tl invariant. Les transformations
de Tl obtenues à l'aide de ces automorphismes constituent un groupe qui
est isomorphe (holoédrique) au groupe W engendré par les symétries aux
plans du diagramme contenant l'origine. W est un groupe fini.

4) Les formes ± 2nV—l#t- sont les racines de G, au sens de la théorie infinitésimale;
les éléments singuliers du texte et contenus dans Tl r\ U (e) sont portés par les groupes
à un paramètre qu'engendrent les transformations infinitésimales de Tl dont le polynôme
caractéristique admet la racine zéro avec une multiplicité plus grande que l.
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On peut aussi caractériser le diagramme par un système de 2 m vee-

teurs racines ± #x, ± #2 >•••> ± #m introduits par jff. TFe^Z. &t est le
vecteur contravariant dont les composantes covariantes sont les coeffi-

cients du paramètre angulaire —&t ; #t est donc perpendiculaire au plan
<$% 0. Ces vecteurs vérifient les conditions5) :

(# # > >
(1) 2 V_J'_^; est un nombre entier ((#t,#,) est le produit scalaire

(#t, êt) ordinaire).

(2) Si 2-Ç^- =i, &j-e&t,&}
(#t > #*) (e signe de k) sont aussi des vecteurs racines.

(2) est du reste une conséquence de (1) et du fait que les vecteurs racines
sont deux à deux opposés.

Toutes ces propriétés sont en général énoncées pour les groupes
compacts semi-simples, mais elles s'étendent d'elles-mêmes aux groupes clos

quelconques, qui sont toujours localement isomorphes au produit direct
d'un groupe semi-simple et d'un groupe commutatif indiquant la
présence d'un centre continu ; si celui-ci est à s paramètres, les plans êt — 0,
i 1,..., m se couperont suivant un espace R8 à s dimensions ; les
vecteurs racines sous-tendent l'espace Rl~s complémentaire de Rs, et
réciproquement. Rl~s recouvre le toroïde maximum de la composante
semi-simple ; si cette dernière n'est pas simple, elle est (au moins localement)

produit direct de k groupes simples et les vecteurs racines se

répartissent en k systèmes de vecteurs, mutuellement orthogonaux,
correspondant aux différents groupes simples, et réciproquement.

Si le centre continu de G a s paramètres, le domaine fondamental de W

est limité par l — s plans, disons êt 0, &2 0,..., êt_s 0 ; tous
les autres paramètres angulaires sont combinaisons linéaires à coefficients

entiers de &x, ê2,..., &i^8, qui sont dits pour cela former un
système de paramètres fondamentaux ; en multipliant éventuellement
certains paramètres par (—1), on peut faire en sorte que tous les coefficients

soient positifs ou nuls, le domaine fondamental de W étant alors
donné par les relations #,(#) > 0, i 1,..., l — s.

6) Voir B. L. van der Waerden, Die Klassifikation der einfachen Lieschen
Gruppen, Math. Zeitschr. 37, 1933, pp. 448, aussi E. Stiefel, 1. c. note 3, p. 378, les
vecteurs définis par M. Stiefel ne sont pas exactement les vecteurs racines, mais ont les

longueurs inversement proportionnelles.
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Rappelons encore que, d'après un théorème de E. Cartan6) tout
élément de G a au moins un conjugué par un automorphisme intérieur dans
tout domaine fondamental du groupe engendré par les symétries à tous
les plans du diagramme. Ce domaine est un simplexe 6) si le groupe est
simple, un produit topologique de simplexes et d'un espace R8 dans le
cas général. L'angle de deux faces est toujours de la forme nfk, Rentier,
ce qui permet de représenter ce polyèdre par un graphe très simple, dû
à Sehlâfli, que nous utiliserons au N° 7.

Si G est simple, on obtiendra les points du simplexe en ajoutant au
système êt(x) > 0, i 1,..., l une équation &(x) < 1 où ê
Ci #i + c2 #2 + * * * + ci $1 es^ Ie paramètre dominant, ainsi nommé parce
que ct est le plus grand coefficient de êt qui intervienne dans les expressions

des paramètres angulaires en fonction de #x, #2 > • • • > &i •

2. Une propriété des vecteurs racines
-> -> ->

Théorème 1. Soient G un groupe compact et ê, #1?..., &h h -\- l
vecteurs racines de G tels que :

-> _> ~>

(a) &1, #2,..., êh soient indépendants.
~> _> _> _>. _>

(b) § a± #x -| \- apêp—ap+1 êp+1 ahêh, les a% étant positifs.
-> ->

Alors, il existe au moins un indice k tel que, ou bien & — i&k, si k <p,
-> *->

ou bien ê -{- &k si k>p soit un vecteur racine de G.
-> -> ->

Prenons les vecteurs êt, #2 -> • • •, ^ comme base de l'espace vectoriel
->

qu'ils engendrent ; les composantes contravariantes de # dans ce système
sont a1,...,ap, —ap+1,...,—ah. _+ _^

Supposons que l'indice k de l'énoncé n'existe pas ; alors, ê — fit

n'étant pas un vecteur racine pour i 1,..., p, l'entier 2 ^ ' _^

est négatif ou nul, d'après la propriété (2) des vecteurs du diagramme ;

-> ->
de même, & + fî} n'étant pas un vecteur racine, pour j p -{- l,.. .,h,

-> ->

2 ^ est positif ou nul ; on a donc {&, êt) < 0, i 1,..., p et
(?,»,)
6) E. Cartan, La géométrie des groupes simples, Annali di Matematica t. 4, 1927,

pp. 211, spéc. Chap. I et t. 5, 1928, pp. 253, où Ton trouve du reste une grande partie des
notions et théorèmes indiqués dans le N° 1, mais introduits à l'aide de la théorie
infinitésimale.
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(#, #,) > 0, j p+l,...,A. En résumé, le produit d'une composante
contravariante c* de & par la composante covariante ct de même indice
est négatif ou nul, i 1,..., h. Il en résulte que :

(0, #) Cl c1 + c2 c2 H f-cAc*<0

ce qui est impossible. L'existence de l'indice k étant assurée, la propo-
sition est établie.

Corollaire. Si ax, a2,..., ah sont entiers, il existe un vecteur #t. choisi
_> -+ _> _> _>

parmi #i, #2 » • • • > $a ^ qu'on puisse relier # à #f par we swife /î»*6
->->-> ->
#* > ^< =b ^, • • •, ^ rf# vecteurs racines, le j-ème se déduisant du (j — l)-ème

-> -> ->
addition de Vun des vecteurs ib #i > ± ^2 » • • • i $m •

Pour obtenir ce corollaire, il suffira d'appliquer à plusieurs reprises le
théorème 1, en observant qu'après chaque pas, la somme des valeurs
absolues des composantes du vecteur obtenu est plus petite d'une unité que
pour le vecteur précédent.

3. Précisons tout d'abord que par recherche des sous-groupes, nous
entendons plutôt recherche des structures de sous-groupes, sans distinguer
entre groupes localement isomorphes; par exemple, ,,G contient Gf"
signifiera simplement qu'un groupe localement isomorphe à G', mais pas
forcément G1 lui-même, se trouve dans G.

Des groupes clos localement isomorphes admettent un recouvrement
fini commun, produit direct de groupes simples clos7) ; de là on déduit
aisément que la propriété de contenir un sous-groupe G' fermé, au sens
donné ci-dessus à cette expression, est commune à tous les éléments d'une
famille de groupes clos localement isomorphes, et il suffira d'étudier un
représentant de la famille. On peut même, si Ton veut, se borner aux
groupes simples en vertu du théorème :

Un sous-groupe G1 fermé de rang maximum d'un produit direct G1X

ffgX'-'Xfffc de groupes clos est isomorphe à un produit direct G[X
(?2 X • • • X G'k, où G\ est un sous-groupe fermé de même rang de G{, (i
1,...,*).

Démonstration. Un toroïde maximum Tl de G1 est aussi maximum
dans G, c'est donc un produit direct Tx X T2 x • • • X Tk, T{ maximum

7) Voir par exemple E. Cartan, 1. c. note 2, N° 52.
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dans G{. Tous les at c 6?t qui figurent dans les expressions (ax,...,
ai}..., ak) des éléments a de Gf forment un sous-groupe G'{ de Oi9 de
même rang que G{, car il contient T{. Gf sera isomorphe au produit direct
des Gf{ s'il.renferme, avec (al9..., ai}..., ak) tous les éléments at
(«!,..., e{_x, at-, em,..., efc), t 1,..., k, où e, désigne l'unité de Gi9

ce que nous allons justement montrer.
> Selon un théorème rappelé au N° 1, a est conjugué à au moins un

élément de Tl ; soit 6 (bx,..., b{,..., bk) dans Gf tel que :

b-1ab (t1,...,ti,...,tk)€Tl
en particulier

mais Gr contient t{ (ex,..., ei__1, ^, et+1,..., ek), donc aussi fe t{ b~x,

qui est précisément âf.
Ce théorème montre en particulier qu'un sous-groupe maximum de

rang maximum, c'est-à-dire non contenu dans un sous-groupe différent
du groupe total, d'un produit direct GtxG2x • • • xGk est de la forme

Gx x • • • x Gx_x x Q't x Gi+l x • • • x Gk

Gl maximum dans G{.
La possibilité d'utiliser le diagramme ou les vecteurs racines pour

Fétude des sous-groupes de même rang résulte du

Théorème 2. Soient G un group compact, d'ordre n l + 2m, Gr un
sous-groupe connexe fermé de rang maximum, à nf l + 2mr
paramètres. Le diagramme de G' est formé de m! familles complètes de plans
parallèles du diagramme D (G) ; autrement dit, les vecteurs racines de Gr

sont des vecteurs racines de G.

Soit Tl un toroïde maximum de G'. Prenons dans un entourage U(e)
de l'unité dans G un système de coordonnées canoniques rendant le

groupe adjoint linéaire orthogonal. C7(e)^ Tl et U(e)^Gf sont des

portions de plans ; à l'aide d'un changement de coordonnées orthogonal,
on peut faire en sorte que ces plans aient les équations :

^I+l ^1+2 • # ' #> 0

xn'+l — Xn'+2 • • • .>n 0

A un élément x de G' correspond dans le groupe adjoint de G une matrice
(orthogonale) du type :
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les matrices 81(x), de degré n', forment le groupe adjoint linéaire de G'.
Si x e Tl, on aura

Œt 0

«<*> ,'

o

les matrices 8fx(x), x e Tl, constituent un groupe abélien orthogonal;
un changement de coordonnées orthogonal portant sur xl+1,..., xn,
permettra de les mettre simultanément sous la forme

(nt() t{)
* ~~

\ sin 2n êt (x) cos 2n ût (x)

de même, les matrices S2{x) pourront être réduites à la forme

0 \ /cos 2n#nt,+Ax) ~ sin

0 • / \sin
m/

Par définition (cf. N° 1), les plans êt(x) 0(1), i 1, 2,..., m;
forment D(Or) et, puisque ï7* est aussi maximum dans 6?, les plans
#,(#) 0(1), j 1,..., m, donnent D(O), ce qui démontre le
théorème.

Remarquons que Fessentiel du théorème précédent est le mot corn-
plète de la conclusion ; en effet, un élément singulier de Gr étant évidemment

singulier dans 0, il est clair que D(Of) fera toujours partie de

D(G), mais il importait de voir que D(Gf) ne peut contenir un plan
sans comprendre tous les plans de D (G) qui lui sont parallèles, ou si Ton

veut, qu'un vecteur racine de Gf n'est jamais un multiple (différent de

±1) d'un vecteur de G.
La réciproque du théorème 2 est fausse ; il se peut très bien que D (G)

possède un sous-diagramme D1 auquel ne corresponde aucun sous-groupe,
comme nous le verrons bientôt. Notre tâche est précisément de savoir
quand une inclusion de diagrammes permet de conclure à une inclusion
de groupes.
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4. Une condition nécessaire

pour qu'un sous-diagramme indique un sous-groupe

Soit G', à l -\- 2ml paramètres, un sous-groupe fermé de rang maximum

de G. Nous reprenons les coordonnées et notations du théorème 2 ;

G! est donc représenté dans le groupe adjoint linéaire de G par des
matrices :

(x)J0 S2(x)

les matrices 82(x) définissent un groupe homomorphe à G*'. Nous nous
proposons de montrer que :

Si G est simple, le noyau N de Vhomomorphisme de G1 sur le groupe
des matrices 82 (x), x € G1, est identique au centre de G.

Le centre de G est dans chaque toroïde maximum, donc dans Gf et
même dans N, puisque l'image du centre de G dans le groupe adjoint
linéaire de G se réduit à la matrice identité ; il nous reste à prouver que,
inversement, N est contenu dans le centre de G ; pour cela, il sera
commode de considérer l'espace homogène de G défini par(?/8). Pour
l'obtenir, on associe à chaque classe xG' d'éléments de G un point ~x

d'un nouvel espace H ; la topologie de G permet d'y introduire de façon
naturelle une topologie, qui fait de H une variété compacte à n — n1

dimensions. {xn,+1, xn,+2, xn) peuvent être prises comme
coordonnées dans un entourage F(ë) du point ë de H associé à G'.

L'ensemble des transformations de H sur lui-même :

fa:x ~* (a x) 9 a €@

opère transitivement sur H, qui est donc un espace homogène de G.
G1 se compose de tous les éléments g1 de G pour lesquels / (ë) ë ;

c'est le groupe d'isotropie de H, et les matrices 82(x) indiquent
précisément comment le groupe d'isotropie opère sur F(ë). Si S2(x) E,
la transformation laisse F(ë), partant H, fixe point par point. N n'est
autre que l'ensemble des éléments de G qui induisent dans H la
transformation identique. On en déduit immédiatement que N est invariant
dans G ; comme il est de plus fermé, et que G est simple, N est discret et
fait alors partie du centre de G.

Pour énoncer facilement la condition nécessaire que nous avons en vue,
il est commode d'introduire la définition suivante :

8) cf. E. Gartan, 1. c.2), n°s 17, 18, 28, 29.]
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Définition. Le centre de k familles de plans parallèles de Rl est Vensemble

des points par lesquels passent un plan de chaque famille.

En particulier, le centre d'un diagramme D (G) recouvre le centre du
groupe G.

Désignons par D — Dr le complément d'un sous-diagramme Dr de D,
c'est-à-dire l'ensemble des plans de D non compris dans Df ; nous
pouvons alors énoncer le théorème :

Théorème 3. Supposons que les mr premières familles de plans parallèles

du diagramme D (G) dun groupe simple G forment un sous-diagramme
D1\ Pour que G contienne un sous-groupe fermé Gf de diagramme Dr, il
faut que le centre du complément D — Df de Dr dans D soit identique au
centre de D.

C'est une conséquence immédiate du théorème précédent ; en effet, si x
est un point de D — Dr, on a :

fim,+i(x) 0 (1) i l w-m'
d'où

et x représente un élément de N, et fait donc partie du centre de D(G).

Exemple 1. D(J52)9) est formé par les plans:

x1±x2 0 (1)

#! ~ 0 #2

les deux dernières familles définissent un diagramme Df de D. Le point
(i|, \) est dans le centre de D — Df', mais pas dans celui de D(B2) ;

B2 ne contient pas de sous-groupe ayant le diagramme Dr.

Exemple 2. On peut prendre comme diagramme du groupe exceptionnel

G2 les plans

9) Selon l'usage habituel, JB/ désigne la structure du groupe unimodulaire orthogonal
à 21 ~\- l variables, D\ celle du groupe unimodulaire orthogonal à 2 l variables.
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1 —"" 9 *^2 —-~ > 1 I 2 —— V /

/y. /j. A O /y» I
/•£ —— A n, I O /y —-— A / 1 \

où xx et #2 sont coordonnées dans un système dont les vecteurs base ont
la longueur un et font entre eux un angle de 60 degrés. Les trois familles
de la première ligne forment un diagramme de A2 auquel ne correspond
aucun sous-groupe, car le point (^, ^) est dans le centre de son complément,

mais pas dans celui de D(G2).

Corollaire. Soit G un groupe simple clos de rang l, à n paramètres.
Un sous-groupe fermé de même rang a au maximum n — 21 paramètres.

Démonstration. Le centre de D — D! est égal au centre de D (G) qui
est un réseau de points ; en particulier, les plans de D — Dr passant
par l'origine ne peuvent avoir que ce point en commun et leur nombre
est au moins l. Or, la différence entre les ordres de G et de Gf est
égale à deux fois le nombre de familles de plans formant D — Df,
d'où le corollaire.

Remarques sur un mémoire de B. L. van der Waerden. Dans le travail
cité en note5), l'auteur construit par induction les systèmes de vecteurs
racines des groupes simples clos et en dresse le tableau p. 461, indiquant
par une flèche quand un système est une extension d'un autre. Signalons

tout d'abord qu'il y manque les relations Z)5-»i?6, Z)6->i77,
établies au § 17, sous n 5 et n 6, et que, autour de Fé, le tableau
correct est

"D ÏP /~1

ce qui résulte du texte: au § 7, l'extension de Cz donne un système Fé

englobant C4, de même au § 6 pour les B.
Dans une phrase précédant immédiatement ce tableau, l'auteur dit

que les flèches indiquent aussi des inclusions de groupes, ce qui n'est
pas toujours exact. Le théorème 3 permet de voir aisément que
D4-> C4-> Fé et Dn-> Cn(n ^ 3) ne sont pas des inclusions de

groupes. Du théorème 4 établi ci-dessous on déduit par contre que
les autres relations entre systèmes de même rang correspondent à des

inclusions de groupes. Ajoutons enfin pour compléter que les flèches
reliant 2 systèmes de rangs différents indiquent toujours des inclusions
de groupes.
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5. Un critère nécessaire et suffisant

pour qu'un sous-diagramme indique un sous-groupe

Pour parvenir à ce critère, nous aurons besoin du :

Lemme. Soit G! un sous-groupe fermé de rang maximum de G. Si êx

et #2 sont des vecteurs racines de Gf et si êx + &2 est un vecteur racine de

G, c'est aussi un vecteur de G110).

Pour la démonstration, nous distinguons deux cas :

a) rang d§ G 2. Les seules structures semi-simples de rang deux
non isomorphes sont A2, B2, D2, G2 ; un coup d'œil sur leurs
diagrammes11) montre que dans deux cas seulement on peut trouver un
sous-diagramme ne vérifiant pas notre lemme ; ce sont justement les
deux exemples traités après le théorème 3 ; nous avons vu qu'il ne
correspond pas de sous-groupe à ces sous-diagrammes, ce qui démontre la
proposition sous l'hypothèse a).

b) Rang de G>2. Les plans ^(x) 0 et &2{x) 0 se coupent
suivant un espace Rl~2 à l —- 2 dimensions. Le centralisateur connexe12)
N de Rl~2 a comme diagramme tous les plans de D(G) parallèles à Rl~2

ses vecteurs racines sont donc tous les vecteurs racines de G situés dans
-> -> -> ->

le plan à deux dimensions déterminé par #x et ê2, en particulier #x, ê2,
-> ->
#i + #2 • N es^ localement le produit direct d'un toroïde à l —- 2 dimensions

recouvert par Rl~2 avec un groupe semi-simple N2 de rang 2 ayant
les mêmes vecteurs que i\f (cf. N° 1).

En raisonnant de même sur Gr, on voit que tous les vecteurs racines de
-> ->

G! coplanaires avec §x et #2 sont vecteurs racines d'un groupe N2 de rang
_> _>

deux, qui est l'intersection de N2 avec Gr. D'après a), §x + #2 est un
vecteur racine de N2 donc aussi de Gr.

10) Du point de vue infinitésimal, ce lemme résulte, pour les groupes à paramètres
complexes, de théorèmes connus (cf. Cartan, Thèse, p. 55, th. 5).

n) Ils se trouvent par exemple dans : E. Stiefel, 1. c. note 3.

ia) Nous désignons ainsi l'ensemble des éléments de G échangeables avec tous les
éléments de Tl représentés par des points de Rl~2. Rl~2 recouvre un sous-groupe fermé à
l — 2 paramètres de Tl, car Rl~2 a en commun avec le réseau unité un réseau à l — 2

dimensions (cf. E. Stiefel, 1. c, p. 361).
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Théorème 4, Soient G un groupe compact de rang l, ±#x, ±#2,...,
5e«s vecteurs racines. Pour que ±#1, ±#2,..., ±^m/, soient tes vecteurs
racines d'un sous-groupe G! fermé de G il faut et il suffit que :

-> -> ->
(a) Si A (h < Z) &s£ Ze rcmgr de #t, #2,..., #m,, on puisse trouver parmi

_> _> ->
t?!, #2 9 • • • > $m; ^ vecteurs dont tous les autres soient combinaisons linéaires
à coefficients entiers.

(b) Tout vecteur racine de G combinaison linéaire à coefficients entiers de

ê1}ê2,...,êmf fasse partie du système ±&x, ±&2,..., ±#m,.
-» ->

1) Ces conditions sont nécessaires. Supposons donc que ±#1, ±#2,...,
->

±#n»' soient les vecteurs racines d'un sous-groupe (?' fermé de G. Si h
est le rang de ces vecteurs, nous savons qu'il est possible d'en choisir h
dont les autres sont combinaisons linéaires à coefficients entiers ; on peut
par exemple prendre h vecteurs perpendiculaires aux h faces d'un
domaine fondamental de W{Gr), cf. N° 1, donc (a) est bien nécessaire ; il est

-> -> ->
loisible d'admettre que ces vecteurs sont êl, #2,..., fth ; alors toute com-

-> -> ->
binaison à coefficients entiers de êx, &2,..., ïïm, est déjà combinaison

-> -> ->
à coefficients entiers de &1, #2,..., &h.

Soit maintenant

-> -> ->
& a1&1 + #2 #2 H— ' + a* $* (a« entiers)

un vecteur de G. En vertu du corollaire au théorème 1, on peut trouver
-> ->

un vecteur i#f (i < A) relié à # par une suite de vecteurs racines de
_> _> ^. _>

# > ±^»> =b#* ib ^j • • • 9
& Ie ?-ème se déduisant du (j -— l)-ème par ad-

-> -> ->
dition de l'un des vecteurs ±^, ±#2,..., dt&h \ mais le lemme ci-dessus

-> ->
assure que ±^» ± ^*? Puis ^e troisième vecteur de la suite, le quatrième,

enfin & sont des vecteurs racines de G1', c. q. f. d.

-> ~> ->
2) Ces conditions sont suffisantes. Soient donc fix,^,.. .,&h h vec-

-> -> ->
teurs racines de G indépendants et ±#1* ±#2?' • •> dz^W' tous les vec-

-> -> ->
teurs de G combinaisons linéaires à coefficients entiers de fîx, #2,..., &h.
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Nous avons à montrer que ±#1, ±^2,..., ±#m> sont les vecteurs d'un
sous-groupe G! de G. Considérons pour cela l'ensemble Z des points x de
22' pour lesquels êt(x) 0(1), i 1,..., m'. Z est identique au centre
des h familles de plans êt(x) 0(1), i < h par suite de (a). Appelons
G1 la composante connexe du centralisateur de Z dans G. Le diagramme
de Gr comprend en tout cas les plans &t(x) 0(1), i 1, 2,..., mf, en
vertu de la définition même des éléments singuliers d'un groupe clos (voir
N° 1), et nous allons maintenant montrer qu'il n'en contient pas d'autres ;

il suffit pour cela d'établir qu'aucune famille de plans $mi+t(x) 0(1)
ne renferme Z, puisque Z, faisant partie du centre de G1 doit se trouver

->
sur chaque famille de plans parallèles de D(Gf). Or, êm,+t n'étant pas

-> -> ->
une combinaison à coefficients entiers de #x, #2,..., &h on a deux
possibilités : ou bien,

#«'+. «1*1 + «2 #2 H h«»#»

et l'un des coefficients au moins, disons a^, est rationnel non entier, et
alors un point z solution de

^(z) 1 Û2(Z) #,(2) • • • #„(*) 0")

se trouve dans Z mais pas sur un des plans &m,+l(x) 0(1) ; ou bien

$m'+t es^ indépendant de &l9 #25..., êh (ce qui ne peut du reste se
produire que si h<l). Dans ce cas, l'intersection des plans &t(x) 0,
i — 1, 2,..., h est un espace à l — h dimensions possédant au moins
une droite qui n'a avec &m>+l(x) 0 que l'origine en commun; les

points de cette droite sont dans Z mais ne seront pas tous sur un des

plans 0w,+t

6. Soient G un groupe clos, G1 un sous-groupe connexe de rang maximum,

Z le centre de G1. De la démonstration du théorème 4 il résulte
immédiatement que G1 est le plus grand sous-groupe connexe de G formé

par les éléments de G échangeables avec tous ceux de Z ; Gf est donc
centralisateur connexe de Z dans G. On peut même affirmer que G1 est
identique à la composante connexe du normalisateur de Z dans G, En
effet, tout automorphisme x-xZx de Z fourni par un élément de la
composante connexe de ce normalisateur peut être relié à l'identité par
une suite continue d'automorphismes de Z ; mais Z est un groupe abélien

compact (connexe ou non, éventuellement discret) et ses automorphismes

13) Ce système est compatible, car les formes linéaires $l9.. .,#/& sont indépendantes
(et h<l).
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continus forment un groupe discret ; l'automorphisme précédent est
donc l'identité et x est échangeable avec chaque élément de Z ; le norma-
lisateur connexe de Z est égal au centralisateur connexe de Z. Nous avons
démontré :

Théorème 5. Soient G un groupe de Lie clos, G! un sous-groupe fermé
connexe de rang maximum, Zr le centre de Gf ; Gr est égal à la composante
connexe du normalisateur dans G de Zf.

Corollaire, Tout sous-groupe fermé connexe maximum1*) de rang maximum

est le normalisateur connexe d'un élément de G.

Pour prouver ce corollaire, considérons un élément z qui soit dans le
centre de (?' mais pas dans celui de G (z existe certainement si G! ^ G

d'après le théorème 5). Le normalisateur connexe de z est différent de G,
il contient Gr et doit lui être égal si ce dernier est maximum.

La réciproque du corollaire est fausse, comme on peut s'y attendre ; un
sous-groupe peut être normalisateur d'un élément sans être maximum
(voir le N° 7). On peut même se demander si tout sous-groupe fermé de

rang maximum ne peut pas être défini comme normalisateur d'un élément
de G ; cela revient à savoir s'il existe toujours un point dans le centre du
diagramme de G1 par lequel ne passe aucun plan du diagramme de G qui
ne fasse déjà partie du diagramme D ((?'). Il n'en est rien, comme le
montre l'exemple suivant :

Exemple. D(O3) se compose des plans

2^== 0(1) i l,2,3.

les trois premières familles forment un diagramme Df du produit direct
A1xA1xA1. Le centre de Dr se compose des points (%/2, n2j2, wa/2),
nt entiers quelconques. Il est facile de voir que les vecteurs racines de Df
satisfont aux conditions (a) et (b) du théorème 4 ; par conséquent Dr est
le diagramme d'un sous-groupe G! de C3. G1 ne peut être défini comme
normalisateur d'un élément de G. En effet, si c'était le cas, on pourrait
trouver un point P (nJ29 n2j2, ns/2) du centre de D! par lequel ne

passe aucun plan de D —Dr. Or, cela est impossible ; en effet deux au
moins des. coordonnées de P sont congrues entre elles modulo ^ ; soient i
et j leurs indices, P est alors sur un des plans xi + xi 0(1), et le
normalisateur de P est plus grand que G'.

14 Ici et dans la suite de ce travail, Of sous-groupe maooimum de G signifie: O' n'est
contenu dans aucun sous-groupe connexe de O différent de O ou de Q'.
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7. Détermination explicite des sous-groupes maxima de rang maximum
des groupes simples clos

Rappelons tout d'abord que les plus grands sous-groupes de rang
maximum des groupes de Lie compacts sont connus dès que ceux des

groupes simples le sont (N° 3) ; ce n'est donc pas restreindre la généralité
que de se limiter à ces derniers.

Un sous-groupe maximum de même rang d'un groupe simple clos G est
normalisateur d'un élément x de G (théorème 5, corollaire) ; bien entendu,
nous ne cherchons que les types de sous-groupes maxima, sans distinguer
entre des sous-groupes isomorphes, en particulier entre les normalisa-
teurs de deux éléments conjugués. Il est donc loisible de supposer que x
se trouve dans un toroïde maximum déterminé Tl, ou même dans un
simplexe fondamental du diagramme D(G), qui contient toujours au
moins un représentant de toutes les classes d'éléments conjugués de G

(cf. N° 1).

Soit donc x un point du simplexe S (G) ; si x est à l'intérieur de 8,
le normalisateur N(x) est Tl, qui n'est pas maximum si l> 1 ; si # est

sur une face k k >2 dimensions de S (mais pas sur une arête) on voit
facilement que le normalisateur d'un point d'une arête de 8 contenue
dans ce i-plan est plus grand que N(x), qui n'est donc pas maximum.
Si x est sur une arête dont une extrémité x1 au moins n'appartient pas
au centre de D(G), N(x) est contenu dans N(xf) et n'est pas non plus
maximum ; supposons maintenant que les deux extrémités de l'arête
fassent partie du centre de D(G) et soit z l'une d'elles ; z représente un
élément du centre de G et le normalisateur N(z"1x) du produit (z~xx)
est le même que celui de x. Le point (z^x) est sur une arête d'un
simplexe 8', issue de l'origine 0 (car la multiplication dans Tl est donnée par
l'addition vectorielle dans Rl). Il existe une transformation de W qui
amène 8r et 8 (cf. N° 1) et z~xx en un point x1 d'une arête de 8 passant
par 0; x' et (z~xx) sont conjugués, et leurs normalisateurs isomorphes.

Notons d'autre part que les normalisateurs des points intérieurs à une
arête sont tous les mêmes ; chacun a en effet comme diagramme tous les

plans de D(G) parallèles à cette arête et aucun autre puisque 8 (G) n'est
traversé par aucun plan de D(G).

Par conséquent, pour obtenir tous les types de sous-groupes maxima, il
suffit d'examiner les normalisateurs des sommets du simplexe 8 qui n'appartiennent

pas au centre de D (G) et ceux des milieux des arêtes issues de 0

dont la deuxième extrémité est dans le centre de D(G), d'où le théorème :
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Un sous-groupe maximum de rang maximum d'un groupe simple compact

est soit semi-simple soit de la structure Gl^.1 xT, où Ol^1 est un sous-

groupe semi-simple de rang l — 1 et T un groupe à un paramètre.

Le premier cas est celui du normalisateur d'un sommet, le deuxième
celui du normalisateur du milieu d'une arête (car alors tous les vecteurs
racines du sous-groupe sont perpendiculaires à cette arête).

Mais il convient d'être plus précis, car nous ne savons pas encore si tous
les normalisateurs envisagés sont vraiment maxima.

Soient ïïx (x) > 0, &2 (x) > 0,..., 0, (x) > 0, & (x) < 1 les équations du
simplexe S (G). êt, #2,..., êt sont les paramètres fondamentaux, #
mi $i ~t~ m2 $2 ~f~ * * ' + mi ^i (mi entiers positifs) est le paramètre dominant
(voir N° 1). êt, #2 > • • • > $1 son^ des formes linéaires indépendantes, et on
peut les utiliser pour définir dans Rl de nouvelles coordonnées, ce que
nous ferons. Dans ce système, le centre de D(O) est le réseau des points
à coordonnées entières. Les sommets de S autres que l'origine sont les

points

pour que x€ soit dans le centre de G, il faut et il suffit que m{ 1 ;

notons en passant que le nombre des rat égaux à un donne l'ordre, diminué

de un, du groupe de Poincaré du groupe adjoint linéaire de G15).

Théorème 6. Soient G un groupe simple compact, xt (0,..., 0,1/ra^,
0,..., 0) un sommet du simplexe 8 (G).

(a) Si mi 1, le normalisateur du milieu de Varête 0x{ est maximum
dans G, et réciproquement.

(b) Le normalisateur N(x{) de x{ est maximum si et seulement si m€ est

premier > 1.
On obtient de la sorte tous les types de sous-groupes maxima de rang maximum

de G1*).

La réciproque de (a) ayant déjà été établie plus haut, il nous reste à
démontrer trois points.

1) Si m{ 1, le normalisateur N(y) du milieu y de 0x{ est maximum.

Le diagramme de N(y) se compose de tous les plans de D(G)

15) Voir E. Cartan, 1. c, note 6; aussi 1. c, note 2, N° 48.

16) II n'est pas exclu que certains des sous-groupes maxima donnés par (a) et (b) soient
isomorphes; tout au moins est-on sûr qu'ils ne sont pas homologues dans le groupe
adjoint connexe.
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parallèles à Ox%. Si maintenant Nr est un sous-groupe plus grand que
N(y), D(N') a au moins un plan non parallèle à 0xt; soit #'
ni$i + n2^2 + * * * + n>i&i le paramètre angulaire correspondant ; n% =1
car nt ^ 0 et nt < mt 1 (# paramètre dominant) ; par suite le
système de congruences 0 #x (a;) • • • #,_! (a;) #t+1 (a;) • • • &l (x)

êf(x) est équivalent à ê$(x)~0, (j 1,..., l), et tout élément du
centre de Nf est dans le centre de G, d'où Nf G (théorème 5) ; N est
bien maximum.

2) Si mt a-b (a et b entiers différents de 1), JV(#t) n'est pas maximum.

D(N) est formé par toutes les familles de plans de D(G) qui
contiennent xt ; les paramètres angulaires de N(xt) sont donc tous les

paramètres angulaires de G qui, exprimés en fonction de ïï1, #2,..., êt,
ont rat comme coefficient de #t. Soit y xax le point (0,...,0, 1/6,
0,..., 0) ; N(y) a comme paramètres tous ceux dont le coefficient de êt
est 6 ou un multiple entier de 6, donc N (y) N(xt). Mais G a au moins
un paramètre #' pour lequel le coefficient de #t est b ; pour s'en con-

vaincre, il suffit d'appliquer le corollaire du théorème là ^, #2,..., êt, ê.
Ainsi #; est paramètre angulaire de N(y) mais pas de i^(a:t). N(y) est
effectivement plus grand que ÎV(#t) et, comme N(y) #<?, iV(a;t) n'est

pas maximum.

3) Si mt est premier >1, -^(^) est maximum. Si ^(^t) n'était pas
maximum, il serait contenu dans un sous-groupe maximum, c'est-à-dire
dans le normalisateur N (y) d'un certain élément y de î7' ; il nous suffira
donc de montrer que tout normalisateur N(y) ^G contenant N(xt)
est égal à N(xt).

êx,..., /&l_l, #4+1,..., êt fî sont des paramètres de N (xt) et N(y); y est
dans le centre de N(y), donc ses coordonnées (%,..., nt) seront toutes
entières sauf la i-ème ; quant à cette dernière, l'équation #(y) 0(1)
indique qu'elle est de la forme q/mtf et l'on est sûr que g^É0(mt),
sinon y aurait toutes ses coordonnées entières, ferait partie du centre
de G, et alors N(y)—G. Désignons par z le point (%, n2,..., nt_1, 0,

wt+x,..., ^?) ; 2; est dans le centre de G et de plus y — x\-z.
mt étant premier et q ^ 0 (mt), on peut trouver un entier r tel que

q-r 1(^J, et on voit alors aisément que

y* #f-2/ (2;; dans le centre de G).

Chaque élément de N(y) est bien entendu échangeable avec yr, d'où
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ce qui, joint à l'hypothèse N(y)} £f(xt), entraîne N(y) N(xt),
q. e. d.

Nous savons maintenant exactement quels points du simplexe sont à

considérer. Il nous faut encore pouvoir indiquer la structure des sous-

groupes trouvés ; il suffit pour cela de connaître un système de
paramètres fondamentaux du sous-groupe, ce qui est immédiat ; en effet, si

nous prenons le normalisateur d'un sommet x%, les plans # 1, ê} 0

(j <h j ¥" i) délimitent un angle polyèdre contenant S (G) et par
conséquent traversé par aucun plan singulier issu de x% ; donc les plans
ê 0, &, 0 (j <l, j ^i) bornent un domaine fondamental du

groupe W de N (xt), et #, #x,..., êl_l, êt+1,..., êl sont des paramètres
fondamentaux de N(xt) ; si le sous-groupe envisagé est normalisateur du
milieu d'une arête 0 xt, on voit de même que &x,... ,/d't_1 ,#t+1,... ,&t sont
des paramètres angulaires fondamentaux de sa composante semi-simple.

Pour effectuer rénumération des sous-groupes maxima, il est commode
de représenter le simplexe S (G) selon un procédé dû à Schlâfli : à chaque
face ê} 0, j <l, et & 1 on fait correspondre un point P,, j <l,
P, et on joint Pt à P} par k — 2 traits si l'angle non obtus des deux
faces est njk ; si on enlève le point P et les traits issus de P on a une
représentation de l'angle polyèdre à l faces, domaine fondamental de
W(G) ; en général, cet angle polyèdre caractérise déjà le groupe ; parmi
les groupes simples, seuls Bx et Gx ont le même angle polyèdre sans être
localement isomorphes pour l > 3.

Si mt est premier > 1, on enlèvera à la représentation de S le point
Pt et les traits partant de Pt, la figure restante donne l'angle polyèdre de

N{xi). Si on enlève les points P et P^, on obtient l'angle polyèdre du
normalisateur d'un point intérieur de l'arête Ox}.

Dans le tableau qui suit, nous énumérons les sous-groupes maximums
des groupes simples ; dans les deux premières colonnes se trouvent la
représentation du simplexe du groupe et son paramètre dominant, dans
les deux dernières les sous-groupes maxima de rang maximum ; sous Gt

figurent les sous-groupes simples ou semi-simples, sous Gl__1xT, les

sous-groupes à centre continu.
__

Dans les deux remarques ci-dessous, G désigne le groupe adjoint linéaire

de la structure simple close G.

Remarque I. Le centre de G se réduit à l'élément neutre e, et le centre
de son diagramme est le recouvrement dans Rl de e ; les sommets x% du
simplexe pour lesquels mt 2 et les milieux des arêtes Oxt lorsque

nii 1 représentent des éléments d'ordre 2 de G ; leurs normalisateurs
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connexes ne sont autres que les sous-groupes caractéristiques des auto-
morphies involutives de G, et les espaces homogènes correspondants sont
symétriques irréductibles ; à ce point de vue, ces sous-groupes sont connus
depuis longtemps17). Le tableau précédent montre en particulier que tous
les sous-groupes maxima de rang maximum des groupes simples Al9 Bt,
O|, Dj engendrent des espaces symétriques. Les groupes exceptionnels se

comportent différemment et chacun contient au moins un sous-groupe
maximum caractéristique d'une automorphie non involutive (d'ordre 3

ou 5).

Remarque II. L'ordre de connexion des sous-groupes maxima. En s'ap-
puyant sur le fait que les points à coordonnées entières forment le réseau

unité de G, on démontre aisément que le normalisateur dans G d'un
sommet xi du simplexe a comme centre exactement le groupe cyclique,
d'ordre mz, engendré par x{ ; cela permet d'indiquer facilement des exemples

de groupes simples simplement connexes contenant des sous-groupes
maxima semi-simples non simplement connexes. Par exemple, le groupe
adjoint de E8 est simplement connexe et renferme A8 qui est normalisateur

de x5 avec m5 3. Comme le groupe simplement connexe A8
recouvre neuf fois son groupe adjoint, le groupe de Poincaré du A8 c E8
est d'ordre 3. Il en est de même pour le groupe A2xA2xA2 qui se

trouve dans le groupe simplement connexe de structure 2?6.

8. Les sous-groupes locaux de rang maximum des groupes clos

Théorème. Soit G un groupe de Lie compact de rang l, K un sous-

groupe local continu à nf paramètres18) de rang l, c'est-à-dire contenant un
sous-groupe (local) abélien à l paramètres. Alors, K est le noyau d'un sous-

groupe fermé G1 de G à n' paramètres.

Soit U(e) un entourage de l'unité de G rapporté à des coordonnées

canoniques ; K est alors dans l'intersection de U avec un plan à nf
dimensions18) ; on peut supposer U assez petit pour que K remplisse toute cette
intersection.

17) E.Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc.
Math. France, t. 55, 1927, p. 126—132.

18) Cela veut dire que les éléments de K sont dans un entourage U de l'unité e de (¦?,

comprennent e et dépendent de façon continue de n' paramètres; de plus le produit de
deux éléments de K appartient à K s'il est contenu dans U ; d'après un théorème de Gartan,
1. c, note 2, No. 26, K est un groupe de Lie et ses points forment une variété analytique
dans un système de coordonnées analytiques de G. C'est en particulier une portion de plan
à nf dimensions dans un système de coordonnées canoniques; enfin, en restreignant
éventuellement la variété de K, on peut supposer que K possède l'inverse de chacun de ses

éléments.
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L'ensemble des produits que Ton peut former avec un nombre fini
d'éléments de K constitue un sous-ensemble Gf de G qui est en tout cas un

groupe abstrait. Soit Gr son adhérence dans G, c'est-à-dire l'ensemble

composé de Gr et des points d'accumulation de G1 dans G ; G! est un sous-

groupe fermé de G (donc de Lie et compact). Soit enfin Kf G! rs U(e).
Kr contient K, c'est l'intersection de U avec un plan à p >n' dimensions.

Les transformations (linéaires en coordonnées canoniques) x~lUx
laissent le plan de K invariant si x est dans K, donc aussi si x cGf, et

par raison de continuité, si x eGf. K est donc un sous-groupe local
invariant dans Kf ; mais K1 est le noyau d'un groupe clos G1 ; si p>nf, K'
est isomorphe à un produit direct KxL19), où L est à p — nf
paramètres. Or, L contient au moins un groupe à un paramètre, qui
déterminera avec le groupe abélien d'ordre l de K un groupe abélien à l -f- 1

paramètres ; celui-ci engendrera dans G un groupe dont l'adhérence sera
un toroïde à au moins Z + 1 dimensions, ce qui contredit l'hypothèse sur
le rang de G ; ainsi, K et Kr ont la même dimension et K Kr ; K est

un voisinage de l'unité pour le sous-groupe Gr fermé dans G.
Nous aurions donc pu nous placer au point de vue local pour rechercher

les sous-groupes fermés de rang maximum. On sait d'autre part qu'il y a
correspondance biunivoque entre les sous-groupes locaux d'un groupe
de Lie G et les sous-anneaux de Lie de l'anneau des transformations
infinitésimales de G. Notre théorème 4 doit donc, convenablement
interprété, fournir un critère pour qu'un sous-ensemble de l'anneau de G qui
renferme l transformations échangeables entre elles forme un anneau de
Lie. On peut s'assurer que tel est le cas ; un critère analogue a du reste
déjà été obtenu par Killing (Math. Annalen 36, pp. 239) dans l'étude des

sous-anneaux maxima des structures simples complexes. Inversement,
nous aurions pu opérer directement dans l'anneau de G, mais bien
entendu, la caractérisation des sous-groupes comme normalisateurs échappe
à cette méthode.

(Reçu le 1er septembre 1948.)

E. Cartan, 1. c, note 2, N° 41.
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