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Les sous-groupes fermés de rang maximum
des groupes de Lie clos™

Par A. BoreL, Zurich, et J. DE SIEBENTHAL, Lausanne

Dans un groupe de Lie compact G, tout sous-groupe abélien maximum
est clos, puisqu’il est fermé, et de plus connexe 1); c’est donc un produit
direct de ! groupes clos & un parameétre 2), appelé toroide a I dimensions ;
Il ne dépend que de G et non du sous-groupe abélien considéré et définit
le rang de G (au point de vue global).

L’objet de ce travail est I'étude des sous-groupes fermés (donc de Lie)
connexes d’un group de Lie clos possédant le méme rang que le groupe,
ou, si 'on veut, ayant avec le groupe un toroide maximum commun. Ils
sont complétement caractérisés par le théoréme suivant, démontré au
Ne 6:

Soient G’ un sous-groupe fermé connexe de rang maximum d’un groupe
de Lie clos Q et Z' le centre de Q' ; alors, G’ est la composante connexe du
normalisateur dans G de Z'.

Par normalisateur dans G d’un sous-groupe Z’, nous entendons ici,
selon 'usage habituel, 'ensemble des éléments x de G' pour lesquels:

x1Z'x ¢ 72/

c’est un sous-groupe fermé de G, de rang maximum si Z’ est abélien.

On peut aussi dire qu'un sous-groupe connexe de rang maximum est
entierement défini par son centre.

Cette étude se fera a I’aide du diagramme ou, ce qui revient au méme,
des vecteurs racines de ¢, dont nous rappelons les définitions et princi-
pales propriétés au N° 1. Leur emploi méne rapidement au but ici grace
au fait que les vecteurs racines d’'un sous-groupe de méme rang sont

*) Un résumé de cet article a paru dans les Comptes Rendus, t. 226 (1948) p. 1662/4.

1) H. Hopf, Uber den Rang geschlossener Liescher Gruppen, Comm. Math.
Helv. 13 (1940—41), p. 119—143, N©° 23.

%) E. Cartan, La théorie des groupes finis et continus et 'analysis situs, Mé-
morial Sc. Math. XLII, Paris 1930, N© 42.
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aussi vecteurs racines du groupe (Théoréme 2), ce qui n’est en général
pas vrai pour les sous-groupes de rangs inférieurs & celui du groupe.
Cette proposition nous conduit & chercher un critére pour qu’un systéme
de vecteurs racines pris parmi ceux de G corresponde & un sous-groupe
fermé. Nous donnons a cet effet au N° 4 une condition nécessaire (Théo-
reme 3) d’ou nous déduisons une borne supérieure pour le nombre des
parametres d’un sous-groupe de méme rang. Ensuite, une propriété des
vecteurs racines démontrée au N° 2, jointe au théoréeme 3, nous permet
d’obtenir au N° 5 une condition nécessaire et suffisante, qui équivaut &
I’énoncé donné plus haut. Enfin, le N° 7 est consacré a la détermination
explicite des plus grands sous-groupes de méme rang des groupes simples
clos.

En nous proposant I'examen des sous-groupes fermés, nous nous
plagons automatiquement & un point de vue global, et effectivement
nous considérons dans ce travail toujours les groupes ,,en grand‘; mais
il est & remarquer que 'on pourrait traiter le probléme par la méthode
infinitésimale car tout sous-groupe de Lie local d’un groupe clos G qui est
de rang maximum, c’est-a-dire contient un moyau de sous-groupe abélien
maximum dans G, est le noyau d’un sous-groupe en grand fermé dans G.
Nous reviendrons sur ce point au N° 8.

Dans ce mémoire, nous nous occupons exclusivement des sous-groupes
de méme rang que le groupe, nous réservant pour plus tard 1’étude des
sous-groupes de rang quelconque. Mentionnons cependant que les con-
sidérations du N° 4 s’étendent avec peu de modifications au cas général,
ce qui n’est pas le cas pour le N° 5.

Il nous est agréable de remercier ici MM. H. Hopf et E. Stiefel de
leurs conseils. C’est directement & 1'instigation de ce dernier que I'un de
nous (A. Borel) s’est occupé de la question traitée ici, & I’étude de la-
quelle J. de Siebenthal a été amené par ’examen de problémes topolo-
giques proposés par M. Hopf.

1. Dans la suite G désignera toujours, méme si nous ne le mention-
nons pas expressément, un groupe de Lie compact connexe et G’ un sous-
groupe fermé connexe de rang maximum de G.

Soit T'! un toroide maximum de G. On peut toujours rapporter un en-
tourage U (e) de ’élément neutre & des coordonnées orthogonales cano-
niques ,, %,,..., &, (de premiére espéce) dans lesquelles?):

8) Pour les théorémes de ce paragraphe, voir E. Stiefel, Uber eine Beziehung zwi-
schen geschlossenen Lieschen Gruppen und ..., Comm. Math. Helv. 14, 1941/42,
P- 360—379.
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a) le groupe adjoint linéaire de G' est orthogonal.

b) z,,..., 2, sont les coordonnées de 7'~ U(e); la multiplication
dans 7' est représentée par ’addition des coordonnées et 'image de 7'
dans le groupe adjoint linéaire de G est formée par des matrices du type :

E,

0 Dl(x)' D.(z) = 279, (x) — sin 279, (x)
sin 2z, (x) cos 2z, (x)
D,, (z)
+ 9 (%), + & (x),. .., +3,(x) étant des formes linéaires en z,,..., z;;

ce sont les paramétres angulaires de G'; deux parameétres ,,d; quel-
conques sont linéairement indépendants.

Prenons z,,..., #; comme coordonnées dans un espace R! & [ dimen-
sions ; I’addition vectorielle fait de R‘le groupe de recouvrement universel
simplement connexe de 7'!; réciproquement, on obtiendra 7'' & partir
de R! en identifiant entre eux les points équivalents par rapport & un
réseau & ! dimensions, le réseau unité, qui est le noyau de I’lhomomor-
phisme de R!sur 7'!. Cette correspondance entre R!et 7'! permet de con-
sidérer un systeme (z,,...,x;) comme caractérisant indifféremment un
point de R! ouun élément de 7'!, ce dont nous ferons constamment usage.
Les plans & I — 1 dimensions:

?;(x) = 0 (modulo 1) , 1=1,2,...,m

définissent dans R! le diagramme de G que nous noterons D (G). Ces
plans contiennent les éléments singuliers de T''%), c’est-a-dire ceux dont
le normalisateur dans G est plus grand que 7'!; si un point se trouve
sur k plans, son normalisateur connexe posséde ! + 2k parametres.

Nous considérerons R! comme un espace euclidien, avec la métrique
2 + a2 +---+ 2} ; les symétries aux plans du diagramme laissent ce
dernier et le réseau des points équivalents a I’élément neutre invariants.
En tant que transformations de 7', elles sont fournies par des auto-
morphismes intérieurs de G laissant 7'! invariant. Les transformations
de T'! obtenues a I’aide de ces automorphismes constituent un groupe qui
est isomorphe (holoédrique) au groupe ¥ engendré par les symétries aux
plans du diagramme contenant l’origine. ¥ est un groupe fini.

4) Les formes 4 2x V——lﬁi sont les racines de &, au sens de la théorie infinitésimale;
les éléments singuliers du texte et contenus dans 7!~ U (e) sont portés par les groupes
& un paramétre qu’engendrent les transformations infinitésimales de 7'' dont le polynéme
caractéristique admet la racine zéro avec une multiplicité plus grande que .
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On peut aussi caractériser le diagramme par un systéme de 2m vec-
—- -

-> ->
teurs racines 4 ¢,, + 9,,..., + 9, introduits par H. Weyl. 9, est le
vecteur contravariant dont les composantes covariantes sont les coeffi-

-
cients du parametre angulaire —¥,; ¢, est donc perpendiculaire au plan
; = 0. Ces vecteurs vérifient les conditions?):

> >
o (0:,5) oy

—~——— est un nombre entier ((9;,9;) est le produit scalaire
(9;,9;) ordinaire).

(1)

> >
: , -> -> > - > >
2(%’%) :k, ?9‘j‘—8191',29\’-“‘28’192',...,?9’--‘1001-,

(¥:,9;) (e = signe de k) sont aussi des vecteurs racines.

@) i

(2) est du reste une conséquence de (1) et du fait que les vecteurs racines
sont deux & deux opposés.

Toutes ces propriétés sont en général énoncées pour les groupes com-
pacts semi-simples, mais elles s’étendent d’elles-mémes aux groupes clos
quelconques, qui sont toujours localement isomorphes au produit direct
d’un groupe semi-simple et d’un groupe commutatif indiquant la pré-
sence d’un centre continu ; si celui-ci est & s parametres, les plans ¢, = 0,
t=1,...,m se couperont suivant un espace R°® & s dimensions; les
vecteurs racines sous-tendent l’espace R!~* complémentaire de R?®, et
réciproquement. R!~¢ recouvre le toroide maximum de la composante
semi-simple ; si cette derniere n’est pas simple, elle est (au moins locale-
ment) produit direct de k£ groupes simples et les vecteurs racines se ré-
partissent en k systémes de vecteurs, mutuellement orthogonaux, corres-
pondant aux différents groupes simples, et réciproquement.

Si le centre continu de G a s paramétres, le domaine fondamental de ¥
est limité par ! — s plans, disons ¢, =0, ¢, =0,...,¢,_, = 0; tous
les autres paramétres angulaires sont combinaisons linéaires & coeffi-
cients entiers de 9,,%,,...,%,_,, qui sont dits pour cela former un sys-
téme de paraméires fondamentaux ; en multipliant éventuellement cer-
tains paramétres par (—1), on peut faire en sorte que tous les coeffi-
cients soient positifs ou nuls, le domaine fondamental de ¥ étant alors
donné par les relations &, (x) >0, +=1,...,1 —s.

5) Voir B. L. van der Waerden, Die Klassifikation der einfachen Lieschen
Gruppen, Math. Zeitschr. 37, 1933, pp. 448; aussi E. Stiefel, 1. c. note 3, p. 378; les vec-
teurs définis par M. Stiefel ne sont pas exactement les vecteurs racines, mais ont les lon-
gueurs inversément proportionnelles.
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Rappelons encore que, d’aprés un théoréme de E. Cartan®) tout élé-
ment de ' a au moins un conjugué par un automorphisme intérieur dans
tout domaine fondamental du groupe engendré par les symétries a tous
les plans du diagramme. Ce domaine est un simplexe ®) si le groupe est
simple, un produit topologique de simplexes et d’un espace R® dans le
cas général. L’angle de deux faces est toujours de la forme =/k, k entier,
ce qui permet de représenter ce polyédre par un graphe trés simple, di
a Schlifli, que nous utiliserons au N° 7.

Si G est simple, on obtiendra les points du simplexe en ajoutant au
systéme ¢;(x) >0, ¢=1,...,1 une équation J(x) <1 ou ¢ =
;% + ¢, 0y +-- -+ ¢; 3, est le paramétre dominant, ainsi nommé parce
que c; est le plus grand coefficient de 9, qui intervienne dans les expres-
sions des parameétres angulaires en fonction de #,,9,,...,49,.

2. Une propriété des vecteurs racines

S -
Théoréme 1. Soient G un groupe compact et &,9,,...,%, h + 1 vec-
teurs racines de G tels que :

-> > >
(a) &,,08,,...,9, soient indépendants.
- - > > -
(b) d=a,9+---Fa,9,—a, %, ,— - —a,,, les a, étant positifs.
S
Alors, il existe au moins un indice k tel que, ou bien & — 3, st k < p,

- >
ou bien ¢ + 9, st k>p soit un vecteur racine de G.
-> > -

Prenons les vecteurs #,,%,,...,%#, comme base de I’espace vectoriel

>
qu’ils engendrent ; les composantes contravariantes de ¢ dans ce systéme

sont a;,...,a,, —Qa,.,,..., —0. e .
Supposons que l'indice & de I’énoncé n’existe pas; alors, ¢ — ¥,
—-> >
92 . N ’ o (ﬂ ’ ﬂz)
n’étant pas un vecteur racine pour ¢ =1,..., p, lentier 2 =
(01: ’ ﬁz)
est négatif ou nul, d’aprés la propriété (2) des vecteurs du diagramme ;
> >
de méme, ¢ 4 J; n’étant pas un vecteur racine, pour j =p + 1,...,h,
> =
(@, 9, e e .
22" est positif ou nul; on a done (#,4,)<0, t=1,...,p et
-> >
(@), )

8) E.Cartan, La géométrie des groupes simples, Annali di Matematica t. 4, 1927,
pPp- 211, spéc. Chap. I et t. 5, 1928, pp. 253, ou 'on trouve du reste une grande partie des
notions et théorémes indiqués dans le N© 1, mais introduits & 'aide de la théorie infini-
tésimale.
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-> >

(3,%;) >0, j=p+1,...,h. Enrésumé, le produit d’'une composante
contravariante ¢! de ¢ par la composante covariante ¢; de méme indice
est négatif ou nul, ¢+ =1,..., k. Il en résulte que:

-> -

(3, 9) =c et + ¢y 4+t <0

ce qui est impossible. L’existence de I'indice £ étant assurée, la propo-
sition est établie.
—

Corollaire. St a,, a,,...,a, sont enliers, il existe un vecteur 9; choist
> > - > —
parmi 9,,0,,...,9, tel qu'on puisse relier & a ¥; par une susle finie
- > - -
@, 0, £ 0,..., % de vecteurs racines, le j-éme se déduisant du (j — 1)-éme

- —> —
par addition de Uun des vecteurs —+ 4,, +&,,..., +7,.

Pour obtenir ce corollaire, il suffira d’appliquer a plusieurs reprises le
théoréme 1, en observant qu’aprés chaque pas, la somme des valeurs ab-
solues des composantes du vecteur obtenu est plus petite d’'une unité que
pour le vecteur précédent.

3. Précisons tout d’abord que par recherche des sous-groupes, nous
entendons plutét recherche des structures de sous-groupes, sans distinguer
entre groupes localement isomorphes; par exemple, ,,G contient Q'
signifiera simplement qu’un groupe localement isomorphe & G, mais pas
forcément @' lui-méme, se trouve dans G.

Des groupes clos localement isomorphes admettent un recouvrement
fini commun, produit direct de groupes simples clos?); de 13 on déduit
aisément que la propriété de contenir un sous-groupe @’ fermé, au sens
donné ci-dessus & cette expression, est commune & tous les éléments d’une
famille de groupes clos localement isomorphes, et il suffira d’étudier un
représentant de la famille. On peut méme, si 'on veut, se borner aux
groupes simples en vertu du théoréme :

Un sous-groupe Q' fermé de rang maximum d’un produit direct G, X
G, X --- X G, de groupes clos est isomorphe & un produit direct G, X
G, X - X Gy, ou G est un sous-groupe fermé de méme rang de G, (i =
1,...,k).

Démonstration. Un toroide maximum 7'! de G’ est aussi maximum
dans @, c’est donc un produit direct T, X T, X - - X T}, T; maximum

7) Voir par exemple E. Cartan, 1. c. note 2, N© 52.
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dans G;. Tous les a,¢@, qui figurent dans les expressions (a,,...,
a;,...,a;) des éléments a de G’ forment un sous-groupe @; de G,, de
méme rang que G,, car il contient 7';. @’ sera isomorphe au produit direct
des @} ¢’il.renferme, avec (a,,...,4a;,...,a;) tous les éléments a; =
(E1sevvs €y, By €5415--,€), t=1,...,k, ou e; désigne 'unité de G,,
ce que nous allons justement montrer.

* Selon un théoréme rappelé au N° 1, a est conjugué & au moins un élé-
ment de 7T'*; soit b = (by,...,b;,...,b;) dans G’ tel que:

b lab = (t;,...,t,...,8) eT?
en particulier
b.'-'—l aibiz—:tifTi

mais G’ contient Z = (1. .43 €;_15bis €541, .5 6), donc aussi b Z b-1,
qui est précisément a,.

Ce théoreme montre en particulier qu'un sous-groupe maximum de
rang maximum, c’est-d-dire non contenu dans un sous-groupe différent
du groupe total, d'un produit direct G, X G, X --- X G, est de la forme

GIX"'XGI__IXG;XGi_’_lX"'XGk

@; maximum dans G,.
La possibilité d’utiliser le diagramme ou les vecteurs racines pour
Iétude des sous-groupes de méme rang résulte du

Théorédme 2. Soient G un group compact, d’ordre n =1+ 2m, G un
sous-groupe connexe fermé de rang maximum, ¢ n' =1+ 2m’ para-
métres. Le diagramme de G’ est formé de m’ familles complétes de plans
paralléles du diagramme D (G); autrement dit, les vecteurs racines de G’
sont des vecteurs racines de G .

Soit 7'! un toroide maximum de G’. Prenons dans un entourage U (e)
de I'unité dans G un systéme de coordonnées canoniques rendant le
groupe adjoint linéaire orthogonal. U(e) ~ T'' et U(e) ~ @’ sont des
portions de plans; & I'aide d’un changement de coordonnées orthogonal,
on peut faire en sorte que ces plans aient les équations :

Xy =Xy =--=2,=0,

xn'+1=xn'+2="':wn20 .

A un élément x de @’ correspond dans le groupe adjoint de @ une matrice
(orthogonale) du type:
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s = (%7 s,00)

les matrices S, (z), de degré n’, forment le groupe adjoint linéaire de G”.
Si zeT!, on aura
E, 0
| _ 81 (2)
S(x) = 0
8, ()

les matrices Sj(x), xe 7T, constituent un groupe abélien orthogonal ;
un changement de coordonnées orthogonal portant sur «,.,,...,z,
permettra de les mettre simultanément sous la forme

D,

0. D, =

0 < cos 27z 9, () — sin 27 &, (x) )
D,

sin 27 ¥;(x) cos 2x &, (x)

de méme, les matrices S,(x) pourront étre réduites a la forme

D m’+1
. 0 D cos 2n &, ,;(x) — sin 2z &, ()

) m (sin 2n P, (%) cos2m 19,,,,+,-(x))

D,,

Par définition (cf. N° 1), les plans &;(z) =0(1), 2=1,2,...,m’
forment D(Q@’) et, puisque 7" est aussi maximum dans @, les plans
?;(x) =0(1), j=1,...,m, donnent D(GF), ce qui démontre le théo-
reme.

Remarquons que ’essentiel du théoréme précédent est le mot com-
pléte de la conclusion ; en effet, un élément singulier de G’ étant évidem-
ment singulier dans @, il est clair que D(Q@’) fera toujours partie de
D (@), mais il importait de voir que D(G’) ne peut contenir un plan
sans comprendre tous les plans de D(G) qui lui sont paralleles, ou si ’on
veut, qu'un vecteur racine de @’ n’est jamais un multiple (différent de
+1) d’'un vecteur de G.

La réciproque du théoréme 2 est fausse ; il se peut trés bien que D(G)
posséde un sous-diagramme D’ auquel ne corresponde aucun sous-groupe,
comme nous le verrons bientét. Notre tidche est précisément de savoir
quand une inclusion de diagrammes permet de conclure & une inclusion
de groupes.
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4. Une condition nécessaire
pour qu’un sous-diagramme indique un sous-groupe

Soit G’, & I + 2m’ paramétres, un sous-groupe fermé de rang maxi-
mum de G'. Nous reprenons les coordonnées et notations du théoréme 2 ;
G’ est donc représenté dans le groupe adjoint linéaire de G par des ma-

trices : 8, (2) 0
( 0 Sz(x))

les matrices S,(x) définissent un groupe homomorphe & G’. Nous nous
proposons de montrer que:

Si G est simple, le noyau N de U'homomorphisme de G’ sur le groupe
des matrices S,(x), x € G’, est identique au centre de G

Le centre de G est dans chaque toroide maximum, donc dans G’ et
méme dans N, puisque I'image du centre de ¢ dans le groupe adjoint
linéaire de G se réduit & la matrice identité ; il nous reste & prouver que,
inversément, N est contenu dans le centre de ¢; pour cela, il sera
commode de considérer I’espace homogéne de G défini par G’8). Pour
Pobtenir, on associe & chaque classe xG@’' d’éléments de G un point z
d’un nouvel espace H ; la topologie de G permet d’y introduire de facon
naturelle une topologie, qui fait de H une variété compacte & n — n’
dimensions. (x, ., *y4s,..., ¥,) peuvent étre prises comme coor-
données dans un entourage V (e) du point e de H associé & G’ .

L’ensemble des transformations de H sur lui-méme :

fo:x = (a 2), ac@

opére transitivement sur H, qui est donc un espace homogéne de G.
G’ se compose de tous les éléments ¢’ de G pour lesquels Iy (e)=e :
c’est le groupe d’isotropie de H, et les matrices S,(x) indiquent pré-
cisément comment le groupe d’isotropie opére sur V(e). Si S,(x) = E,
la transformation laisse V (e), partant H, fixe point par point. N n’est
autre que ’ensemble des éléments de G qui induisent dans H la trans-
formation identique. On en déduit immédiatement que N est invariant
dans G ; comme il est de plus fermé, et que G est simple, N est discret et
fait alors partie du centre de G.

Pour énoncer facilement la condition nécessaire que nous avons en vue,
il est commode d’introduire la définition suivante :

8) ¢f. E. Cartan, 1.¢.2), no 17, 18, 28, 29.]
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Définition. Le centre de k familles de plans paralléles de R’ est I’ensemble
des points par lesquels passent un plan de chaque famille.

En particulier, le centre d’'un diagramme D (G) recouvre le centre du
groupe G.

Désignons par D — D’ le complément d’un sous-diagramme D’ de D,
¢’est-a-dire I’ensemble des plans de D non compris dans D’; nous pou-
vons alors énoncer le théoréme :

Théoréme 3. Supposons que les m’ premiéres familles de plans paral-
léles du diagramme D (G) dun groupe simple G forment un sous-diagramme
D'. Pour que G contienne un sous-groupe fermé G’ de diagramme D', 1l
faut que le centre du complément D — D' de D' dans D soit identique au
centre de D .

C’est une conséquence immédiate du théoréme précédent ; en effet, si
est un point de D — D', on a:

0m'+i(x) = 0 (1) ’ 7/

n

3
|
3

d’ou
S,(x) = E

et x représente un élément de IV, et fait donc partie du centre de D(G).

Exemple 1. D(B,)?% est formé par les plans:

T, +x, =0 (1)
2, =0 x, = 0(1)
les deux derniéres familles définissent un diagramme D’ de D. Le point

(3, 3) est dans le centre de D — D’, mais pas dans celui de D(B,);
B, ne contient pas de sous-groupe ayant le diagramme D’.

Exemple 2. On peut prendre comme diagramme du groupe exception-
nel G, les plans

9) Selon 'usage habituel, B; désigne la structure du groupe unimodulaire orthogonal
& 20 4 1 variables, D; celle du groupe unimodulaire orthogonal & 21 wvariables.
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z, =0, z, =0, z, +2,=0 (1)

x, —x, =0, 2z, + 2, =0, Z,+ 22, =0 (1)

ou x; et x, sont coordonnées dans un systéme dont les vecteurs base ont
la longueur un et font entre eux un angle de 60 degrés. Les trois familles
de la premiere ligne forment un diagramme de 4, auquel ne correspond
aucun sous-groupe, car le point (3, %) est dans le centre de son complé-
ment, mais pas dans celui de D(@,).

Corollaire. Soit G un groupe simple clos de rang I, & » paramétres.
Un sous-groupe fermé de méme rang a au maximum #» — 2/ paramétres.

Démonstration. Le centre de D — D’ est égal au centre de D(G) qui
est un réseau de points; en particulier, les plans de D — D’ passant
par Dorigine ne peuvent avoir que ce point en commun et leur nombre
est au moins /. Or, la différence entre les ordres de @ et de G’ est
égale & deux fois le nombre de familles de plans formant D — D',
d’ou le corollaire.

Remarques sur un mémorre de B. L. van der Waerden. Dans le travail
cité en note %), 'auteur construit par induction les systémes de vecteurs
racines des groupes simples clos et en dresse le tableau p.461, indiquant
par une fléeche quand un systéme est une extension d’un autre. Signa-
lons tout d’abord qu’il y manque les relations Dy;— E,, Ds— E,,
établies au § 17, sous n =25 et » =6, et que, autour de F,, le tableau
correct est

B, Cs
v v
B4"'> .F; <“‘04

ce qui résulte du texte: au § 7, ’extension de C; donne un systéme F,
englobant C,, de méme au § 6 pour les B.

Dans une phrase précédant immédiatement ce tableau, I'auteur dit
que les fleches indiquent aussi des inclusions de groupes, ce qui n’est
pas toujours exact. Le théoréeme 3 permet de voir aisément que
Dy,—~C,—~>F, et D,—»>C,(n>3) ne sont pas des inclusions de
groupes. Du théoreme 4 établi ci-dessous on déduit par contre que
les autres relations entre systémes de méme rang correspondent a des
inclusions de groupes. Ajoutons enfin pour compléter que les fléches
reliant 2 systémes de rangs différents indiquent toujours des inclusions
de groupes.
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b. Un critére nécessaire et suffisant
our qu’un sous-diagramme indique un sous-groupe
q q

Pour parvenir & ce critére, nous aurons besoin du:

>
Lemme. Soit G’ un sous-groupe fermé de rang maximum de G. Si 9,

- - ->
et ¥, sont des vecteurs racines de G’ et si 9, + &, est un vecteur racine de

G, c’est aussi un vecteur de G’ 1°).

Pour la démonstration, nous distinguons deux cas:

a) rang de G = 2. Les seules structures semi-simples de rang deux
non isomorphes sont 4,, B,, D,, G,; un coup d’eil sur leurs dia-
grammes!!) montre que dans deux cas seulement on peut trouver un
sous-diagramme ne vérifiant pas notre lemme; ce sont justement les
deux exemples traités aprés le théoréme 3 ; nous avons vu qu'’il ne cor-

respond pas de sous-groupe & ces sous-diagrammes, ce qui démontre la
proposition sous ’hypothése a).

b) Rang de G>2. Les plans &,(x) =0 et #,(x) = 0 se coupent
suivant un espace R-%24a | — 2 dimensions. Le centralisateur connexe12)
N de R-? a comme diagramme tous les plans de D(#F) paralléles & R-2
ses vecteurs racines sont donc tous les vecteurs racines de @ situés dans

- -> - >
le plan & deux dimensions déterminé par 9, et 4,, en particulier ¢,, 9,,
- -
9, + 9,. N est localement le produit direct d’un toroide & I — 2 dimen-

sions recouvert par R~2 avec un groupe semi-simple N, de rang 2 ayant
les mémes vecteurs que N (cf. N°1).

En raisonnant de méme sur @', on voit que tous les vecteurs racines de
- >

G’ coplanaires avec &, et @, sont vecteurs racines d’un groupe N, de rang

- ->
deux, qui est I'intersection de N, avec G'. D’aprés a), &, 4 ¢, est un

vecteur racine de N, donc aussi de Q.

19) Du point de vue infinitésimal, ce lemme résulte, pour les groupes & paramétres
complexes, de théorémes connus (cf. Cartan, Thése, p. 55, th. 5).

1) Ils se trouvent par exemple dans: E. Stiefel, 1. c. note 3.

12) Nous désignons ainsi I’ensemble des éléments de G échangeables avec tous les élé-
ments de 7T représentés par des points de R!-2. R!-2 recouvre un sous-groupe fermé &

l— 2 paramdtres de T, car R'-2? a en commun avec le réseau unité un réseau & I — 2
dimensions (cf. E. Stiefel, 1. c., p. 361).
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- e e
Théordme 4. Soient G un groupe compact derang 1, +9,,+9,,...,+93,,,
> - -

ses vecteurs racines. Pour que +9,, +9,,..., +9,,,, sotent les vecteurs ra-
ctnes d’un sous-groupe Q@' fermé de G il faut et il suffit que :

-> > -
(@) St h (b <) estlerang de ¥,,9,,...,9,,, on puisse trouver parmi
-> > ->
P, Pey. oy Py b vecteurs dont tous les autres soitent combinaisons linéaires

a coefficients entiers.

(b) Tout vecteur racine de G combinaison linéaire a coefficients entiers de
> > - -> >

-
1> Dose oo, Py fasse partie du systeme —+98,, +98,,..., +9,,.

- ->
1) Ces conditions sont nécessaires. Supposons done que +9,, +9,,...,

j:.z;m, soient les vecteurs racines d’un sous-groupe G’ fermé de @. Si A
est le rang de ces vecteurs, nous savons qu’il est possible d’en choisir A
dont les autres sont combinaisons linéaires a coefficients entiers ; on peut
par exemple prendre & vecteurs perpendiculaires aux h faces d'un do-
maine fondamental de ¥(@'), cf. N° 1, donc (a) est bien nécessaire ; il est

> > —
loisible d’admettre que ces vecteurs sont 9#,,%,,...,%,; alors toute com-
= —
binaison & coefficients entiers de ¢#,,%,,...,9,, est déja combinaison
> > ->
a coefficients entiers de ¢,,9,,...,%,.

Soit maintenant

-

- ->
d=a,% +ayd+---+a,9, (a; entiers)

un vecteur de ¢. En vertu du corollaire au théoréeme 1, on peut trouver
un vecteur j:v_;i (¢ < h) relié a ; par une suite de vecteurs racines de
q, :E;;,-, :{;1—;,- j:z—;k,. . .,;‘; le j-éme se déduisant du (j — 1)-éme par ad-
dition de I’un des vecteurs i;?: , i;;z e e ey ;1:—19: ; mais le lemme ci-dessus
assure que ib: -+ 1_9:, puis le troisiéme vecteur de la suite, le quatriéme,

-
.., enfin ¢ sont des vecteurs racines de G’, c. q.f. d.

> > ->
2) Ces conditions sont suffisantes. Soient donc 9,,9,,...,%, h vec-

3 > -
teurs racines de ¢ indépendants et +¢&,, +79,,..., +73,, tous les vec-
> > -
teurs de G combinaisons linéaires & coefficients entiers de 4,,9,,...,9,.
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-> -> ->

Nous avons & montrer que —+%9,, +%&,,..., +9,, sont les vecteurs d’un
sous-groupe G’ de G. Considérons pour cela ’ensemble Z des points z de
R! pour lesquels #;(x) =0(1), ¢ = 1,...,m'. Z est identique au centre

des h familles de plans #,(x) = 0(1), ¢ <h par suite de (a). Appelons
@' la composante connexe du centralisateur de Z dans G. Le diagramme
de @’ comprend en tout cas les plans #;(z) =0(1), ¢ =1,2,...,m/, en
vertu de la définition méme des éléments singuliers d’un groupe clos (voir
Ne° 1), et nous allons maintenant montrer qu’il n’en contient pas d’autres ;
il suffit pour cela d’établir qu’aucune famille de plans 9, .,(x) = 0(1)
ne renferme Z, puisque Z, faisant partie du centre de G’ doit se trouver

—_

sur chaque famille de plans paralléles de D(G”). Or, 9,,,; n’étant pas
> - ->

une combinaison & coefficients entiers de 9,,%,,...,9, on a deux possi-

bilités : ou bien,
-> - -5
Vprpi = 0 + @y By +- -+ a, 9,

et 'un des coefficients au moins, disons a,, est rationnel non entier, et
alors un point z solution de

hz) =1  9y(2) = ds(2) = - - = F,(2) = 0%)
se trouve dans Z mais pas sur un des plans ¥, ,(x) =0(1); ou bien
- -> > >
@ 4 €8t indépendant de &, ,9,,..., 3, (ce qui ne peut du reste se pro-
duire que si h<l). Dans ce cas, l'intersection des plans #,(x) = 0,
t=1,2,...,h est un espace & I — b dimensions possédant au moins

une droite qui n’a avec ¥, () = 0 que l'origine en commun; les
points de cette droite sont dans Z mais ne seront pas tous sur un des
plans ¥, ; = 0(1).

6. Soient G un groupe clos, G’ un sous-groupe connexe de rang maxi-
mum, Z le centre de G’. De la démonstration du théoréme 4 il résulte
immédiatement que G’ est le plus grand sous-groupe connexe de G formé
par les éléments de G échangeables avec tous ceux de Z; G’ est donc
centralisateur connexe de Z dans G. On peut méme affirmer que G est
identique & la composante connexe du normalisateur de Z dans G'. En
effet, tout automorphisme x-'Zz de Z fourni par un élément de la
composante connexe de ce normalisateur peut étre relié & I'identité par
une suite continue d’automorphismes de Z ; mais Z est un groupe abélien
compact (connexe ou non, éventuellement discret) et ses automorphismes

13) Ce systéme est compatible, car les formes linéaires 9,,...,%; sont indépendantes
(et A <1).
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continus forment un groupe discret; l’automorphisme précédent est
donc I'identité et x est échangeable avec chaque élément de Z ; le norma-
lisateur connexe de Z est égal au centralisateur connexe de Z. Nous avons
démontré :

Théoréme 5. Soient G un groupe de Lie clos, @' un sous-groupe fermé
connexe de rang maximum, Z' le centre de Q' ; G’ est égal a la composante
connexe du normalisateur dans G de Z'.

Corollaire. Toutl sous-groupe fermé connexe maximum?*) de rang maxi-
mum est le normalisateur connexe d’un élément de G .

Pour prouver ce corollaire, considérons un élément z qui soit dans le
centre de @' mais pas dans celui de G (z existe certainement si G’ # G
d’aprés le théoreme 5). Le normalisateur connexe de z est différent de G,
il contient G’ et doit lui étre égal si ce dernier est maximum.

La réciproque du corollaire est fausse, comme on peut s’y attendre ; un
sous-groupe peut étre normalisateur d’un élément sans étre maximum
(voir le N° 7). On peut méme se demander si tout sous-groupe fermé de
rang maximum ne peut pas étre défini comme normalisateur d’un élément,
de G ; cela revient & savoir §’il existe toujours un point dans le centre du
diagramme de G’ par lequel ne passe aucun plan du diagramme de @ qui
ne fasse déja partie du diagramme D(G’). Il n’en est rien, comme le
montre 'exemple suivant :

Exemple. D(C,;) se compose des plans
22, = 0(1) t=1,2,3.
x;, + x; = 0(1) -y

les trois premiéres familles forment un diagramme D’ du produit direct
A, x A; X 4,. Le centre de D’ se compose des points (n,/2, n,[/2, n,/2),
n, entiers quelconques. Il est facile de voir que les vecteurs racines de D’
satisfont aux conditions (a) et (b) du théoréme 4 ; par conséquent D’ est
le diagramme d’un sous-groupe G’ de C,. G’ ne peut étre défini comme
normalisateur d’'un élément de G. En effet, si c’était le cas, on pourrait
trouver un point P = (n,/2, n,/2,ny/2) du centre de D’ par lequel ne
passe aucun plan de D — D’. Or, cela est impossible ; en effet deux au
moins des coordonnées de P sont congrues entre elles modulo }; soient 4
et 9 leurs indices, P est alors sur un des plans z; 4 x;, = 0(1), et le nor-
malisateur de P est plus grand que G'.

14) Tei et dans la suite de ce travail, @’ sous-groupe maximum de @ signifie: G’ n’est
contenu dans aucun sous-groupe connexe de G différent de G ou de G'.
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7. Détermination explicite des sous-groupes maxima de rang maximum
des groupes simples clos

Rappelons tout d’abord que les plus grands sous-groupes de rang
maximum des groupes de Lie compacts sont connus dés que ceux des
groupes simples le sont (N° 3) ; ce n’est donc pas restreindre la généralité
que de se limiter a ces derniers.

Un sous-groupe maximum de méme rang d’un groupe simple clos @ est
normalisateur d’un élément « de G (théoréme 5, corollaire) ; bien entendu,
nous ne cherchons que les types de sous-groupes maxima, sans distinguer
entre des sous-groupes isomorphes, en particulier entre les normalisa-
teurs de deux éléments conjugués. Il est donc loisible de supposer que z
se trouve dans un toroide maximum déterminé 7!, ou méme dans un
simplexe fondamental du diagramme D(GF), qui contient toujours au
moins un représentant de toutes les classes d’éléments conjugués de &
(cf. No1).

Soit donc « un point du simplexe S(G); si z est & l'intérieur de S,
le normalisateur N (x) est 7'?, qui n’est pas maximum si [>1; si x est
sur une face & £ > 2 dimensions de S (mais pas sur une aréte) on voit
facilement que le normalisateur d’un point d’une aréte de S contenue
dans ce k-plan est plus grand que N (z), qui n’est donc pas maximum.
Si z est sur une aréte dont uue extrémité 2’ au moins n’appartient pas
au centre de D (@), N (x) est contenu dans N (z’) et n’est pas non plus
maximum ; supposons maintenant que les deux extrémités de l’aréte
fassent partie du centre de D(() et soit z I'une d’elles ; z représente un
élément du centre de G et le normalisateur N (z~'z) du produit (z~1lx)
est le méme que celui de x. Le point (2~'x) est sur une aréte d'un sim-
plexe 8, issue de l'origine 0 (car la multiplication dans 7" est donnée par
Paddition vectorielle dans R?). Il existe une transformation de ¥ qui
améne 8’ et S (cf. N° 1) et 2~z en un point z’ d’une aréte de S passant
par 0; z’ et (2'z) sont conjugués, et leurs normalisateurs isomorphes.

Notons d’autre part que les normalisateurs des points intérieurs & une
aréte sont tous les mémes ; chacun a en effet comme diagramme tous les
plans de D(G) paralléles & cette aréte et aucun autre puisque S(GF) n’est
traversé par aucun plan de D(G).

Par conséquent, pour obtenir tous les types de sous-groupes maxima, ¢l
suffit d’examiner les normalisateurs des sommets du simplexe S qui n’appar-
tiennent pas au centre de D(Q) et ceux des milieux des arétes issues de 0
dont la deuziéme extrémité est dans le centre de D(G), d’ou le théordme :

215



Un sous-groupe maximum de rang maximum d’un growpe simple com-
pact est soit semi-simple soit de la structure G,_, X T, ou G,_, est un sous-
groupe semi-simple de rang 1 — 1 et T un groupe a un paramétre.

Le premier cas est celui du normalisateur d’'un sommet, le deuxiéme
celui du normalisateur du milieu d’une aréte (car alors tous les vecteurs
racines du sous-groupe sont perpendiculaires & cette aréte).

Mais il convient d’étre plus précis, car nous ne savons pas encore si tous
les normalisateurs envisagés sont vraiment maxima.

Soient &, (x) >0, J,(x) >0,...,9,(x) >0,8(x) <1 les équations du
simplexe S(G). 9,,9,,...,%, sont les paramétres fondamentaux, 4 =
my &+ my Py + - - - + m; ¥, (m, entiers positifs) est le paramétre dominant
(voir N°1). #,,9,,...,9, sont des formes linéaires indépendantes, et on
peut les utiliser pour définir dans R'! de nouvelles coordonnées, ce que
nous ferons. Dans ce systéme, le centre de D(G) est le réseau des points
a coordonnées entiéres. Les sommets de S autres que 1’origine sont les
points

2, = (0,...,0,1/m;,0,...,0) v=1,2,...,1,

pour que z; soit dans le centre de @, il faut et il suffit que m, =1;
notons en passant que le nombre des m; égaux & un donne ’ordre, dimi-
nué de un, du groupe de Poincaré du groupe adjoint linéaire de G'19).

Théoréme 6. Soient G un groupe simple compact, x;,=(0,...,0,1/m,,
0,...,0) un sommet du simplexe S(G).

(@) St m; = 1, le normalisateur du miliew de Uaréte Ox, est maximum
dans G, et réciproquement.

(b) Le normalisateur N (x,) de x; est maximum si et seulement st m, est
premier >1.

On obtient de la sorte tous les types de sous-groupes maxima de rang maxi-
mum de G 19),

La réciproque de (a) ayant déja été établie plus haut, il nous reste a
démontrer trois points.

1) 8¢ m; =1, le normalisateur N (y) du miliew y de Ox, est maxi-
mum. Le diagramme de N (y) se compose de tous les plans de D(G)

15) Voir E. Cartan, 1. c., note 6; aussi 1. c., note 2, NO 48,

18) 11 n’est pas exclu que certains des sous-groupes maxima donnés par (a) et (b) soient
isomorphes; tout au moins est-on sir qu’ils ne sont pas homologues dans le groupe ad-
joint connexe.
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paralléles & Oz,. Si maintenant N’ est un sous-groupe plus grand que
N(y), D(N') a au moins un plan non paralléle & Ozx;; soit ¢ =
ny %y + ny Py + - - -+ n; ¥, le paramétre angulaire correspondant ; n; =1
car n; # 0 et n, <m, =1 (J parametre dominant) ; par suite le sys-
teme de congruences 0=&¢ (2)=---=9,_,(v) =%, (@) = - - =& (x)
=¢'(x) est équivalent & &;(z)=0, (j=1,...,1), et tout élément du
centre de N’ est dans le centre de @, d’ot N'=G (théoréme 5); N est
bien maximum.

2) 8i m, = a-b (a et b entiers différents de 1), N (x;,) n’est pas maxi-
mum. D(N) est formé par toutes les familles de plans de D(G) qui
contiennent z,; les parameétres angulaires de N (x;) sont donc tous les
parametres angulaires de G qui, exprimés en fonction de 9,,%,,...,9,,
ont m; comme coefficient de ¢#;. Soit y = 2f le point (0,...,0,1/b,
0,...,0); N(y) a comme parametres tous ceux dont le coefficient de 9,
est b ou un multiple entier de b, donc N (y) > N (z,). Mais G a au moins

un parameétre &' pour lequel le coefficient de &, est b; pour s’en con-

-> > - >
vaincre, il suffit d’appliquer le corollaire du théoréme 1 & #,,d,,...,9,,9.

Ainsi ¢’ est paramétre angulaire de N (y) mais pas de N (z,;). N(y) est
effectivement plus grand que N (z;) et, comme N (y) =G, N(x,) n’est
pas maximum.

3) Si m,; est premier >1, N (x,) est maxvmum. Si N (x;) n’était pas
maximum, il serait contenu dans un sous-groupe maximum, c’est-a-dire
dans le normalisateur N (y) d’un certain élément y de 7'*; il nous suffira
donc de montrer que tout normalisateur N (y) % G contenant N (z;)
est égal & N(x,).

Py sy, 041,5. ., 0O sont des parameétresde N (x;) et N(y); y est
dans le centre de N (y), donc ses coordonnées (n,,...,7n;) seront toutes
entiéres sauf la ¢-éme; quant a cette derniere, ’équation &#(y) = 0(1)
indique qu’elle est de la forme ¢/m;, et 'on est sir que ¢qz£0(m,;),
sinon y aurait toutes ses coordonnées entiéres, ferait partie du centre
de G, et alors N (y)=(G. Désignons par z le point (n,n,,...,7; 4,0,
Miyy,. .., M) ; 2 est dans le centre de Gf et de plus y = «}-z.

m,; étant premier et g =% 0(m,), on peut trouver un entier r tel que
qg-r = 1(m;), et on voit alors aisément que

yr=x; 2 (' dans le centre de G).
Chaque élément de N (y) est bien entendu échangeable avec y", d’ou

N(y) < N(y") = N(2;2') = N(z,)
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ce qui, joint & I’hypothése N(y)> N(z,), entraine N(y) = N(x,),
q. e. d.

Nous savons maintenant exactement quels points du simplexe sont &
considérer. Il nous faut encore pouvoir indiquer la structure des sous-
groupes trouvés; il suffit pour cela de connaitre un systéme de para-
métres fondamentaux du sous-groupe, ce qui est immédiat ; en effet, si
nous prenons le normalisateur d’'un sommet z,, les plans 4 =1, 4, =0
(7 <1,j # i) délimitent un angle polyédre contenant S(G) et par con-
séquent traversé par aucun plan singulier issu de z;; donc les plans
=0, 9,=0 (3 <l, j+#4) bornent un domaine fondamental du
groupe ¥ de N (x,), et &,9,,...,8,_;,%4,..., 9, sont des parameétres
fondamentaux de N (z;); sile sous-groupe envisagé est normalisateur du
milieu d’une aréte 0x;, on voit de méme que 9,,...,9,_;,9%;,,...,9, sont
des parameétres angulaires fondamentaux de sa composante semi-simple.

Pour effectuer I’énumération des sous-groupes maxima, il est commode
de représenter le simplexe S(G) selon un procédé di & Schléfli : 4 chaque
face ¢, =0, j <, et # =1 on fait correspondre un point P;, j </,
P, et on joint P; & P, par k — 2 traits si ’angle non obtus des deux
faces est m/k; si on enléve le point P et les traits issus de P on a une
représentation de I’angle polyédre & ! faces, domaine fondamental de
Y(G); en général, cet angle polyédre caractérise déja le groupe ; parmi
les groupes simples, seuls B, et C,; ont le méme angle polyédre sans étre
localement isomorphes pour I > 3.

Si m; est premier >1, on enlévera & la représentation de S le point
P, et les traits partant de P,, la figure restante donne 1’angle polyédre de
N (x,;). Si on enléve les points P et P,, on obtient ’angle polyédre du
normalisateur d’'un point intérieur de l'aréte Ox;.

Dans le tableau qui suit, nous énumérons les sous-groupes maximums
des groupes simples; dans les deux premiéres colonnes se trouvent la
représentation du simplexe du groupe et son paramétre dominant, dans
les deux derniéres les sous-groupes maxima de rang maximum ; sous G,
figurent les sous-groupes simples ou semi-simples, sous G,_; X7, les
sous-groupes & centre continu. _

Dans les deux remarques ci-dessous, G désigne le groupe adjoint liné-
aire de la structure simple close G.

Remarque I. Le centre de @ se réduit 3 I'élément neutre e, et le centre
de son diagramme est le recouvrement dans R’ de e; les sommets z; du
simplexe pour lesquels m; = 2 et les milieux des arétes Oz, lorsque

m,; = 1 représentent des éléments d’ordre 2 de G ; leurs normalisateurs
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connexes ne sont autres que les sous-groupes caractéristiques des auto-
morphies involutives de G, et les espaces homogénes correspondants sont
symétriques irréductibles ; & ce point de vue, ces sous-groupes sont connus
depuis longtemps??). Le tableau précédent montre en particulier que tous
les sous-groupes maxima de rang maximum des groupes simples 4,, B,,
C,, D, engendrent des espaces symétriques. Les groupes exceptionnels se
comportent différemment et chacun contient au moins un sous-groupe
maximum caractéristique d’une automorphie non involutive (d’ordre 3
ou 5).

Remarque II. L’ordre de connexion des sous-groupes maxima. En s’ap-
puyant sur le fait que les points & coordonnées entiéres forment le réseau

unité de G, on démontre aisément que le normalisateur dans @ d’un
sommet x; du simplexe a comme centre exactement le groupe cyclique,
d’ordre m,, engendré par z, ; cela permet d’indiquer facilement des exem-
ples de groupes simples simplement connexes contenant des sous-groupes
maxima semi-simples non simplement connexes. Par exemple, le groupe
adjoint de E; est simplement connexe et renferme Ag qui est normalisa-
teur de x; avec my; = 3. Comme le groupe simplement connexe A4, re-
couvre neuf fois son groupe adjoint, le groupe de Poincaré du A4 ¢ Ky
est d’ordre 3. Il en est de méme pour le groupe A4,xA4,xXA4, qui se
trouve dans le groupe simplement connexe de structure K.

8. Les sous-groupes locaux de rang maximum des groupes clos

Théoréme. Soit G un groupe de Lie compact de rang 1, K un sous-
groupe local continu a n' paramétres'8) de rang 1, ¢’est-a-dire contenant un
sous-groupe (local) abélien a 1 paramétres. Alors, K est le noyau d’un sous-
groupe fermé G’ de G a n’ paramétres.

Soit U(e) un entourage de I'unité de G rapporté & des coordonnées
canoniques ; K est alors dans I'intersection de U avec un plan & n’ dimen-
sions!8) ; on peut supposer U assez petit pour que K remplisse toute cette
intersection.

17) E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc.
Math. France, t. 53, 1927, p. 126—132.

18) Cela veut dire que les éléments de K sont dans un entourage U de 'unité e de @,
comprennent ¢ et dépendent de fagon continue de n’ parameétres; de plus le produit de
deux éléments de K appartient & K s’il est contenu dans U ; d’aprés un théoréme de Cartan,
1. c., note 2, No. 26, K est un groupe de Lie et ses points forment une variété analytique
dans un systéme de coordonnées analytiques de G. C’est en particulier une portion de plan
a n’ dimensions dans un systéme de coordonnées canoniques; enfin, en restreignant éven-
tuellement la variété de K, on peut supposer que K posséde l'inverse de chacun de ses
éléments.
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L’ensemble des produits que ’on peut former avec un nombre fini
d’éléments de K constitue un sous-ensemble G’ de @ qui est en tout cas un

groupe abstrait. Soit @’ son adhérence dans @, c’est-d-dire 'ensemble
composé de G’ et des points d’accumulation de G’ dans G ; @’ est un sous-

groupe fermé de G (donc de Lie et compact). Soit enfin K’ = G~ U (e).
K’ contient K, c’est 'intersection de U avec un plan & p > »’ dimen-
sions.

Les transformations (linéaires en coordonnées canoniques) x1Ux
laissent le plan de K invariant si x est dans K, donc aussi si z ¢G’, et

par raison de continuité, si x e@’. K est donc un sous-groupe local in-

variant dans K’ ; mais K’ est le noyau d’un groupe clos @ ;si p>n/, K’
est isomorphe & un produit direct K x L), ou L est &4 p — »n’ para-
meétres. Or, L contient au moins un groupe & un parametre, qui déter-
minera avec le groupe abélien d’ordre ! de K un groupe abélien & [ + 1
parametres ; celui-ci engendrera dans G un groupe dont I’adhérence sera
un toroide & au moins ! 4 1 dimensions, ce qui contredit ’hypothése sur
le rang de G ; ainsi, K et K’ ont la méme dimension et K = K’; K est

un voisinage de 'unité pour le sous-groupe @' fermé dans G.

Nous aurions donc pu nous placer au point de vue local pour rechercher
les sous-groupes fermés de rang maximum. On sait d’autre part qu’il y a
correspondance biunivoque entre les sous-groupes locaux d’un groupe
de Lie ¢ et les sous-anneaux de Lie de I’anneau des transformations in-
finitésimales de G'. Notre théoréme 4 doit donc, convenablement inter-
prété, fournir un critére pour qu’un sous-ensemble de I’anneau de G' qui
renferme [ transformations échangeables entre elles forme un anneau de
Lie. On peut s’assurer que tel est le cas; un critére analogue a du reste
déja été obtenu par Killing (Math. Annalen 36, pp. 239) dans I’étude des
sous-anneaux maxima des structures simples complexes. Inversément,
nous aurions pu opérer directement dans ’anneau de G, mais bien en-
tendu, la caractérisation des sous-groupes comme normalisateurs échappe
a cette méthode.

(Regu le 1°r geptembre 1948.)

1%) E. Cartan, 1. c., note 2, No41.

221



	Les sous-groupes fermés de rang maximum des groupes de Lie clos.

