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Intégrales singulières à noyau positif
Par Leopold Fejeb, Budapest*)

1. Je ne connais pas l'origine de cette dénomination ,,intégrale
singulière", mais il est sûr que lorsqu'on parle d'une intégrale singulière,
sous le signe de l'intégrale définie d'une ou de plusieurs dimensions figure
toujours un produit de deux facteurs dont l'un est une fonction
,,arbitraire" des variables d'intégration, l'autre facteur (ordinairement d'un
caractère analytique très régulier) est au contraire tout-à-fait indépendant

de la fonction arbitraire ; ce deuxième facteur est commun pour
toutes les fonctions arbitraires et dépend d'un côté, comme la fonction
arbitraire elle-même, des variables d'intégration, de l'autre côté d'une
seule ou de plusieurs autres variables nommées ,,paramètres" de l'intégrale

singulière. La fonction arbitraire est nommée tout simplement ,,la
fonction" et le facteur indépendant de cette fonction a le nom ,,noyau"
de l'intégrale singulière. La seconde dénomination se ramène à Hilbert.
Le problème ordinairement attaché à l'intégrale singulière est de rechercher

si elle converge ou non vers une valeur finie quand les paramètres,
continus ou discontinus, convergent de leur part vers telle ou telle
valeur. Je ne parle pas ici d'autres problèmes qui s'attachent à des
intégrales singulières ; ils sont nombreux et importants.

2. Je crois cependant qu'au lieu de continuer de préciser plus loin la
définition générale des intégrales singulières et d'exposer préliminaire-
ment les remarques générales qui se rapportent à ce sujet et qui font une
partie de cette conférence, il sera peut-être plus agréable pour mes
auditeurs honorés, si je vais parler d'abord de quelques cas spéciaux et que,
après, je signale la route qui m'a conduit à des résultats de quelque
généralité. C'est d'abord la série de Fourier d'une fonction de période 2tt
et intégrable de la variable u

où rr

Ao — / y) (t) dt

o

*) Conférence faite à Genève en juillet 1948.
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An An (u) an cos n u + bn sin n u (2.1)

• 2 cos ntdt ; n 1, 2 3,.
0

qui était et demeurait une source abondante pour des intégrales singulières.

tp(t) a ici et dans ce qui suit toujours la signification

w désigne un nombre fixe et si l'on doit s'occuper de la convergence
ordinaire de la série de Fourier Ao + Ax + • • • de la fonction / au point u,
on est conduit à Fintégrale singulière de Dirichlet

77

— I w (t) (l + 2 cos t + - - - + 2 cos nt) dt
n J

ou

l } sin(2n+l){

Pour les moyennes ordinaires des sommes partielles s^ de la série de

Fourier, on obtient l'intégrale singulière

(2.4)n+ 1

1 f (n + 1) • 1 + n • 2 cos t + • • • +1 • 2 cos n t

o

n J

77

1 / sin (n
Vif)

En général, i étant un nombre entier non-négative quelconque, on est

conduit pour les moyennes arithmétiques d'ordre k, en se basant
toujours à la forme (2.1) du terme général An de la série de Fourier, à

l'intégrale singulière

178



n+k\ In+k —1\ n /k\ n1 + 2 cos t -f • • • + • 2 cos n t

In +k\
\ k I (2.5)

signifiant toujours

f(u + t) + f(u-t) n 0,l,2,.... (2.6)

Donc, si nous désignons par crjf) (£) la moyenne d'ordre k et d'indice w

de la série
1 + 2 cos t + 2 cos 2t H h 2 cos n £ H (2.7)

qu'on peut nommer ,,la série-noyau de la série de Fourier", c'est-à-dire
posant

/n + k\ (n -f k—1\ s (k\ nT • 1 + • 2 cos t + • • • -f 7
• 2 cos n t

Jtolt\- \ k I \ k IW(2 g)
(n+k\
\ * /

nous obtenons pour la moyenne du même ordre et du même indice de la
série de Fourier de la fonction / la formule générale

(2.9)
4 0,1,2,3,.
71 0,1,2,3,...

où, je le répète, xp(t) a, ici et dans ce qui suit, toujours la signification

?(*)
f{u + t) + f{M-~t)

(2.10)

Le produit figurant sous le signe d'intégrale dans l'expression de s^
sous (2.9) se compose de deux facteurs. Le premier facteur tp(t) dépend
de la fonction développée f(u) mais le second a^(t) qui représente la

moyenne arithmétique d'ordre k et d'indice n de la série élémentaire

1 + 2 cos t + 2 cos 2t H h 2 cos n t -\

est tout-à-fait indépendante de la fonction développée / ; il est commun

pour toutes les fonctions / et se nomme par cette raison le noyau de l'intégrale

singulière (2.9).
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3. En mentionnant d'autres exemples d'intégrales singulières, qu'il
me soit permis de me restreindre à quelques des plus anciens et à quelques
des plus nouveaux.

Voici l'intégrale de Poisson:

f12rJt + r2 (3.1)
0

ou l'intégrale de Weierstrass:
+ 00

2 r C
W(r,u) -— f(t)e-™dt ; (3.2)

y 7i j0
puis l'intégrale d'Hermite, qu'on obtient en posant

+ 00

— oo

et formant la différence
+ 00

±-{F(u + ri)~F(u-ri)} J fQ-ç-JL—*
— OO

c'est alors l'intégrale
+ 00

^ (3.4)

rp(t) ayant toujours la signification de ^(J(u + t) + f(u — t)), qu'on
doit nommer intégrale singulière d'Hermite.

Dans une Note publiée en 1925 dans les ,,Gôttinger Naehrichten", je
pars du fait que la courbe qui représente pour ^ 0 la fonction positive
J-^-—L est toujours située sous l'hyperbole ——- $ ;> 0 ; le noyau, unt 1 ~j~ t
peu modifié, de l'intégrale singulière, représentant la moyenne arithmétique

de premier ordre de la série de Fourier, satisfait donc à l'inégalité

1 / sin n t \2_ / sin n t \(—-.—n\ t J \ nt J =* (l + nt)*

et j'étais ainsi conduit à considérer l'intégrale singulière

+ 00
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Par l'application de ce noyau si simple n(l + nt)~2 le théorème
d'après lequel les moyennes arithmétiques de la série de Fourier d'une
fonction f(u) convergent vers la valeur /, devient presque évident non
seulement dans le cas où

mais également dans le cas beaucoup plus général de Lebesgue où
h

\ f \y(t)—f\dt-+Q avec A->+0, (3.7)
0

c'est-à-dire dans le cas où la fonction f(u) possède au point u 3,une
valeur intégrale moyenne absolue" /.

Jusqu'ici j'ai énuméré un certain nombre d'intégrales singulières mais
je n'ai pas parlé des problèmes de différentes espèces qui se sont attachés
au cours des années à telle ou telle intégrale singulière.

Il est impossible mais heureusement entièrement superflu que j'insiste
sur ce point ; je veux seulement dire que la question le plus souvent mais

pas du tout exclusivement traitée est celle de la convergence de l'intégrale
singulière vers une limite finie /, la fonction ip(t) se comportant de telle ou
telle manière au voisinage de t — -f- 0, point critique du noyau. Le noyau
d'une intégrale singulière, commun pour toutes les fonctions admises, fait
prédominer le comportement de la fonction dans le voisinage infinitésimal
du point critique du noyau. (Dans les exemples donnés jusqu'ici c'est le
point t 0.)

4. Permettez moi d'indiquer deux sujets assez profondément étudiés
qui sont en connexion plus ou moins étroite avec celui des intégrales
singulières. Ce sont les,,sommes singulières6', comme on les pourrait nommer.

J'ai commencé en 1900 d'examiner la moyenne arithmétique d'ordre n
de la série de Fourier qui représente une intégrale singulière de noyau
positif (non-négatif), mais c'est seulement en 1915 que j'ai réussi a trouver

la formation arithmétique analogue dans la théorie des suites
d'interpolation et en 1932 dans la théorie des suites de quadrature mécanique, la
dernière formation étant d'ailleurs d'un caractère différent.

Ce sont les sommes singulières aux facteurs positifs qui correspondent
aux moyennes arithmétiques de premier ordre de la série de Fourier,
en accordant les mêmes avantages. Permettez moi, en laissant de côté
ces sujets dans tout leur étendu, de faire la remarque unique que les
coefficients des quadratures mécaniques (nommés coefficients ou nombres
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de Cotes ou de Christoffel) se sont montrés positifs dans les cas les plus
classiques, parmi lesquels la quadrature AqGcluss, les abscisses de quadrature

étant dans ce cas les zéros du polynôme de Legendre.

5. Les intégrales doubles singulières sont aussi dignes d'intérêt ; je
parlerai plus tard de celles qui sont attachées à la série de Laplace. A
présent, je considère l'intégrale double singulière que j'ai employé à la
démonstration et généralisation d'un théorème découvert par Hardy et
Littlewood. Cette démonstration se trouve dans ma note parue dans les

,,Proceedings of the Cambridge Philosophical Society" (October 1938 ;

received 20 May, read 17 October 1938).
J'ai déjà remarqué qu'en désignant par

la suite des sommes partielles de la série de Fourier d'une fonction /,
pour fixer les idées, partout continue et de période 2n de la variable
indépendante, la somme partielle sn s^ s'exprime par l'intégrale de
Dirichlet

sin(2n+l)|
t

8m2
dt ; n 0, 1,2,.

(5.1)

c'est-à-dire par une intégrale singulière dont le noyau

change exactement n-fois le signe dans l'intervalle d'intégration 0 <t <ti,
tandis que la suite des moyennes arithmétiques

2 o W -f~ 1

est exprimée par une intégrale singulière

=5-,... (5.2)

« 0,1,2,..., w(t)

(5.3)

(5.4)
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dont le noyau / sin (n + 1) ^ \2

sin-
ne le change pas du tout.

Or, en 1913, Hardy et Littlewood ont considéré, au lieu de la suite des

sommes partielles de la série de Fourier

la suite des carrés de ces sommes partielles, c'est-à-dire la suite

et ont trouvé qu'en désignant la valeur de la fonction / au point u bref

par s,

^«8 + 4+-;- + 4^. (5.7)

Tandis que le théorème sur la convergence des moyennes arithmétiques
vers la limite s signifie pour les écarts (sn — s)

Hm (8.-s)+(s1-ê) + + (8n-S) _0fl+1 }

du théorème sur les moyennes arithmétiques des carrés s'ensuit immédiatement

le théorème de Hardy et Littlewood

lim (,.-,)¦ + (.,-,)« + ••¦ + («,-«)¦
n + 1

7

n->oo

Si l'on part de l'intégrale double qu'on obtient pour le carré des

sommes partielles sn en les exprimant par l'intégrale de Dirichlet

sin (2 n
-JfV)
0

c'est-à-dire de la formule

j P sin (2 n + 1) —

-- hp(t) j dt (5.10)
71 y sin —

o Sln2

1 }} sin(2«+l){ sin(2»+l)f
sn)2 -z* h(t)y(v) —; dtdv, (5.11)

J y sin — sin —
0 ô SmI Sm2

la démonstration du théorème (5.7) semble être très difficile parce que le
nombre des changements de signe du noyau dans cette intégrale double
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croît indéfiniment avec n. Nous avons la même situation pour les moyennes

arithmétiques du premier et du deuxième ordre de la suite des carrés

{s^} des sommes partielles. Ce sont les moyennes arithmétiques de
troisième ordre de la suite des carrés {s^} des sommes partielles, c'est-
à-dire

- (5.12)

en
o o

AH-2\ ~" 2 "*" 2 /»+l\°J""2 °"*"2
_

/2\^ sin3| sin(2w+l)| • sin(2w+l)|

sm-sm- N ' sin-sin- N/ sin| - sin|

(5.13)

desquelles dérive l'intégrale singulière double (5.12), dont le noyau
kn(t, v) ne change de signe nulle part dans le carré d'intégration.

Maintenant, en se basant sur l'intégrale double singulière à noyau non-
negatif (5.12), on obtient une démonstration assez élémentaire du théorème

cité de Hardy et Littlewood et à la fois une généralisation se rapportant

à la série de Fourier double d'une fonction quelconque de deux
variables. Voici une application de la formule (5.12). On doit a Isaie
Schur un très beau théorème avec une démonstration bien simple qui
s'énonce : si la série de puissances f(z) c0 + cx z + • • • + cn zn + • • •

est convergente dans le cercle | z \ < 1 du plan de la variable complexe z

et si la valeur absolue de f(z) ne dépasse pas l'unité dans l'intérieur de

ce cercle (| f(z) | fg 1 pour | z \ < 1), alors on a pour | z | ^ 1

L w 0,l,2,... (5.14)n+ 1 ~~ ' ' ' '

Si l'on remplace dans cet énoncé sn(z) par la somme partielle
ordinaire d'ordre n de la série de Fourier d'une fonction / (u), pour laquelle
on a | /(u) | ^ 1 pour toutes les valeurs de u, le théorème cesse d'être

vrai, c'est-à-dire les valeurs moyennes ordinaires des carrés des sommes
partielles de la série de Fourier d'une fonction qui ne dépasse jamais en
valeur absolue l'unité, peuvent quelques fois dépasser l'unité, mais les
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moyennes de troisième ordre des carrés des dites sommes partielles ne le

peuvent pas ; c'est-à-dire tandis que

est possible,

est impossible.
m

6. Dans le quatrième numéro d'une petite note déjà citée sur la
théorie de la sommabilité par les moyennes arithmétiques répétées de la
série de Fourier et de la série de Laplace, publiée en 1938 dans les ,,Pro-
ceedings of the Cambridge Philosophical Society", j'ai remarqué qu'en
appliquant certains théorèmes généraux que j'avais trouvés successivement

dès 1932 sur les intégrales singulières, on obtient, dans le cas ou
les prémisses se rapportant à la fonction dans l'intégrale singulière sont
celles de Lebesgue ou, plus généralement, celles de Hardy et Littlewood,
des démonstrations simples pour certains théorèmes connus et pour
certains nouveaux.

Naturellement, pour obtenir de nouveaux théorèmes, il faut employer
aussi des propriétés nouvelles du noyau de l'intégrale singulière. Pour
éclaircir un peu ce deuxième point, prenons pour exemple le cas de la
série de Fourier et celle de Laplace et supposons qu'il s'agit de la convergence

ordinaire de ces séries ou de la convergence des moyennes arithmétiques

des sommes partielles d'un certain ordre de ces séries ; alors, ce

sont des propriétés nouvelles des sommes itérées des séries élémentaires

1 + 2 cos t + 2 cos 2t -\ h 2 cos n t H (6.1)

P0(cost) + SP^cost) H h (2n+ l).Pn(oos$) H (6.2)

que j'ai trouvées et qui m'ont permis de poursuivre mes recherches dans
la direction indiquée. Si l'on introduit cos t x comme variable
indépendante ce qui est très important au point de vue des considérations
suivantes, ces séries prennent respectivement la forme

x)+..-+2Tn(x)+... (6.3)

PQ(x) + 3Px(x) + 5P2(x) +...+ (2w + 1) Pn(x) +• ¦ • (6.4)
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où Tn(x) désigne le polynôme de Tchebychef de première espèce, c'est-
à-dire la fonction cos nt, prise comme fonction de cos t x et Pn(x)
signifie le polynôme de Legendre.

En outre, il est utile aussi de considérer les propriétés analogues des
séries encore plus élémentaires

l + x+x2-\ h xn H (6.5)

P0(x) + pi(s)+-..+ Pn(a.)+... (6.6)

Ma note, citée tout à l'heure, contient seulement quelques lignes
sommaires pas aisément compréhensibles, relatives aux sujets dont je viens
de parler. Je suis heureux de pouvoir développer un peu ce sujet.

Mais quelles sont les propriétés nouvelles des sommes partielles itérées
de différents ordres de la série

T0(x) + 2T1(x)+..-+2Tn(x) +.-. x eost, (6.7)

dont j'ai fait allusion il y a un instant?
Pour commencer par des résultats connus depuis longtemps, il faut

mentionner d'abord que la somme partielle d'ordre 0 de la série (6.7)
a la valeur, exprimée en t,

sin(2rc+l){
Sf(x) T0(x) + 2T1{x)+-.. + 2Tn(x) }

?-
; (6.8)

sin-
donc le polynôme S^(x) de Dirichlet, de degré n en x, change son
signe n-fois dans l'intervalle — 1 ^ x <£ +1. Par contre, la somme
itérée d'ordre 1

/sin(7i+l)|\2M (6.9)

qui est un polynôme de degré n en x, ne change pas son signe dans l'intervalle

-1 ^ x ^ + 1.
Maintenant laissons de côté pour un moment les sommes partielles de

deuxième ordre de la série

T0(x) + 2Tx(x) + 2T2(x) +• • •+ 2Tn(x) +. • • (6.10)

et parlons des sommes partielles de troisième ordre S^ (x) de cette série.

J'ai démontré en 1932 que les polynômes S^ (x) sont non seulement
positifs dans l'intervalle — 1 ^ x ^ +1 > mais aussi toujours croissants
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dans le même intervalle, c'est-à-dire B^)(x)>0, -j-S(£)(x)>0, pourax 7

— I<z<+1, n 0,1,2,... (Bien entendu, on a -j-Sf} (x) 0.)
Cela signifie que le polynôme de cosinus

• 2cosn< (6.11)

est non seulement positif dans l'intervalle 0 <£ t ^ tc mais aussi
toujours décroissant.

En ce qui concerne les dérivées d'ordre supérieur des moyennes d'ordre
supérieur, je ne pouvais pas avancer en ce temps dans cette matière,
parce que j'ai examiné toujours les dérivées d'ordre 2,3,... par rapport
à la variable t. C'est seulement après cinq années que j'ai aperçu qu'on
doit différentier par rapport à la variable x, si l'on veut obtenir des lois
générales et simples.

On obtient ainsi, en faisant le premier pas en avant, que quant à la
série

T0(x) + 2Tx(x) + 2T2(x) +...+ 2Tn(z) +• • • (6.12)

qui sert comme série de noyau dans la théorie de la série de Fourier si
l'on introduit cos t x au lieu de t, les sommes partielles d'ordre 5 de
cette série S{^(x) (et par conséquent aussi les moyennes d'ordre supérieur

à 5 de cette série en x) sont toutes 1) positives, 2) toujours croissantes

et 3) convexes, regardées de dessous, dans tout l'intervalle —1 ^Lx ^+L
En général, les dérivées par rapport à x (Tordre k des moyennes arithmétiques

d'ordre 21c -\- 1 delà série

T0(x)
n=l

sont toutes positives dans Vintervalle — 1 ^ a; ^ + 1 et par conséquent,
il en est de même pour les dérivées d'ordre k des moyennes arithmétiques
d'ordre m 2k + 1 + l plus grand que 2k + 1. (Seule exception :

k 0, l 0, lorsque nous devons dire ,,non-négatives" au lieu de ,,po-
sitives".)

On démontre cela tout d'un coup en regardant la fonction génératrice
de notre série qui est le noyau de Poisson :

x cos t

(6.13)
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Si nous différentions 4-fois les deux membres de l'équation (6.13) par
rapport à x, nous obtenons la fonction génératrice de la série

et puis si nous multiplions les deux membres de l'équation ainsi reçue par

— r^j- nous obtenons la fonction génératrice de la suite

d* 4m) (x) dk S™ (x) dk £<nm) (x)
d^ ' dx>< '••" dx>< "•• • (6<15)

Nous avons supposé que m, c'est-à-dire l'ordre de la somme itérée

S^(x) de la série ^
T0(x)+ Z 2Tn(x)

n=l
n'est pas plus petit que 2k + l, c'est-à-dire m 2 k + 1 + h où Z est

un nombre entier non-négatif quelconque.
Enfin, en multipliant et en divisant par (1 — r2)k le deuxième membre

de l'équation obtenue tout-à-1'heure, on arrive à la fonction génératrice
de la suite des dérivées supérieures par rapport à x des sommes d'ordre
supérieure de la série-noyau de la série de Fourier :

00 dkS^(x) I 1 \*/ t \ki 1 t2

ào dx* r \l-r) \l-r*) \(i-r)*(L-2
Je 0, 1, 2,... (6.16)

l =0,1,2,...
m 2k+ 1 + l

Les séries de puissances en r
—1—= 1 + r + r2 H (6.17)
1 — r x

-=-^-5- r + r3 + r5 H (6.18)

l-r2 *

ayant des coefficients non-négatifs, il est claire que les coefficients du
produit (6.16) sont aussi non-négatifs, même positifs, si l'indice n n'est
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pas plus petit que k (excepté k 0, l 0, lorsque nous obtenons tout
simplement la suite

(6.20)

qui est non-négative).

7. Qu'il me soit permis d'attirer l'attention sur la simplicité de la
démonstration de la positivité des polynômes rationnels de x (ou si Ton
veut des polynômes de cosinus en t) par la méthode des fonctions généra-
trices que j'ai appliquée dans cet ordre de questions depuis si longtemps.
Je ne connais pas une autre voie qui pourrait conduire aussi simplement
au même but.

Mais la même méthode conduit au but également dans le cas beaucoup

plus difficile de la série

P0(x) + SP^z) + 5P2(x) +...+ (2n + l)Pn(x) +••• (7.1)

qui se présente comme série de noyau dans la théorie de la série de La-
place.

Si l'on part de la fonction génératrice

LZLI2
r== £ (2n+l).Pn(x)rn (7.2)

n=0

ou Pn{x) désigne le polynôme de Legendre d'indice n, on obtient, par un
calcul très facile et entièrement analogue au précédent, pour la suite des
dérivées d'ordre k par rapport à # de la somme d'ordre m 2k + 2 + l
de la série de noyau (7.1), désignée de nouveau par

-* n 0,l,2,...f (7.3)

la fonction génératrice

i *fy r- (7.4)

1 \l I r \k / 1—r2 \k+1 1

(l-r)Vl-2xr+r*
OÙ

k =0,1,2,...
l 0,1,2,...
m 2k + 2 + 1
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Les coefficients des séries de puissance en r
1

2l-r -l + r + r H > (7-6)

l — r2 ' '

1 _ r2 « / sin (n + 1)

sm-

(7.8)

étant non-négatifs, on obtient de nouveau une série de puissances à
coefficients non-négatifs en r, si l'on forme leur produit après avoir élevé
chacune d'elles a une puissance entière non-négative quelconque. (Dans
notre cas, les coefficients du produit sont positifs dans tout l'intervalle
— 1 ^ a; ^ +1, n<k étant toujours exclus.)

Pour obtenir (7.8) nous nous sommes servis de l'intégrale de Mehler

2 /• sin (2 n -f- 1) —
Pn(cost)=— / —i— du (7.9)

71 J V2 (cos t — cos u)

Nous avons donc obtenu que pour la série

Po (x) + 3PX {x) + 5P2 (*)+••• (7.10)

procédant suivant les polynômes de Legendre et qui est décisive pour les

propriétés de convergence et de sommabilité de la série de Laplace d'une
fonction donnée sur la sphère, les moyennes d'ordre deux sont positives
dans l'intervalle — 1 ^ x g -f 1 ; que les moyennes d'ordre quatre sont
non seulement positives dans ce même intervalle, mais qu'elles sont toutes
toujours croissantes ; que les moyennes d'ordre six sont positives, toujours
croissantes et convexes regardées d'en bas ; etc.

8. Pendant le siècle passé, on ne s'occupait pas beaucoup des
polynômes trigonométriques positifs (ou non-négatifs), ou de la positivité d'un
polynôme entier, ou de celle des polynômes entiers ordonnés suivant les

polynômes de Legendre, de Laguerre, à'Hermite, etc., dans tel ou tel intervalle,

qui peut être fini ou infini. Dans notre siècle cependant, une
certaine branche de l'algèbre s'est développée, qui s'efforce de trouver des
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méthodes propres à décider la question importante de la positivité, dont
nous venons de parler et qui est aujourd'hui en plein développement. On

peut dire que la théorie d'un grand nombre d'intégrales singulières appartient

plutôt à l'algèbre qu'à l'analyse. Le double caractère de ce domaine
de recherche ne manque pas de le faire attractif.

9. J'ai déjà dit que je retournerais aux moyennes arithmétiques de
deuxième ordre S^(x) de la série

T0(x) + Z2Tn(x) (9.1)
n l

qui succèdent immédiatement les moyennes d'ordre 1, qui sont non-négatives

et devancent les moyennes d'ordre 3, qui sont positives et toujours
croissantes dans l'intervalle — 1 ^ x ^ + 1

> comme nous l'avons vu
tout-à-1'heure. La recherche des propriétés utiles des moyennes d'ordre
deux S*® (x) de cette série de noyau ne se fait pas par l'application de la
méthode des fonctions génératrices. Leur étude est plus délicate. D'abord,
il est clair qu'elles sont positives dans l'intervalle — 1 ^ x ^ + 1.

Pour étudier plus loin l'allure de ces moyennes arithmétiques de deuxième

ordre S^(x) comme fonction de x dans l'intervalle — 1 ^ x f^-j- 1,

coupons notre intervalle de longueur 2 en deux parties, prenant pour
première partie — 1 ^ x^ — 0.5 (Ij), c'est-à-dire un quart de l'intervalle

total et pour deuxième les trois quarts qui restent : — 0.5 fg # g+ 1

(I2). Raccourcissons maintenant les intervalles Ix et I2 par e à leurs
extrémités ; nous obtenons ainsi les intervalles i1 et i2,

ix: - 1 + e^x< - 0.5 - s (9.2)

i2: — 0.5 + e^ x^ + 1 — e (9.3)

Maintenant, en appliquant ma formule asymptotique (Zeitschrift fur
angewandte Mathematik und Mechanik, tome 13 (1933), No. 6 ; pag. 83,

84)

\
ax 4n sin4^ • cos-z z

x cos t (9-4)

où lim rjn (t)=0, uniformément dans l'intervalle — l-f-£^#^+l — s,
W->00

on obtient le résultat surprenant que 1) si e est aussi petit qu'on voudra
mais fixé et 2) si, correspondant au choix de e, l'indice n est suffisamment
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grand, la fonction S^(x) est toujours croissante dans l'intervalle i2, tandis
qu'elle à un maximum et un minimum en n'importe quelle petite partie fixe
de l'intervalle il9 si n est suffisamment grand. Szegôa, démontré dans son
travail ,,Power séries with multiply monotonie séquences of coefficients"
(Duke Mathematical Journal, Vol. 8, No. 3, September 1941, pag. 560,
inégalité (9)) que S^(x) est toujours croissante dans l'intervalle
— 0.4 <^ x < + 1 et pour toutes les valeurs de n ; et enfin mon jeune
élève regretté, Nicolas Schweitzer, victime de la guerre, a démontré que
toutes les moyennes S^(x) sont toujours croissantes dans l'intervalle
— 0.5^#^ + l> résultat qu'on ne peut pas améliorer d'après ce que
nous avons dit au commencement. (Le manuscript de Schweitzer que je
possède porte la date du 28 décembre 1943.)

10. J'ai déjà fait mention que les propriétés des sommes partielles
obtenues par sommation répétée de la série

To + S2Tn
n=l

sont utiles non seulement dans la théorie des intégrales singulières, mais
aussi dans d'autres domaines de recherches.

En appliquant le fait que les sommes partielles de troisième ordre de la
série divergente

T0(x) + 2T1(x) +...+ 2Tn(x)+... (10.1)

sont toujours croissantes dans l'intervalle — 1 ^ x ^ + 1 (c'est-à-dire
le fait que les sommes partielles de troisième ordre de la série

T'1(x) + T'2(x)+-.>+T^x)+--- (10.2)

sont non-négatives dans l'intervalle — 1 ^ x ^ + 1), j'ai démontré en
1936 le théorème suivant :

Si la suite {cn} des coefficients de la série de puissances

cxz + czz*+...+ cnzn +... (10.3)

est monotone du quatrième ordre, la somme de la série est univalente dans le

cercle d'unité \ z \ < 1 du plan de la variable complexe.

Pour la série

Tx(x) + TB(x) + T5(x)+.-- (10.4)
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j'ai trouvé que ce sont déjà les sommes partielles de deuxième ordre qui
sont toujours croissantes dans Vintervalle total — 1 ^ x ^ + 1

> mais je
n'ai pas réussi à démontrer ce résultat au moyen de la méthode des fonctions

génératrices ; la démonstration est un peu difficile mais pas sans
intérêt. Une conséquence de cette propriété de notre série

T±+T3+T5+.-. (10.5)

est le théorème suivant que j'ai trouvé en 1936 :

Si la suite {cn} des coefficients de la série de puissances

cxz + c2zz + c3z5 H (10.6)

est monotone de troisième ordre, la série est convergente et univalente dans le
cercle d'unité, | z | < 1.

On ne peut pas améliorer ce théorème ; il n'est pas vrai si l'on dit :

„monotone de deuxième ordre" au lieu de „troisième ordre". Par contre,
le théorème précédent se rapportant à la série complète de puissances
reste encore vrai si la suite des coefficients est monotone de troisième
ordre au lieu d'être monotone de quatrième ordre. C'est-ce qui a été
montré par Szegô en 1941 dans son travail cité. La démonstration de ce
théorème n'est pas facile ; il n'en est même du fait qu'on ne peut pas
réduire l'ordre de 3 à 2.

Pour résumer on peut dire : Les séries de puissances avec cï > 0

c1z + c2z2 + ...+ cnz"+... (10.7)

cx z + c2 z* + • • • + cn z2"-1 + • • • (10.8)

sont univalentes pour | z \ < 1 si la suite cx, c2,... est monotone d'ordre 3 ;

ces théorèmes généraux ne sont plus vrais, si Von dit 2 au lieu de 3.

(Une suite est dite d'être monotone du troisième ordre, si

c1>0, c2à0, c3^0, c4^0,...
cx — c2 ^ 0, c2 — c3 ^ 0, c3 — c4 ^ 0,...

Cl ~ 2C2 + CZ ^ °> C2~ 2C3 + C4 ^ °> C3 — 2C4 + Cg ^ 0,.

cx - 3c2 + 3c3 - c4 ^ 0, c2 - 3c3 + 3c4 - c5 ^ 0,...)
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11. Une autre question intéressante est la suivante. Prenons une série

cx cos t -f c2 cos 2t + • • • + cn cos n t + • • * f{t) (11.1)

pour laquelle la suite {cn} est simplement monotone, avec c1>0,
lim cn 0 ; alors f(t) a au moins un changement de signe dans l'intervalle

0<t<n, mais en pourra avoir tant qu'on voudra dans cet intervalle

(p. e. cos t + °os 2t + • * • + cos nt, si n est suffisamment grand).
La même chose est vraie si {cn} est doublement monotone (p. e. n cos t

+ (n — 1) cos 2t -{-•••+ cos n t). Si nous omettons pour un moment le
cas de 3, nous pouvons constater que, si la suite {cn} est quadruplement
monotone, la fonction a un et un seul changement de signe dans l'intervalle

0<t<a. En effet, une conséquence du fait que les sommes par-
oo

tielles de troisième ordre de la série Z Tn(x) sont toujours croissantes
n=l

dans — 1 5* x ^ + 1 es^ que notre fonction f(t) sous (11.1) est
toujours décroissante dans l'intervalle 0<t<n. Cela n'est pas vrai si la
suite {cn} est seulement triplement monotone, pourtant le théorème
suivant subsiste :

Si la suite des coefficients dans la série trigonométrique

CiCOSÊ + C2 COS 2t H h CnCOS7&J H f(t) 0<t<7l (H.2)

est triplement monotone avec c1>0, lim cn 0, alors sa somme f(t) a
n->oo

un et seulement un changement de signe dans Vintervalle §<t<n. Ce
théorème riest pas vrai si Von dit,doublement monotone" au lieu de ^triplement
monotone".

Dans la démonstration de ce théorème j'emprunte un élément de
démonstration du travail de Szegô dont j'ai parlé il y a un instant.

12. Après ces digressions un peu longues je retourne aux intégrales
singulières (int. s.) en me restreignant à quelques remarques courtes.
J'omets entièrement l'histoire si intéressante comment s'est glissé dans
cette théorie l'idée de distinguer nettement entre intégrales singulières à

noyau de signe changeant et de signe constant. Cette première classification

des int. s. se trouve dans le Mémoire de Lebesgue, intitulé ,,Sur les

intégrales singulières" et paru en 1910 dans les Annales de la Faculté des
Sciences de Toulouse (troisième s., T. L). Dans un travail de Lebesgue,

paru aussi en 1910 dans le Bulletin de la Société mathématique de

France ,,Sur la représentation trigonométrique approchée des fonctions
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satisfaisant à une condition de Lipschitz" il ajoute à la dernière page la
remarque historique intéressante, que déjà Ulisse Dini, dans les nos. 23

et 24 de son ouvrage ,,Série di Fourier e altre rappresentazioni analitiche
délie funzione di una variabile reale", paru en 1880 à Pise, a fait la
distinction importante entre noyau de signe changeant et constant, en
prononçant même certains théorèmes généraux de convergence sur quelques
espèces d'intégrales singulières a noyau positif.

On sait que Lebesgue a fait (en 1905) la découverte que ce n'est pas le
signe du noyau duquel dépend la question de la convergence ou divergence

de l'intégrale singulière quand le paramètre entier n tend vers
infini ; c'est plutôt l'intégrale de la valeur absolue du noyau qui est décisive
dans cette question, si en outre le noyau satisfait a certaines autres
conditions. Notamment si l'intégrale de la valeur absolue du noyau reste
bornée pour toutes les valeurs entières de n, il y a convergence pour
n ->oo, mais si elle ne reste pas bornée, cette intégrale, il pourra être
divergence. Mais il n'est pas ici le lieu de développer ces idées de Lebesgue ;

je retourne à l'intégrale à noyau positif. Ce cas particulier, qui se présente
très souvent dans l'analyse, est beaucoup plus élémentaire que le cas

général mentionné à l'instant même.2)

13. Je le répète, on a divisé les intégrales singulières en deux classes

depuis longtemps ; cependant, depuis 1900, cette classification a gagné
certainement en accentuation, parce qu'on devait alors confronter
Tint. s.

-rin(2n+l)4
dt (13.1)

qui représente la somme partielle, et l'autre

t

(13.2)

qui représente la moyenne arithmétique des sommes partielles de la série
de Fourier.

2) En ce qui concerne la littérature de ces dernières décades si riche en des résultats
importants se rapportant aux différentes branches du sujet de notre conférence, je suis
contraint à ne faire que mentionner — outre les noms déjà cités dans le texte — encore
les suivants : Bord, Bosanquet, Carslaw, Erdô'8, Hahn, Hobson, D. Jackson, Kaczmarcz,
Ch. N. Moore, Plessner, Pôlya, F. Riesz, M. Riesz, Rogosinski, Sansone, Scheckter, Schlem-

per, Schlesinger, Shohat, Steinhaus, Titchmarsh, Tonelli, Turân, de la Vallée Poussin,
Zygmund.
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Mais je m'ai posé la question suivante : peut-on aussi classifier la totalité

des intégrales singulières a noyau positif, ou au moins une partie
importante d'elles Au premier regard, elles se ressemblent comme les pin-
guins ; peut-on faire quand-même une distinction générale et utile La
réponse est affirmative. Prenons p. e. une des intégrales à noyau positif
la plus simple, à laquelle j'ai été conduit en 1925

+ 0

?(*)• (l + nt)*dt ' « 0,1,2,3,... (13.3)

Calculant les dérivées successives du noyau

kn(t) n(l +nt)~* (13.4)
nous trouvons

h'n(t) - 2n2(l + nt)~* Ktt) 2-3.^3(l +nt)~*,...,
(13.5)

et nous voyons que k^ (t) a le même signe pour chaque valeur de s dans
l'intervalle de l'intégration et que ce signe constant est alternativement
positif et négatif si s parcourt successivement les nombres entiers non-
négatifs : 5 0,1,2,3,... Nous pouvons donc dire que dans ce cas le

noyau kn(t) est parfaitement décroissant dans l'intervalle d'intégration

(0, + oo), (comme -—— dans le même intervalle). Etant d'autre part
1 -f-1

Km k^(t) 0, même uniformément dans l'intervalle (e, + oo) après
n=oo
avoir fixé le nombre positif e (en outre quelconque) et l'ordre s de la
différentiation, on peut conclure

+ 00

si n'importe laquelle des conditions
t

Vo (0 (0W (13.7)

pour t -> + 0 est remplie, c'est-à-dire la condition classique, ou celle de
Lebesgue ou une condition de Hardy-Littlewood.
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En général, on a :

lira lf(t)kn(t)dt y> (a>0) (13.8)
si n=°° °

1) sgn dVy (- 1)" pour > 0,1,2,...,«, Ogiga,

2) Um^ii=limfc<;>(<) 0

uniformément dans Vintervalle 0 < e ^ £ ^ a powr chaque choix du
nombre positif e,

3) lim / kn(t)dt 1,
n=oo 0

4) ip{t) est une fonction intêgrable dans Vintervalle 0 <Lt t^a pour
laquelle au point t + 0 la condition généralisée de Lebesgue, c'est-à-dire
la condition de Hardy-Littlewood

t

est remplie.
o

— u)s-1du->y) pour f->+0? (13.9)

La démonstration de ce théorème est d'une extrême simplicité. Si nous
introduisons les valeurs moyennes intégrales \p (t) ip0 (t), yj± (t),..., tpg(t)

définies tout-à-1'heure et si nous désignons le noyau, fonction toute régulière

de t, par k(t) (c'est-à-dire si nous omettons pour un instant l'indice
n), nous obtenons par intégration par partie s-fois répétée la formule
connue: n „ IS_X k(v)(a)

a 4s

-j- j^g(^(_ \yk{8)(t)—^dt (13.10)

ou a est un nombre positif fixe. Posons \p(t) ~ 1 dans cette formule
(13.10); nous obtenons

(13.11)
D'après la condition 1) les nombres

(- l)»fc<B°>(a) (- l)1^1» ,¦ • • (- l)'-1^-1^) (13.12)

sont non-négatifs; la fonction (— l)8^^) est aussi non-négative dans
l'intervalle (0, a) ; enfin, la différence {a — t) est évidemment positive

197



dans l'intervalle 0<<<a, donc tous les s + 1 termes du second membre
de l'équation (13.11) sont non-négatives, d'où résulte l'inégalité importante

a „1 (~ 1)* Hf) (') Vf* ^ J *. (')*< G (13.13)

pour toutes les valeurs entières de n, en tenant compte aussi de la
condition 3).

De la condition 2) nous concluons lim lé£* (a) 0, pour v 0, 1, 2,
5 — 1 ; donc le premier terme du second membre de l'équation

(13.10) tend vers 0 si n ->oo.
Dans la condition 4) nous pouvons, sans restreindre la généralité,

prendre xp 0, c'est-à-dire soumettre %p (t) à la condition
t

lim y>8 (t) lim ~ / y (t) (t — u)8'1 du -> 0 (13.14)
0

Alors, si <3 désigne un nombre positif, nous pouvons prendre a si petit
que | y>8(t) \^ô pour 0^t^a. La valeur de a étant ainsi choisie et
fixée, nous obtenons pour le second terme du second membre de l'équation

(13.10), en tenant compte de la positivité de (— lyk^ty) dans
l'intervalle 0<t<a, que sa valeur absolue est

- \)*U£(t)l-ydt (13.15)

ce qui est, en vertu de (13.13),

^ôC (13.16)

Donc de l'équation (13.10) il s'ensuit immédiatement que

| f ip(t) kn(t) dt | ^ <3 + ôC (1 -f- C) à (13.17)
o

si n est suffisamment grand, c'est-à-dire
a

lim J tp(t) kn(t) dt 0 (13.18)
n=oo 0

et notre théorème est démontré.

14. Autres types d'int. s., encore plus importantes, sont

$y){t)kn(x)dt # cos£, (14.1)
o

§ip(t) kn(x) mntdt # cos£ (14.2)
o

où kn{x) est une fonction rationelle entière de degré n en x, positive

198



avec quelques dérivées d'ordre supérieur par rapport à x, dans l'intervalle

— 1 < x < -f-1, ces dérivées tendant uniformément vers zéro dans
l'intervalle — l^x<l — e, si n->oo. Ces deux types d'intégrales
jouent un rôle important dans la théorie de la sommabilité par les moyennes
arithmétiques de la série de Fourier et de la série de Laplace ; pour chacun
d'eux un théorème analogue à celui du no. 13 est valable.

15, Nous ne voulons pas ici développer plus loin ce sujet, seulement
faire, pour terminer, deux remarques, dans lesquelles s'exprime l'essence
de la tendence de mes recherches, exposées dans ces lignes.

1) Si la fonction est continue à un point du cercle d'unité, ou à celui
de la sphère d'unité, quelles sont, parmi les moyennes arithmétiques
d'ordre entier et d'ordre autant petit que possible, les plus simples 1 La
réponse est la suivante : dans la théorie de la série de Fourier, ce sont les

moyennes d'ordre un, dans celle de la série de Laplace, les moyennes
d'ordre deux,

2) Mais quelle est la réponse, si dans le cas de la série de Fourier de la
fonction f(u) c'est la condition de Lebesgue

u+h
-1- f f(t)dt-+f si A-> + 0, (15.1)

u—h

qui est remplie et si aussi dans le cas de la série de Laplace c'est la condition

analogue à celle de Lebesgue qui est remplie?
Nous avons la réponse suivante : ce ne sont pas les moyennes d'ordre

deux3), ce sont les moyennes d'ordre trois (de la série de Fourier) resp.
celles d'ordre quatre (de la série de Laplace) qui sont les plus simples, si,

je le répète, c'est la condition de Lebesgue, à laquelle la fonction
développée est soumise.

(Reçu le 15 août 1948.)

3) En 1912, au Congrès international des Mathématiciens à Cambridge (Angleterre)
j'ai eu le plaisir de parler avec M. Montel sur les moyennes de la série de Fourier. Il m'avait
dit, que le théorème de Lebesgue se rapportant aux moyennes arithmétiques de deuxième
ordre de la série de Fourier (dont s'est occupé aussi Fatou) est particulièrement simple,
et en même temps d'une portée plus générale que celle de premier ordre. En continuant
dans ma conférence une conversation mathématique tenue il y a 36 ans, nous voyons
maintenant que les moyennes d'ordre trois sont encore plus simples que celles d'ordre deux,
parce que leur noyau est non seulement positif, mais en même temps monotone, dans tout
l'intervalle d'intégration.
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