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Intégrales singuliéres a noyau positif
Par LioroLp FEJER, Budapest 1)

1. Je ne connais pas 'origine de cette dénomination ,,intégrale sin-
guliére®, mais il est sir que lorsqu’on parle d’une intégrale singuliére,
sous le signe de I'intégrale définie d’une ou de plusieurs dimensions figure
toujours un produit de deux facteurs dont 'un est une fonction ,,arbi-
traire“ des variables d’intégration, I'autre facteur (ordinairement d’un
caractére analytique trés régulier) est au contraire tout-a-fait indépen-
dant de la fonction arbitraire; ce deuxiéme facteur est commun pour
toutes les fonctions arbitraires et dépend d’un cété, comme la fonction
arbitraire elle-méme, des variables d’intégration, de l'autre c6té d’une
seule ou de plusieurs autres variables nommées ,,paramétres” de 1'inté-
grale singuliére. La fonction arbitraire est nommée tout simplement ,,la
fonction® et le facteur indépendant de cette fonction a le nom ,,noyau“
de l'intégrale singuliére. La seconde dénomination se rameéne a Hilbert.
Le probléme ordinairement attaché a I'intégrale singuliére est de recher-
cher si elle converge ou non vers une valeur finie quand les paramétres,
continus ou discontinus, convergent de leur part vers telle ou telle va-
leur. Je ne parle pas ici d’autres problémes qui s’attachent & des inté-
grales singuliéres ; ils sont nombreux et importants.

2. Je crois cependant qu’au lieu de continuer de préciser plus loin la
définition générale des intégrales singuliéres et d’exposer préliminaire-
ment les remarques générales qui se rapportent & ce sujet et qui font une
partie de cette conférence, il sera peut-étre plus agréable pour mes audi-
teurs honorés, si je vais parler d’abord de quelques cas speciaux et que,
aprés, je signale la route qui m’a conduit & des résultats de quelque
généralité. C’est d’abord la série de Fourier d'une fonction de période 2x
et intégrable de la variable u

flu) ~ Ay + A+ Ay 4+ Ay +-

1 w
A0==—g%—fzp(t)dt ,
0

1) Conférence faite & Genéve en juillet 1948.
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A,=A,u)=a,cosnu—+b,sinnu (2.1)
1 ™
=7{f1p(t)-2003ntdt; n=1,2,3,..
0

qui était et demeurait une source abondante pour des intégrales singu-
liéres. u(t) a ici et dans ce qui suit toujours la signification

w(t)-—=f(u+t)—g“u_t) , 2.2)

u désigne un nombre fixe et si I’on doit s’occuper de la convergence ordi-
naire de la série de Fourier A4, + A4, +--- de la fonction f au point u,
on est conduit & l'intégrale singuliére de Dirichlet

5O ) = 0= Ay + Ayt b4,

B 1fw(t)(1+2cost+...+2cosnt)dt,
0

T

ou

i t
Y Sin 5

4 sin(@n + 1) =
sg’>=—-._;;f¢(t) 2 dt . 2.3)

Pour les moyennes ordinaires des sommes partielles s de la série de
Fourier, on obtient I'intégrale singuliére

85)0)+ S:(lO) + .« . e ,_I,_ 8;'0)

. 2.4)

1
8, " =

n -+ 1

T . L 2
lf 1 81n(n+1)—2—)
=— [y - dt

no n+1< sin—;—

En général, k étant un nombre entier non-négative quelconque, on est
conduit pour les moyennes arithmétiques d’ordre %, en se basant tou-
jours & la forme (2.1) du terme général 4, de la série de Fourier, a I’in-
tégrale singuliére

:‘i‘f‘l’(t) (n+1)-1+n-2cost—l—-~-+1-2cosntdt
0
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Y v Rl

(n—{—k) dt
k (2.5)
y(t) signifiant toujours

w(t):”““)";f(“—t) . w=0,1,2,.... (2.6

Donc, si nous désignons par ¢ (¢) la moyenne d’ordre k et d’indice n
de la série

1+ 2cost+2cos2t+---+2cosnt+---, (2.7)

qu’on peut nommer ,la série-noyau de la série de Fourier”, c’est-a-dire

posant

(n;:k) 1+("+" ).2cost+...+(:)-2cosnt

GgC)(t): n+k ) (2‘8)
")

nous obtenons pour la moyenne du méme ordre et du méme indice de la

série de Fourier de la fonction f la formule générale

v
1
sﬁ,’“’:;fw(t) - a'P () dt )
0 \
k=0,1,2,3,... ‘
n=0,1,2,3,... ;

2.9)

ou, je le répete, p(t) a, ici et dans ce qui suit, toujours la signification

Le produit figurant sous le signe d’intégrale dans I'expression de s
sous (2.9) se compose de deux facteurs. Le premier facteur y(¢f) dépend
de la fonction développée f(u) mais le second ¢* (¢) qui représente la
moyenne arithmétique d’ordre k et d’indice » de la série élémentaire

1+ 2cost+ 2cos2t+---+2cosnt-+--

est tout-a-fait indépendante de la fonction développée f; il est commun
pour toutes les fonctions f et se nomme par cette raison le noyau de I'inté-
grale singuliére (2.9).
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3. En mentionnant d’autres exemples d’intégrales singuliéres, qu'il
me soit permis de me restreindre & quelques des plus anciens et 4 quelques
des plus nouveaux.

Voici I'intégrale de Poisson :

Plru=— ' t i dt 3.1
)= Q'I)()l——2rcost—|—r2 ’ 3.1
0
ou lintégrale de Weierstrass :
+ o0
27r -
W(T,u)z—“: 'tp(t)e"" dt ; (3.2)
Va
0
puis l'intégrale d’Hermite, qu’on obtient en posant
+ o0
F ) — f tf_(f)z dt 3.3)

et formant la différence

-+ o0
1 . . r
—27{F(u—|-rz)——F(u-—m)}= ff(t) i —wE L dt ,
c’est alors l'intégrale
+ oo
2r 1
H(”,u)::*;fw(t)mdt, 3.4)

0

v(!) ayant toujours la signification de 4(f(x + t) + f(u —¢)), qu’on
doit nommer intégrale singuliére d’Hermite.
Dans une Note publiée en 1925 dans les ,,Gottinger Nachrichten®, je
pars du fait que la courbe qui représente pour ¢= 0 la fonction positive
| sint | 2
7 1+¢t°
peu modifié, de I’intégrale singuliére, représentant la moyenne arithmé-
tique de premier ordre de la série de Fourier, satisfait donc & 'inégalité

1 /sinnt 2——'n sinnt 2£n 4
n t B nt ) = (1+nt)?

et j’étais ainsi conduit & considérer l'intégrale singuliére

est toujours située sous I’hyperbole t=0; le noyau, un

+ o0
ff(t)m%—;gdt : (3.5)
0
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Par l'application de ce noyau si simple n(l + nt)~2 le théoréme
d’apres lequel les moyennes arithmétiques de la série de Fourier d’une
fonction f(u) convergent vers la valeur f, devient presque évident non
seulement dans le cas ou

(f(u+t)+f(u—~t)
2

-—f)->0, si t—>-40, (3.6)

mais également dans le cas beaucoup plus général de Lebesgue ou

h
%f‘zp(t)—ﬂdt»O avec h—>-40 , 3.7
0

c’est-a-dire dans le cas ou la fonction f(u) posséde au point v ,,une va-
leur intégrale moyenne absolue f.

Jusqu’ici j’ai énuméré un certain nombre d’intégrales singuliéres mais
je n’ai pas parlé des problémes de différentes espéces qui se sont attachés
au cours des années a telle ou telle intégrale singuliére.

11 est impossible mais heureusement entiérement superflu que j’insiste
sur ce point ; je veux seulement dire que la question le plus souvent mais
pas du tout exclusivement traitée est celle de la convergence de I'intégrale
singuliére vers une limite finie f, la fonction w(t) se comportant de telle ou
telle mamiére au voisinage de t = —+ 0, point critique du noyau. Le noyau
d’une intégrale singuliére, commun pour toutes les fonctions admises, fait
prédominer le comportement de la fonctton dans le voisinage infinitésimal
du point critique du noyau. (Dans les exemples donnés jusqu’ici c’est le
point ¢t =0.)

4. Permettez moi d’indiquer deux sujets assez profondément étudiés
qui sont en connexion plus ou moins étroite avec celui des intégrales sin-
guliéres. Ce sont les ,,sommes singuliéres”, comme on les pourrait nommer.

J’ai commencé en 1900 d’examiner la moyenne arithmétique d’ordre n
de la série de Fourier qui représente une intégrale singuliére de noyau
positif (non-négatif), mais c’est seulement en 1915 que j’ai réussi a trou-
ver la formation arithmétique analogue dans la théorie des suites d’inter-
polation et en 1932 dans la théorie des suites de quadrature mécanique, la
derniére formation étant d’ailleurs d’un caractére différent.

Ce sont les sommes singuliéres aux facteurs positifs qui correspondent
aux moyennes arithmétiques de premier ordre de la série de Fourier,
en accordant les mémes avantages. Permettez moi, en laissant de coté
ces sujets dans tout leur étendu, de faire la remarque unique que les
coefficients des quadratures mécaniques (nommsés coefficients ou nombres
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de Cotes ou de Christoffel) se sont montrés positifs dans les cas les plus
classiques, parmi lesquels la quadrature de Gauss, les abscisses de quadra-
ture étant dans ce cas les zéros du polynéme de Legendre.

b. Les intégrales doubles singuliéres sont aussi dignes d’intérét; je
parlerai plus tard de celles qui sont attachées & la série de Laplace. A pré-
sent, je considere I'intégrale double singuliére que j’ai employé & la
démonstration et généralisation d’un théoréme découvert par Hardy et
Lattlewood. Cette démonstration se trouve dans ma note parue dans les
,,Proceedings of the Cambridge Philosophical Society“ (October 1938 ;
received 20 May, read 17 October 1938).

J’ai déja remarqué qu’en désignant par

Sos 81> 8se s Spye -
la suite des sommes partielles de la série de Fourier d’une fonction f,
pour fixer les idées, partout continue et de période 2z de la variable

indépendante, la somme partielle s, = s s’exprime par I'intégrale de
Deirichlet

T . t
1 sm(2n+1)§
8,=— [ w(?) : dt ; n=0,1,2,...
& sin -
0 2 5.1)

fut+t)+fu—1
2

&)=
c’est-a-dire par une intégrale singuliére dont le noyau

sin (27 + 1) 5

sin ¢
2

change exactement n-fois le signe dans I'intervalle d’intégration 0 < ¢ <m,
tandis que la suite des moyennes arithmétiques

8o + 8 8o+ 81 + 8, S+ 8+ -+ 8, (5.2)
2 H 3 3 ° oy n—{—]_ g0 o o .

8 »

est exprimée par une intégrale singuliére
¢

8o+ 8 +---+8, 1 - (Sin(n+1)—2->2dt

=— v
n+1 7 o gin =

s =

(5.3)

2

n=0,1,2,..., () =

182



.t
s

dont le noyau (sin (n + 1) _;_ >2
2

ne le change pas du tout.
Or, en 1913, Hardy et Littlewood ont considéré, au lieu de la suite des
sommes partielles de la série de Fourier

805 815 SasecvsSpseve (5.5)
la suite des carrés de ces sommes partielles, c’est-a-dire la suite

2 2 2 2

855835 8asrsvsSpsres 3 (5.6)

et ont trouvé qu’en désignant la valeur de la fonction f au point « bref
par s,

lim oot F
n> oo n—+1

=g . (5.7)

Tandis que le théoréme sur la convergence des moyennes arithmétiques
vers la limite s signifie pour les écarts (s, — s)

lim. So—8)+ & —8)+---+(s,—9) _
n>oo n 41

0, (5.8)

du théoreme sur les moyennes arithmétiques des carrés s’ensuit immédia-
tement le théoréme de Hardy et Littlewood

lim G =8+ (B — 8P+ - -+ (8. —9)°

lim e =0 . (5.9)

Si 'on part de l'intégrale double qu’on obtient pour le carré des
sommes partielles s, en les exprimant par l'intégrale de Dirichlet

L F sin@n+1)4
t di | (5.10)

Sp=—1V (t)
7‘6 .
> Sin 'é‘
c’est-a-dire de la formule

v

1 Ff sin(2n+l)—;— sin (27 + 1) 5
(sn)2=—z—ffw(t)w(v) t - - dtdv, (5.11)
TS sin & sin

la démonstration du théoréme (5.7) semble étre tres difficile parce que le
nombre des changements de signe du noyau dans cette intégrale double
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croit indéfiniment avec n. Nous avons la méme situation pour les moyen-
nes arithmétiques du premier et du deuxiéme ordre de la suite des carrés
{s2} des sommes partielles. Ce sont les moyennes arithmétiques de
troisiéme ordre de la suite des carrés {s’} des sommes partielles, c’est-

a-dire
‘n + 2 +1 2
(n2 )3§+(”2 )3i+(;)s§+...+(2)si ‘1
n+3 (5.12)
("3
l m T
— [ [101 0k,
. 0 0
»a k,(t,v)=
net-2 sin%sin% ntl sin3-;~sin3—;~ . sin(2n+l)—;--sin(2n+1)§
(2 )sinisin3+( 2 ) in -~ sin > +.“+(2) int .sin?
2 5 sin  sin 5 sin .
n -4 3
") (5.13

desquelles dérive l'intégrale singuliére double (5.12), dont le noyau
k,(t,v) ne change de signe nulle part dans le carré d’intégration.

Maintenant, en se basant sur 'intégrale double singuliére & noyau non-
negatif (5.12), on obtient une démonstration assez élémentaire du théo-
reme cité de Hardy et Littlewood et & la fois une généralisation se rappor-
tant a la série de Fourier double d’une fonction quelconque de deux
variables. Voici une application de la formule (5.12). On doit a Isaie
Schur un trés beau théoréme avec une démonstration bien simple qui
s’énonce : si la série de puissances f(z) =c¢y+c¢,2+---+c, 2" +---
est convergente dans le cercle |z | <1 du plan de la variable complexe z
et si la valeur absolue de f(z) ne dépasse pas I'unité dans l'intérieur de
ce cercle (|f(z)|=<1 pour |z|<1), alors on a pour |2 |1

|80 @) [P |8 P4 -+ 8,0 2 _
n -4 1 =

n=0,1,2,.... (5.14)

Si on remplace dans cet énoncé s,(z) par la somme partielle ordi-
naire d’ordre » de la série de Fourier d’une fonction f(u), pour laquelle
on a |f(u)|=<1 pour toutes les valeurs de u, le théoréme cesse d’éire
vrai, c’est-a-dire les valeurs moyennes ordinaires des carrés des sommes
partielles de la série de Fourier d'une fonction qui ne dépasse jamais en
valeur absolue l'unité, peuvent quelques fois dépasser I'unité, mais les
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moyennes de troisiéme ordre des carrés des dites sommes partielles ne le
peuvent pas; c’est-a-dire tandis que

So+si+-- -+,
n-+1

(e,

")

6. Dans le quatrieme numéro d’une petite note déja citée sur la
théorie de la sommabilité par les moyennes arithmétiques répétées de la
série de Fourier et de la série de Laplace, publiée en 1938 dans les ,,Pro-
ceedings of the Cambridge Philosophical Society“, j’ai remarqué qu’en
appliquant certains théoremes généraux que j’avais trouvés successive-
ment dés 1932 sur les intégrales singuliéres, on obtient, dans le cas ou
les prémisses se rapportant a la fonction dans l'intégrale singuliére sont
celles de Lebesgue ou, plus généralement, celles de Hardy et Littlewood,
des démonstrations simples pour certains théorémes connus et pour cer-
tains nouveaux.

Naturellement, pour obtenir de nouveaux théorémes, il faut employer
aussi des propriétés nouvelles du noyau de l'intégrale singuliere. Pour
éclaircir un peu ce deuxiéme point, prenons pour exemple le cas de la
série de Fourier et celle de Laplace et supposons qu’il s’agit de la conver-
gence ordinaire de ces séries ou de la convergence des moyennes arithmé-
tiques des sommes partielles d’un certain ordre de ces séries; alors, ce
sont des propriétés nouvelles des sommes itérées des séries élémentaires

>1 (5.15)

est possible,

est impossible.

1+ 2cost+2cos2t+---+ 2cosnt-4--- (6.1)
P,(cost) + 3P;(cost) +---+ (2n + 1)-P,(cost) +--- , (6.2)

que j’ai trouvées et qui m’ont permis de poursuivre mes recherches dans
la direction indiquée. Si I’on introduit cos{ = x comme variable indé-
pendante ce qui est trés important au point de vue des considérations
suivantes, ces séries prennent respectivement la forme

To(2) 4 2T, (2) + 2T5(x) +- -+ 2T (2) +--- (6.3)
Py(2) + 8P, (2) + 5Py() ++ -+ (20 + 1) Po(@) 4+, (6.4)
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ou 7T,(x) désigne le polynéme de T'chebychef de premiére espéce, c’est-
a-dire la fonction cosn ¢, prise comme fonction de cost = z et P,(x)
signifie le polynéme de Legendre.

En outre, il est utile aussi de considérer les propriétés analogues des
séries encore plus élémentaires

l+z+ 22442 ... (6.5)
Py(x) 4+ Py(x) 4+ -4 Po(x) +--- . (6.6)

Ma note, citée tout a I’heure, contient seulement quelques lignes som-
maires pas aisément compréhensibles, relatives aux sujets dont je viens
de parler. Je suis heureux de pouvoir développer un peu ce sujet.

Mais quelles sont les propriétés nouvelles des sommes partielles itérées
de différents ordres de la série

To(x)+2T1(x)++2T'n(x)+ ’ xr = cost, (67)

dont j’ai fait allusion il y a un instant ?

Pour commencer par des résultats connus depuis longtemps, il faut
mentionner d’abord que la somme partielle d’ordre 0 de la série (6.7)
a la valeur, exprimée en ¢,

sin (2n + l)-g

8P (%) = Ty (x) +- 2T, (2) +-- -+ 27T, (x) = — ; (6.8)
sin o

donc le polyndme SO (x) de Dirichlet, de degré m en z, change son

signe n-fois dans l'intervalle —1 <2 < 4 1. Par contre, la somme

itérée d’ordre 1

‘sin (n+1) £ \®
SO () = SO (2) -+ SO () + - - - + 8O (2) — ( - 6.9)
sin -
2
qui est un polynome de degré n en x, ne change pas son signe dans I’'inter-
valle —1 <z < 4+ 1.
Maintenant laissons de ¢6té pour un moment les sommes partielles de
deuxiéme ordre de la série

To(x) + 2T, (x) + 2T, (2) +-- - -+ 2T, (x) +- - - (6.10)

et parlons des sommes partielles de troisiéme ordre S® (z) de cette série.
J’ai démontré en 1932 que les polynémes S®(x) sont non seulement po-
sitifs dans Pintervalle —1 < a < 4+ 1, mais aussi foujours croissants
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dans le méme intervalle, c’est-a-dire 8@ (x)>0, ;—xﬂﬁf)(x)>0, pour

—1l<z<+1, n=0,1,2,... (Bien entendu, on a —dé—-Sff)(x) =0.)
Cela signifie que le polynéme de cosinus v

S® (cost) = (n-:{g—3) —}—(n—;z) -2cost+ -4 (g) -2cosnt  (6.11)

est non seulement positif dans Pintervalle 0 <¢ < & mais aussi tou-
jours décroissant.

En ce qui concerne les dérivées d’ordre supérieur des moyennes d’ordre
supérieur, je ne pouvais pas avancer en ce temps dans cette matiére,
parce que j’al examiné toujours les dérivées d’ordre 2, 3,... par rapport
a la variable t. C’est seulement aprés cinq années que j’ai apergu qu’on
doit différentier par rapport a la variable xz, si I’'on veut obtenir des lois
générales et simples.

On obtient ainsi, en faisant le premier pas en avant, que quant & la
série

To(2) + 2T, (2) + 2Ty(2) +- -+ 2To(@) ++--  (6.12)

qui sert comme série de noyau dans la théorie de la série de Fourier si
Ion introduit cos¢ = z au lieu de ¢, les sommes partielles d’ordre 5 de
cette série S (x) (et par conséquent aussi les moyennes d’ordre supé-
rieur & 5 de cette série en x) sont toutes 1) positives, 2) toujours crotssantes
et 3) convexes, regardées de dessous, dans tout U'intervalle —1 < o <+ 1.

En général, les dérivées par rapport a x d’ordre k des moyennes arithmé-
tiques d’ordre 2k + 1 de la série

To(x) + 2 2T, (x)
n=1
sont toutes positives dans Uintervalle —1 =< z < 41 et par conséquent,
il en est de méme pour les dérivées d’ordre k des moyennes arithmétiques
d’ordre m = 2k 4+ 1 + 1 plus grand que 2k + 1. (Seule exception :
k=0, Il = 0, lorsque nous devons dire ,,non-négatives” au lieu de ,,po-
sitives®.)
On démontre cela tout d’un coup en regardant la fonction génératrice
de notre série qui est le noyau de Potisson :

1—12
1—2xr- r2

= To(@)+ 2 270 (@) - 1", 619

xr =cost .
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Si nous différentions k-fois les deux membres de I’équation (6.13) par
rapport & x, nous obtenons la fonction génératrice de la série

d*T, (x) >, T, (2)

g +”‘§1 2 —dF (6.14)

et puis si nous multiplions les deux membres de ’équation ainsi re¢ue par

-(—1—_—1;)7"71_ , nous obtenons la fonction génératrice de la suite
de S () deS (z) a8y () 6.1
T " ———d—a—?c-— g0 ¢ o —”‘%’7"""— LI ( * 5)

Nous avons supposé que m, c’est-d-dire 'ordre de la somme itérée
8™ (x) de la série

Ty(z) + X 2T, ()

n=1
n’est pas plus petit que 2k + 1, c’est-a-dire m = 2k 4+ 1 4 I, oulest
un nombre entier non-négatif quelconque.

Enfin, en multipliant et en divisant par (1 — 72)* le deuxiéme membre
de I’équation obtenue tout-a-1’heure, on arrive & la fonction génératrice
de la suite des dérivées supérieures par rapport & x des sommes d’ordre
supérieure de la série-noyau de la série de Fourier:

o dkS™ (x) 1 \'( r \* 1—r? et
£ o) () )
neo  dx* 1—r) \1—22) \(1—n)2(1—2x7r+47?)
k :0, 1,2,... 3 >(6.16)
Il =0,1,2,... ,
m=2k4+1L1.
Les séries de puissances en r
1_1_r=1—|—r+72+--- , (6.17)
¥ 3 1 5
1 72__9'—|—r A , (6.18)
1 — 2 o /sin(n+1)5\°
= P 6.19
1—7r2(1—2rz+41? ,E,( sin-;— ( )

ayant des coefficients non-négatifs, il est claire que les coefficients du
produit (6.16) sont aussi non-négatifs, méme positifs, si 'indice » n’est
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pas plus petit que k (excepté k = 0, I = 0, lorsque nous obtenons tout
simplement la suite

1=80(), SO), SP),... , (6.20)

qui est non-négative).

7. Qu’il me soit permis d’attirer ’attention sur la simplicité de la
démonstration de la positivité des polynoémes rationnels de x (ou si 'on
veut des polynomes de cosinus en t) par la méthode des fonctions généra-
trices que j’al appliquée dans cet ordre de questions depuis silongtemps.
Je ne connais pas une autre voie qui pourrait conduire aussi simplement
au méme but.

Mais la méme méthode conduit au but également dans le cas beau-
coup plus difficile de la série

Py(x) + 3Py (2) + 5Py(2) +---+ 2n + 1) Py(x) +--- , (7.1)

qui se présente comme série de noyau dans la théorie de la série de La-
place.

Si 'on part de la fonction génératrice
1 — 72 el
= Y @n+1)P,@)r, (7.2)
(1—2x.-7r4+r)z "7°

ou P,(x) désigne le polynéme de Legendre d’indice n, on obtient, par un
calcul trés facile et entiérement analogue au précédent, pour la suite des
dérivées d’ordre k par rapport & x de la somme d’ordre m = 2k + 2 41
de la série de noyau (7.1), désignée de nouveau par

dksszm)(x) =0,1,2 7.3
T ’ n=9v,1,4,..., ( . )
la fonction génératrice
* dk 8™ ()
— " YT n 7.4
n=0 dx* § ( )
1 \!/ r \Fk 1—9p2 k+1 1
=3.5...2k+1
(Be+ )(1"7') (1‘“72) ((1*7')2(1“2937’4"’2)) (1—r)V1—2xr4r
ou k=0,1,2,... ,
! =0,1,2,... ,
m=2>5k4+2+1.
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Les coefficients des séries de puissance en 7

1
1_r=1+r+r2+... , (7.5)
Toa= e (7.6)
1 — ¢2 o /sin(n+1)5 2n
(1—7r)2(1—2xr+17? =n§0< sin-;- o (7.7)

1 :2(_2_ du)r" (7.8)
1—nV1—2zr47r2 Z0\7
étant non-négatifs, on obtient de nouveau une série de puissances a coef-
ficients non-négatifs en », si I’on forme leur produit apres avoir élevé
chacune d’elles a une puissance entiere non-négative quelconque. (Dans
notre cas, les coefficients du produit sont positifs dans tout 'intervalle
—1=x £+1, n<k étant toujours exclus.)

Pour obtenir (7.8) nous nous sommes servis de l'intégrale de Mehler

o [ sin@n+1)5
P, (cos t) =——f du . (7.9)
7 J V2 (cost — cos u)
Nous avons donc obtenu que pour la série
Py(2) + 3P, (2) + 5P, (2) +- -- (7.10)

procédant suivant les polynémes de Legendre et qui est décisive pour les
propriétés de convergence et de sommabilité de la série de Laplace d’une
fonction donnée sur la sphére, les moyennes d’ordre deux sont positives
dans I'intervalle —1 <« < +1; que les moyennes d’ordre quatre sont
non seulement positives dans ce méme intervalle, mais qu’elles sont toutes
toujours croissantes ; que les moyennes d’ordre six sont positives, toujours
croissantes et convexes regardées d’en bas ; etc.

8. Pendant le siécle passé, on ne s’occupait pas beaucoup des poly-
nomes trigonométriques positifs (ou non-négatifs), ou de la positivité d’un
polynéme entier, ou de celle des polyndémes entiers ordonnés suivant les
polynémes de Legendre, de Laguerre, d’Hermite, etc., dans tel ou tel inter-
valle, qui peut étre fini ou infini. Dans notre siécle cependant, une cer-
taine branche de 1’algébre s’est développée, qui s’efforce de trouver des
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méthodes propres a décider la question importante de la positivité, dont
nous venons de parler et qui est aujourd’hui en plein développement. On
peut dire que la théorie d’'un grand nombre d’intégrales singuliéres appar-
tient plutot a 'algébre qu’a ’analyse. Le double caractére de ce domaine
de recherche ne manque pas de le faire attractif.

9. J’ai déja dit que je retournerais aux moyennes arithmétiques de
deuziéme ordre SP(x) de la série

To(z) + £ 2T, (2) , (9.1)
ne=
qui succedent immédiatement les moyennes d’ordre 1, qui sont non-néga-
tives et devancent les moyennes d’ordre 3, qui sont positives et toujours
croissantes dans l'intervalle — 1< x< + 1, comme nous ’avons vu
tout-a-’heure. La recherche des propriétés utiles des moyennes d’ordre
deux S®(x) de cette série de noyau ne se fait pas par Uapplication de la
méthode des fonctions génératrices. Leur étude est plus délicate. D’abord,
il est clair qu’elles sont positives dans l'intervalle — 1< 2z< + 1.
Pour étudier plus loin I’allure de ces moyennes arithmétiques de deuxi-
éme ordre S®(z) comme fonction de z dans intervalle —1<z <+1,
coupons notre intervalle de longueur 2 en deux parties, prenant pour
premiere partie — 1< < — 0.5 (I,), c’est-a-dire un quart de l'inter-
valle total et pour deuxieme les trois quarts quirestent: —0.5=x<+41
(I,). Raccourcissons maintenant les intervalles I, et I, par ¢ a leurs ex-
trémités ; nous obtenons ainsi les intervalles ¢, et ,,

;0 — 14+ e —05 —¢, (9.2)
1y — 0564+ esax=+1—¢. (9.3)

Maintenant, en appliquant ma formule asymptotique (Zeitschrift fiir
angewandte Mathematik und Mechanik, tome 13 (1933), No. 6 ; pag. 83,
84)

d 8P (x) 1 t t
2 : t (2cos§~|—cos(2n—{—3)~2-+77n(t)) ,
x 4 n sin*— - cos
2 2
x=cost , (9.4)
ou lim#,(t)=0, uniformément dans 'intervalle —14ce¢=x<=-+1—¢,

n->» oo
on obtient le résultat surprenant que 1) si ¢ est aussi petit qu'on voudra

mais fixé et 2) si, correspondant au choix de ¢, 'indice n est suffisamment
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grand, la fonction SP (z) est toujours croissante dans 'intervalle 7, , tandis
qu’elle & un maximum et un minimum en n’importe quelle petite partie fixe
de I'intervalle ¢,, si n est suffisamment grand. Szegé a démontré dans son
travail ,,Power series with multiply monotonic sequences of coefficients*
(Duke Mathematical Journal, Vol. 8, No. 3, September 1941, pag. 560,
inégalité (9)) que SP(x) est toujours croissante dans Dintervalle
— 0.4 <2 <+ 1 et pour toutes les valeurs de n; et enfin mon jeune
éléve regretté, Nicolas Schweitzer, victime de la guerre, a démontré que
toutes les moyennes S®(x) sont toujours croissantes dans l'intervalle
— 0.5 <z < + 1, résultat qu’on ne peut pas améliorer d’aprés ce que
nous avons dit au commencement. (Le manuscript de Schweitzer que je
posseéde porte la date du 28 décembre 1943.)

10. J’ai déja fait mention que les propriétés des sommes partielles ob-
tenues par sommation répétée de la série

T, + X 2T,

n=1

sont utiles non seulement dans la théorie des intégrales singuliéres, mais
aussi dans d’autres domaines de recherches.

En appliquant le fait que les sommes partielles de troisiéme ordre de la
série divergente

To(2) + 2T, (@) +- - -+ 2T, (@) + - - (10.1)

sont toujours croissantes dans I'intervalle — 1 <o < + 1 (c’est-a-dire
le fait que les sommes partielles de froisiéme ordre de la série

T} (@) + Th(@) +--+ Tp(@) +- - (10.2)

sont non-négatives dans 'intervalle — 1 < z < + 1), j’ai démontré en
1936 le théoréme suivant :

Si la suite {c,} des coefficients de la série de purssances
2+ cy22 44 c 2" A (10.3)

est monotone du quatriéme ordre, la somme de la série est univalente dans le
cercle d’unité |z | <1 du plan de la variable complexe.

Pour la série

Ty(x) + Ty(x) + Ts(x) +--- , (10.4)
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j’al trouvé que ce sont déja les sommes partielles de deuxiéme ordre qui
sont toujours croissantes dans Uintervalle total — 1 < x < + 1, mais je
n’ai pas réussi & démontrer ce résultat au moyen de la méthode des fonc-
tions génératrices ; la démonstration est un peu difficile mais pas sans in-
térét. Une conséquence de cette propriété de notre série

Ty + Ty + Ty +- (10.5)
est le théoreme suivant que j’ai trouvé en 1936 :

Si la suite {c,} des coefficients de la série de puissances
€2+ €22 4+ ¢c32% .- (10.6)

est monotone de troisiéme ordre, la série est convergente et univalente dans le
cercle d’umité, |z |<<1.

On ne peut pas améliorer ce théoreme ; il n’est pas vrai si 'on dit:
,,monotone de deuxiéme ordre® au lieu de ,,troisiéme ordre®“. Par contre,
le théoréme précédent se rapportant a la série compléte de puissances
reste encore vrai si la suite des coefficients est monotone de troisiéme
ordre au lieu d’étre monotone de quatriéme ordre. C’est-ce qui a été
montré par Szegé en 1941 dans son travail cité. La démonstration de ce
théoréme n’est pas facile; il n’en est méme du fait qu’on ne peut pas
réduire 'ordre de 3 a 2.

Pour résumer on peut dire: Les séries de puissances avec ¢, >0
2+ c22+---Fc, 2" (10.7)
¢zt ¢4+ ¢,z 4. (10.8)

sont univalentes pour |z|<<1 sila sutte c,,c,,... est monotone d’ordre 3 ;
ces théorémes généraux ne sont plus vrais, si Uon dit 2 au lieu de 3.

(Une suite est dite d’étre monotone du troisieme ordre, si
¢, >0, ¢ =0, ¢5=0, ¢, =0,...
¢, —C =20, ¢g—¢c3 =0, ¢g—c¢, =0,...
¢t —2¢,+¢3 =20, ¢ —2¢34+¢, =0, ¢cg—2¢4+¢=20,...

¢, — 3¢, +3¢c3 —¢cg =0, ¢y —3¢cy+ 3¢, —c¢c; =0,...)
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11. Une autre question intéressante est la suivante. Prenons une série
c,cost 4 cyco8 2t 4---+c,cosmt +---= f(¢) (11.1)

pour laquelle la suite {c,} est simplement monotone, avec ¢,>0,
lime, = 0; alors f(f) a au moins un changement de signe dans l'inter-
valle 0<t<m, mais en pourra avoir tant qu’on voudra dans cet inter-
valle (p. e. cost + cos 2¢ +-- -4 cosnt, sin est suffisamment grand).
La méme chose est vraie si {c,} est doublement monotone (p.e. n cost
+ (r — 1) cos 2¢ +- .-+ cosnt). Sinous omettons pour un moment le
cas de 3, nous pouvons constater que, si la suite {c,} est quadruplement
monotone, la fonction a un et un seul changement de signe dans l'inter-
valle 0<t<zm. En effet, une conséquence du fait que les sommes par-

tielles de troisieme ordre de la série J' 7', (x) sont toujours croissantes
n=1

dans — 1 <z < + 1 est que notre fonction f(¢) sous (11.1) est tou-

jours décroissante dans l'intervalle 0<t<<m. Cela n’est pas vrai si la

suite {c,} est seulement triplement monotone, pourtant le théoréeme

suivant subsiste :
St la suite des coefficients dans la série trigonométrique
c,co8t + ¢, co8 2t 4---+c,cosnt 4= f(t) O<t<m (11.2)

est triplement monotone avec ¢, >0, lim c, = 0, alors sa somme f(t) a
> oo

un et seulement un changement de signe dans U'intervalle 0 <t<<zm. Ce théo-
réme n’est pas vrai si U'on dit ,,doublement monotone” au lieu de ,,triplement
monotone.

Dans la démonstration de ce théoréeme j’emprunte un élément de dé-
monstration du travail de Szegé dont j’ai parlé il y a un instant.

12. Apres ces digressions un peu longues je retourne aux intégrales
singuliéres (int. s.) en me restreignant & quelques remarques courtes.
J’omets entiérement 1’histoire si intéressante comment s’est glissé dans
cette théorie 'idée de distinguer nettement entre intégrales singuliéres &
noyau de signe changeant et de signe constant. Cette premiére classifica-
tion des int. s. se trouve dans le Mémoire de Lebesgue, intitulé ,,Sur les
intégrales singuliéres” et paru en 1910 dans les Annales de la Faculté des
Sciences de Toulouse (troisiéme s., T. I.). Dans un travail de Lebesgue,
paru aussi en 1910 dans le Bulletin de la Société mathématique de
France ,,Sur la représentation trigonométrique approchée des fonctions
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satisfaisant & une condition de Lipschitz“ il ajoute & la derniére page la
remarque historique intéressante, que déja Ulisse Dint, dans les nos. 23
et 24 de son ouvrage ,,Serie di Fourier e altre rappresentazioni analitiche
delle funzione di una variabile reale”, paru en 1880 & Pise, a fait la dis-
tinction importante entre noyau de signe changeant et constant, en pro-
non¢ant méme certains théorémes généraux de convergence sur quelques
espéces d’intégrales singuliéres a noyau ‘positif.

On sait que Lebesgue a fait (en 1905) la découverte que ce n’est pas le
stgne du noyau duquel dépend la question de la convergence ou diver-
gence de l'intégrale singuliére quand le parameétre entier n» tend vers
infini ; ¢’est plutot intégrale de la valeur absolue du noyau qui est décisive
dans cette question, si en outre le noyau satisfait a certaines autres con-
ditions. Notamment si ’intégrale de la valeur absolue du noyau reste
bornée pour toutes les valeurs entiéres de =, il y a convergence pour
n —>oco, mais si elle ne reste pas bornée, cette intégrale, il pourra étre
divergence. Mais il n’est pas ici le lieu de développer ces idées de Lebesgue ;
je retourne a l'intégrale & noyau positif. Ce cas particulier, qui se présente
trés souvent dans l’analyse, est beaucoup plus élémentaire que le cas
général mentionné a l’instant méme. 2)

13. Je le répete, on a divisé les intégrales singuliéres en deux classes
depuis longtemps ; cependant, depuis 1900, cette classification a gagné
certainement en accentuation, parce qu’on devait alors confronter

Pint. s. ;
9 [ sin(2n + 1) 5
——fy)(t) 2 g (13.1)
T sin -
qui représente la somme partielle, et 1’autre
. . t s
9 f 1 sin(n + 1)
— [ »() - dt (13.2)
41 . n+ 1 sin _;_

qui représente la moyenne arithmétique des sommes partielles de la série
de Fourier.

%) En ce qui concerne la littérature de ces derniéres décades si riche en des résultats
importants se rapportant aux différentes branches du sujet de notre conférence, je suis
contraint & ne faire que mentionner — outre les noms déja cités dans le texte — encore
les suivants: Borel, Bosanquet, Carslaw, Erdés, Hahn, Hobson, D. Jackson, Kaczmarcz,
Ch. N. Moore, Plessner, Pélya, F. Riesz, M. Riesz, Rogosinski, Sansone, Schechter, Schlem-
per, Schlesinger, Shohat, Steinhaus, Titchmarsh, Tonelli, Turdn, de la Vallée Poussin,
Zygmund. ‘
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Mais je m’ai posé la question suivante : peut-on aussi classifier la tota-
lité des intégrales singuliéres a noyau positif, ou au moins une partie im-
portante d’elles? Au premier regard, elles se ressemblent comme les pin-
guins ; peut-on faire quand-méme une distinction générale et utile? La
réponse est affirmative. Prenons p. e. une des intégrales & noyau positif
la plus simple, a laquelle j’ai été conduit en 1925

+ o

n
f‘l’(t)'mdt, n=0,1,2,3,... . (13.3)

0

Calculant les derivées successives du noyau

k,t) =n(l +nt)-2, (13.4)
nous trouvons
kl(t) = — 2n%(1 4 nt)~3 K(t) = 23031 +nt)4,...,
E2() = (— 1)5-1-2-3...(s + 1) n5*1(1 + m t)-6+D . (13.5)

et nous voyons que k) (¢) a le méme signe pour chaque valeur de s dans
Pintervalle de I'intégration et que ce signe constant est alternativement
positif et négatif si s parcourt successivement les nombres entiers non-
négatifs: s =0,1,2,3,... Nous pouvons donc dire que dans ce cas le
noyau k,(¢) est parfaitement décroissant dans l'intervalle d’intégration

(0, + o0), (comme

1 j_ ; dans le méme intervalle). Etant d’autre part
lim ¥ () = 0, méme uniformément dans lintervalle (¢, + oo) aprés
n=o00

avoir fixé le nombre positif ¢ (en outre quelconque) et I'ordre s de la
différentiation, on peut conclure
+ oo

lim

lim rp(t)—(ﬁ?—h—i)—zdtzzp : (13.6)
0

si n’importe laquelle des conditions
t

wO=vO>v. wO=7 [p@duy... .,
. b (13.7)
"V’s(t):t_s p@)(—u)ptdu—>vp,..

pour ¢— 4 0 estremplie, c’est-a-dire la condition classique, ou celle de
Lebesgue ou une condition de Hardy-Littlewood.
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En général, on a :

lim y() k() dt =1y , (@>0) , (13.8)
st n=c 0
1) sgnﬂ%(—t)—z(—l)" pour v=0,1,2,...,8, 0=Zit{Za,
9) lim d(’;t © — fim 5 1) =0

n=0o

uniformément dans Uintervalle 0 <e <t <a pour chaque choix du
nombre positif ¢,

a
3) lim { k,(t)dt =1,
n=o0 0
4) w(t) est une fonction intégrable dans Uintervalle 0 <t < a pour la-
quelle au point t = + 0 la condition généralisée de Lebesgue, c’est-a-dire
la condition de Hardy-Laittlewood
t

o p) @t —uw)stdu—syp , pour t— 40, (13.9)
0
est remplie.

La démonstration de ce théoréme est d’une extréme simplicité. Si nous
introduisons les valeurs moyennes intégrales o (t) = y,(¢), ¥.(¢),- . ., w,(t)
définies tout-a-I’heure et si nous désignons le noyau, fonction toute régu-
liére de t, par k(f) (c’est-a-dire si nous omettons pour un instant I’indice
n), nous obtenons par intégration par partie s-fois répétée la formule

connue :
¢ k) (a)

[ ko= Iw(t)(2(~1)"

(@ ——t)") dt

+ h}s &) (— l)sk‘s’(t)—g—!dt , (13.10)

ou a est un nombre positif fixe. Posons y(t) =1 dans cette formule
(13.10) ; nous obtenons

b"ak fé ((—— 1)» ) (a)( —t)") dt—l—f(— l)sk(s) (t)T:_sTdt .

(13.11)
D’apres la condition 1) les nombres

(—1)°KP @), (—1)'kP@),... (=17 () (13.12)

sont non-négatifs ; la fonction (— 1)°k(t) est aussi non-négative dans
Pintervalle (0, a); enfin, la différence (@ — t) est évidemment positive
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dansl'intervalle 0 <t<a, donctousles s + 1 termes dusecond membre
de I’équation (13.11) sont non-négatives, d’ou résulte I'inégalité impor-
tante

j'(-—l)sk(‘)(t) dt< jla @) dt<C (13.13)

pour toutes les valeurs entiéres de n, en tenant compte aussi de la con-
dition 3).

De la condition 2) nous concluons lim k(@) = 0, pour v =0, 1, 2,
..,8 —1; donc le premier terme du second membre de I’équation
(13.10) tend vers 0 si n —o0.

Dans la condition 4) nous pouvons, sans restreindre la généralité,
prendre y = 0, c’est-a-dire soumettre y(f) & la condition

t

lim o, (f) = 11m p(@E) (¢ —u)ptdu—0 . (13.14)
t=10
0

Alors, si  désigne un nombre positif, nous pouvons prendre a si petit
que |y, (t)|<6 pour 0=t=<a. La valeur de a étant ainsi choisie et
fixée, nous obtenons pour le second terme du second membre de I’équa-
tion (13.10), en tenant compte de la positivité de (— 1yk®(¢) dans
Iintervalle 0<t<a, que sa valeur absolue est
t8

—dt (13.15)

a___ s J.(8)
Sof(-1E 0,

ce qui est, en vertu de (13.13),
<60 . (13.16)

Donc de I’équation (13.10) il s’ensuit immédiatement que

Ij‘tp Ve, ()dt | <6+ 0C=(1+0C)6, (13.17)
si n est suffisamment grand, c’est-a-dire
Hm () k,(t) dt =0 (13.18)
n=o00 0

et notre théoréme est démontré.
14. Autres types d’int. s., encore plus importantes, sont
ks
j‘qp(t) k,(x)dt , x = cost, (14.1)
_fzp x)sintdt , x = cost , (14.2)

ou k,(x) est une fonction rationelle entiére de degré » en x, positive
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avec quelques dérivées d’ordre superieur par rapport & x, dans I'inter-
valle —1<xz<+1, ces dérivées tendant uniformément vers zéro dans
Pintervalle —1<ax<1 —¢, si mn—>oo. Ces deux types d’intégrales
jouent un role tmportant dans la théorie de la sommabilité par les moyennes
arithmétiques de la série de Fourier et de la série de Laplace ; pour chacun
d’eux un théoréme analogue & celui du no. 13 est valable.

16. Nous ne voulons pas ici développer plus loin ce sujet, seulement
faire, pour terminer, deux remarques, dans lesquelles s’exprime ’essence
de la tendence de mes recherches, exposées dans ces lignes.

1) Sila fonction est continue & un point du cercle d’unité, ou & celui
de la sphére d’unité, quelles sont, parmi les moyennes arithmétiques
d’ordre entier et d’ordre autant petit que possible, les plus simples? La
réponse est la suivante : dans la théorie de la série de Fourter, ce sont les
moyennes d’ordre un, dans celle de la série de Laplace, les moyennes
d’ordre deux.

2) Mais quelle est la réponse, si dans le cas de la série de Fourier de la
fonction f(u) c’est la condition de Lebesgue
u+h

—Z—I—Eff(t)dt—-ﬁ, s ho>40, (15.1)
u—Ah
qui est remplie et si aussi dans le cas de la série de Laplace c¢’est la condi-
tion analogue & celle de Lebesgue qui est remplie?

Nous avons la réponse suivante : ce ne sont pas les moyennes d’ordre
deux?), ce sont les moyennes d’ordre trois (de la série de Fourier) resp.
celles d’ordre quatre (de la série de Laplace) qui sont les plus simples, si,
je le répéte, c’est la condition de Lebesgue, a laquelle la fonction déve-
loppée est soumise.

(Recu le 15 aotit 1948.)

%) En 1912, au Congrés international des Mathématiciens & Cambridge (Angleterre)
j’ai eu le plaisir de parler avec M. Mondtel sur les moyennes de la série de Fourier. Il m’avait
dit, que le théoréme de Lebesgue se rapportant aux moyennes arithmétiques de deuwziéme
ordre de la série de Fourier (dont s’est occupé aussi Fatou) est particuliérement simple,
et en méme temps d’une portée plus générale que celle de premier ordre. En continuant
dans ma conférence une conversation mathématique tenue il y a 36 ans, nous voyons
maintenant que les moyennes d’ordre trois sont encore plus simples que celles d’ordre deux,
parce que leur noyau est non seulement positif, mais en méme temps monotone, dans tout
I'intervalle d’intégration.
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