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Die hydrodynamische Bedeutung
der automorphen Funktionen

(ebene Stromungen um Kreisbogenpolygone)
Von P. Matthieu, Zurich

1. Einleitung1)
Seit den klassischen Untersuchungen von Helmholtz, Kirchhofï und

Joukowsky ist bekannt, da6 zwischen der Funktionentheorie und der
Hydrodynamik sehr enge Beziehungen bestehen. Die vorliegende Arbeit
setzt sich zum Ziel, systematisch zu untersuchen, welche Bedeutung in
diesem Zusammenhange den automorphen Funktionen zukommt, ein
Gedanke, der wegen den geometrischen Eigenschaften dieser Funktionen
sehr naheliegend erscheint. Die Untersuchung soll jedoch beschrânkt
bleiben auf die symmetrisehen automorphen Funktionen, d. h. auf die-
jenigen, die die Eigenschaft haben, daB sie ein gewisses Kreisbogenpoly-
gon in der Ebene des Argumentes (und damit auch unendlich viele solche

Polygone) konform abbilden auf die obère Bildhalbebene. Ein aus dem
ersten durch Spiegelung an einer Seite hervorgehendes Polygon wird
dann auf die untere Halbebene abgebildet, und beide Polygone zusammen
bilden also einen Fundamentalbereich fur die Funktion, die damit das
Geschlecht Null hat.

Jeder derartigen automorphen Funktion bzw. der zu ihr gebôrenden
Differentialgleichung der Fuchsschen Klasse mit reellen Koeffizienten
entspricht, wie im dritten Abschnitt auseinandergesetzt wird, im wesent-
lichen eineindeutig eine ebene Potentialstrômung, deren Strômungsbe-
reich einfach zusammenhângend ist und von lauter Kreisbogen begrenzt
wird. Die Abbildungen 1 bis 4 zeigen vier Beispiele von solchen Stromungen,

nâmlich eine Strômung um ein Tragflûgelprofil, das von drei Kreisbogen

gebildet wird, eine Strômung um ein bruckenpfeilerartiges Profil,
eine Strômung um einen dreieckigen Stab, der in den Ecken kreisfôrmig
abgerundet ist und eine Strômung gegen einen unendlich langen Damm,
der an seinem Ende kreisfôrmig begrenzt ist.

1) Vgl. auch die Zusammenfassung am SchluÛ dieser Arbeit.
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Dieser Zusammenhang kann nun einerseits benutzt werden zur Be-
rechnung derartiger Strômungen aus den bekannten Eigenschaften der
automorphen Funktionen. In einer Reihe von Fallen kann die Lôsung in
geschlossener Form dargestellt werden. Vor allem ist das der Fall beim
umstrômten Kreisbogendreieck und bei solchen Bereichen, die sich durch

Abbildung 1 Abbildung 2

Abbildung 3 Abbildung 4

symmetrische Wiederholung aus einem Kreisbogendreieck ableiten lassen.

In den ubrigen Fallen gibt es rasch konvergierende und praktisch zu ver-
wendende Naherungsmethoden, die es gestatten, jede solche Strômung
mit beliebiger Genauigkeit zu berechnen. Dièse Methoden fuhren so be-

quem zum Ziel, daB es sich wahrscheinlich auch in den genannten Fallen,
in denen eine Intégration in geschlossener Form môglich ist, stets emp-
fiehlt sie anzuwenden. Auf der andern Seite kônnen dièse Zusammen-
hange benutzt werden, um aus einer ebenen Potentialstrômung um ein
Kreisbogenpolygon auf experimentellem Wege die zugehôrige auto-
morphe Funktion zu bestimmen bzw. die ihr entsprechende Differential-
gleichung der Fuchsschen Klasse zu lôsen, ein Gedanke, der jedoeh hier
nicht weiter verfolgt werden soll.

Die Arbeit ist so gegliedert, daB nach Aufstellung der Grundgleichun-
gen im folgenden Abschnitt zunâchst unter 3 die allgemeinen Gesiehts-

punkte fur die Lôsung behandelt sind. 4 ist dem besonders einfachen
und wichtigen Fall des Kreisbogendreiecks gewidmet, wâhrend der fol-
gende Abschnitt die Durchfuhrung der Théorie fur das allgemeine Poly-
gon enthalt. 6 befaBt sich mit Polygonen, die sich ins Unendliche er-
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strecken, Abschnitt 7 enthàlt eine Reihe von Beispielen fur die Berech-

nung von Strômungen, und schlieBlich sind die wichtigsten Resultate
unter 8 nochmals kurz zusammengefaBt.

2. Âufstelkmg der Grundgleichungen

Der Zusammenhang zwischen Funktionentheorie und Hydrodynamik
beruht bekanntlich darauf, da6 die Strômungsgleichungen

divt) O rott) 0 (1)

fur eine ebene, stationàre, wirbel- und quellenfreie Strômung einer
idealen, inkompressibeln Flussigkeit ubereinstimmen mit den Cauehy-
Riemannschen Differentialgleichungen der Funktionentheorie. Wir ver-
legen die Strômung im folgenden in eine komplexe z-Ebene. z x + i y
ist dann der komplexe Aufpunkt. Bezeichnen wir ferner mit 0 das Ge-

schwindigkeitspotential und mit W die Stromfunktion, so ist das
komplexe Potential 0 -\- iW eine analytische Funktion f(z) des Aufpunkts :

w==0 + i^f==:f(z) (2)

Umgekehrt definiert in dieser Weise jede analytische Funktion eine

Strômung. Sind ferner u und v die Komponenten der Geschwindigkeit t) im
Punkte z, so ist die komplexe Geschwindigkeit u — iv gleich der Ab-
leitung f(z) :

wr =:u — iv f'(z) (3)

Besonders wichtig und im folgenden speziell behandelt ist der Fall
eines von einer Flussigkeit umstrômten Profils. In diesem Falle lassen

wir, wie das in der Théorie des unendlichen Tragflûgels iiblich ist, fur
z =oo einen einzigen Wirbelpunkt zu, was auf die Aimahme einer Zirku-
lation um das Profil herauskommt. Es bestehen dann noch eine Reihe
weiterer Beziehungen. Bezeichnet (£ irgendeine das Profil umschlieBende

Kurve, F die Zirkulation làngs (£ und 0 den FluB durch die Kurve (£,

so besteht fur die komplexe Zirkulation F -\~ iG die auch in allgemeine-
ren Fâllen gûltige Beziehung

wobei das Intégral in positivem Sinne ûber £ zu erstrecken ist. In unse-
rem Fall ist dieser Wert immer reell, da nach den gemachten Vorausset-

zungen der FluB 0 verschwindet.
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Bezeichnen ferner Kx und Ky die Komponenten der auf das Profil aus-
geubten Kraft, so gilt fiir die komplexe Kraft Kx — i Ky die Formel

dw\ dz

wobei q die Dichte der Flùssigkeit bedeutet. Gleichung (5) ist im wesent-
lichen mit der Auftriebsformel von Kutta-Joukowsky identisch. SchlieB-
lich gilt fiir das komplexe Moment M0 + i Mx beziiglich des Ursprungs
die Beziehung

}/*)¦ m

Hier bedeutet Mo das Drehmoment bezûglich des Ursprungs, wàhrend
Mx keine einfache physikalische Bedeutung hat. Die letzten drei Formeln
sind unabhângig von der speziellen Wahl der Kurve (£. Sie lassen sich
noch in eleganter Weise durch die Residuensâtze umformen, indem der
Wert jedes Intégrais im wesentlichen gleich dem Residuum des Inte-
granden im Punkte oo ist. Wenn wir die Strômung im folgenden in ûb-
licher Weise uberall auBerhalb der Profilkurve, insbesondere auch im

Punkte oo, als regulâr voraussetzen, so haben wir fur —7— um den Punkt
od eine Entwicklung der Form

wobei die at komplexe Konstanten sind und wobei a0 unmittelbar die
Geschwindigkeit im Unendlichen ist. Die Formeln (4) bis (6) schreiben
sich dann gemâB (7) in der Form

r== 2ni ax (8)

Kx — i Ky — 2n q aQ ax (9)

M0 + iM1== - ing(2a0a2 + a\) (10)

Aus (8) folgt noch, daB a± in unserem Fall stets rein imaginàr sein muB.
Durch dièse Formeln wird die Théorie der ebenen Potentialstrômungen

um ein Profil im wesentlichen erfaBt. Bei bekannter Funktion f(z) er-
geben sich durch (2) der Verlauf der Strômung, vor allem die Strom-
linien, durch (3) die Geschwindigkeit in einem beliebigen Punkte, durch
(4) und (8) die Zirkulation um das Profil und durch (5), (6), (9) und (10)
die auf dièses Profil wirkenden Krâfte und Momente.



3. Strômungen um Kreisbogenpolygone

Wir fûhren vier komplexe Zahlebenen ein, deren Anordnung und Be-
zeichnung aus Abb. 5 zu ersehen ist. In der Z-Ebene denken wir uns den
Einheitskreis als Profilkurve gegeben. Dann wird bekanntlich durch

w -lgZ (U, Freell, U>0) (H)

in der Z-Ebene eine Strômung mit der Zirkulation F um den Einheitskreis

definiert, die im Unendlichen parallel zur «E-Achse verlâuft und
dort die Geschwindigkeit U hat. Wenn wir nun durch eine Funktion

z (p(Z) (12)

den Einheitskreis der Z-Ebene konform abbilden kônnen auf ein Kreis-
bogenpolygon in der z-Ebene, was nach Riemann môglich ist, so wird

y

Abbildung 5

dadurch auch die Strômung um den Einheitskreis in der Z-Ebene ab-

gebildet auf eine Strômung um das Kreisbogenpolygon in der z-Ebene.
Die Stromlinien entsprecben sich einzeln und die Strômung wird be-
schrieben durch die aus (11) und (12) flieBende Abhângigkeit zwischen z

und w. Es handelt sich also nur um die Bildung von (12).
Dazu bilden wir zunâchst das ÂuBere des Einheitskreises in der Z-

Ebene — den Strômungsbereich — auf die obère f-Halbebene ab. Das
wird geleistet durch

2 di)
(a — bi) C + (c — di)

£
(c - di) Z — (c + di)

~a + bi)Z bi) (13)

wobei a, b, c, d vier réelle Zahlen mit der Nebenbedingung ad >bc
sind. Bei Nichtbestehen dieser letzteren wurde der Strômungsbereich auf



die untere Halbebene abgebildet. Die obigen Konstanten kônnen stets
so normiert werden, da8 die Beziehung

ad — bc 1 (14)

besteht, was im folgenden stets vorausgesetzt werden soll. Bei gegebener
Funktion (13) werden a, b, c, d durch (14) bis auf zwei Môglichkeiten
bestimmt, die sich nur durch das Vorzeichen unterscheiden und die des-
halb im folgenden nicht als verschieden betrachtet werden sollen, so da8
wir also sagen kônnen, daB die obigen Konstanten durch die Normierung
(14) eindeutig bestimmt sind.

Es handelt sich nun noch darum, die obère £-Halbebene abzubilden
auf das ÂuBere des Polygons in der z-Ebene. Das kann aber geschehen
durch (im allgemeinen mehrdeutige) automorphe Funktionen bzw. durch
Lôsungen von Differentialgleichungen zweiter Ordnung der Fuchsschen
Klasse. Im einfachsten Fall des Kreisbogendreiecks haben wir Schwarz-
sche Dreiecksfunktionen bzw. hypergeometrische Funktionen. Es sei eine

Dififerentialgleichung zweiter Ordnung der Fuchsschen Klasse2) zwischen
den Variabeln £ und z* gegeben mit n singulàren Stellen (der Bestimmt-
heit). Dièse letzteren seien mit a1,a2)fl3).,.,an bezeichnet und die zu-
gehôrigen Exponenten mit <x[, ol[, od2, <x2r,..., odn, oc^, wobei bekanntlich
die Beziehung bestehen muB

Z<x'k+4 n-2 (15)
fc=i

Aile singulàren Stellen und Exponenten setzen wir als reell voraus und wir
kônnen auch ohne Beschrânkung der Allgemeinheit ax < a2 < a3 <... < an
annehmen. Wenn wir ferner die singulâre Stelle C «n ins Unendliche
verlegen, was im folgenden immer geschehen soll, hat die Gleichung die

dz*
J^ + (O* o (16)

mit

C — «fc

2) Fur die hier verwendeten Begriffe aus der Théorie der Differentialgleichungen der
Fuchsschen Klasse vgl. Bieberbach, Théorie der Differentialgleichungen, 3. Aufl., Berlin

1930, oder Klein, Vorlesungen ûber die hypergeometrische Funktion, herausgegeben
von O. Haupt, Berlin 1933.
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Hierbei ist Gn_3(Ç) ein Poljmom hôchstens vom Grade n — 3 mit
ebenfalls reellen Koeffizienten, welch letztere die akzessorischen Para-
meter genannt werden und welche noch eine bestimmte Bedingung er-
fûllen mûssen, damit (16) im Unendlichen die Exponenten odn und ol'n hat.
Dièse Bedingung ergibt sich leicht dadurch, daB man die Fundamental-
gleichung fur den Punkt oo aufstellt und verlangt, daB dièse die Wurzeln
odn und o!!n hat. Bezeichnet man mit r% das Residuum von (18) an der Stelle

a{, so lautet die Fundamentalgleichung fur den Punkt oo

Q (ff ~ 1) + [2 - ïV - oJk - 4)] q + *Z(ai <4 + akrk) 0 (19)

Setzt man Mer fur q den Wert o!n ein, so ergibt sich nach leichter Um-
formung

«;•_[»_ 2 - ;g («; + <4)] «; + ïV; 4 + «* rk) o, (20)

und das ist die gesuchte Beziehung fur die rk und damit ftir die
Koeffizienten von Gn_3(C)- Hâtte man in (19) statt <x'n den anderen Exponenten
ô£ eingesetzt, so wâre man zur selben Gleichung (20) gekommen. Man er-
kennt dies dadurch, daB gemâB (15) der Koeffizient von q in der quadra-
tischen Gleichung (19) stets den Wert — (a'n + <*») ^a^' so ^a^ a^so ^»
stets gleichzeitig mit <x!n Wurzel von (19) ist.

Sind nun z* und z* zwei beliebige linear unabhângige (nicht notwendig
réelle) partikulâre Intégrale einer gegebenen Gleichung (16), so weiB

man, vor allem durch die klassischen Untersuchungen von Schwarz3),
daB durch den Quotienten

Ar

die obère Halbebene abgebildet wird auf ein Kreisbogenpolygon der
co-Ebene. Die n singulâren Stellen ak gehen dabei liber in die Ecken Ek
des Polygons, welches dort bzw. die Winkel

| <xrk — oi!k | n ock n (22)

hat. Die Lage der Ecken hângt erstens ab von der Lage der n singulâren
Stellen, zweitens von den n — S akzessorischen Parametern und drit-
tens von den 6 reellen Konstanten im Quotienten (21). Von diesen
2 7i + 3 reellen Parametern sind jedoch drei unwesentlich, da man durch
eine lineare Transformation der unabhângigen Variabeln, welche den

8) Ûber diejenigen Fâlle, in denen die Ganôsche hypergeometrische Reihe eine alge-
braische Funktion ihres vierten Argumentes darstellt, Ges. Math. Abh., Bd. II, S. 211.
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Charakter von (16) unverandert lâBt, stets ûber drei von ihnen verfugen
kann. Zum Beispiel kann man drei der singularen Stellen in drei beliebige
Punkte der reellen Achse verlegen, wie dies im allgemeinen bei der hyper-
geometrischen Differentialgleichung gemacht wird. Demnach bleiben zur
Bestimmung der Ecken noch 2n Parameter, wie dies auch auf Grund
von geometrischen Ûberlegungen der Fall sein muB.

Ist umgekehrt in der z-Ebene ein beliebiges Kreisbogenpolygon ge-
geben, dessen Ecken in positivem Umlaufsinn in bestimmter Weise mit
Ex, E2,..., En bezeichnet sind, so gibt es dazu unendlich viele Gleichun-

gen (16), dergestalt, daB die obère f-Halbebene durch den Quotienten
zweier linear unabhàngiger Partikulârintegrale auf das gegebene
Kreisbogenpolygon abgebildet werden kann, und daB dabei dem singularen
Punkte ak die Ecke Ek (Je 1, 2,..., n) entspricht. Sie stimmen aile
ûberein in den GrôBen (22) und gehen bei gleichen Exponenten durch
ganze lineare Transformationen der unabhângigen Variabeln auseinander
hervor. Verlegen wir also durch eine solche Transformation die singulàren
Stellen ax und a2 bzw. in die Punkte 0 und 1 der £-Ebene, so daB demnach

jetzt die Beziehung besteht

ax 0<a2 l<a3o • • <an oo (23)

und stellen wir noch die zusàtzlichen Bedingungen

(* 1,2,...,
(24)

so gehôrt zu jedem Kreisbogenpolygon eine und nur eine Differentialgleichung

(16). Im folgenden denken wir uns die zu einem Kreisbogenpolygon

gehôrende Differentialgleichung der Fuchsschen Klasse fast immer
entweder in dieser oder dann in einer nàchsten zu besprechenden zweiten
Art normiert. Die Koeffizienten der auf die eben genannte Weise nor-
mierten Gleichung haben dann also die Form (17) und (18), und es be-

stehen ferner noch die zusàtzlichen Bedingungen (15), (20), (23) und (24).
Beachtenswert ist noch, daB infolge von (24) die Summe in (18) stets

wegfâllt.
Um nun dièse Betrachtungen auf unsere hydrodynamische Problem-

stellung anzuwenden, denken wir uns bei gegebener Profilkurve zuerst
die zugehôrige (normierte) Gleichung (16) gebildet. Die Berechnung he-
steht in der Bestimmung der n — 3 von 0, l,oo verschiedenen singularen

Stellen und in derjenigen der n — 3 akzessorischen Parameter
(uber die numerische Berechnung dieser GrôBen siehe Abschnitt 5). Ferner

wâhlen wir fur z* und z* in (21) zwei beliebige, aber dann stets fest-
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gehaltene (in der obern Halbebene eindeutige) linear unabhângige Zweige
aus. Bilden wir dann den Quotienten

e'co + f e'z* +fz*
z ZJL —i_21L± (25)

g a) + h g z* -1

mit den komplexen Konstanten e', /, g, h (wir bezeichnen die erste dieser
Konstanten mit ef statt mit e, um sie von der spâter gleichzeitig auf-
tretenden Basis der natûrlichen Logarithmen zu unterscheiden), wobei
im folgenden wieder die Beziehung

erh-gf= 1 (26)

vorausgesetzt werden soll, so kônnen wir dièse Konstanten wieder bis
auf zwei Môglichkeiten so bestimmen, da8 durch (25) die obère £-Halb-
ebene abgebildet wird auf das gegebene Kreisbogenpolygon in der z-
Ebene. Wie bei den Quotienten (13) sollen die beiden Môglichkeiten im
folgenden nicht als verschieden betrachtet werden.

Die Umkehrfunktion von (25) ist dann eine zu dem gegebenen
Kreisbogenpolygon gehôrende (im allgemeinen mehrdeutige) automorphe
Funktion. Sie ist so normiert, daB sie im Eckpunkt z Ek den Wert
f afc annimmt, und wir bezeichnen sie deshalb als die zu dem
Kreisbogenpolygon gehôrende normierte automorphe Funktion. Sie bildet
dièses stets auf die obère f-Halbebene ab. Wenn man das gegebene
Kreisbogenpolygon an einer seiner Seiten spiegelt, so bilden das urspriingliche
und das durch Spiegelung entstandene Polygon zusammen einen Funda-
mentalbereich fur dièse Funktion.

Damit sind wir im Prinzip am Ziel. Die gesuchte Funktion (12) wird
geliefert durch (13) und (25) und die Strômung also dargestellt durch
(11), (13) und (25). Bei der Abbildung des Einheitskreises der Z-Ebene
auf das Kreisbogenpolygon in der z-Ebene mu8 noch der unendlich ferne
Punkt wieder in den unendlich fernen Punkt ûbergehen. Ferner kann die
Geschwindigkeit im Unendlichen der z-Ebene und also auch die komplexe

Geschwindigkeit V -j— beliebig gegeben sein. Das genûgt ge-

rade zur Bestimmung der Konstanten U in (11) und a, b, c, d in (13),
uber die bisher nicht verfiigt wurde. Entspricht gemâB (25) dem Punkt
z =oo der Punkt C Q (Abb. 5), so mûssen die Gleichungen bestehen

(a-bi)Q + (c-~di) O (27)

dwl [* dw
dz

88
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Aus diesen Gleichungen lassen sich unter Beachtung von (14) eindeutig a,
6, c, d und U berechnen, wie dies bereits aus dem Riemannschen Abbil-
dungssatz folgt. SehlieBlich kann die Zirkulation um das Kreisbogen-
polygon noch gegeben sein. Aus

wo (£ eine das Kreisbogenpolygon in der z-Ebene und (£/ eine den Einheits-
kreis in der Z-Ebene umschlieBende Kurve ist (die Intégrale sind stets in
positivem Sinne zu erstrecken), ergibt sich dann gemâB (4) und (11), daB
die Zirkulation um das Kreisbogenpolygon gleich der GrôBe F in Glei-
chung (11) ist. Die Konstanten in den Gleichungen (11), (13) und (25)
sind demnach aile wesentlich. Zusammenfassend kônnen wir also sagen :

Die gesuchte Btrômung wird dargestellt durch (11), (13) und (25). Die
Konstanten in diesen Gleichungen bestimmen sich eindeutig aus den Daten des

Problems, d. h. aus den geometrischen Eigenschaften des Kreisbogenpoly-
gons, der Geschwindigkeit im Unendlichen und der Zirkulation der
Btrômung. Aus den geometrischen Eigenschaften ergeben sich zunàchst unter
Beachtung von (26) e\ f, g, h in (25). Die Zirkulation um das Kreisbogenpolygon

ist gleich F in (11), und schliefilich bestimmen sich aus der Ge-

schwindigkeit im Unendlichen gema/3 (26), (27) und (28) die Grô/îen U, a,
b, c, d.

Zut Wahl der Zirkulation F ist noch zu sagen, daB sich dièse theore-
tisch beliebig wàhlbare GrôBe bei Tragfliigelprofilen nach dem Vorgang
von Joukowsky aus physikalischen Grûnden so bestimmen muB, daB der
hintere Staupunkt der Strômung in den Eckpunkt des Profils fâllt. Durch
dièse Forderung wird F in der Tragfliigeltheorie bestimmt.

Die Gleichung (16), aus der sich die Abbildungsfunktion (25) ergibt,
làBt sich noch in einfacher Weise umformen4). Setzt man

z** z*e?0 (30)

wobei £0 eine beliebige Konstante ist, und wobei man unter dem Intégral
irgendeinen seiner Zweige verstehen kann (aile Zweige unterscheiden sich

ja nur durch multiplikative Konstanten), so folgt aus (16) fur z** die
Gleichung ,72 -**

+ J(Ç)** O (31)

4) Siehe dazu zum Beispiel Forsyth-Jacobsthal, Lehrbuch der Differentialgleichungen,
2. Aufl., Braunschweig 1912, §§ 58—62.
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wobei die sogenannte Invariante «/(£) den Wert hat

j - a - l dp - p2

Das ist die zweite, schon auf Seite 87 erwâhnte Art, in der wir die zu
einem Kreisbogenpolygon gehôrende Differentialgleichung der Fuchs-
schen Klasse normieren kônnen. Sie eignet sich ganz besonders fur die
numerische Rechnung. GemâB (30) kann man zu den friiher gebrauchten
Lôsungen z* und z* von (16) stets zwei in der obern Halbebene ebenfalls
eindeutige Lôsungen z** und z£* von (31) angeben, so daB die Be-
ziehung besteht

»(0 4- 4v. (33)

Die Gleiehungen (31) und (16) sind also in bezug auf unser Problem ein-
ander vollstàndig âquivalent, und wir kônnen von der einen oder von der
andern Form ausgehen. Es wird sich ûbrigens zeigen, daB fur die meisten
in den Anwendungen interessanten Fàlle die beiden Formen iiberein-
stimmen.

Fur die Ableitung der Funktion (33) gilt die wichtige, leicht herzu-
leitende Formel4) „

f(0 i (34)

wobei die Konstante G den Wert

G z** z**' - zf* z**' (35)

hat. Sie kann gemâB (35) leicht berechnet werden, indem man in die
rechte Seite dieser Gleichung, welche nicht von £ abhangt, fur dièse
letztere GrôBe einen beliebigen Zahlwert einsetzt. Ist umgekehrt irgend-
ein partikulâres Intégral z** von (31) bekannt, so stellt gemâB (34) das

Intégral ç

wo Co e*ne beliebige Konstante ist, stets eine Abbildungsfunktion (33)
dar, aus der sich (25) wieder als lineare Funktion ergibt.

Von besonderem physikalischem, und technischem Interesse sind
einerseits ûberall abgerundete Profile (Abb. 2 und 3) und anderseits

Tragflûgelprofile mit einem einzigen Punkt, in dem die Tangente nicht
stetig verlâuft (Abb. 1). Im zweiten Fall wâhlen wir diesen letzteren
Punkt als Eckpunkt En, d. h. wir lassen ihm in der zugehôrigen Differen-
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tialgleichung (16) den Punkt £ an=oo entsprechen. Dann haben
aber fur jeden im Endlichen gelegenen singulàren Punkt ak von (16) die
zugehôrigen Exponenten odh und ol!k die Werte

4 0 4=1 (fc= 1,2,3,...,n - 1) (37)

und daraus ergibt sich wieder, daB p(Ç) und der erste Summand in
q(Ç) identisch verschwinden. Die Gleichung (16) nimmt dann also die
besonders einfache Gestalt an

ÏÏtt - ak)^ + Gn_3(Ç) z* 0 (38)

Da in dieser auf die erste Art normierten Gleichung der Koeffizient der
ersten Ableitung verschwindet, stimmt sie mit der zugehôrigen zweiten
Normierungsform (31) uberein. Wenn wir scblieBlich noch die Forderung
fallen lassen, daB ax 0 und a2 1 sein sollen und fur dièse GrôBen

beliebige Werte zulassen, wâhrend wir aile andern Bedingungen fur die
beiden Normierungen beibehalten, so hat die gemeinsame Normierungsform

(38) stets die Gestalt

fit* (f) ^r + g;_3 (f) z* o (39)

wobei (?*_!(C) und (?*__3(C) zwei réelle Polynôme der Grade n — 1

und n — 3 sind. Umgekehrt entspricht jeder Gleiehung der einfachen
Form (39) stets ein Polynom mit hôchstens einem Punkt, in dem die
Tangente unstetig verlàuft. Die genannten Fâlle sind also dadurch aus-
gezeichnet, daB die beiden Normierungsformen einander gleich werden
und die besonders einfache Gestalt (38) bzw. (39) annehmen.

Die beiden folgenden Abschnitte enthalten die Verwertung dieser Ge-

dankengange zur Berechnung von Strômungen. Der nâchste Abschnitt
beschâftigt sich mit dem besonders einfachen und wichtigen Fall des

Kreisbogendreiecks, wâhrend unter 5 das allgemeine Polygon behandelt
ist.

4. Der Fall des Kreisbogendreiecks

Einige solche Strômungen sind zur Untersuchung der Strômungsver-
hâltnisse in der Umgebung scharfer Eintrittskanten bei Tragfliigelpro-
filen bereits von Wolff5) kurz behandelt worden. Indessen ergeben sich

6) Einfluû der Abrundung scharfer Eintrittskanten auf den Widerstand von Flûgeln,
Ingenieur-Archiv, Band IV (1933), S. 521.
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von unserem allgemeinen Standpunkt aus gegenûber der sehr speziellen
Problemstellung bei Wolff so viele neue Gesichtspunkte und Resultate,
da6 wir glauben, da8 eine kurze Betrachtung dièses Pâlies trotzdem ge-
rechtfertigt ist. Unsere Darstellung soll sich jedoch nur auf die Punkte
erstreeken, die gegenûber dem allgemeinen, im nâchsten Abschnitt be-
handelten Fall besonders hervorzuheben sind. Weiterhin soll hier der
Einfachheit halber der am SchluB des letzten Abschnittes genannte
besonders wichtige Spezialfall vorausgesetzt werden, daB hôchstens ein
Winkel des Dreiecks von n verschieden ist. Der allgemeine Fall lâBt sich
in ganz entspreehender Weise durehfûhren.

Im Falle des Kreisbogendreiecks vereinfachen sich die bisherigen Be-

trachtungen ganz wesentlich. Das beruht einerseits darauf, daB keine
akzessorischen Parameter auftreten. Anderseits reduziert sich in diesem
Falle die Gleichung (16) auf eine hypergeometrische Differentialgleichung.
Man kann infolgedessen die ganze Théorie der hypergeometrischen Funk-
tion zur Anwendung bringen. Insbesondere kônnen die Problème auch
numerisch ziemlich bequem durch hypergeometrische Reihen berechnet
werden.

Wenn man den von n verschiedenen Winkel des Strômungsbereiches
mit Xn bezeichnet (Abb. 1), so haben die Exponenten der Gleichung
(16) gemâB (15) und (22) bis (24) die folgenden Werte :

- 1 - A „ - 1 + l
«3 o «3 S

(40)

und die Gleichung (38) nimmt (es kann jetzt 2* z** gesetzt werden)
gemâB (20) die Form an

d2z** 1

C(C-l)-^ + j(l-*•)*?• 0 (41)

Das ist eine hypergeometrische Differentialgleiehung. Sie entsteht aus
der ûblichen Schreibweise

^+<x'Sz**==0 (42)

dadurch, daB man

«=-^Ll fi^^f1 y 0 (43)
setzt.

Um zunâchst die Abbildungsfunktion (25) zu berechnen, bieten sich

vor allem drei Wege dar. Erstens kann man die 24 Kummerschen Parti-
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kulàrintegrale6) von (41) bilden, d. h. im wesentlichen die sechs Funda-
mentallôsungen dieser Gleichung. Dièse ergeben sich in Forin von hyper-
geometrischen Reihen, zu welchen bei ganzzahligen Exponentendiffe-
renzen noeh logarithmische Glieder hinzutreten kônnen. In unserem Fall
hat sowohl fur C 0 wie auch fur C 1 die Exponentendifferenz den
Wert 1. Dièse 24 Intégrale kônnen unter Benûtzung der Formeln

;:;} m
nach bekannten Regeln leicht ineinander fortgesetzt werden6), wobei F
in bekannter Weise die hypergeometrische Reihe und 77 die GauBsche
il-Funktion bezeichnet. Jedes dieser 24 Intégrale konvergiert in einem
gewissen Bereiche der f-Ebene, und aile dièse Bereiche uberdecken die
C-Ebene luckenlos. Man kann also auf dièse Weise den Gesamtverlauf
zweier Lôsungen z** und z** und damit denjenigen der zugehôrigen
Funktion (33) in der ganzen C-Ebene bestimmen.

In unserem Fall ist es am bequemsten, fur z* * und z** die nicht loga-
rithmischen Fundamentallôsungen um die Punkte £ 1 und C 0 zu
wàhlen6) und demgemaB

z ~ ~

(45)

zu setzen. Unter Berûcksichtigung von (43) erhâlt man daraus fur (33)

Dièse Darstellungen gelten zunâchst nur fur die Konvergenzgebiete der
obigen Reihen, d. h. fur die Kreise | f | < 1 und | 1 -- f | < 1 bzw. fur
deren gemeinsames Konvergenzgebiet, lassen sich aber nach dem dar-
gestellten Prinzip auf die ganze C-Ebene analytisch fortsetzen.

Vermittelst des obigen Fortsetzungsprinzips6) lâBt sich nun leicht
zeigen, daB der Quotient (46) die obère C-Halbebene auf das in Abb. 6

dargestellte schraffierte Kreisbogendreieck mit den Ecken

0,(0=00 o)(l) 0 co(oo) e*w<at+1> (47)

6) Vergleiche Forryth-Jacobsthal, Lehrbuch der Difïerentialgleichungen, 6. Kapitel,
sowie die unter Fuônote 5 genannte Literaturangabe.
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abbildet, welches in diesen Punkten bzw. die Winkel n, n und X n
(2<% + 1) n hat. Da aber aile Kreisbogendreiecke mit gleichen Winkeln
kreisverwandt sind, kann man weiterhin die Konstanten in (25) sofort
so bestimmen, daB das Dreieck der Abb.
6 auf den gegebenen Strômungsbereich
abgebildet wird. Die Funktion (25) kann
also auf dièse Weise durch hypergeo-
metrische Reihen dargestellt werden. Es
ist dies im Prinzip der von Wolff ein-
geschlagene Weg zur Bestimmung der
Funktion (25).

Eine zweite Berechnungsmethode er-
gibt sich aus der Darstellung der hyper-
geometrischen Funktion durch bestimmte Intégrale7). Man rechnet auf
Grand dieser Darstellung leicbt aus, daB in unserem Fall der Quotient (46)
die fur die ganze f-Ebene gûltige Gestalt

Abbildung 6

(48)

hat. Der Vorteil dieser Schreibweise liegt neben ihrem theoretischen
Wert hauptsâchlich in ihrer Geschlossenheit und Einheitlichkeit. Fur die
numerische Berechnung ist sie jedoch weit weniger geeignet als die erste
und eine gleich zu besprechende dritte Lôsungsform. Die Ableitungen
von (46) und (48) kônnen leicht ausgerechnet werden gemâB der Glei-
chung (34).

Der dritte Weg schlieBlich, der wahrscheinlich meistens der einfachste
ist, besteht darin, daB die Lôsungsmethoden des nâchsten Abschnitts fur
die allgemeine Gleichung sehr gut auch auf den Fall des Kreisbogendrei-
ecks angewandt werden kônnen. Sie vereinfachen sich hier noch wesent-
lich dadurch, daB die zu einem gegebenen Dreieck gehôrende Gleichung
(31) von vornherein bekannt ist. Im ûbrigen sei auf die Entwicklungen
des nâchsten Abschnitts verwiesen.

Durch dièse drei Methoden kann also zu einem gegebenen Kreisbogen-
dreieck sofort eine zugehôrige Funktion (33) sowie deren Ableitung und
damit auch die zugehôrige Funktion (25) und deren Ableitung berechnet
werden.

7) Vgl. zum Beispiel Klein, Vorlesungen tiber die hypergeometrische Funktion.



Es handelt sich nun noch um die Bestimmung von (11) und (13), d. à.
um die Berechnung der in diesen Funktionen auftretenden Konstanten.
Dièse hat gemâB den Formeln (27) und (28) zu erfolgen. Dazu ist es vor
allem notwendig, die GrôBe Q zu kennen, d. h. denjenigen Punkt der
f-Ebene, der dem Punkt z =oo entsprieht (Abb. 5). Die Berechnung
von Q gemâB Gleichung (25) (vgl. die dadurch entstehende Gleichung (73)
im folgenden Abschnitt) kann nun numerisch sehr rasch und genau
erfolgen vermittelst der fur co(Ç) gefundenen Darstellungen und deren
Ableitungen. Man braucht nur von einem Nâherungswert auszugehen
und kann dann dureh das Newtonsche Nàherungsverfahren den Wert von
Q in wenigen Schritten rasch und genau bestimmen. Die Anwendung des

Newtonsehen Verfahrens empfiehlt sich hier deshalb, weil mit der
Berechnung von (o(Ç) gleichzeitig im wesentlichen auch die Ableitung
dieser Funktion bekannt wird. Nachdem nunmehr Q bekannt ist, stellen
(27) und (28) ein Gleichungssystem dar, aus dem eindeutig a, 6, c, d
und U berechnet werden kônnen (fur die Durchfûhrung der Rechnung
vgl. man die Formeln (74) bis (76) im nâchsten Abschnitt). SchlieBlich
handelt es sich noch, um die Bestimmung der Zirkulation. Wenn wir
dièse GrôBe gemâB der Bemerkung auf Seite 89 bestimmen wollen, so

mussen wir nur sehen, welcher Punkt auf dem Einheitskreis in der
Z-Ebene dem Eckpunkt des Profils, also dem Punkt £ =oo, entsprieht.
GemâB (13) ist das der Punkt

^±Aî '*, (49)
a — b%

wo (p das Argument der GrôBe (49) darstellt. Die Strômung in der Z-Ebene
muB dann in diesem gleichen Punkt ihren hinteren Staupunkt haben.
Bezeichnen wir den hinteren Staupunkt der durch (11) dargestellten
Strômung durch S2 (Abb. 5), so muB also die Gleichung bestehen

S2 e** (50)

Die Staupunkte einer Strômung sind dadurch ausgezeichnet, daB in
ihnen die Geschwindigkeit verschwindet. (50) fùhrt also auf die Forde-

rung, daB die Ableitung von (11) fiir Z ei<p verschwinden muB, und
aus dieser Bedingung bestimmt sich F. Die Ausrechnung ergibt

F en U sin <p (51)

Die damit bekannten Funktionen (11), (13) und (25) stellen nun die
gesuchte Strômung dar. Die Geschwindigkeit ergibt sich als Ableitung
der aus diesen Gleichungen flieBenden Abhângigkeit zwischen z und w*



Am einfachsten ist es, weil durch (46) bzw. (48) co unmittelbar als Funk-
tion von £ bestimmt wird, die Geschwindigkeit als Funktion von £ aus-
zudrucken. Die Ausrechnung ergibt

dw dZ
dw ~dz ~dE ,_rtV-j-= * 52)
dz dz du

do> dÇ

wobei aile in (52) auftretenden Differentialquotienten als Funktionen von
£ auszudrûcken sind. Damit kann nun, ausgehend von einem beliebigen
Punkt der £-Ebene, zunâchst gemâB (25) der zugehôrige Punkt der Strô-
mungsebene und dann gemâB (52) in diesem die Geschwindigkeit
berechnet werden.

Die Stromlinien ergeben sich dadurch, daB man den Imaginârteil von
(11) gleich einer willkurliehen Konstanten setzt, was die Stromlinien in
der Z-Ebene liefert. Aus diesen ergeben sich dann diejenigen in der
z-Ebene gemâB (13), (46), (48) und (25). Die Zirkulation F bestimmt sich
nach Gleichung (51). Aus Pund aus der Geschwindigkeit im Unendlichen
ergibt sich ferner nach dem Satz von Kutta-Joukowsky sofort der Auf-
trieb, den das Profil erfâhrt. SchlieBlich kann noch das komplexe Moment

gemâB (7) und (10) berechnet werden, indem man -j— um den Punkt
(tz

z oo in eine Reihe entwickelt. Infolge der etwas komplizierten Gestalt
(52) fur die komplexe Geschwindigkeit (der Punkt z oo entspricht da-
bei dem Punkt £ Q) ist es aber einfacher, die Geschwindigkeit lângs
des Profils zu berechnen, was besonders leicht geschehen kann, weil lângs
des Profils die GrôBe £ in (46) bzw. (48) reell ist. Das komplexe Moment
ergibt sich dann gemâB (6). SchlieBlich kann aus der Gesehwindigkeits-
verteilung lângs des Profils auch noch die Grenzschicht berechnet werden.
Aile dièse Rechnungen kônnen, wie im nâchsten Abschnitt ausfûhrlich
dargelegt wird, auch numerisch sehr gut durchgefûhrt werden. Man ver-
gleiche dazu auch die durchgerechneten Beispiele in Abschnitt 7.

Durch die Methoden dièses Abschnittes kônnen auch solche Strômun-
gen berechnet werden, deren Strômungsbereich sich durch symmetrische

Abbildung 7 Abbildung 8

Wiederholung aus einem Kreisbogendreieck ableiten lâBt. In erster Linie
ist hier der Fall des symmetrischen Kreisbogenvierecks zu nennen, durch
den sich sehr viele und wichtige Formen von Tragflûgelprofilen erfassen
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lassen. In den Abb. 7 und 8 sind zwei solche Profile dargestellt, von denen
das erste symmetrisch in bezug auf eine Gerade, das zweite symmetrisch
in bezug auf einen Kreis ist.

Um eine solche Aufgabe zu lôsen, muB man nur die zu einem derartigen
Strômungsbereich gehôrende Abbildungsfunktion (25) bzw. deren auto-
morphe Umkehrfunktion C A(z) vergleichen mit einer Schwarzschen
Dreiecksfunktion Ci s(z), welche die Elementardreiecke des Strô-
mungsbereiches auf die obère bzw. die untere £-Halbebene abbildet.
s(z) ist dann eine rationale Funktion von A (z), deren Grad gleich der
Anzahl der Elementardreiecke ist, aus denen sich der Strômungsbereich
zusammensetzt, und die man am besten dadurch bestimmt, da8 man in
der zu Ci $(z) gehôrenden hypergeometrischen Gleichung Ci als rationale

Funktion von Ç ansetzt und dann die Koeffizienten dieser rationalen
Funktion so bestimmt, da8 die entstehende Differentialgleiehung dem

Strômungsbereiche entspricht. Damit kann aber die Abbildungsfunktion
(25) ausgedruckt werden durch die genannte Dreiecksfunktion, so da8

man auf den in diesem Abschnitt behandelten Fall zuriickkommt. Im
wichtigsten Fall des symmetrischen Kreisbogenvierecks (Abb. 7 und 8)

wird bei geeigneter Normierung der Funktionen A(z) und s(z) die
letztere einfach gleich dem Quadrat der ersteren. Im zweiten Beispiel in
Abschnitt 7 ist eine derartige Strômung behandelt.

5. Das allgemeine Kreisbogenpolygon

Beim allgemeinen Kreisbogenpolygon ergeben sich gegenûber dem im
letzten Abschnitt behandelten Fall des Kreisbogendreiecks zwei wesent-
liche Schwierigkeiten. Erstens ist es nicht mehr môglich, die zugehôrigen
Differentialgleichungen,, die jetzt mehr als drei singulâre Punkte ent-
halten, durch verhàltnismâBig einfache analytische Ausdrucke zu inte-
grieren, wie dies im hypergeometrischen Fall geschehen konnte. Zweitens
ist es bei gegebenem Kreisbogenpolygon zunâchst nicht einmal mehr
môglich, die zugehôrige Differentialgleichung der Fuchsschen Klasse

vollstandig anzugeben, denn wenn wir uns dièse wieder in einer der beiden
frûher angegebenen Weisen normiert denken, so treten in ihr neben den

Exponenten als weitere Parameter noch die n — 3 von 0, 1, oo ver-
schiedenen singulâren Stellen und die n — 3 akzessorischen Parameter,
also im ganzen 2n — 6 weitere Konstanten auf, und tiber die Beziehung
dieser letzteren zum gegebenen Kreisbogenpolygon ist nichts bekannt.

Es wird jedoch gelingen, dièse beiden Schwierigkeiten durch verhàltnismâBig

einfache Nâherungsmethoden zu ûberwinden. Was zunâchst den
zweiten Punkt betrifft, so lassen sich verschiedene intéressante Beziehun-
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gen aufstellen zwischen den genannten 2n — 6 Parametern und der
Gestalt des Kreisbogenpolygons, die sich auch ftir die numerische Reeh-

nung verwerten lassen. Jedoch hat sich gezeigt, daB es viel praktischer
ist, einen andern Weg zu beschreiten. Wir werden nachstens zeigen, daB
eine gegebene Gleichung (31) sehr leicht und rasch soweit integriert werden

kann, bis die Gestalt des zu ihr gehôrenden Kreisbogenpolygons be-
kannt wird. Infolgedessen kann man, ausgehend von einer Nâherungs-
lôsung, die noch nicht bestimmten 2n — 6 Parameter so lange variieren,
bis das zugehôrige Kreisbogenpolygon beliebig genau mit einer gegebenen
Form ubereinstimmt, wobei man zwischen den entstehenden Polygonen
linear interpolieren wird. Eine Nâherungsform fur die Differentialglei-
chung lâBt sich immer finden, entweder durch Probieren oder auf experi-
mentellem Wege. Sehr hâufig verhàlt es sich auch so, daB es sich darum
handelt, eine ganze Reihe von Profîlformen zu untersuchen, die aile an-
genâhert die gleiche Gestalt haben. Beispielsweise ist das oft der Fall bei
Tragflugelprofilen. Im dritten Beispiel in Abschnitt 7 ist ein derartiger
Fall behandelt. Nach der Erfahrung des Verfassers ist es bei nicht zu
hoher Eckenzahl sehr rasch und gut môglich, auf diesem Wege die zu
einem gegebenen Polygon gehôrende Gleichung (31) zu bestimmen.

Damit das gegebene und die gemàB dem obigen Verfahren eventuell zu
verschiedenen Gleichungen (31) gehôrenden Polygone (dièse letzteren
sind ja nur bis auf eine Kreisverwandtschaft bestimmt) miteinander ver-
glichen werden kônnen, ist es noch nôtig, sie in bestimmter Weise zu nor-
mieren. Das kann z. B. dadurch geschehen, daB man verschiedene Polygone

durch Kreisverwandtschaften so umformt, daB drei bestimmte Eck-
punkte mit drei gegebenen Punkten der Ebene zusammenfallen, z. B.
mit den Punkten 0, 1, oo. Eine andere Méthode der Normierung besteht
darin, daB man die Polygone so umformt, daB zwei bestimmte aneinander-
grenzende Seiten, die einen von null verschiedenen Winkel eiaschlieBen,
auf zwei gegebene Geraden fallen, die sich unter dem gleichen Winkel
schneiden. In Beispiel 3 in Abschnitt 7 ist dièse Normierung verwendet.
Beide Methoden kônnen âuBerst einfach und praktisch auf graphischem
Wege durchgefûhrt werden. Im Prinzip kommen beide auf die Aufgabe
heraus, eine Kreisverwandtsehaft anzugeben, welche drei gegebene
Punkte A, B, C bzw. in drei andere gegebene Punkte D, E, F uberfiihrt
(bei der zweiten Méthode wird ein Polygoneckpunkt in den Schnittpunkt
der Geraden und der andere Schnittpunkt derselben Polygonseiten in
den unendlichfernen Punkt ubergefûhrt). Nun lâBt sich jede
Kreisverwandtschaft erhalten durch sukzessive Ausfuhrung von Translationen,
Drehstreckungen und Spiegelungen an Kreisen. Umgekehrt fuhrt die
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wiederholte Anwendung dieser Operationen stets zu einer Kreisverwandt-
schaft. Es handelt sich also nur darum, eine Folge der genannten Operationen

anzugeben, welche A, B, C in D, E, F iiberfuhrt. Wenn wir etwa
den ungiinstigsten Fall betrachten, da8 aile Punkte im Endlichen ge-
legen sind (Abb. 9), so fuhren wir zunâchst A, B, C durch Spiegelung an
einem Kreis Kt mit dem Mittelpunkt A (Abb. 9 ; dieser wird am besten
so gewâhlt, da8 er gleichzeitig auch noch durch einen andern Punkt
geht) in die drei Punkte Ax, jB1? Gx uber, wobei A1 im Unendlichen liegt.
In ganz entsprechender Weise verfahren wir mit den Punkten D, E, F
durch Spiegelung am Kreis K2 mit dem Mittelpunkt D. Wenn wir nun
die Ebene der Punkte A, B, C zuerst an Kx spiegeln, nachher durch eine
Translation und eine Drehstreckung so verschieben, da6 Bx in Ex und
Cx in F1 ubergeht, und schliefilich an K2 spiegeln, so stellt die Aufein-
anderfolge dieser Operationen die gewlinschte Umformung dar. Wenn
einer oder zwei Punkte im, Unendlichen liegen, vereinfacht sich das
Verfahren entsprechend. Natûrlich kônnen die gleichen Operationen auch in
verschiedenen Modifikationen auf rechnerischem Wege durchgefûhrt
werden.

Es handelt sich nun weiterhin vor allem um die Angabe eines einfachen

Integrationsverfahrens zur Lôsung von Gleichungen der Form (31).

Abbildung 9

Solche Gleichungen sind tatsachlich in verschiedener Hinsicht auBer-

ordentlich geeignet zur numerischen Intégration. Wir werden zeigen,
daB es vor allem zwei Wege gibt, auf denen die Intégration rasch und mit
beliebiger Genauigkeit vorgenommen werden kann, von denen sich vor
allem der zweite als praktisch sehr gutund rasch durchfuhrbar erwiesen hat.

Die erste Integrationsmethode beruht darauf, daB man die gegebene

Gleichung (31) durch die Substitution

u=-^(lgz**) (53)

iiberfuhren kann in die Riccatische Gleichung

^W, (54)
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welche sich zur numerischen Intégration auBerordentlich gut eignet. Vor
allem ist das der Fall hinsichtlich des Verfahrens von Runge und Kutta8),
was darauf beruht, daB die reehte Seite von (54) in zwei Summanden
zerfâllt, von denen der erste nur von f, der zweite dagegen nur von u
^bhângt. Die GrôBen kl9 fc2, kz, &49) nehmen dann, wenn man von den
Anfangswerten £0 und u0 ausgeht und dem Argument den Zuwachs h

erteilt, die Gestalt an

(55)

h h)2]

und fur den zu h gehôrenden Zuwachs k der Lôsung gilt bei nicht zu
groBem h mit auBerordentlich guter Annâherung

Die GrôBe h kann dabei irgendeine komplexe Zahl sein, und man kann
also gemaB (55) und (56) die Lôsungen von (54) làngs irgendeines kom-
plexen Integrationsweges berechnen, der nur die singulâren Stellen ver-
meidet. Es ist dazu nur nôtig, die Funktion —J(Ç) lângs des betreffen-

St,St,Ss- S/ngutàrc PvnA/e

Abbildung 10

den Integrationsweges zu kennen. Die Bestimmung von — J(f kann
durch direkte Ausrechnung erfolgen, was jedoch im allgemeinen etwas
umstandlich ist. Ganz besonders einfach lâBt sich die Bestimmung von

8) Vergleiche Kamke, Differentialgleiehungen, 2. Auf., Leipzig 1943, oder Runge und
Kônig, Numerisches Rechnen, Berlin 1925.

9) Wir folgen dabei der allgemeinen ùblichen Schreibweise, siehe dazu etwa die unter
Fufînote 8 genannten Literaturangaben.
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— t/(t) und anschlieBend die Lôsung der Gleichung (54) durchfûhreii,
wenn der Integrationsweg aus lauter Strecken zusammengesetzt ist, die
entweder zur reellen oder zur imaginâren Ach.se parallel sind. In Abb. 10

ist ein soleher Integrationsweg dargestellt, wie er etwa zweekmâBiger-
weise verwendet werden kann. Fur solche Integrationswege lâBt sich der
Verlauf der Funktion — J(Ç) vermittelst gewisser Grundfunktionen
sofort angeben. In der Tat setzt sich ja —J(Ç) additiv aus lauter Ter-
men zusammen, welche eine der beiden Formen

V

C-q (f ~ s)2
(57)

haben, wobei p,q,r, s réelle Konstanten sind. Fûhrt man nun die beiden
Funktionen

1 1

t t2

J)arsfc//t/ng der fi/nA//oncn ff(i)~\

¥ 7 2 S ¥
Abbildung 11

der reellen Variabeln t ein (Abb. 11), so nehmen die Ausdriicke (57), zu-
nâchst langs der reellen Achse, die Gestalt an

p <pA£ — q) r <P2(£ —s) y (59)

wobei wie frûher Ç f + * r\ gesetzt ist, so daB also, wenn die
Funktionen (58) etwa graphisch oder tabellarisch gegeben sind, der Verlauf
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der Ausdrucke (57) lângs der reellen Achse sofort abgelesen werden
kann, wodurch dann auch —J(C) bekannt wird. In àhnlicher Weise

ergeben sich fiir den Verlauf der Terme (57) lângs der Geraden f v
konst., wobei v nur nicht mit der Abszisse eines singulâren Punktes zu-
sammenfallen soll, die Ausdrucke

P " '

(60)
(v - q) + i rj [(v — q) + i r)]2 '

die sich unter Verwendung der reellen Funktionen

1 t

(61)

(Abb. 11) auch in der Form schreiben lassen

SchlieBlich erhâlt man in vollstândig analoger Weise fur die Summanden
(57) auf der Geraden rj w konst. (w =fi 0) die Ausdrucke

Vermittelst der Formeln (59), (62) und (63) kann ako der Verlauf der
Funktion —J(C) lângs aller Integrationswege von der Art des in
Abb. 10 dargestellten sofort berechnet werden aus demjenigen der
Funktionen (piit) (i 1, 2,..., 6). Dièse letzteren sind in Abb. 11 darge-
stellt. Sie kônnen leicht berechnet und tabelliert werden und dann als

Grundlage dienen zur Lôsung aller derartiger Problème. Nachdem
— J(Ç) bekannt ist, kann die Gleichung (54) gelôst werden, wobei man
die Rechnungen mit groBem Vorteil in graphischer Form durchfûhrt.
Um dièse Lôsungen noch fur andere Werte von Ç zu berechnen, kann
man in gleicher Weise vorgehen lângs Integrationswegen derselben Art,
die vom ersten abzweigen.

Es sei nun %*(£) eine beliebige Partikulârlôsung der Gleichung (54),
die, in bekannter Weise von einem Anfangspunkt ausgehend, nach dem

obigen Verfahren berechnet wurde. Dann ist nach (53) der Ausdruck

(64)
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der sich numerisch sehr leicht berechnen làBt (die Intégration kann jetzt
langs des gewâhlten Integrationsweges ohne weiteres ausgefuhrt werden),
und in dem £0 eine beliebige Konstante bedeutet, ein partikulâres Intégral

von (31), womit unser Ziel erreicht ist.
Um zur Abbildungsfunktion (25) zu gelangen, kônnte man in gleicher

Weise noch eine zweite partikulâre Lôsung bestimmen und dann den
Quotienten (33) bilden. Viel einfacher ist es jedoch, den Ausdruck

*>*(£) le0 dÇ (65)

i
wobei Ci wieder eine beliebige Konstante ist, zu bilden, der lângs des

Integrationsweges auch leicht berechnet werden kann, und der gemâB
(36) eine Funktion (33) darstellt, so daB sich also die Abbildungsfunktion
(25) als lineare Funktion von (65) ergibt. Ausgehend von einer beliebigen
Lôsung w*(£) der Gleichung (54) kann man also durch Bildung von (65)
im wesentlichen bereits zu der gesuchten Funktion (25) gelangen.

Die zweite Integrationsmethode schlieBt sich eng an die erste an. Ihr
wesentlicher Unterschied gegenûber dieser letzteren besteht darin, daB
die Rechnungen fast vollstândig im reellen Zahlgebiet durchgefùhrt werden

kônnen, was fur die praktische Ausrechnung eine groBe Verein-
fachung ist. Sie geht ebenfalls aus von der zu einer gegebenen Gleichung
(31) gehôrenden Riccatischen Gleichung (54). Aber statt die singulâren
Punkte auf Integrationswegen der in Abb. 10 dargestellten Gestalt zu
umgehen, verwendet sie in diesen Reihenentwicklungen fur die Lôsungen.
Es sei £ S zunâchst eine endlich singulâre Stelle der Gleichung (54),
also ein Pol der Invariante «/(£). Dann besitzt dort (54) stets mindestens
eine Lôsung -&*(£), welche um den Punkt £ S eine réelle Reihen-

entwicklung der Form

+ ao + ax(C — S) + a2(£ — 8)2 H (66)u(C) ^
hat. Einer Lôsung dieser Form entspricht bei der zugehôrigen Gleichung
(31) gemaB (53) eine Fundamentallôsung, in welcher keine logarithmi-
schen Glieder auftreten. Im allgemeinen besitzt also (54) sogar zwei

Lôsungen der Form (66). Nur wenn (31) fur £ S eine ganzzahlige Ex-
ponentendifferenz hat, kann es vorkommen, daB nur ein derartiges
Intégral existiert. Man kann also mit dem Ansatz (66) in die Gleichung
(54) hineingehen und auf dièse Weise die Koeffizienten at (i — 1, 0,
1,2,...) berechnen. Dazu ist es zunâchst notwendig, die Funktion
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— «/(£) nach Potenzen von Ç — B zu entwickeln, was, da — J(C) sich
aus lauter Summanden der beiden Formen (57) zusammensetzt, in ele-
mentarer Weise geschehen kann durch Anwendung der beiden Formeln

1

l ± C + C2 ± C3 + C4

1
(67)

Die auf dièse Weise erhaltene Entwickhing von — J(f um den Pvinkt £

8 sei

+ (68)

und daraus erhâlt man durch, Einsetzen von (66) in (54) fur die Koeffi-
zienten a( die Rekursionsformeln

ao

Ao —

— aï — 2a0a0a2

aA
x a2 — 2a0 a3

(69)

Aus der ersten quadratisehen Gleichung ergeben sich zwei Môglichkeiten
ftir a_1? die im allgemeinen beide verwendet werden kônnen. Einzig bei

ganzzahligen Exponentendifferenzen fûhrt im allgemeinen nur eine Lô-
sung zu einem môglichen Résultat, und zwar die grôfiere. In jedem Fall
ist es also môglich, eine réelle Lôsung in der Form (66) anzugeben. Dièse

Lôsung kann in der Umgebung der Stelle Ç 8, wo nur wenige Glieder
der Reihe (66) zu berûcksichtigen sind, sehr rasch berechnet werden,
wobei man fur die praktische Rechnung das Hornersche Schéma10) und
âhnliche Hilfsmittel verwenden wird.

Aus defr so erhaltenen Lôsung ^*(f Iâ8t sich nun aber gemâfi (65)
sofort eine zur "gegebenen Gleichung gehôrende Abbildungsfunktion bil-

ioj ygj# (jag xinter Fuflnote 8 genannté Werk von Runge uiïd Kônig.
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den. Indem man die mit — 2 multiplizierte Reihe (66) zueret integriert
und nachher die Exponentialfunktion dièses Intégrais bildet, erhàlt man
fur den Integranden in (65) bei geeigneter Wahl von £0 die Entwicklung

[l ~ 2a°(C ~

(70)

durch welche dieser in der Umgebung von £ 8 wieder sehr rasch und
genau berechnet werden kann. SchlieBlich muB (70) noch integriert werden.

Falls 2a_! keine positive ganze Zahl ist, erhàlt man bei geeigneter
Wahl von d fiir die Abbildungsfunktion (65) in der Umgebung von
Ç 8 sofort $ie Entwicklung

o>*(f) (f - 2o_t l* ' 2 -
-

— a^ — 2ag aj + — a0a2 + — af — - a3

1 ^

wobei fiir die Potenz vor der eckigen Klammer etwa derjenige Zweig an-
genommen werden soll, der fiir positive Werte von f — 8 wieder positiv
wird. Falls dagegen 2a_t eine positive ganze Zahl ist, ersetzt sich in leicht
ersichtlicher Weise ein Summand in der Entwicklung (71) durch ein loga-
rithmisches Glied.

Indem man dièse gleichen Operationen, die numerisch sehr leicht und
rasch durchgeftihrt werden kônnen, nicht nur fiir den singulâren Punkt
f 8, sondern fiir aile singulâren Punkte der Differentialgleichung
durchfiihrt (es ist dies in ganz entsprechender Weise auch môglich, wenn
8 im Unendlichen liegt), erhàlt man lângs der ganzen reellen Achse so-
viele zu der gegebenen Gleichung (31) gehôrende Abbildungsfunktionen
(65) als singulàre Punkte vorhanden sind. Ferner behâlt die Formel (71)
ohne weiteres ihre Gûltigkeit bei, wenn 8 ein regulârer Punkt der
Differentialgleichung ist. Sie vereinfacht sich in diesem Fall dadurch noch
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wesentlich, daB der Koeffizient a_x in der Entwicklung (66) verschwindet
und daB a0 1 gesetzt werden kann, wàhrend sonst aile andern Ûber-
legungen unverândert bleiben. Es ist also demgemâB auf elementare
Weise môglich, Abbildungsfunktionen in der Form (71) lângs der reellen
Achse in beliebiger Anzahl zu bilden. Praktisch wird es meist vollauf ge-
nûgen, auBer den singulàren Punkten eine einzige fur jedes Intervall
zwischen zwei singulàren Punkten zu verwenden. Es handelt sich nun
nur noch darum, dièse verschiedenen Funktionen (65) zu einer Gesamt-
lôsung co(£) zusammenzusetzen. Das kann aber ebenfalls in recht ein-
facher Weise geschehen, da ja jede dieser Funktionen eine lineare Funk-
tion jeder andern ist. Sind etwa co* (Ç) und a>£ (Ç) zwei benachbarte
derartige Abbildungsfunktionen, die also lângs eines gemeinsamen Stûckes
der reellen Achse definiert sind, so besteht eine Gleichung dèr Form

e a * + f»* ' (72)
Tjù)* +& #

wobei e, f, t], ê bis auf einen gemeinsamen Faktor bestimmte komplexe
Konstanten sind, die dadurch berechnet werden kônnen, daB man ver-
langt, daB (72) fur irgend drei C-Werte des gemeinsamen Definitions-
bereiches erfiillt ist. Indem man in gleicher Weise mit den ubrigen er-
haltenen Lôsungen (65) verfâhrt, erhâlt man schlieBlich den Gesamt-
verlauf einer Abbildungsfunktion co(Ç) lângs der reellen Achse, aus der
sich danti auch sofort (25) ergibt. Ausgehend von den Lôsungen (65)
kann man dann wieder wie bei der ersten Integrationsmethode ins
komplexe Gebiet vorstoBen, indem man Integrationswege verwendet, die
aus lauter waagrechten und senkrechten Strecken bestehen, wobei man
wieder die Funktionen (pt(Ç) (i 1, 2,..., 6) benutzen wird.

Die Zusammensetzung zweier benachbarter Funktionen (65) kann
wieder auBerordentlich einfach nach dem S. 98 bis 99 beschriebenen
Verfahren, am bequemsten auf graphischem Wege, vorgenommen werden,

da es sich ja auch hier darum handelt, eine Kreisverwandtschaft an-
zugeben, die drei gegebene Punkte in drei andere gegebene Punkte ûber-
fiihrt. Man braucht dazu nur im gemeinsamen Definitionsbereich zweier
benachbarter Funktionen (65) drei beliebige Punkte auszuwàhlen, in
diesen die Funktionswerte zu berechnen und mit diesen letzteren gemâB
dem S. 98 bis 99 beschriebenen Verfahren zu operieren. Durch Ver-
wendung dieser Methoden, welche noch durch viele praktisch wertvolle
Modifikationen ergânzt werden kônnen (vor allem sei nochmals auf das
Hornersche Schéma zur Berechnung von Potenzreihen hingewiesen)
kann nun eine gegebene Gleichung (31) sehr rasch und leicht soweit ge-

106



lôst werden, daB die Gestalt des zu ihr gehôrenden Polygons ersichtlich
wird. Weiterhin kann dann, falls die zu einem gegebenen Polygon ge1

hôrende Gleichung (31) genûgend genau bestimmt ist, eine zu dieser
letzteren gehôrende Abbildungsfunktion co(Ç) in ihrem Gesamtverlauf
beliebig genau ermittelt werden. Gleichzeitig mit co(Ç) wird stets auch
(o'(Ç) bekannt. Dièse zweite Integrationsmethode stellt nach der Er-
fahrung des Verfassers die beste und rascheste Méthode dar zur Lôsung
solcher Problème.

Zur vollstândigen Berechnung der Strômung, wie sie im Prinzip be-
reits im dritten Abschnitt angegeben wurde, ist es nun zunâchst vor
allem nôtig, den Punkt Q (vgl. S. 88) gemàB der aus (25) flieBenden
Gleichung

a>(Q)=-~ (73)

(die Nenner in [25] miissen fur f Q verschwinden) zu berechnen. Das
kann in genau gleicher Weise wie im Fall des Kreisbogendreiecks durch
das Newtonsche Verfahren geschehen, wobei mit groBem Vorteil die ge-
nannten Integrationsmethoden fur komplexe Integrationswege verwen-
det werden kônnen. Aus Q ergibt sich ferner sofort die GrôBe cof(Q).

Weiterhin handelt es sich wieder um die Berechnung von (11) und (13).
Die in diesen Funktionen auftretenden Konstanten a, b, c, d und U
ergeben sich aus den Gleichungen (27) und (28). Die zweite dieser Glei-

chungen lâBt sich noch vereinfachen. Indem man ~jj- gemâB (13) und

-— gemàB (25) ausrechnet und die beiden Ausdriicke unter Berûcksichti-

gung von (73) um den Punkt f Q in Potenzreihen entwickelt, nimmt
(28) bei Beachtung von (14) und (26) die Gestalt an

-2ig2U co'(Q) V(a-b if (74)

Aus (74), (27) und (14) ergeben sich nun a, 6, c, d und U in recht
einfacher Weise. Fiihrt man die Abkûrzungen ein

W gV2%a£^ (Vorzeichen der Wurzel beliebig) (75)

so ergeben sich, wie man sofort durch Einsetzen bestâtigt, fur die ge-
suchten Konstanten die Werte

EH-FG a E^W b^FVÎT c G]/W d H]/TT, (76)
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wobei das Vorzeichen von \/lj wieder beliebig gewâhlt werden kann.
Als letzte GrôBe bestimmt sich schlieBlich F aus der Gleichung (51). Da-
mit sind die Funktionen (11), (13) und (25) vollstândig bestimmt und also

unser Problem gelôst.
Die Strômungsgeschwindigkeit, die dureh die obigen Formeln bestimmt

ist, lâBt sich wie beim Kreisbogendreieek am besten als Funktion von £

ausdrucken. Bie Ausrechnung gemâB Formel (52) ergibt, wenn man noch
die Abkiirzungen

p aÇ + c q bÇ + d (77)
einfûhrt

dz m'(Ç) (p' + q2)2 '

Dièse Formel lâBt sich auf Grund von (34) auch in der Gestalt

{ '

schreiben.
Durch (78) und (79) in Verbindung mit (25) lâBt sich, von einem be-

liebigen Punkt der £-Ebene ausgehend, zuerst nach (25) der zugehôrige
Punkt der 2-Ebene und dann gemâB (78) in diesem die
Strômungsgeschwindigkeit berechnen. Insbesondere ergibt sich dadurch leicht die
Geschwindigkeitsverteilung auf der Profilkurve, da dieser letzteren in
der t-Ebene die réelle Achse entspricht. Nachdem die Geschwindigkeit
bekannt ist, kônnen auch die iibrigen wichtigen GrôBen der Strômung
in genau gleicher Weise berechnet werden wie dies auf S. 96 fur den
Fall des Kreisbogendreiecks entwickelt wurde.

Zum SchluB sollen die verschiedenen Schritte bei der Lôsung eines
solchen Problems noch einmal in tabellarischer Ûbersicht zusammen-
gestellt werden :

A. Aufstellung und Lôsung der DifferentialgUichung.

1. Bestimmung einer angenâherten ÏMfferentialgleichung der Fuchsschen
Klasse in der normierten Form (31).

2. Lôsung dieser Gleichung nach einer der auf S* 99 bis 107 genannten
Integrationsmethoden soweit, bis man die durch den zugehôrigen
Quotienten (33) vermittelte Abbildung erkennt, was ziemlich bald der
Fall ist.
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3. Vergleich dièses Kreisbogenpolygons mit dem gegebenen, durch Nor-
mierung in der auf S. 98 bis 99 besehriebenen Weise. Untersuchung,
wie sich die Abbildung verândert, wenn sich die noch nicht bestimm-
ten Parameter verândern, was am besten durch Probieren geschieht.

4. Bestimmung der verbesserten Parameter durch lineare Interpolation
und éventuelle Wiederholung des Verfahrens zur nochmaligen Ver-
besserung der Parameter.

5. Vollstândige Lôsung der verbesserten Gleichung nach einer der ge-
nannten Methoden. Bestimmung des Quotienten (33), dessen Ablei-
tung und der Abbildungsfunktion (25).

B. Berechnung der Strômung.

1. Bestimmung des Punktes Q in der £-Ebene als Lôsung der Gleichung
(73). Die Berechnung kann leicht erfolgen vermittelst der verschiede-
nen oben genannten Nàherungsmethoden. Aus Q ergibt sich ferner
sofort der Wert von (of(Q).

2. Berechnung der Konstanten a, b, c, d, U, F 'm. den Funktionen (11)
und (13) gemàB (75), (76) und (51).

3. Die Geschwindigkeit der Strômung wird am besten vermittelst der
Formeln (77) bis (79) und (25) bestimmt. Die librigen wichtigen
GrôBen der Strômung ergeben sich in genau gleicher Weise wie dies
S. 96 fiir den Fall des Kreisbogendreiecks beschrieben wurde, wobei
wieder die im 5. Abschnitt entwickelten Methoden mit groBem Vor-
teil verwendet werden kônnen.

6. Strômungen um Kreisbogenpolygone, die sich ins Unendliche erstrecken

Neben den bisher betrachteten Strômungen um vollstàndig im End-
lichen geleg^ne Kreisbogenpolygone gibt es unter den gemachten Vor-
aussetzungen noch einen zweiten Fall, der von technischem und physika-
lischem Interesse ist. Es sind dies Strômungen um Kreisbogenpolygone,
die einen Eckpunkt (oder auch sonst einen Punkt der Berandung) im
Unendlichen besitzen, wobei wieder vorausgesetzt werden soll, da8 die
Strômung ûberall im Endlichen regulâr verlauft. Dièse Strômungen
sollen im vorliegenden Abschnitt betrachtet werden, wobei wir uns der
Einfachheit halber auf den Fall des Kreisbogendreiecks beschrânken
wollen* Das allgemeine Polygon bietet wie frûher keine prinzipiellen
Schwierigkeiten, erfordert dagegen etwas lângere Rechnungen.
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Der wesentliche Unterschied der hier zu betrachtenden gegentiber den

bisherigen Strômungen besteht darin, daB der einzig vorhandene, nach

unserer Voraussetzung im Unendlichen liegende singulâre Punkt auf die
Berandung des Polygons fâllt. Es folgt daraus auch sofort, daB dieser
Punkt nicht wie bisher gleichzeitig auch Wirbelpunkt sein kann, so daB

bei diesen Strômungen nirgends eine Zirkulation auftreten kann. Im

Abbildung 12

tibrigen sind die Betrachtungen denen der drei letzten Abschnitte sehr

analog. Wir fiihren, entsprechend wie in Abb. 5, die drei in Abb. 12 dar-
gestellten komplexen Zahlebenen ein. Da nirgends eine Zirkulation vor-
handen ist, ist das Geschwindigkeitspotential eine eindeutige Funktion,
und es handelt sich einfach darum, den Strômungsbereich in der z-Ebene
konform abzubilden auf die lângs der positiven reellen Achse aufge-
schnittene w-Ebene, wobei jedoch der Punkt oo wieder in den Punkt oo

iibergehen muB. Die Gesamtheit dieser Abbildungen ergibt gerade die
Gesamtheit der môglichen Strômungen um das gegebene Polygon. Das

Geschwindigkeitspotential und die Stromfunktion sind dabei so nor-
miert, daB sie im Staupunkt der Strômung verschwinden.

Um dièse Abbildung zu bewerkstelligen, gehen wir ganz entsprechend
vor wie im vierten Abschnitt. Es soll auch die dort gemachte Voraussetzung

beibehalten werden, daB nur ein Winkel von n verschieden ist.
Der allgemeine Fall làBt sich in genau entsprechender Weise erledigen.
Der von n verschiedene Winkel des Strômungsbereiches (bei der in
Abb. 12 dargestellten Strômung liegt er im Unendlichen) sei wie friiher
mit Xn bezeichnet. Dann kônnen wir wieder die zu diesem Winkel
gehôrende hypergeometrische Gleichung (41) aufstellen und die zugehô-
rige Abbildungsfunktion (46) bzw. (48) bilden. Dièse Funktion (o(Ç)
bildet dann die obère f-Halbebene wieder auf das in Abb. 6 dargestellte
Dreieck ab, und wie friiher handelt es sich weiterhin noch darum, dièses
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letztere durch die lineare Funktion (25) auf den gegebenen Strômungs-
bereich abzubilden, wodurch dann (25) bestimmt wird. Der Strômungs-
bereich ist damit konform bezogen auf die obère f-Halbebene. Seinen

Eckpunkten entsprechen dabei die Punkte 0, 1, oo der f-Ebene, ifts-
besondere entspricht dem Punkt £ oo derjenige Eckpunkt, an dem
das Dreieck einen von n verschiedenen Winkel hat. Die obère £-Halb-
ebene mu8 nun noch auf die geschlitzte w-Ebene abgebildet werden, wo-
bei noch die erwâhnte Bedingung zu beriicksichtigen ist, dafi das Unend-
liche der z-Ebene durch die Abbildung in das Unendliche der w-Ebene
ubergehen soll. Bezeichnen wir wieder durch £ Q denjenigen Punkt
der £-Ebene, der dem Punkt 2=00 entspricht (Q liegt jetzt auf der
reellen Achse), so wird die genannte Abbildung geleistet durch die Funktion

m)'
wobei a und 6 réelle Konstanten sind, deren Werte wie fruher noch aus
den Daten des Problems zu bestimmen sind. Ist Q =00, was in sehr
vielen Fallen, z. B. auch bei der in Abb. 12 dargestellten Strômung der
Fall ist, so ersetzt sich (80) durch die einfachere Funktion

w (a £ + bf (81)

Fur die numerische Berechnung bedeutet das eine wesentliche Verein-
fachung. Im allgemeinen Fall kann Q wieder in wenigen Schritten ver-
mittelst des Nâherungsverfahrens von Newton berechnet werden, was
jetzt deshalb noch wesentlich einfacher ist als fruher, weil die sâmt-
lichen Rechnungen im reellen Zahlgebiet verlaufen. Aus (46) bzw. (48),
(25) und (80) bzw. (81) ergibt sich ferner die komplexe Geschwindigkeit
in der (52) entsprechenden Form

dw

ÈOL ~* (82)
dz dz dco

Schlieôlich handelt es sich noch um die Bestimmung der Konstanten a
und 6. Prinzipiell entspricht jeder Wahl dieser Konstanten eine môg-
liche Strômung, und wir kônnen sie aus irgendwelchen Daten des
Problems bestimmen. Bei den umstrômten Profilen war die wichtigste Be-

stimmungsart die, daB das Verhalten der Strômung im Unendlichen ge-
geben war. Im jetzigen Fall ist dièse Bestimmung nicht mehr sinn-
gemàB, da die Geschwindigkeit im Unendlichen ebenfalls unendlich wird.
Man erkennt dies leicht an Hand der Potenzreihenentwicklung um den
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Punkt z =00. Hingegen kann etwa die Geschwindigkeit in einem be-
stimmten Punkte des Strômungsbereiches nach GrôBe und Richtung vor-
gesehrieben sein, oder es kann verlangt sein, daB der Staupunkt eine
bestimmte Lage hat und daB auBerdem noch die Geschwindigkeit in
einem gegebenen Punkte des Strômungsbereiches eine bestimmte GrôBe
hat. Beide Bestimmungsarten fûhren gemâB den aufgestellten Gleichun-
gen fûr w(z) und wf(z) wie frûher auf leieht anzugebende Bedingungs-
gleichungen fur a und b.

Durch die Berechnung der zu einem gegebenen Strômungsbereich ge-
hôrenden Funktionen (46) bzw. (48), (25) und (80) bzw. (81) ist nun
unser Problem gelôst. Hinsichtlich weiterer Einzelheiten vergleiche man
das erste Beispiel in Abschnitt 7.

Neben dem in Abb. 12 dargestellten Fall gibt es noch eine Reihe weiterer

interessanter Strômungen um Kreisbogendreiecke mit einem im Un-

Abbildung 13

endlichen gelegenen Punkt. Oft ist es dabei auch von Nutzen, die bisher
gemachte Voraussetzung fallen zu lassen, daB aile Winkel mit Ausnahme
eines einzigen die GrôBe n haben sollen. Nach den fruheren Entwick-
lungen bedeutet dies weder theoretisch noch rechnerisch eine Schwierig-
keit. In Abb. 13 ist eine Reihe solcher Strômungen dargestellt. Dièse
kônnen oft auch in approximativem Sinne angewandt werden. Der
erste Fall stellt z. B. nàherungsweise die Strômung in einer ausgerunde-
ten Ecke bei einer sonst beliebigen Strômung dar.

7. Beispiele

Erstes Beispiel : Es soll die in Abb. 4 dargestellte Strômung berechnet
werden fur den Fall, daB der Damm die in Abb. 14 gezeigte Gestalt hat,
und daB die Geschwindigkeit in den Eckpunkten z + i und z — i
den Betrag 1 hat.

Interessehalber wurde zur Berechnung dieser Strômung die Darstel-
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lung der hypergeometrischen Funktion durch bestimmte Intégrale ver-
wendet. Es sei jedoch nochmals erwâhnt, dafi sich dieser Weg zur numeri-
schen Rechnung weniger eignet als die beiden andern in Abschnitt 4 ge-
nannten, wie sich dies auch im vorliegenden Beispiel zeigt. Zunâchst hat

y

C

Abbildung 14 Abbildung 15

man (siehe Abschnitt 4) X 2 und a =^. Die Abbildungsfunktion
(o(C) nimmt gemàB (48) die besonders einfache Gestalt an

: s

i'•)•"¦-<"» [du
1— U \

und es ist ferner nach (47)

co(oo) — i

(83)

(84)

Die obère f-Halbebene wird also durch (83) auf das in Abb. 15 dar-
gestellte Kreisbogendreieck abgebildet, welches genau dem Dreieck der
Abb. 6 entspricht.

SchlieBlich hat die Ableitung von (83) gemâB (46), (34) und (35) die
Form t i

— vr>/ If I —: _—LJ ^1 (85)

o

Die Funktionen (83) und (85) lassen sich leicht aber muhsam auf graphi-
schem Wege bestimmen, indem man den Verlauf des Integranden fur
eine Reihe von f-Werten berechnet. Weiterhin berechnen sich die Kon-
stanten in (25) aus (26) und den Beziehungen

-i
aus denen sich sofort

i 1

-e'ioo -gi + h '

q
1/2

8 Commentarii Mathematici Helvetici

(86)

(87)
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und *—''"'Si- «»>
coAO + i

ergibt.
SchlieBlich mussen noch die Konstanten in (81) bestimmt werden. Der

Staupunkt z — 1 in der Strômungsebene mu8 dem Punkt w 0

entsprechen. Aus dieser Fordening ergibt sich, da dem Punkte z — 1

gemâB (88) und (83) die Werte co 1 und f | entsprechen (in [83]
werden fur f \ Zàhler und Nenner einander gleich), sofort

a - 26 (89)

Ferner muB die Geschwindigkeit der Strômung in den Punkten z — ±i
den Betrag 1 haben, wobei es aus Symmetriegrûnden genûgt, die Rech-

liung etwa fur z + i durchzufûhren. Zunâchst entsprechen dem

Eckpunkt 2 i gemâB (88) und (83) bzw. (84) die Werte co 0 und

f 1. Weiterhin berechnen sich aus (81), (85) und (88) sofort die GrôBen

(90)

fcl =2a(a + 6) f*l =-2
K "h2 n /2\-2 3tt

H --tu) =—r
und daraus folgt schlieBlich gemâB (82) als zweite Bedingungsgleichung
fur a und b

2a(a + b)_ 4a(a + b) l (Q1)

Aus (89) und (91) lassen sich nun a und 6 berechnen. Man erhâlt

(92)
und schlieBlich

w frc(C--|)2 (93)

Damit ist die Strômung berechnet. Die Lôsung wird gegeben durch (83),
(88) und (93). Die Geschwindigkeit ergibt sich aus (82), wobei die numeri-
sche Berechnung aller GrôBen auf dem angegebenen Wege durch Aus-

wertung der bestimmten Intégrale in (83) und (85) erfolgen kann.

Zweites Beispiel : Es soll die symmetrische Strômung um das in Abb. 16

dargestellte symmetrische Kreisbogenviereck mit den Ecken

0 0,352 -f 0,074 i 1 0,352 — 0,074 i
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berechnet werden, welches in diesen bzw. die Winkel

2
-n n

besitzt.
Bieser Fall lâBt sich gemàfi den Bemerkungen auf S. 96 bis 97 auf den

des Kreisbogendreiecks zuruckfuhren. Werm wir die zu diesem Profil

2tO

10

-4- •4-
Oêt V OtS Ot6 OJ 0>8 0,9 f,C

Abbildting 16

gehôrende Bifferentialgleichung infolge der Symmetrie des Profils an
Stelle von (23) gemafi den Gleichungen

ax — 1 a9 0 a3 1 aA =oo (94)

normieren, wâhrend wir aile andern friiheren Normierungsbedingungen
beibehalten, so ergibt sich zunâchst gemàB (15), (20), (22), (24) und (94)

^ 0 <x'2 0 <%o 0 ocA —
25
Ï4~

und daraus folgt gemâB (16) bis (18) und unter Beachtung der Tatsache,
da8 die Invariante aus Symmetriegriinden nur von £2 abhângen kann,
fur die normierte Gleichung (16) die Form

dH*
5

T dz*
25

196
-25* 0 (96)
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wâhrend die zweite Normalform (31) die Gestalt

r 25 95 -,
d2Z** I 196 196 I ** (97)

annimmt. Macht man in (96) die Substitution £2 £*, so folgt die

Gleichung

1) l\ dz*

und das ist eine hypergeometrische
Gleichung der Form (42) mit

«= 28

2*i

^=--28 <">

Damit kônnen nun auf dem S. 92 bis 94

beschriebenen ersten Integrationsweg, der
den Umstânden dièses Beispiels entspre-
chend leicht zu modifizieren ist, zwei li-
near unabhàngige Lôsungen der Gleichung
(98) bzw. (96) vermittelst hypergeometri-
scher Reihen berechnet werden, woraus sich
dann die zugehôrige Funktion (33) ergibt.

Im vorliegenden Beispiel wurden auf
diesem Wege die beiden Fundamentallô-

sungen
19

(100) Abbildung 17

der Gleichung (97) lângs der positiven reellen Achse berechnet. ^31(C)

und ^J2(C) bezeichnen dabei zwei regulâre Potenzreihen, bei denen das

konstante Glied den Wert 1 hat. Der Verlauf der Funktionen (100) ist
in Abb. 17 dargestellt. Auf der negativen C-Achse stimmen zf * und z**

19. 5
— —17T

bis auf die Faktoren eu und e u mit den entsprechenden Werten
fur positive Argumente ûberein, so daB gemâB Abb. 17 der Verlauf von
zf * und z** lângs der ganzen reellen Achse bekannt ist.

Nunmehr kann auch der Quotient (33) berechnet werden. Dieser bildet
die obère f-Halbebene auf das in Abb. 18 dargestellte Kxeisbogenviereck
Kx ab mit den Ecken

0 1,263 — 3,080+ 1,482 i
2

1,263 e~yl7

das mit der gegebenen Profilkurve kreisverwandt ist.
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Es handelt sich nun noch darum, die Funktionen (11), (13) und (25)
zu bilden. Zunâchst ergeben sich die Konstanten e', /, g, h in (25) ganz
entsprechend wie im ersten Beispiel. Man erhâlt

in
e' 0,766 e14

und also

in

f=0 g= 1,148 e14

z
co

1,500 co + 1,707 e

in
7

h 1,305 e 14

(101)

Fur die weiteren Rechnungen muB
zunâchst gemâB (73) der Punkt Q be-
stimmt werden, der in unserem Fall
aus Symmetriegrunden auf der imagi-
nâren Achse liegt. Vermittelst der ge-
nannten Nâherungsmethoden ergibt
sich leicht

Q 1,265 i (102)

Gleichzeitig folgt auf Grund von (34)

(die Konstante C hat in unserem Falle
12 \den Wert —-1 sofort

ft/(Q) 1,076 e14

5
—- in

(103)

Abbildung 18

a 0,890 6 0

Daraus kônnen nun die Konstanten a,
b, c, d und U gemâB (75) und (76) be-
stimmt werden. Die Ausrechnung ergibt

0 d 1,124 U 0,279

und damit nehmen (13) und (11), da keine Zirkulation auftritt, die Ge-

stalt an

und

0,890 Ç+ 1,124 i
0,890 C - 1,124 i

0,279 lz +ir

(104)

(105)

Durch (33), (101), (104) und (105), wobei die erste dieser Funktionen
vermittelst der angegebenen Methoden leicht auch fur komplexe Werte
von C berechnet werden kann, ist nun unser Problem gelôst. Die Berech-
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nung der Gteschwindigkeit erfolgt am besten auf Grand der Formeln (77)
und (79). Damit kônnen auch, wie am Schlusse von Abschnitt 5 aus-
einandergesetzt, die ubrigen wichtigen GrôBen der Strômung berechnet
werden. Insbesondere ergibt sich aus dem Quadrat der Geschwindigkeit
nach Bernoulli sofort der Druck. In Abb. 16 ist das Quadrat der
Geschwindigkeit lângs der Profilkurve gleichzeitig mit dieser letzteren
eingetragen.

Drittes Beispiel: Es soll die allgemeinste Strômung um ein Kreis-
2 1

bogenviereck mit den Winkeln —r n, n, —- n9 n berechnet werden, des-

sen Gestalt sich nicht zu weit von dem symmetrischen Profil mit diesen

Winkeln, also von dem im letzten Beispiel betrachteten Profil, entfernt.
Beim allgememen Viereck treten ein akzessorischer Parameter und eine

iiberschûssige singulâre Stelle, also im ganzen zwei durch die Winkel
nicht bestimmte Parameter auf. Es handelt sich also darum, die zum
allgemeinen Viereck mit den obigen Winkeln gehôrende Differential-
gleichung

r 95 25 / ,v „ 25 ~ -i

¦Ah** (106)
dÇ* ~[ C2

' f f+1 C~*J
mit den Parametern <x und /? (daB dièse Gleichung zu den obigen Winkeln
fûhrt, verifiziert man unmittelbar) fur drei verschiedene Kombinationen
von a. und /?, die in der Nâhe des symmetrischen Falles liegen, zu inte-
grieren. Dann kann durch Interpolation die Strômung um jedes be-

liebige, annâhernd symmetrische Viereck berechnet werden. Die
Gleichung (106) ist dabei, entsprechend (96) und (97), gemaB den Gleichungen

^= — 1 a2 0 az <x a4=oo (107)

normiert. Fur oc und /? wâhlen wir die folgenden Wertekombinationen :

— 1^— 25
—1-/?—

18
—

6
• /? —

25

Das erste dieser Wertepaare fuhrt, wie man durch Einsetzen sofort fest-
stellt, auf die Gleichung des letzten Beispiels, wâhrend die beiden andern
unsymmetrische Profile ergeben. Es handelt sich also noch darum, die

zu den beiden letzten Wertepaaren gehôrenden Gleichungen

r 95 7 16 9 t
196 196 196 196
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95 5 10 25
196 392 196

zu integrieren.
Dies geschah nach der S. 103 bis 107 beschriebenen zweiten Integra-

tionsmethode. Bei dieser muB zuerst — J(£ auf Grand der Formeln
(67) um jederi singulâren Punkt in eine Potenzreihe entwickelt werden.
Man erhâlt z. B. fur die Gleichung (110) die Entwicklungen

95 5

0,1041 + 0,0067 C — 0,0879 C2 + 0,0202 C3.

10
1 Qfï

--^y+ 0,4685 + 0,9694(C + 1) + l,4609(f + l)2

+ 1,9489 (C+l)3... (111)

25

- J(C) - + 0,3032 - 0,5422(C - 1,2) + 0,6903 (C - 1,2)2

- 0,7727(C - 1,2)3...

Nunmehr kann gemàB (69) zu jedem singulâren Punkt eine Lôsung (66)
der zugehôrigen Riccatischen Gleichung angegeben werden. Man errech-
net fur die drei singulâren Punkte leicht die folgenden Lôsungen

19

u* (C) -y- - 0,0047 - 0,0280 C + 0,0014 f2 - 0,0155 C3 + 0,0030C4.

+ 0,2898(C + l)3 + 0,3140(C + l)4... (112)

<t(f) c_\2 + 0,0319 + 0,1010(C - 1,2) - 0,1371 (C - 1,2)2

+ 0,1377(C - 1,2)3 - 0,1256(C - 1,2)4...

Aus diesen ergeben sich schliefilich gemâB (71) die folgenden Abbildungs-
funktionen

o>* -A'—[— 0,5830 C - 0,0132 f2 + 0,0980 C3 — 0,0009 C4

14
+ 0,0035 C5..-l (113)
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1

-[-(£ + 1) - 0,1547(f + 1)» - 0,0855(f +(C +
- 0,0471 (C + 1)5...] + 0,0510 lg (f + 1)

1

[-(f - 1,2) - 0,0990(£ -(C - 1,2)!

- 0,0233 (f — 1,2)5. _ j _ o,O638lg (f - 1,2)

0,0492(f -
SchKeBlich handelt es sich noch darum, dièse drei Lôsungen zu-

sammenzusetzen. Dies wurde unter Verwendung zweier weiterer Potenz-
reihen in der auf S. 106 erwâhnten Weise durchgefùhrt. Als Résultat ergab
sich das in Abb. 18 dargestellte Kreisbogenviereck Kz. In ganz gleicher
Weise wurde das zur Gleichung (109) gehôrende Viereck K2 bestimmt.

Die Kreisbogenvierecke Kl9 K2, K3 in Abb. 18 sind bereits in der auf
S. 98 bis 99 angegebenen Weise normiert. Eine ihrer Seiten fàllt stets
auf die positive réelle Achse zwischen die Punkte 0 und 1. Ist nun ein
anderes Kreisbogenviereck gegeben mit den gleichen Winkeln, das an-
nâhernd symmetrisch ist, so kann dièses ebenfalls in der obigen Weise
normiert und dann mit den Vierecken Kl9 K2, K3 verglichen werden.
Auf dièse Weise kônnen dann durch Interpolation die zu dem gegebenen
Kreisbogenviereek gehôrenden Parameter oc und fi und also auch die zu-
gehôrige normierte Gleichung (29) bestimnat werden. Es handelt sich
dann noch darum, dièse zu lôsen und auf Grund davon die zugehôrige
Strômung zu berechnen.

In Abb. 19 ist ein derartiges Beispiel dturchgerechnet. Das dort
dargestellte Tragflugelprofil ist ein unsymmetrisches Kreisbogenviereck mit

2 1
denWinkeln - n, n, - n, n. Es wird von rechts her angestrômt durch eine
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horizontale Strômung, welche im Unendlichen die komplexe Geschwindigkeit

F 1 besitzt und die auBerdem nach der Forderung von Jou-
kowsky an der Hinterkante eine glatte Abstrômung ergibt. Durch dièse
beiden Eigenschaften ist die Strômung bestimmt. Das Profil in Abb. 19

ist mit dem Kreisbogenviereck K2 in Abb. 18 kreisverwandt, so daB die
zugehôrige Differentialgleichung gleich (109) ist. Ausgehend von dieser
Gleichung kann die Strômung in genau entsprechender Weise berechnet
werden wie dies im letzten Beispiel ausfûhrlich durchgefiihrt wurde. Wir
begnûgen uns deshalb im wesentlichen mit der Angabe der Resultate.

Wenn co(£) wie im zweiten Beispiel diejenige Abbildungsfunktion
bezeichnet, die gleich dem Quotienten der beiden Fundamentallôsungen
um den Punkt f 0 ist, ergeben sich zunâchst fur die Funktionen (25)
und (13) die Gestalten

1
Z ~ co + (1,512 —0,304 i)

und
(0?778 + 0;i43 i) Ç + (- 0,074 + 1,269 i)
(0,778 - 0,143 t) £ + (— 0,074 - 1,269 i) ' [ }

Ein kleiner Unterschied gegeniïber dem zweiten Beispiel ergibt sich
bei der Funktion (11), indem wir jetzt eine Zirkulation haben. GemâB (49)
bestimmt sich der Winkel y aus der Gleichung

0,778 + 0,143 i ^ (n6)
0,778 —0,143 i

Daraus folgt sin cp 0,3544 und gemàB (51) F 1,310. Damit nimmt
(11) die Gestalt an

w 0,294 (z +4-)— 0,2085 ilgZ (117)

Durch (114), (115), (117) und die zum jetzigen Profil gehôrende Funktion
(33) ist nun unser Problem wieder gelôst.

Zur Berechnung der komplexen Geschwindigkeit (und damit auch der
andern wichtigen GrôBen der Strômung) gehen wir wieder aus von einem
Punkt der f-Ebene. Dann hat die Strômung im zugehôrigen, durch (114)
gegebenen Punkt der z-Ebene gemâB (78) die komplexe Geschwindigkeit

dw [a)(f)+1,612-0,340$]» 2,350ffg0,471(ff + g)
dz œ'{Ç) (p2 + g2)2

[ }

mit den Abkiirzungen p 0,778 f — 0,074 und q 0,143 J + 1,269.
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In Abb. 19 ist das Quadrat der Geschwindigkeit senkrecht tiber der Pro-
filkurve abgetragen. Bei der Eintrittskante wâchst die Geschwindigkeit
theoretisch ins Unendliche, wâhrend sie in den beiden Staupunkten ver-
schwindet.

8. Zusammenfassung

In der vorliegenden Arbeit wird gezeigt, da8 die (symmetrischen)
automorphen Funktionen sowohl theoretisch wie praktisch ein wert-
volles Hilfsmittel zur Untersuchung ebener Potentialstrômungen sind, in
ersterer Hinsicht insofern als viele theoretisch wichtige Formen durch
Kreisbogenpolygone erfaBt werden kônnen, in letzterer deshalb, weil sich
auch die numerischen Rechnungen auf recht einfache Weise durehfuhren
lassen. Der wesentliche Punkt der Lôsung besteht erstens in der Auf-
stellung und zweitens in der Intégration der zu einem gegebenen Kreis-
bogenpolygon gehôrenden Differentialgleichung der Fuchsschen Klasse.
Wâhrend der zweite dieser Schritte leicht durchgefuhrt werden kann,
stellt der erste ein zur Zeit noch nicht befriedigend gelôstes Problem der
Théorie der automorphen Funktionen dar, da ûber die Abhângigkeit
eines Teiles der Parameter einer Gleichung der Fuchsschen Klasse von
der Gestalt des zu ihr gehôrenden Polygons im allgemeinen Fall sozu-

sagen nichts bekannt ist. Praktisch kann dièse Schwierigkeit jedoch auf
Grund des Umstandes ûberwunden werden, daB man bei gegebener
Differentialgleichung sehr leicht die Gestalt des zu ihr gehôrenden Polygons
angeben kann, so daB man, àhnlich wie bei den Joukowskyprofilen, die

genannten Parameter einfach unter Verwendung entsprechender Inter-
polationsmethoden so variieren kann, bis das Polygon geniigend genau
mit einer vorgegebenen Form ûbereinstimmt. Auf dièse Weise kônnen
derartige Problème, wie das auch aus den durchgerechneten Beispielen
hervorgeht, numerisch sehr gut gelôst werden.

(Eingegangen den 5. Juli 1948.)
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