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Die hydrodynamische Bedeutung

der automorphen Funktionen
(ebene Stromungen um Kreisbogenpolygone)

Yon P. MATTHIEU, Ziirich

1. Einleitung?)

Seit den klassischen Untersuchungen von Helmholtz, Kirchhoff und
Joukowsky ist bekannt, daBl zwischen der Funktionentheorie und der
Hydrodynamik sehr enge Beziehungen bestehen. Die vorliegende Arbeit
setzt sich zum Ziel, systematisch zu untersuchen, welche Bedeutung in
diesem Zusammenhange den automorphen Funktionen zukommt, ein
Gedanke, der wegen den geometrischen Eigenschaften dieser Funktionen
sehr naheliegend erscheint. Die Untersuchung soll jedoch beschrinkt
bleiben auf die symmetrischen automorphen Funktionen, d. h. auf die-
jenigen, die die Eigenschaft haben, daB sie ein gewisses Kreisbogenpoly-
gon in der Ebene des Argumentes (und damit auch unendlich viele solche
Polygone) konform abbilden auf die obere Bildhalbebene. Ein aus dem
ersten durch Spiegelung an einer Seite hervorgehendes Polygon wird
dann auf die untere Halbebene abgebildet, und beide Polygone zusammen
bilden also einen Fundamentalbereich fiir die Funktion, die damit das
Geschlecht Null hat.

Jeder derartigen automorphen Funktion bzw. der zu ihr geborenden
Differentialgleichung der Fuchsschen Klasse mit reellen Koeffizienten
entspricht, wie im dritten Abschnitt auseinandergesetzt wird, im wesent-
lichen eineindeutig eine ebene Potentialstromung, deren Strémungsbe-
reich einfach zusammenhéngend ist und von lauter Kreisbogen begrenzt
wird. Die Abbildungen 1 bis 4 zeigen vier Beispiele von solchen Strémun-
gen, ndmlich eine Stromung um ein Tragfliigelprofil, das von drei Kreis-
bogen gebildet wird, eine Stromung um ein briickenpfeilerartiges Profil,
eine Stromung um einen dreieckigen Stab, der in den Ecken kreisférmig
abgerundet ist und eine Strémung gegen einen unendlich langen Damm,
der an seinem Ende kreisférmig begrenzt ist.

1) Vgl. auch die Zusammenfassung am Schluf dieser Arbeit.
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Dieser Zusammenhang kann nun einerseits benutzt werden zur Be-
rechnung derartiger Stromungen aus den bekannten Eigenschaften der
automorphen Funktionen. In einer Reihe von Fillen kann die Losung in
geschlossener Form dargestellt werden. Vor allem ist das der Fall beim
umstromten Kreisbogendreieck und bei solchen Bereichen, die sich durch

Z=s

AY

)
NI

Abbildung 1 Abbildung 2

Abbildung 3 Abbildung 4

symmetrische Wiederholung aus einem Kreisbogendreieck ableiten lassen.
In den iibrigen Fillen gibt es rasch konvergierende und praktisch zu ver-
wendende Néherungsmethoden, die es gestatten, jede solche Strémung
mit beliebiger Genauigkeit zu berechnen. Diese Methoden fiihren so be-
quem zum Ziel, daB es sich wahrscheinlich auch in den genannten Féllen,
in denen eine Integration in geschlossener Form moglich ist, stets emp-
fiehlt sie anzuwenden. Auf der andern Seite kénnen diese Zusammen-
hidnge benutzt werden, um aus einer ebenen Potentialstréomung um ein
Kreisbogenpolygon auf experimentellem Wege die zugehorige auto-
morphe Funktion zu bestimmen bzw. die ihr entsprechende Differential-
gleichung der Fuchsschen Klasse zu losen, ein Gedanke, der jedoch hier
nicht weiter verfolgt werden soll.

Die Arbeit ist so gegliedert, dal nach Aufstellung der Grundgleichun-
gen im folgenden Abschnitt zunéchst unter 3 die allgemeinen Gesichts-
punkte fir die Losung behandelt sind. 4 ist dem besonders einfachen
und wichtigen Fall des Kreisbogendreiecks gewidmet, wihrend der fol-
gende Abschnitt die Durchfiihrung der Theorie fiir das allgemeine Poly-
gon enthilt. 6 befaBlt sich mit Polygonen, die sich ins Unendliche er-
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strecken, Abschnitt 7 enthilt eine Reihe von Beispielen fiir die Berech-
nung von Strémungen, und schlieBlich sind die wichtigsten Resultate
unter 8 nochmals kurz zusammengefaflt.

2. Aufstellung der Grundgleichungen

Der Zusammenhang zwischen Funktionentheorie und Hydrodynamik
beruht bekanntlich darauf, daB die Stromungsgleichungen

divp=0 rotp =0 (1)

fir eine ebene, stationidre, wirbel- und quellenfreie Stromung einer
idealen, inkompressibeln Fliissigkeit iibereinstimmen mit den Cauchy-
Riemannschen Differentialgleichungen der Funktionentheorie. Wir ver-
legen die Strémung im folgenden in eine komplexe z-Ebene. z = = + ¢y
ist dann der komplexe Aufpunkt. Bezeichnen wir ferner mit @ das Ge-
schwindigkeitspotential und mit ¥ die Stromfunktion, so ist das kom-
plexe Potential @ + ¢ ¥ eine analytische Funktion f(z) des Aufpunkts :

w=®+i¥=4f@). (2)

Umgekehrt definiert in dieser Weise jede analytische Funktion eine Stro-
mung. Sind ferner # und v die Komponenten der Geschwindigkeit v im
Punkte z, so ist die komplexe Geschwindigkeit « — 7 v gleich der Ab-
leitung f/(z):

w=u—1v=F(). (3)

Besonders wichtig und im folgenden speziell behandelt ist der Fall
eines von einer Fliissigkeit umstromten Profils. In diesem Falle lassen
wir, wie das in der Theorie des unendlichen Tragfliigels iiblich ist, fiir
z =oo einen einzigen Wirbelpunkt zu, was auf die Annahme einer Zirku-
lation um das Profil herauskommt. Es bestehen dann noch eine Reihe
weiterer Beziehungen. Bezeichnet € irgendeine das Profil umschlieBende
Kurve, I" die Zirkulation lings € und G den FluBl durch die Kurve €,
so besteht fiir die komplexe Zirkulation I" 4 ¢ G die auch in allgemeine-
ren Fillen giiltige Beziehung

. dw
¢

wobei das Integral in positivem Sinne iiber € zu erstrecken ist. In unse-
rem Fall ist dieser Wert immer reell, da nach den gemachten Vorausset-
zungen der FluB G verschwindet.
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Bezeichnen ferner K, und K, die Komponenten der auf das Profil aus-
geiibten Kraft, so gilt fiir die komplexe Kraft K, — ¢+ K, die Formel

, 2
Kx—iKyzzzgf(?:) dz | (5)
(1

wobei o die Dichte der Fliissigkeit bedeutet. Gleichung (5) ist im wesent-
lichen mit der Auftriebsformel von Kutta-Joukowsky identisch. Schlief3-
lich gilt fiir das komplexe Moment M, + ¢+ M, beziiglich des Ursprungs

die Beziehung diw\?
M0+5M1:—-g~fz(7’“zi’-) dz (6)
(Of

Hier bedeutet M, das Drehmoment beziiglich des Ursprungs, wihrend
M, keine einfache physikalische Bedeutung hat. Die letzten drei Formeln
sind unabhingig von der speziellen Wahl der Kurve €. Sie lassen sich
noch in eleganter Weise durch die Residuenséitze umformen, indem der
Wert jedes Integrals im wesentlichen gleich dem Residuum des Inte-
granden im Punkte oo ist. Wenn wir die Stromung im folgenden in iib-
licher Weise iiberall auBerhalb der Profilkurve, insbesondere auch im

Punkte oo, als reguldr voraussetzen, so haben wir fiir dw um den Punkt

oo eine Entwicklung der Form 4
d
S =—ag A4 E i (7)

wobei die a; komplexe Konstanten sind und wobei a, unmittelbar die
Geschwindigkeit im Unendlichen ist. Die Formeln (4) bis (6) schreiben
sich dann geméd8 (7) in der Form

'= 2nia, (8)
K,—iK, = — 2ngaya, 9)
My+iM,= —inp(2aya, + di) . (10)

Aus (8) folgt noch, daB @, in unserem Fall stets rein imagindr sein mufl.

Durch diese Formeln wird die Theorie der ebenen Potentialstromungen
um ein Profil im wesentlichen erfaf3t. Bei bekannter Funktion f(z) er-
geben sich durch (2) der Verlauf der Strémung, vor allem die Strom-
linien, durch (3) die Geschwindigkeit in einem beliebigen Punkte, durch
(4) und (8) die Zirkulation um das Profil und durch (5), (6), (9) und (10)
die auf dieses Profil wirkenden Krifte und Momente.
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3. Stréomungen um Kreishogenpolygone

Wir fiihren vier komplexe Zahlebenen ein, deren Anordnung und Be-
zeichnung aus Abb. 5 zu ersehen ist. In der Z-Ebene denken wir uns den
Einheitskreis als Profilkurve gegeben. Dann wird bekanntlich durch

_— U(Z+—;—) _ %ng (U, T reell, U>0) (1)

in der Z-Ebene eine Stromung mit der Zirkulation I" um den Einheits-
kreis definiert, die im Unendlichen parallel zur £-Achse verliuft und
dort die Geschwindigkeit U hat. Wenn wir nun durch eine Funktion

z2=¢(2) (12)

den Einheitskreis der Z-Ebene konform abbilden kénnen auf ein Kreis-
bogenpolygon in der z-Ebene, was nach Riemann moglich ist, so wird

L 4

7
"=

Z=X+ry = F+/p Z= Z+iH W= gery
Abbildung 5

4 ¥
| 1

dadurch auch die Strémung um den Einheitskreis in der Z-Ebene ab-
gebildet auf eine Stromung um das Kreisbogenpolygon in der z-Ebene.
Die Stromlinien entsprechen sich einzeln und die Stromung wird be-
schrieben durch die aus (11) und (12) flieBende Abhéngigkeit zwischen 2
und w. Es handelt sich also nur um die Bildung von (12).

Dazu bilden wir zunichst das AuBere des Einheitskreises in der Z-
Ebene — den Stromungsbereich — auf die obere {-Halbebene ab. Das
wird geleistet durch

g (a+bi)C+ (c+di)
T @b+ c—di)

po_ (0= d)Z— (o +di)

“{—atbtnzZt@tby’ 13

wobei a, b, ¢, d vier reelle Zahlen mit der Nebenbedingung ad >bc¢
gind. Bei Nichtbestehen dieser letzteren wiirde der Strémungsbereich auf
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die untere Halbebene abgebildet. Die obigen Konstanten konnen stets
so normiert werden, dafl die Beziehung

ad —bec=1 (14)

besteht, was im folgenden stets vorausgesetzt werden soll. Bei gegebener
Funktion (13) werden a, b, ¢, d durch (14) bis auf zwei Moglichkeiten
bestimmt, die sich nur durch das Vorzeichen unterscheiden und die des-
halb im folgenden nicht als verschieden betrachtet werden sollen, so daB3
wir also sagen konnen, dafl die obigen Konstanten durch die Normierung
(14) eindeutig bestimmt sind.

Es handelt sich nun noch darum, die obere {-Halbebene abzubilden
auf das AuBere des Polygons in der z-Ebene. Das kann aber geschehen
durch (im allgemeinen mehrdeutige) automorphe Funktionen bzw. durch
Losungen von Differentialgleichungen zweiter Ordnung der Fuchsschen
Klasse. Im einfachsten Fall des Kreisbogendreiecks haben wir Schwarz-
sche Dreiecksfunktionen bzw. hypergeometrische Funktionen. Es sei eine
Differentialgleichung zweiter Ordnung der Fuchsschen Klasse?) zwischen
den Variabeln { und 2z* gegeben mit n singulidren Stellen (der Bestimmt-

heit). Diese letzteren seien mit a,, a,, a,,. .., a, bezeichnet und die zu-
gehorigen Exponenten mit oy, o), 5,04 ,. .., &, %, wobei bekanntlich

die Beziehung bestehen mul
n
Sotop=n—2. (15)
k=1

Alle singuléren Stellen und Exponenten setzen wir als reell voraus und wir
kénnen auch ohne Beschrinkung der Allgemeinheit a, <a;<a;<... <a,
annehmen. Wenn wir ferner die singulére Stelle { = a,, ins Unendhche
verlegen, was im folgenden immer geschehen soll, hat die Gleichung die
Form

d2z*
O+ ey =0 (16)
mit n o
— YT Y
P = = ——t - (17)
-1 / /4
n X X Gn-—3 (C)
Q(C) = =1 (C _ a‘k)2 "I—il (18)
- (§ — ay)

2) Firr die hier verwendeten Begriffe aus der Theorie der Differentialgleichungen der
Fuchsschen Klasse vgl. Bieberbach, Theorie der Differentialgleichungen, 3. Aufl., Ber-
lin 1930, oder Klein, Vorlesungen iiber die hypergeometrische Funktion, herausgegeben
von O. Haupt, Berlin 1933.
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Hierbei ist G,_;({) ein Polynom hochstens vom Grade n — 3 mit
ebenfalls reellen Koeffizienten, welch letztere die akzessorischen Para-
meter genannt werden und welche noch eine bestimmte Bedingung er-
filllen miissen, damit (16) im Unendlichen die Exponenten « und « hat.
Diese Bedingung ergibt sich leicht dadurch, da3 man die Fundamental-
gleichung fiir den Punkt oo aufstellt und verlangt, dal diese die Wurzeln
o, und o/ hat. Bezeichnet man mit 7, das Residuum von (18) an der Stelle
a;, so lautet die Fundamentalgleichung fiir den Punkt oo

n—1

n—1
ele—1)+[2 - 1 — o —oz)]e +k§.l (o6 % + @pry) =0 . (19)

Setzt man hier fiir o den Wert o/, ein, so ergibt sich nach leichter Um-

formung
n—1 n—1

oy — [n-2—-—k§ (o + o2)] a;+k§<a; o +ayr) =0,  (20)

und das ist die gesuchte Beziehung fiir die 7, und damit fiir die Koeffi-
zienten von G,_,(¢). Hitte man in (19) statt «, den anderen Exponenten
«, eingesetzt, so wiire man zur selben Gleichung (20) gekommen. Man er-
kennt dies dadurch, dafl gemédB (15) der Koeffizient von g in der quadra-
tischen Gleichung (19) stets den Wert — («,, + o) hat, so daB also o,
stets gleichzeitig mit &, Wurzel von (19) ist.

Sind nun z* und z* zwei beliebige linear unabhingige (nicht notwendig
reelle) partikuldre Integrale einer gegebenen Gleichung (16), so weill
man, vor allem durch die klassischen Untersuchungen von Schwarz?),
daBl durch den Quotienten

() = 5 (21)

die obere Halbebene abgebildet wird auf ein Kreisbogenpolygon der
w-Ebene. Die n singuldren Stellen a, gehen dabei iiber in die Ecken E,
des Polygons, welches dort bzw. die Winkel

log — o | %= i (22)

hat. Die Lage der Ecken hdngt erstens ab von der Lage der » singuldren
Stellen, zweitens von den n — 3 akzessorischen Parametern und drit-
tens von den 6 reellen Konstanten im Quotienten (21). Von diesen
2n + 3 reellen Parametern sind jedoch drei unwesentlich, da man durch
eine lineare Transformation der unabhéngigen Variabeln, welche den

3) Uber diejenigen Falle, in denen die GauBsche hypergeometrische Reihe eine alge-
braische Funktion ihres vierten Argumentes darstellt, Ges. Math. Abh., Bd. II, 8. 211.
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Charakter von (16) unverdndert 148t, stets iiber drei von ihnen verfiigen.
kann. Zum Beispiel kann man drei der singuldren Stellen in drei beliebige
Punkte der reellen Achse verlegen, wie dies im allgemeinen bei der hyper-
geometrischen Differentialgleichung gemacht wird. Demnach bleiben zur
Bestimmung der Ecken noch 2» Parameter, wie dies auch auf Grund
von geometrischen Uberlegungen der Fall sein muB.

Ist umgekehrt in der z-Ebene ein beliebiges Kreisbogenpolygon ge-
geben, dessen Ecken in positivem Umlaufsinn in bestimmter Weise mit
E,, E,,..., E, bezeichnet sind, so gibt es dazu unendlich viele Gleichun-
gen (16), dergestalt, daB3 die obere {-Halbebene durch den Quotienten
zweier linear unabhéngiger Partikuldrintegrale auf das gegebene Kreis-
bogenpolygon abgebildet werden kann, und daf3 dabei dem singuldren
Punkte a, die Ecke B, (k= 1, 2,...,n) entspricht. Sie stimmen alle
iiberein in den GroBen (22) und gehen bei gleichen Exponenten durch
ganze lineare Transformationen der unabhingigen Variabeln auseinander
hervor. Verlegen wir also durch eine solche Transformation die singulidren
Stellen a, und a, bzw. in die Punkte 0 und 1 der {-Ebene, so dal dem-
nach jetzt die Beziehung besteht

a,=0<a, =1<a;<-+--<@a, =0 (23)
und stellen wir noch die zusétzlichen Bedingungen
/
oh =0 (k=1,2,...,n —1)
) (24)
& = ay k=1,2,...,7n)

so gehort zu jedem Kreisbogenpolygon eine und nur eine Differential-
gleichung (16). Im folgenden denken wir uns die zu einem Kreisbogen-
polygon gehorende Differentialgleichung der Fuchsschen Klasse fast immer
entweder in dieser oder dann in einer ndchsten zu besprechenden zweiten
Art normiert. Die Koeffizienten der auf die eben genannte Weise nor-
mierten Gleichung haben dann also die Form (17) und (18), und es be-
stehen ferner noch die zusédtzlichen Bedingungen (15), (20), (23) und (24).
Beachtenswert ist noch, dal infolge von (24) die Summe in (18) stets
wegfillt.

Um nun diese Betrachtungen auf unsere hydrodynamische Problem-
stellung anzuwenden, denken wir uns bei gegebener Profilkurve zuerst
die zugehorige (normierte) Gleichung (16) gebildet. Die Berechnung he-
steht in der Bestimmung der n — 3 von 0, 1,00 verschiedenen singu-
liren Stellen und in derjenigen der n — 3 akzessorischen Parameter
(iiber die numerische Berechnung dieser Gréfen siehe Abschnitt 5). Fer-
ner wihlen wir fiir 2 und 2} in (21) zwei beliebige, aber dann stets fest-
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gehaltene (in der obern Halbebene eindeutige) linear unabhingige Zweige
aus. Bilden wir dann den Quotienten

. dotf ez 4f
go+h gzt +hz

mit den komplexen Konstanten e, f, g, h (wir bezeichnen die erste dieser
Konstanten mit e’ statt mit e, um sie von der spiter gleichzeitig auf-
tretenden Basis der natiirlichen Logarithmen zu unterscheiden), wobei
im folgenden wieder die Beziehung

(25)

eh—gf=1 (26)

vorausgesetzt werden soll, so kénnen wir diese Konstanten wieder bis
auf zwei Moglichkeiten so bestimmen, dafl durch (25) die obere {-Halb-
ebene abgebildet wird auf das gegebene Kreisbogenpolygon in der z-
Ebene. Wie bei den Quotienten (13) sollen die beiden Moglichkeiten im
folgenden nicht als verschieden betrachtet werden.

‘Die Umkehrfunktion von (25) ist dann eine zu dem gegebenen Kreis-
bogenpolygon gehorende (im allgemeinen mehrdeutige) automorphe
Funktion. Sie ist so normiert, dafl sie im Eckpunkt z = £, den Wert
{ = a,, annimmt, und wir bezeichnen sie deshalb als die zu dem Kreis-
bogenpolygon gehérende normierte automorphe Funktion. Sie bildet
dieses stets auf die obere {-Halbebene ab. Wenn man das gegebene Kreis-
bogenpolygon an einer seiner Seiten spiegelt, so bilden das urspriingliche
und das durch Spiegelung entstandene Polygon zusammen einen Funda-
mentalbereich fiir diese Funktion.

Damit sind wir im Prinzip am Ziel. Die gesuchte Funktion (12) wird
geliefert durch (13) und (25) und die Stréomung also dargestellt durch
(11), (13) und (25). Bei der Abbildung des Einheitskreises der Z-Ebene
auf das Kreisbogenpolygon in der z-Ebene mu8l noch der unendlich ferne
Punkt wieder in den unendlich fernen Punkt iibergehen. Ferner kann die

Geschwindigkeit im Unendlichen der z-Ebene und also auch die komplexe
Geschwindigkeit V = [‘fi—z:] " beliebig gegeben sein. Das geniigt ge-
rade zur Bestimmung der Konstanten U in (11) und a, b, ¢, d in (13),
tiber die bisher nicht verfiigt wurde. Entspricht gemdf (25) dem Punkt

z =oo der Punkt ¢ = @ (Abb. 5), so miissen die Gleichungen bestehen

@—bi)Q 4+ (c—di)=0, (27)
dz
dw _[dw dZ d¢ . s B
[@—Lsf[dz dc dz]z=;‘U dz =V. (28)
ds li=q
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Aus diesen Gleichungen lassen sich unter Beachtung von (14) eindeutig a,
b, c,d und U berechnen, wie dies bereits aus dem Riemannschen Abbil-
dungssatz folgt. SchlieBlich kann die Zirkulation um das Kreisbogen-
polygon noch gegeben sein. Aus

@, [
dz dZ
c c
wo § eine das Kreisbogenpolygon in der z-Ebene und ¢’ eine den Einheits-
kreis in der Z-Ebene umschlieBende Kurve ist (die Integrale sind stets in
positivem Sinne zu erstrecken), ergibt sich dann gemi8 (4) und (11), daB
die Zirkulation um das Kreisbogenpolygon gleich der GréBe I' in Glei-
chung (11) ist. Die Konstanten in den Gleichungen (11), (13) und (25)
sind demnach alle wesentlich. Zusammenfassend konnen wir also sagen :
Dre gesuchte Stromung wird dargestellt durch (11), (13) und (25). Die Kon-
stanten in diesen Qleichungen besttmmen sich eindeutig aus den Daten des
Problems, d. h. aus den geometrischen Eigenschaften des Kreishogenpoly-
gons, der Geschwindigkeit vm Unendlichen und der Zirkulation der Stro-
mung. Aus den geometrischen Eigenschaften ergeben sich zundchst unter Be-
achtung von (26) ¢/, f, g, h in (25). Die Zirkulation um das Kreisbogen-
polygon st gleich I' in (11), und schlieflich bestimmen sich aus der Ge-
schuwindigkeit tm Unendlichen gemdf (26), (27) und (28) die Gréfen U, a,
b, c, d.

Zur Wahl der Zirkulation I' ist noch zu sagen, daB sich diese theore-
tisch beliebig wiahlbare GroBe bei Tragfliigelprofilen nach dem Vorgang
von Joukowsky aus physikalischen Griinden so bestimmen muf, da der
hintere Staupunkt der Stromung in den Eckpunkt des Profils fillt. Durch
diese Forderung wird I" in der Tragfliigeltheorie bestimmt.

Die Gleichung (16), aus der sich die Abbildungsfunktion (25) ergibt,
laBt sich noch in einfacher Weise umformen4). Setzt man

P
JE?”“?

2** — g% ™ , (30)

dz , (29)

wobei £, eine beliebige Konstante ist, und wobei man unter dem Integral
irgendeinen seiner Zweige verstehen kann (alle Zweige unterscheiden sich
ja nur durch multiplikative Konstanten), so folgt aus (16) fir z** die

Gleichung d2 2%%

“—CE.T‘FJ(C)Z**:O ) (31)

4) Siehe dazu zum Beispiel Forsyth-Jacobsthal, Lehrbuch der Differentialgleichungen,
2. Aufl., Braunschweig 1912, §§ 58—62.

89



wobei die sogenannte Invariante J({) den Wert hat

2
qu__l_iiﬁ__l’__‘ (32)

Das ist die zweite, schon auf Seite 87 erwdhnte Art, in der wir die zu
einem Kreisbogenpolygon gehérende Differentialgleichung der Fuchs-
schen Klasse normieren konnen. Sie eignet sich ganz besonders fiir die
numerische Rechnung. Gemif (30) kann man zu den frither gebrauchten
Losungen 2 und 2 von (16) stets zwei in der obern Halbebene ebenfalls
eindeutige Losungen z'* und 2}** von (31) angeben, so daB die Be-
ziehung besteht

* * %
Z 2
R AU . 33

Die Gleichungen (31) und (16) sind also in bezug auf unser Problem ein-
ander vollstindig dquivalent, und wir kénnen von der einen oder von der
andern Form ausgehen. Es wird sich iibrigens zeigen, daB fiir die meisten
in den Anwendungen interessanten Félle die beiden Formen iiberein-
stimmen.

Fiir die Ableitung der Funktion (33) gilt die wichtige, leicht herzu-
leitende Formel 4)

C
w’(f) = k%1 (34)
zZ
wobei die Konstante C den Wert
C=rz3*z* —2f* " (35)

hat. Sie kann gemidB (35) leicht berechnet werden, indem man in die

rechte Seite dieser Gleichung, welche nicht von { abhingt, fiir diese

letztere Grofle einen beliebigen Zahlwert einsetzt. Ist umgekehrt irgend-

ein partikulires Integral z;* von (31) bekannt, so stellt gemif (34) das

Integral ¢

[ (36)
*wT

G
wo , eine beliebige Konstante ist, stets eine Abbildungsfunktion (33)
dar, aus der sich (25) wieder als lineare Funktion ergibt.

Von besonderem physikalischem und technischem Interesse sind
einerseits iiberall abgerundete Profile (Abb.2 und 3) und anderseits
Tragfliigelprofile mit einem einzigen Punkt, in dem die Tangente nicht
stetig verlduft (Abb. 1). Im zweiten Fall wihlen wir diesen letzteren
Punkt als Eckpunkt £, , d. h. wir lassen ihm in der zugehorigen Differen-
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tialgleichung (16) den Punkt { = a, =oco entsprechen. Dann haben
aber fiir jeden im Endlichen gelegenen singuldren Punkt @, von (16) die
zugehorigen Exponenten «; und «; die Werte

ap = 0 oy =1 (k=1,2,3,...,n — 1) (37)
und daraus ergibt sich wieder, daB p({) und der erste Summand in
q(¢) identisch verschwinden. Die Gleichung (16) nimmt dann also die
besonders einfache Gestalt an

n—1 d?z*

— - °_ *
kl=];. (C a’k) ng +Gn——3(¢)z 0. (38)
Da in dieser auf die erste Art normierten Gleichung der Koeffizient der
ersten Ableitung verschwindet, stimmt sie mit der zugehorigen zweiten
Normierungsform (31) iiberein. Wenn wir schlie8lich noch die Forderung
fallen lassen, dal @, = 0 und @, = 1 sein sollen und fiir diese Groflen
beliebige Werte zulassen, wihrend wir alle andern Bedingungen fiir die
beiden Normierungen beibehalten, so hat die gemeinsame Normierungs-
form (38) stets die Gestalt
dz* "

Gn_1(0) drr + G 3@ 2*=0, (39)

wobei GF_,(¢) und GF _;(¢) zwei reelle Polynome der Grade n — 1
und » — 3 sind. Umgekehrt entspricht jeder Gleichung der einfachen
Form (39) stets ein Polynom mit hochstens einem Punkt, in dem die
Tangente unstetig verliuft. Die genannten Fille sind also dadurch aus-
gezeichnet, da die beiden Normierungsformen einander gleich werden
und die besonders einfache Gestalt (38) bzw. (39) annehmen.

Die beiden folgenden Abschnitte enthalten die Verwertung dieser Ge-
dankenginge zur Berechnung von Stromungen. Der nichste Abschnitt
beschiiftigt sich mit dem besonders einfachen und wichtigen Fall des

Kreisbogendreiecks, wihrend unter 5 das allgemeine Polygon behandelt
ist.

4. Der Fall des Kreishogendreiecks

Einige solche Stromungen sind zur Untersuchung der Strémungsver-
hiltnisse in der Umgebung scharfer Eintrittskanten bei Tragfliigelpro-
filen bereits von Wolff %) kurz behandelt worden. Indessen ergeben sich

5) EinfluB der Abrundung scharfer Eintrittskanten auf den Widerstand von Fliigeln,
Ingenieur-Archiv, Band IV (1933), S. 521.
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von unserem allgemeinen Standpunkt aus gegeniiber der sehr speziellen
Problemstellung bei Wolff so viele neue Gesichtspunkte und Resultate,
daB wir glauben, daB eine kurze Betrachtung dieses Falles trotzdem ge-
rechtfertigt ist. Unsere Darstellung soll sich jedoch nur auf die Punkte
erstrecken, die gegeniiber dem allgemeinen, im n#chsten Abschnitt be-
handelten Fall besonders hervorzuheben sind. Weiterhin soll hier der
Einfachheit halber der am SchluB3 des letzten Abschnittes genannte be-
sonders wichtige Spezialfall vorausgesetzt werden, dall hochstens ein
Winkel des Dreiecks von = verschieden ist. Der allgemeine Fall 148t sich
in ganz entsprechender Weise durchfiihren.

Im Falle des Kreisbogendreiecks vereinfachen sich die bisherigen Be-
trachtungen ganz wesentlich. Das beruht einerseits darauf, daf3 keine
akzessorischen Parameter auftreten. Anderseits reduziert sich in diesem
Falle die Gleichung (16) auf eine hypergeometrische Differentialgleichung.
Man kann infolgedessen die ganze Theorie der hypergeometrischen Funk-
tion zur Anwendung bringen. Insbesondere konnen die Probleme auch
numerisch ziemlich bequem durch hypergeometrische Reihen berechnet
werden.

Wenn man den von = verschiedenen Winkel des Stromungsbereiches
mit Ax bezeichnet (Abb. 1), so haben die Exponenten der Gleichung
(16) gemdB (15) und (22) bis (24) die folgenden Werte :

oy = 0g=10 o = oy =1
y_ —1—4 n _ — 144 (40)
“32*—'————2—*—*— 3'._::_.——_‘5*__4

und die Gleichung (38) nimmt (es kann jetzt z* = z** gesetzt werden)
gemifB (20) die Form an

d2z**

£ — 1) g+ %u~pnwzo. (41)

Das ist eine hypergeometrische Differentialgleichung. Sie entsteht aus
der iiblichen Schreibweise

%ok k%
(- DU e+ B -y tapar =0 (@)
dadurch, da man
A—1 — -1
a=tT0  p=TAT0 y=0 (43)

setzt.
Um zunichst die Abbildungsfunktion (25) zu berechnen, bieten sich
vor allem drei Wege dar. Erstens kann man die 24 Kummerschen Parti-
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kuldrintegrale ¢) von (41) bilden, d. h. im wesentlichen die sechs Funda-
mentallosungen dieser Gleichung. Diese ergeben sich in Form von hyper-
geometrischen Reihen, zu welchen bei ganzzahligen Exponentendiffe-
renzen noch logarithmische Glieder hinzutreten kénnen. In unserem Fall
hat sowohl fiir { = 0 wie auch fiir { = 1 die Exponentendifferenz den
Wert 1. Diese 24 Integrale konnen unter Beniitzung der Formeln

_ Iy -0y —a—pg—1)
Iy —«—1NI(y—p—1)

F(O"ﬁ’y;o):l F(O‘aﬂ!}’;l) (44)
nach bekannten Regeln leicht ineinander fortgesetzt werden ), wobei F
in bekannter Weise die hypergeometrische Reihe und II die GaufBlsche
IT-Funktion bezeichnet. Jedes dieser 24 Integrale konvergiert in einem
gewissen Bereiche der {-Ebene, und alle diese Bereiche iiberdecken die
¢-Ebene liickenlos. Man kann also auf diese Weise den Gesamtverlauf
zweier Losungen z* und z}* und damit denjenigen der zugehorigen
Funktion (33) in der ganzen (-Ebene bestimmen.

In unserem Fall ist es am bequemsten, fiir 2 * und 2** die nicht loga-
rithmischen Fundamentallosungen um die Punkte { =1 und { = 0 zu

withlen 8) und demgemif

arma-op(REL, AL b |

2

A+1 ——-l—{—l’ 2;&_)

(45)
B =tF (-, =5

zu setzen. Unter Beriicksichtigung von (43) erhilt man daraus fiir (33)

- (Fe+ 1, —«,2;0)

w(¢) (46)

Diese Darstellungen gelten zunichst nur fiir die Konvergenzgebiete der
obigen Reihen, d. h. fiir die Kreise | {|<1 und |1 — {|<1 bzw. fir
deren gemeinsames Konvergenzgebiet, lassen sich aber nach dem dar-
gestellten Prinzip auf die ganze {-Ebene analytisch fortsetzen.

Vermittelst des obigen Fortsetzungsprinzips¢®) lifit sich nun leicht
zeigen, daB der Quotient (46) die obere (-Halbebene auf das in Abb. 6
dargestellte schraffierte Kreisbogendreieck mit den Ecken

w(0) =00 w(l)=0 w (00) = €™+ (47)

%) Vergleiche Forryth-Jacobsthal, Lehrbuch der Differentialgleichungen, 6. Kapitel,
sowie die unter FuBnote 5 genannte Literaturangabe.
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abbildet, welches in diesen Punkten bzw. die Winkel n, # und Ax =
(2« + 1) # hat. Da aber alle Kreisbogendreiecke mit gleichen Winkeln
kreisverwandt sind, kann man weiterhin die Konstanten in (25) sofort
so bestimmen, da3 das Dreieck der Abb.
6 auf den gegebenen Stromungsbereich
abgebildet wird. Die Funktion (25) kann
also auf diese Weise durch hypergeo-
metrische Reihen dargestellt werden. Es
ist dies im Prinzip der von Wolff ein-
geschlagene Weg zur Bestimmung der
Funktion (25).

Eine zweite Berechnungsmethode er- Abbildung 6
gibt sich aus der Darstellung der hyper-
geometrischen Funktion durch bestimmte Integrale?). Man rechnet auf
Grund dieser Darstellung leicht aus, da3 in unserem Fall der Quotient (46)
die fiir die ganze (-Ebene giiltige Gestalt

fta(l — e[l — (1 — ¢) ¢ dt
1—10 3%
()= z

i (48)
fe( —tyo(1 —ge)x dt
0

hat. Der Vorteil dieser Schreibweise liegt neben ihrem theoretischen
Wert hauptsédchlich in ihrer Geschlossenheit und Einheitlichkeit. Fiir die
numerische Berechnung ist sie jedoch weit weniger geeignet als die erste
und eine gleich zu besprechende dritte Losungsform. Die Ableitungen
von (46) und (48) konnen leicht ausgerechnet werden gemidfl der Glei-
chung (34).

Der dritte Weg schlieBllich, der wahrscheinlich meistens der einfachste
ist, besteht darin, daB die Losungsmethoden des nichsten Abschnitts fiir
die allgemeine Gleichung sehr gut auch auf den Fall des Kreisbogendrei-
ecks angewandt werden konnen. Sie vereinfachen sich hier noch wesent-
lich dadurch, daB3 die zu einem gegebenen Dreieck gehorende Gleichung
(31) von vornherein bekannt ist. Im iibrigen sei auf die Entwicklungen
des nichsten Abschnitts verwiesen.

Durch diese drei Methoden kann also zu einem gegebenen Kreisbogen-
dreieck sofort eine zugehorige Funktion (33) sowie deren Ableitung und
damit auch die zugehorige Funktion (25) und deren Ableitung berechnet
werden.

) Vgl. zum Beispiel Klein, Vorlesungen iiber die hypergeometrische Funktion.
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Es handelt sich nun noch um die Bestimmung von (11) und (13), d. h.
um die Berechnung der in diesen Funktionen auftretenden Konstanten.
Diese hat gemafBl den Formeln (27) und (28) zu erfolgen. Dazu ist es vor
allem notwendig, die GroBe ¢ zu kennen, d. h. denjenigen Punkt der
{-Ebene, der dem Punkt z =oo entspricht (Abb. 5). Die Berechnung
von @ gemifl Gleichung (25) (vgl. die dadurch entstehende Gleichung (73)
im folgenden Abschnitt) kann nun numerisch sehr rasch und genau er-
folgen vermittelst der fiir w({) gefundenen Darstellungen und deren
Ableitungen. Man braucht nur von einem Naherungswert auszugehen
und kann dann durch das Newtonsche Naherungsverfahren den Wert von
@ in wenigen Schritten rasch und genau bestimmen. Die Anwendung des
Newtonschen Verfahrens empfiehlt sich hier deshalb, weil mit der Be-
rechnung von () gleichzeitig im wesentlichen auch die Ableitung
dieser Funktion bekannt wird. Nachdem nunmehr @ bekannt ist, stellen
(27) und (28) ein Gleichungssystem dar, aus dem eindeutig a, b, ¢, d
und U berechnet werden konnen (fiir die Durchfithrung der Rechnung
vgl. man die Formeln (74) bis (76) im néchsten Abschnitt). SchlieBlich
handelt es sich noch um die Bestimmung der Zirkulation. Wenn wir
diese Grofle geméfl der Bemerkung auf Seite 89 bestimmen wollen, so
miissen wir nur sehen, welcher Punkt auf dem Einheitskreis in der
Z-Ebene dem Eckpunkt des Profils, also dem Punkt { =oo, entspricht.
Gemdf3 (13) ist das der Punkt

=€ (49)

wo ¢ das Argument der GroBe (49) darstellt. Die Stromung in der Z-Ebene
muf3 dann in diesem gleichen Punkt ihren hinteren Staupunkt haben.
Bezeichnen wir den hinteren Staupunkt der durch (11) dargestellten
Stromung durch S, (Abb. 5), so mufl also die Gleichung bestehen

8, = e . (50)

Die Staupunkte einer Stromung sind dadurch ausgezeichnet, daBl in
ihnen die Geschwindigkeit verschwindet. (50) fiihrt also auf die Forde-
rung, dafl die Ableitung von (11) fiir Z = ¢! verschwinden muf}, und
aus dieser Bedingung bestimmt sich I'. Die Ausrechnung ergibt

I'=4nUsing . (51)

Die damit bekannten Funktionen (11), (13) und (25) stellen nun die
gesuchte Stromung dar. Die Geschwindigkeit ergibt sich als Ableitung
der aus diesen Gleichungen flieBenden Abhéngigkeit zwischen z und w.
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Am einfachsten ist es, weil durch (46) bzw. (48) w unmittelbar als Funk-
tion von ¢ bestimmt wird, die Geschwindigkeit als Funktion von { aus-
zudriicken. Die Ausrechnung ergibt

dw dZ

dw T E

dz = Tdz do (52)
i &

wobei alle in (52) auftretenden Differentialquotienten als Funktionen von
¢ auszudriicken sind. Damit kann nun, ausgehend von einem beliebigen
Punkt der {-Ebene, zunidchst gemé8 (25) der zugehorige Punkt der Stro-
mungsebene und dann gemdB (52) in diesem die Geschwindigkeit be-
rechnet werden.

Die Stromlinien ergeben sich dadurch, da man den Imaginérteil von
(11) gleich einer willkiirlichen Konstanten setzt, was die Stromlinien in
der Z-Ebene liefert. Aus diesen ergeben sich dann diejenigen in der
z-Ebene gemdB (13), (46), (48) und (25). Die Zirkulation I" bestimmt sich
nach Gleichung (51). Aus /"und aus der Geschwindigkeit im Unendlichen
ergibt sich ferner nach dem Satz von Kutta-Joukowsky sofort der Auf-
trieb, den das Profil erfahrt. SchlieBlich kann noch das komplexe Moment

gemdB (7) und (10) berechnet werden, indem man %—(:- um den Punkt

z =oo in eine Reihe entwickelt. Infolge der etwas komplizierten Gestalt
(52) fiir die komplexe Geschwindigkeit (der Punkt z =oo entspricht da-
bei dem Punkt ¢ = @) ist es aber einfacher, die Geschwindigkeit lings
des Profils zu berechnen, was besonders leicht geschehen kann, weil ldngs
des Profils die GroBe ¢ in (46) bzw. (48) reell ist. Das komplexe Moment
ergibt sich dann gemif (6). SchlieBlich kann aus der Geschwindigkeits-
verteilung lings des Profils auch noch die Grenzschicht berechnet werden.
Alle diese Rechnungen kénnen, wie im nichsten Abschnitt ausfiihrlich
dargelegt wird, auch numerisch sehr gut durchgefithrt werden. Man ver-
gleiche dazu auch die durchgerechneten Beispiele in Abschnitt 7.
Durch die Methoden dieses Abschnittes konnen auch solche Strémun-
gen berechnet werden, deren Stromungsbereich sich durch symmetrische

— <=

Abbildung 7 Abbildung 8

Wiederholung aus einem Kréisbogendreieck ableiten 148t. In erster Linie
ist hier der Fall des symmetrischen Kreisbogenvierecks zu nennen, durch
den sich sehr viele und wichtige Formen von Tragfliigelprofilen erfassen
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lassen. In den Abb. 7 und 8 sind zwei solche Profile dargestellt, von denen
das erste symmetrisch in bezug auf eine Gerade, das zweite symmetrisch
in bezug auf einen Kreis ist.

Um eine solche Aufgabe zu l6sen, muf3 man nur die zu einem derartigen
Stromungsbereich gehorende Abbildungsfunktion (25) bzw. deren auto-
morphe Umkehrfunktion { = A (z) vergleichen mit einer Schwarzschen
Dreiecksfunktion ¢, = s(z), welche die Elementardreiecke des Stro-
mungsbereiches auf die obere bzw. die untere (-Halbebene abbildet.
8(z) ist dann eine rationale Funktion von A4 (z), deren Grad gleich der
Anzahl der Elementardreiecke ist, aus denen sich der Stromungsbereich
zusammensetzt, und die man am besten dadurch bestimmt, dafl man in
der zu ¢, = s(z) gehorenden hypergeometrischen Gleichung £, als ratio-
nale Funktion von ¢ ansetzt und dann die Koeffizienten dieser rationalen
Funktion so bestimmt, dal die entstehende Differentialgleichung dem
Stromungsbereiche entspricht. Damit kann aber die Abbildungsfunktion
(25) ausgedriickt werden durch die genannte Dreiecksfunktion, so da@
man auf den in diesem Abschnitt behandelten Fall zuriickkommt. Im
wichtigsten Fall des symmetrischen Kreisbogenvierecks (Abb. 7 und 8)
wird bei geeigneter Normierung der Funktionen A4 (z) und s(z) die
letztere einfach gleich dem Quadrat der ersteren. Im zweiten Beispiel in
Abschnitt 7 ist eine derartige Stromung behandelt.

5. Das allgemeine Kreishogenpolygon

Beim allgemeinen Kreisbogenpolygon ergeben sich gegeniiber dem im
letzten Abschnitt behandelten Fall des Kreisbogendreiecks zwei wesent-
liche Schwierigkeiten. Erstens ist es nicht mehr moglich, die zugehorigen
Differentialgleichungen, die jetzt mehr als drei singulire Punkte ent-
halten, durch verhéltnisméfig einfache analytische Ausdriicke zu inte-
grieren, wie dies im hypergeometrischen Fall geschehen konnte. Zweitens
ist es bei gegebenem Kreisbogenpolygon zunéchst nicht einmal mehr
moglich, die zugehorige Differentialgleichung der Fuchsschen Klasse
vollsténdig anzugeben, denn wenn wir uns diese wieder in einer der beiden
frither angegebenen Weisen normiert denken, so treten in ihr neben den
Exponenten als weitere Parameter noch die n — 3 wvon 0, 1, oo ver-
schiedenen singuldren Stellen und die n» — 3 akzessorischen Parameter,
also im ganzen 2n — 6 weitere Konstanten auf, und iiber die Beziehung
dieser letzteren zum gegebenen Kreisbogenpolygon ist nichts bekannt.

Es wird jedoch gelingen, diese beiden Schwierigkeiten durch verhéltnis-
méBig einfache Ndherungsmethoden zu iiberwinden. Was zunéchst den
zweiten Punkt betrifft, so lassen sich verschiedene interessante Beziehun-
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gen aufstellen zwischen den genannten 27 — 6 Parametern und der
Gestalt des Kreisbogenpolygons, die sich auch fiir die numerische Rech-
nung verwerten lassen. Jedoch hat sich gezeigt, daBl es viel praktischer
ist, einen andern Weg zu beschreiten. Wir werden nichstens zeigen, daf3
eine gegebene Gleichung (31) sehr leicht und rasch soweit integriert wer-
den kann, bis die Gestalt des zu ihr gehdérenden Kreisbogenpolygons be-
kannt wird. Infolgedessen kann man, ausgehend von einer Néherungs-
l6sung, die noch nicht bestimmten 2n — 6 Parameter so lange variieren,
bis das zugehorige Kreisbogenpolygon beliebig genau mit einer gegebenen
Form iibereinstimmt, wobei man zwischen den entstehenden Polygonen
linear interpolieren wird. Eine Niherungsform fiir die Differentialglei-
chung 148t sich immer finden, entweder durch Probieren oder auf experi-
mentellem Wege. Sehr hdufig verhilt es sich auch so, dal es sich darum
handelt, eine ganze Reihe von Profilformen zu untersuchen, die alle an-
gendhert die gleiche Gestalt haben. Beispielsweise ist das oft der Fall bei
Tragfliigelprofilen. Im dritten Beispiel in Abschnitt 7 ist ein derartiger
Fall behandelt. Nach der Erfahrung des Verfassers ist es bei nicht zu
hoher Eckenzahl sehr rasch und gut moglich, auf diesem Wege die zu
einem gegebenen Polygon gehorende Gleichung (31) zu bestimmen.

Damit das gegebene und die gemifl dem obigen Verfahren eventuell zu
verschiedenen Gleichungen (31) gehoérenden Polygone (diese letzteren
sind ja nur bis auf eine Kreisverwandtschaft bestimmt) miteinander ver-
glichen werden konnen, ist es noch noétig, sie in bestimmter Weise zu nor-
mieren. Das kann z. B. dadurch geschehen, dafl man verschiedene Poly-
gone durch Kreisverwandtschaften so umformt, daB drei bestimmte Eck-
punkte mit drei gegebenen Punkten der Ebene zusammenfallen, z. B.
mit den Punkten 0, 1, co. Eine andere Methode der Normierung besteht
darin, dafl man die Polygone so umformt, dafl zwei bestimmte aneinander-
grenzende Seiten, die einen von null verschiedenen Winkel einschliefen,
auf zwei gegebene Geraden fallen, die sich unter dem gleichen Winkel
schneiden. In Beispiel 3 in Abschnitt 7 ist diese Normierung verwendet.
Beide Methoden konnen duflerst einfach und praktisch auf graphischem
Wege durchgefiihrt werden. Im Prinzip kommen beide auf die Aufgabe
heraus, eine Kreisverwandtschaft anzugeben, welche drei gegebene
Punkte 4, B, C bzw. in drei andere gegebene Punkte D, £, F uberfiihrt
(bei der zweiten Methode wird ein Polygoneckpunkt in den Schnittpunkt
der Geraden und der andere Schnittpunkt derselben Polygonseiten in
den unendlichfernen Punkt iibergefiihrt). Nun 148t sich jede Kreisver-
wandtschaft erhalten durch sukzessive Ausfiihrung von Translationen,
Drehstreckungen und Spiegelungen an Kreisen. Umgekehrt fiithrt die
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wiederholte Anwendung dieser Operationen stets zu einer Kreisverwandt-
schaft. Es handelt sich also nur darum, eine Folge der genannten Opera-
tionen anzugeben, welche 4, B, C'in D, E, F uberfiihrt. Wenn wir etwa
den ungiinstigsten Fall betrachten, daBl alle Punkte im Endlichen ge-
legen sind (Abb. 9), so fithren wir zunéchst 4, B, C durch Spiegelung an
einem Kreis K, mit dem Mittelpunkt A (Abb. 9; dieser wird am besten
so gewdhlt, daBl er gleichzeitig auch noch durch einen andern Punkt
geht) in die drei Punkte A4,, B,, C, iiber, wobei 4, im Unendlichen liegt.
In ganz entsprechender Weise verfahren wir mit den Punkten D, K, F
durch Spiegelung am Kreis K, mit dem Mittelpunkt D. Wenn wir nun
die Ebene der Punkte A, B, C zuerst an K, spiegeln, nachher durch eine
Translation und eine Drehstreckung so verschieben, dafl B, in £, und
C, in F, iibergeht, und schlieBlich an K, spiegeln, so stellt die Aufein-
anderfolge dieser Operationen die gewiinschte Umformung dar. Wenn
einer oder zwei Punkte im Unendlichen liegen, vereinfacht sich das Ver-
fahren entsprechend. Natiirlich kénnen die gleichen Operationen auch in
verschiedenen Modifikationen auf rechnerischem Wege durchgefiihrt
werden.

Es handelt sich nun weiterhin vor allem um die Angabe eines einfachen
Integrationsverfahrens zur Losung von Gleichungen der Form (31).

Abbildung 9

Solche Gleichungen sind tatsdchlich in verschiedener Hinsicht auBler-
ordentlich geeignet zur numerischen Integration. Wir werden zeigen,
daB} es vor allem zwei Wege gibt, auf denen die Integration rasch und mit
beliebiger Genauigkeit vorgenommen werden kann, von denen sich vor
allem der zweite als praktisch sehr gut und rasch durchfiihrbar erwiesen hat.

Die erste Integrationsmethode beruht darauf, daBl man die gegebene
Gleichung (31) durch die Substitution

_ %k
w=g (Igz**) (63)
iiberfiihren kann in die Riccatische Gleichung
du .8
—C—lz_— = —J()—u?, (54)
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welche sich zur numerischen Integration auBlerordentlich gut eignet. Vor
allem ist das der Fall hinsichtlich des Verfahrens von Runge und Kutta?),
was darauf beruht, daB die rechte Seite von (54) in zwei Summanden
zerfillt, von denen der erste nur von {, der zweite dagegen nur von w
abhingt. Die Grolen k,, k,, k,, k,?) nehmen dann, wenn man von den
Anfangswerten {, und %, ausgeht und dem Argument den Zuwachs A
erteilt, die Gestalt an

ky = [—J($) — u3] h

o[-t 2]~ (st ) o
’ - (55)

oo ) )

ky =[—J o+ h) — (ue+ k3)h

und fiir den zu k gehorenden Zuwachs k£ der Losung gilt bei nicht zu
grofem h mit auBerordentlich guter Anndherung

k=%("’1+ 2ky + 2k; + k) . (56)

Die GroBe kh kann dabei irgendeine komplexe Zahl sein, und man kann
also gemidB (55) und (56) die Losungen von (54) lings irgendeines kom-
plexen Integrationsweges berechnen, der nur die singuldren Stellen ver-
meidet. Es ist dazu nur nétig, die Funktion —J({) lings des betreffen-

7
|
¥ - £Ebene
Sy, Sy . Sy = Singuldre Punkfe
Inlegrationsweg
o < o o ;
Abbildung 10

den Integrationsweges zu kennen. Die Bestimmung von —J({) kann
durch direkte Ausrechnung erfolgen, was jedoch im allgemeinen etwas
umstindlich ist. Ganz besonders einfach 148t sich die Bestimmung von

8) Vergleiche Kamke, Differentialgleichungen, 2. Auf., Leipzig 1943, oder Runge und
Konig, Numerisches Rechnen, Berlin 1925.

9) Wir folgen dabei der allgemeinen ublichen Schreibweise, siehe dazu etwa die unter
FuBlnote 8 genannten Literaturangaben.
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—J(¢) und anschlieBend die Losung der Gleichung (54) durchfiihren,
wenn der Integrationsweg aus lauter Strecken zusammengesetzt ist, die
entweder zur reellen oder zur imaginéren Achse parallel sind. In Abb. 10
ist ein solcher Integrationsweg dargestellt, wie er etwa zweckméf@iger-
weise verwendet werden kann. Fiir solche Integrationswege 1ia8t sich der
Verlauf der Funktion —J({) vermittelst gewisser Grundfunktionen
sofort angeben. In der Tat setzt sich ja —J(¢) additiv aus lauter Ter-
men zusammen, welche eine der beiden Formen

p __r

{—q (& — 8)?

haben, wobei p, ¢, 7, s reelle Konstanten sind. Fiihrt man nun die beiden
Funktionen

(57)

1 1

@1(t) = 7 @2 (t) = I (58)

Darslellvng der Funktionen gﬂ}'ﬂ-(/)

4 I
5= A BO5E

Abbildung 11

der reellen Variabeln ¢ ein (Abb. 11), so nehmen die Ausdriicke (57), zu-
nichst lings der reellen Achse, die Gestalt an

P ¢(&§ — q) r @ (& — ), (59)

wobei wie frither ¢ = & + 19 gesetzt ist, so daB also, wenn die Funk-
tionen (58) etwa graphisch oder tabellarisch gegeben sind, der Verlauf
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der Ausdriicke (57) lings der reellen Achse sofort abgelesen werden
kann, wodurch dann auch —J({) bekannt wird. In dhnlicher Weise
ergeben sich fiir den Verlauf der Terme (57) lings der Geraden & = v =
konst., wobei v nur nicht mit der Abszisse eines singuldren Punktes zu-
sammenfallen soll, die Ausdriicke

P r ‘
: - : y 60
(v—¢q +1in [(v —q) + o9 54
die sich unter Verwendung der reellen Funktionen
1.. ¢
Ps(t) = Tre Pa(t) = Tre

() — 1 —¢2 (t) = 2¢ (61)

s (t) = NEYSH e (t) = m)—g

(Abb. 11) auch in der Form schreiben lassen

L) -inGR)]  wrln ) - ()]

SchlieBlich erhélt man in vollstindig analoger Weise fiir die Summanden
(57) auf der Geraden # = w = konst. (w 7 0) die Ausdriicke

o)) Sl () ()]
Vermittelst der Formeln (59), (62) und (63) kann also der Verlauf der
Funktion —J({) ldngs aller Integrationswege von der Art des in
Abb. 10 dargestellten sofort berechnet werden aus demjenigen der Funk-
tionen ¢;(f) (¢ =1, 2,...,6). Diese letzteren sind in Abb. 11 darge-
stellt. Sie konnen leicht berechnet und tabelliert werden und dann als
Grundlage dienen zur Losung aller derartiger Probleme. Nachdem
—J () bekannt ist, kann die Gleichung (54) gelost werden, wobei man
die Rechnungen mit groBem Vorteil in graphischer Form durchfiihrt.
Um diese Losungen noch fiir andere Werte von { zu berechnen, kann
man in gleicher Weise vorgehen lings Integrationswegen derselben Art,
die vom ersten abzweigen. ;
Es sei nun u*({) eine beliebige Partikuldrlosung der Gleichung (54),
die, in bekannter Weise von einem Anfangspunkt ausgehend, nach dem
obigen Verfahren berechnet wurde. Dann ist nach (53) der Ausdruck

Jureyac, (64)
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der sich numerisch sehr leicht berechnen 148t (die Integration kann jetzt
lings des gewihlten Integrationsweges ohne weiteres ausgefiihrt werden),
und in dem ¢, eine beliebige Konstante bedeutet, ein partikulidres Inte-
gral von (31), womit unser Ziel erreicht ist.

Um zur Abbildungsfunktion (25) zu gelangen, kénnte man in gleicher
Weise noch eine zweite partikulire Losung bestimmen und dann den
Quotienten (33) bilden. Viel einfacher ist es jedoch, den Ausdruck

¢ g
~2Iu*(§)d§
w*(C)*——fe " d¢ (65)

&1

wobei {, wieder eine beliebige Konstante ist, zu bilden, der lings des
Integrationsweges auch leicht berechnet werden kann, und der geméif
(36) eine Funktion (33) darstellt, so daB sich also die Abbildungsfunktion
(25) als lineare Funktion von (65) ergibt. Ausgehend von einer beliebigen
Losung u*({) der Gleichung (54) kann man also durch Bildung von (65)
im wesentlichen bereits zu der gesuchten Funktion (25) gelangen.

Die zweite Integrationsmethode schliefit sich eng an die erste an. Ihr
wesentlicher Unterschied gegeniiber dieser letzteren besteht darin, da(
die Rechnungen fast vollstindig im reellen Zahlgebiet durchgefiihrt wer-
den konnen, was fiir die praktische Ausrechnung eine grofle Verein-
fachung ist. Sie geht ebenfalls aus von der zu einer gegebenen Gleichung
(31) gehorenden Riccatischen Gleichung (54). Aber statt die singuldren
Punkte auf Integrationswegen der in Abb. 10 dargestellten Gestalt zu
umgehen, verwendet sie in diesen Reihenentwicklungen fiir die Losungen.
Es sei { = § zunichst eine endlich singulire Stelle der Gleichung (54),
also ein Pol der Invariante J({). Dann besitzt dort (54) stets mindestens
eine Losung u*((), welche um den Punkt { = § eine reelle Reihen-
entwicklung der Form

W) = g all — S) Fay(l =SP4 (60
hat. Einer Losung dieser Form entspricht bei der zugehorigen Gleichung
(31) geméB (53) eine Fundamentallosung, in welcher keine logarithmi-
schen Glieder auftreten. Im allgemeinen besitzt also (54) sogar zwei
Losungen der Form (66). Nur wenn (31) fiir (=8 eine ganzzahlige Ex-
ponentendifferenz hat, kann es vorkommen, dal nur ein derartiges
Integral existiert. Man kann also mit dem Ansatz (66) in die Gleichung
(564) hineingehen und auf diese Weise die Koeffizienten a; (: = —1, 0,
1,2,...) berechnen. Dazu ist es zunichst notwendig, die Funktion
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—J(¢) nach Potenzen von { — S zu entwickeln, was, da —J () sich
aus lauter Summanden der beiden Formen (57) zusammensetzt, in ele-
mentarer Weise geschehen kann durch Anwendung der beiden Formeln

1
FET ol R+
) (67)
ﬁ)5=1i25+3p:}:453+5t4 .

Die auf diese Weise erhaltene Entwicklung von —J({) um den Punkt ¢
=S sei

—I(Q) = o A

(C—8)* ~ (£—8)

und daraus erhilt man durch Einsetzen von (66) in (54) fiir die Koeffi-
zienten a; die Rekursionsformeln

+ + 4+ 4,(0—8)+A4,(L—8)*+- - - (68)

ag.l - a_,l == A__2
A4,
b = 2a_,
Ao - a(z)
"1 2,
+ 2a_,
a . A‘l - 2&0 al . (69)
27 24 2a_,
0 — A, — ai — 2a4a,
? 3+ 2a_,
A; — 2a,a, — 2a4a,
a4 =

4 4 2a_,

Aus der ersten quadratischen Gleichung ergeben sich zwei Moglichkeiten
fir a_,, die im allgemeinen beide verwendet werden konnen. Einzig bei
ganzzahligen Exponentendifferenzen fithrt im allgemeinen nur eine Lo-
sung zu einem moglichen Resultat, und zwar die groBere. In jedem Fall
ist es also moglich, eine reelle Losung in der Form (66) anzugeben. Diese
Losung kann in der Umgebung der Stelle { = 8, wo nur wenige Glieder
der Reihe (66) zu beriicksichtigen sind, sehr rasch berechnet werden,
wobei man fiir die praktische Rechnung das Hornersche Schema®) und
dhnliche Hilfsmittel verwenden wird.

Aus der so erhaltenen Losung u*({) 148t sich nun aber gemifl (65)
sofort eine zur ‘gegebenen (leichung gehorende Abbildungsfunktion bil-

10) Vgl. das unter FuBlnote 8 genannte Werk von Runge urd Konig.
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den. Indem man die mit — 2 multiplizierte Reihe (66) zuerst integriert
und nachher die Exponentialfunktion dieses Integrals bildet, erhidlt man
fiir den Integranden in (65) bei geeigneter Wahl von ¢, die Entwicklung

(¢ ——IS)2¢'-1 [1 — 2a4(¢ — 8) + (208 — a,) (8 — 8)?

4
+ (—'*3—“3—{’ 2a40a, “‘2‘“2)@"“8)3

2 4
= (—3~a3-— 2a3a1+—3—a0a2+-;-a§—%3—)(6——S)‘...] , (70)

durch welche dieser in der Umgebung von { = § wieder sehr rasch und
genau berechnet werden kann. SchlieSlich muf3 (70) noch integriert wer-
den. Falls 2a_, keine positive ganze Zahl ist, erhidlt man bei geeigneter
Wahl von ¢, fiir die Abbildungsfunktion (65) in der Umgebung von
¢ = 8 sofort gie Entwicklung

1 1 2a
FO =g | T ) T €

4 2
-—a,?,+2a0a1——3—a2

2a% — a, 3 .
T3 e, C TN 4 —2a_, (¢=48)
2 4 1 1
—é-—a%—-—2a%a1+-?:aoaz+—2—al —'E%
+ i (C—8p+---|, ()
— 2a_,

wobei fiir die Potenz vor der eckigen Klammer etwa derjenige Zweig an-
genommen werden soll, der fiir positive Werte von { — S wieder positiv
wird. Falls dagegen 2a_, eine positive ganze Zahl ist, ersetzt sich in leicht
ersichtlicher Weise ein Summand in der Entwicklung (71) durch ein loga-
rithmisches Glied.

Indem man diese gleichen Operationen, die numerisch sehr leicht und
rasch durchgefiihrt werden konnen, nicht nur fiir den singuldren Punkt
{ =8, sondern fiir alle singuliren Punkte der Differentialgleichung
durchfiibrt (es ist dies in ganz entsprechender Weise auch moglich, wenn
8 im Unendlichen liegt), erhélt man lings der ganzen reellen Achse so-
viele zu der gegebenen Gleichung (31) gehorende Abbildungsfunktionen
(65) als singulire Punkte vorhanden sind. Ferner behilt die Formel (71)
ohne weiteres ihre Giiltigkeit bei, wenn 8 ein regulidrer Punkt der Diffe-
rentialgleichung ist. Sie vereinfacht sich in diesem Fall dadurch noch
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wesentlich, dal der Koeffizient a_, in der Entwicklung (66) verschwindet
und daB @, = 1 gesetzt werden kann, wihrend sonst alle andern Uber-
legungen unverindert bleiben. Es ist also demgemill auf elementare
Weise moglich, Abbildungsfunktionen in der Form (71) ldings der reellen
Achse in beliebiger Anzahl zu bilden. Praktisch wird es meist vollauf ge-
niigen, auller den singuliren Punkten eine einzige fiir jedes Intervall
zwischen zwei singuliren Punkten zu verwenden. Es handelt sich nun
nur noch darum, diese verschiedenen Funktionen (65) zu einer Gesamt-
losung w({) zusammenzusetzen. Das kann aber ebenfalls in recht ein-
facher Weise geschehen, da ja jede dieser Funktionen eine lineare Funk-
tion jeder andern ist. Sind etwa o« () und f () zwel benachbarte
derartige Abbildungsfunktionen, die also léngs eines gemeinsamen Stiickes
der reellen Achse definiert sind, so besteht eine Gleichung der Form
%k
w : _— f__wlTi_C_ , (72)‘
nw; + 9 R

wobei ¢, £, n, # bis auf einen gemeinsamen Faktor bestimmte komplexe
Konstanten sind, die dadurch berechnet werden kénnen, dal man ver-
langt, daB (72) fiir irgend drei {-Werte des gemeinsamen Definitions-
bereiches erfiillt ist. Indem man in gleicher Weise mit den iibrigen er-
haltenen Losungen (65) verfihrt, erhidlt man schlieSlich den Gesamt-
verlauf einer Abbildungsfunktion «({) lings der reellen Achse, aus der
sich dann auch sofort (25) ergibt. Ausgehend von den Loésungen (65)
kann man dann wieder wie bei der ersten Integrationsmethode ins kom-
plexe Gebiet vorstoBen, indem man Integrationswege verwendet, die
aus lauter waagrechten und senkrechten Strecken bestehen, wobei man
wieder die Funktionen ¢,({) (¢ =1, 2,..., 6) benutzen wird.

Die Zusammensetzung zweier benachbarter Funktionen (65) kann
wieder auBerordentlich einfach nach dem S.98 bis 99 beschriebenen
Verfahren, am bequemsten auf graphischem Wege, vorgenommen wer-
den, da es sich ja auch hier darum handelt, eine Kreisverwandtschaft an-
zugeben, die drei gegebene Punkte in drei andere gegebene Punkte iiber-
fithrt. Man braucht dazu nur im gemeinsamen Definitionsbereich zweier
benachbarter Funktionen (65) drei beliebige Punkte auszuwihlen, in
diesen die Funktionswerte zu berechnen und mit diesen letzteren gemdf
dem S.98 bis 99 beschriebenen Verfahren zu operieren. Durch Ver-
wendung dieser Methoden, welche noch durch viele praktisch wertvolle
Modifikationen ergéinzt werden koénnen (vor allem sei nochmals auf das
Hornersche Schema zur Berechnung von Potenzreihen hingewiesen)
kann nun eine gegebene Gleichung (31) sehr rasch und leicht soweit ge-
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lost werden, dal die Gestalt des zu ihr gehdrenden Polygons ersichtlich
wird. Weiterhin kann dann, falls die zu einem gegebenen Polygon ge-
horende Gleichung (31) geniigend genau bestimmt ist, eine zu dieser
letzteren gehorende Abbildungsfunktion w({) in ihrem Gesamtverlauf
beliebig genau ermittelt werden. Gleichzeitig mit () wird stets auch
»’(¢) bekannt. Diese zweite Integrationsmethode stellt nach der Er-
fahrung des Verfassers die beste und rascheste Methode dar zur Losung
solcher Probleme.

Zur vollsténdigen Berechnung der Strémung, wie sie im Prinzip be-
reits im dritten Abschnitt angegeben wurde, ist es nun zunéichst vor
allem notig, den Punkt @ (vgl. S.88) gemid der aus (25) flieBenden
Gleichung 3

w(Q) = "—‘g' (73)

(die Nenner in [25] miissen fiir { = ¢ verschwinden) zu berechnen. Das
kann in genau gleicher Weise wie im Fall des Kreisbogendreiecks durch
das Newtonsche Verfahren geschehen, wobei mit groBem Vorteil die ge-
nannten Integrationsmethoden fiir komplexe Integrationswege verwen-
det werden konnen. Aus @ ergibt sich ferner sofort die Grofle w’(Q).

Weiterhin handelt es sich wieder um die Berechnung von (11) und (13).
Die in diesen Funktionen auftretenden Konstanten a, b, ¢, d und U
ergeben sich aus den Gleichungen (27) und (28). Die zweite dieser Glei-

chungen 148t sich noch vereinfachen. Indem man gemifl (13) und

L
1 dg

—— gemil (25) ausrechnet und die beiden Ausdriicke unter Beriicksichti-
r3

gung von (73) um den Punkt { = @ in Potenzreihen entwickelt, nimmt
(28) bei Beachtung von (14) und (26) die Gestalt an

—212 U o' (Q) =V(a — bi) . (74)

Aus (74), (27) und (14) ergeben sich nun a,b,c,d und U in recht
einfacher Weise. Fiithrt man die Abkiirzungen ein

W= QV?LZ)I;L@— (Vorzgichen der Wurzel beliebig) (75)
JW)=E RW)=F —JQW)=6¢ —RQW)=H

so ergeben sich, wie man sofort durch Einsetzen bestétigt, fiir die ge-
suchten Konstanten die Werte

1 — _ — _
U“Eﬁtj@'“zEVU b=FY'U ¢=GVU d=HYU, (16)
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wobei das Vorzeichen von VU wieder beliebig gewihlt werden kann.
Als letzte Grofie bestimmt sich schlielich I" aus der Gleichung (51). Da-
mit sind die Funktionen (11), (13) und (25) vollstdindig bestimmt und also
unser Problem gelost.

Die Stromungsgeschwindigkeit, die durch die obigen Formeln bestimmt
ist, 1dBt sich wie beim Kreisbogendreieck am besten als Funktion von ¢
ausdriicken. Die Ausrechnung gemif3 Formel (52) ergibt, wenn man noch
die Abkiirzungen

p=a’l-+c gq=b(+d (77)
einfiihrt
P 2
dw _ [go@) +ap UPIT G @4 D) 5
dz () (P* + ¢*)
Diese Formel a8t sich auf Grund von (34) auch in der Gestalt
’ r
dw 1 , 8Upg— (0" + ¢)
O 2 (g 2** *
dz C (g28* + hzp*) (P + ¢2)2 (79)

schreiben.

Durch (78) und (79) in Verbindung mit (25) 148t sich, von einem be-
liebigen Punkt der {-Ebene ausgehend, zuerst nach (25) der zugehorige
Punkt der z-Ebene und dann gemidfl (78) in diesem die Stromungsge-
schwindigkeit berechnen. Insbesondere ergibt sich dadurch leicht die
Geschwindigkeitsverteilung auf der Profilkurve, da dieser letzteren in
der {-Ebene die reelle Achse entspricht. Nachdem die Geschwindigkeit
bekannt ist, konnen auch die iibrigen wichtigen Gréflen der Stromung
in genau gleicher Weise berechnet werden wie dies auf S. 96 fiir den
Fall des Kreisbogendreiecks entwickelt wurde.

Zum, Schlufl sollen die verschiedenen Schritte bei der Losung eines
solchen Problems noch einmal in tabellarischer Ubersicht zusammen-
gestellt werden :

A. Aufstellung und Losung der Differentialgleichung.

1. Bestimmung einer angeniherten Differentialgleichung der Fuchsschen
Klasse in der normierten Form (31).

2. Losung dieser Gleichung nach einer der auf S. 99 bis 107 genannten
Integrationsmethoden soweit, bis man die durch den zugehorigen
Quotienten (33) vermittelte Abbildung erkennt, was ziemlich bald der
Fall ist.
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3. Vergleich dieses Kreisbogenpolygons mit dem gegebenen, durch Nor-
mierung in der auf S. 98 bis 99 beschriebenen Weise. Untersuchung,
wie sich die Abbildung veridndert, wenn sich die noch nicht bestimm-
ten Parameter verindern, was am besten durch Probieren geschieht.

4. Bestimmung der verbesserten Parameter durch lineare Interpolation
und eventuelle Wiederholung des Verfahrens zur nochmaligen Ver-
besserung der Parameter.

5. Vollstindige Losung der verbesserten Gleichung nach einer der ge-
nannten Methoden. Bestimmung des Quotienten (33), dessen Ablei-
tung und der Abbildungsfunktion (25).

B. Berechnung der Stromung.

1. Bestimmung des Punktes ¢ in der {-Ebene als Losung der Gleichung
(73). Die Berechnung kann leicht erfolgen vermittelst der verschiede-
nen oben genannten N#herungsmethoden. Aus ¢ ergibt sich ferner
sofort der Wert von o’(Q).

2. Berechnung der Konstanten e, b, ¢, d, U, I' in den Funktionen (11)
und (13) gemdB (75), (76) und (51).

3. Die Geschwindigkeit der Stromung wird am besten vermittelst der
Formeln (77) bis (79) und (25) bestimmt. Die iibrigen wichtigen
GroBen der Stromung ergeben sich in genau gleicher Weise wie dies
S. 96 fiir den Fall des Kreisbogendreiecks beschrieben wurde, wobei
wieder die im 5. Abschnitt entwickelten Methoden mit groBem Vor-
teil verwendet werden konnen.

6. Stromungen um Kreishogenpolygone, die sich ins Unendliche erstrecken

Neben den bisher betrachteten Stromungen um vollstindig im End-
lichen gelegene Kreisbogenpolygone gibt es unter den gemachten Vor-
aussetzungen noch einen zweiten Fall, der von technischem und physika-
lischem Interesse ist. Es sind dies Stromungen um Kreisbogenpolygone,
die einen Eckpunkt (oder auch sonst einen Punkt der Berandung) im
Unendlichen besitzen, wobei wieder vorausgesetzt werden soll, da3 die
Stromung iiberall im Endlichen reguldr verliuft. Diese Stromungen
sollen im vorliegenden Abschnitt betrachtet werden, wobei wir uns der
Einfachheit halber auf den Fall des Kreisbogendreiecks beschrinken
wollen. Das allgemeine Polygon bietet wie frither keine prinzipiellen
Schwierigkeiten, erfordert dagegen etwas lingere Rechnungen.
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Der wesentliche Unterschied der hier zu betrachtenden gegeniiber den
bisherigen Stromungen besteht darin, dafl der einzig vorhandene, nach
unserer Voraussetzung im Unendlichen liegende singuldre Punkt auf die
Berandung des Polygons fillt. Es folgt daraus auch sofort, daB3 dieser
Punkt nicht wie bisher gleichzeitig auch Wirbelpunkt sein kann, so daB
bei diesen Stromungen nirgends eine Zirkulation auftreten kann. Im

y 4 v

!

/;///J
/’—/

=X —t § 0 ]

Z=X¢iy C=§+ry W= Btiy

=~

i

Abbildung 12

iibrigen sind die Betrachtungen denen der drei letzten Abschnitte sehr
analog. Wir fiithren, entsprechend wie in Abb. 5, die drei in Abb. 12 dar-
gestellten komplexen Zahlebenen ein. Da nirgends eine Zirkulation vor-
handen ist, ist das Geschwindigkeitspotential eine eindeutige Funktion,
und es handelt sich einfach darum, den Stromungsbereich in der z-Ebene
konform abzubilden auf die lings der positiven reellen Achse aufge-
schnittene w-Ebene, wobei jedoch der Punkt oo wieder in den Punkt oo
iibergehen mufl. Die Gesamtheit dieser Abbildungen ergibt gerade die
Gesamtheit der moglichen Stréomungen um das gegebene Polygon. Das
Geschwindigkeitspotential und die Stromfunktion sind dabei so nor-
miert, dafl sie im Staupunkt der Stromung verschwinden.

Um diese Abbildung zu bewerkstelligen, gehen wir ganz entsprechend
vor wie im vierten Abschnitt. Es soll auch die dort gemachte Voraus-
setzung beibehalten werden, dal nur ein Winkel von # verschieden ist.
Der allgemeine Fall 148t sich in genau entsprechender Weise erledigen.
Der von =z verschiedene Winkel des Stromungsbereiches (bei der in
Abb. 12 dargestellten Stromung liegt er im Unendlichen) sei wie friiher
mit Az bezeichnet. Dann konnen wir wieder die zu diesem Winkel
gehorende hypergeometrische Gleichung (41) aufstellen und die zugeho-
rige Abbildungsfunktion (46) bzw. (48) bilden. Diese Funktion w({)
bildet dann die obere {-Halbebene wieder auf das in Abb. 6 dargestellte
Dreieck ab, und wie frither handelt es sich weiterhin noch darum, dieses
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letztere durch die lineare Funktion (25) auf den gegebenen Stromungs-
bereich abzubilden, wodurch dann (25) bestimmt wird. Der Stromungs-
bereich ist damit konform bezogen auf die obere (-Halbebene. Seinen
Eckpunkten entsprechen dabei die Punkte 0, 1, co der (-Ebene, ins-
besondere entspricht dem Punkt { =oo derjenige Eckpunkt, an dem
das Dreieck einen von m verschiedenen Winkel hat. Die obere -Halb-
ebene mufl nun noch auf die geschlitzte w-Ebene abgebildet werden, wo-
bei noch die erwidhnte Bedingung zu beriicksichtigen ist, daBl das Unend-
liche der z-Ebene durch die Abbildung in das Unendliche der w-Ebene
iibergehen soll. Bezeichnen wir wieder durch { = ¢ denjenigen Punkt
der {-Ebene, der dem Punkt z =oc entspricht (@ liegt jetzt auf der
reellen Achse), so wird die genannte Abbildung geleistet durch die Funk-

tion aC 4 b\?
= (T=q)" .

wobei a und b reelle Konstanten sind, deren Werte wie frither noch aus
den Daten des Problems zu bestimmen sind. Ist @ =oo, was in sehr
vielen Fillen, z. B. auch bei der in Abb. 12 dargestellten Stromung der
Fall ist, so ersetzt sich (80) durch die einfachere Funktion

w=(al+0b)?. (81)

Fiir die numerische Berechnung bedeutet das eine wesentliche Verein-
fachung. Im allgemeinen Fall kann ¢ wieder in wenigen Schritten ver-
mittelst des Néherungsverfahrens von Newton berechnet werden, was
jetzt deshalb noch wesentlich einfacher ist als friither, weil die sdmt-
lichen Rechnungen im reellen Zahlgebiet verlaufen. Aus (46) bzw. (48),
. (25) und (80) bzw. (81) ergibt sich ferner die komplexe Geschwindigkeit
in der (52) entsprechenden Form

dw

dw dc
dz = Tdz do (82)

do dE

Schliellich handelt es sich noch um die Bestimmung der Konstanten a
und b. Prinzipiell entspricht jeder Wahl dieser Konstanten eine mog-
liche Stromung, und wir kénnen sie aus irgendwelchen Daten des Pro-
blems bestimmen. Bei den umstromten Profilen war die wichtigste Be-
stimmungsart die, daB} das Verhalten der Stromung im Unendlichen ge-
geben war. Im jetzigen Fall ist diese Bestimmung nicht mehr sinn-
gemiB, da die Geschwindigkeit im Unendlichen ebenfalls unendlich wird.
Man erkennt dies leicht an Hand der Potenzreihenentwicklung um den
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Punkt z =oco. Hingegen kann etwa die Geschwindigkeit in einem be-
stimmten Punkte des Stromungsbereiches nach GroBe und Richtung vor-
geschrieben sein, oder es kann verlangt sein, da8 der Staupunkt eine
bestimmte Lage hat und dafl auBerdem noch die Geschwindigkeit in
einem gegebenen Punkte des Stromungsbereiches eine bestimmte Grof3e
hat. Beide Bestimmungsarten fiihren gemd den aufgestellten Gleichun-
gen fir w(z) und w’(z) wie frither auf leicht anzugebende Bedingungs-
gleichungen fiir @ und b.

Durch die Berechnung der zu einem gegebenen Stromungsbereich ge-
hérenden Funktionen (46) bzw. (48), (25) und (80) bzw. (81) ist nun
unser Problem gelost. Hinsichtlich weiterer Einzelheiten vergleiche man
das erste Beispiel in Abschnitt 7.

Neben dem in Abb. 12 dargestellten Fall gibt es noch eine Reihe weite-
rer interessanter Stromungen um Kreisbogendreiecke mit einem im Un-

)

endlichen gelegenen Punkt. Oft ist es dabei auch von Nutzen, die bisher
gemachte Voraussetzung fallen zu lassen, dafl alle Winkel mit Ausnahme
eines einzigen die Grofle m haben sollen. Nach den friiheren Entwick-
lungen bedeutet dies weder theoretisch noch rechnerisch eine Schwierig-
keit. In Abb. 13 ist eine Reihe solcher Stromungen dargestellt. Diese
konnen oft auch in approximativem Sinne angewandt werden. Der
erste Fall stellt z. B. ndherungsweise die Strémung in einer ausgerunde-
ten Ecke bei einer sonst beliebigen Stromung dar.

Abbildung 13

7. Beispiele

Erstes Beisprel : Es soll die in Abb. 4 dargestellte Strémung berechnet
werden fiir den Fall, dafl der Damm die in Abb. 14 gezeigte Gestalt hat,
und daB die Geschwindigkeit in den Eckpunkten z = + ¢ und z = — ¢
den Betrag 1 hat.

Interessehalber wurde zur Berechnung dieser Stromung die Darstel-
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lung der hypergeometrischen Funktion durch bestimmte Integrale ver-
wendet. Es sei jedoch nochmals erwahnt, daB sich dieser Weg zur numeri-
schen Rechnung weniger eignet als die beiden andern in Abschnitt 4 ge-
nannten, wie sich dies auch im vorliegenden Beispiel zeigt. Zunéchst hat

¥
/
(1 z-xedy w )= 0 @)=
=7 -X
. w = Ebene
-/
W feo)= =4
Abbildung 14 Abbildung 15

man (siche Abschnitt 4) 4 =2 und « =34. Die Abbildungsfunktion
() nimmt gemdB (48) die besonders einfache Gestalt an

’3ur—u~mmﬁdu
1—¢ b

w($) (83)
¢ ! 3
fu(l—5u)
Of} T % du
und es ist ferner nach (47)
®(0) =00 w(l)=0 . w(oco)=—1. (84)

Die obere (-Halbebene wird also durch (83) auf das in Abb. 15 dar-
gestellte Kreisbogendreieck abgebildet, welches genau dem Dreieck der
Abb. 6 entspricht.

SchlieBlich hat die Ableitung von (83) gemif3. (46), (34) und (35) die

Form "

3
do(l) =n u(l — ¢ u) | e
o _~§kf§]rm $m]. (85)

Die Funktionen (83) und (85) lassen sich leicht aber mithsam auf graphi-
schem Wege bestimmen, indem man den Verlauf des Integranden fiir
eine Reihe von ¢-Werten berechnet. Weiterhin berechnen sich die Kon-
stanten in (25) aus (26) und den Beziehungen

_f . _ ¢ _—eitf
aus denen sich sofort
3 1 1 )
6,':-_-' z____ = ——— D S b h: s s 87
ve Tyves o T V2 (&7
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und e —i
N GET (88)

ergibt.
SchlieBlich miissen noch die Konstanten in (81) bestimmt werden. Der
Staupunkt z= — 1 in der Stromungsebene mufl dem Punkt w = 0
entsprechen. Aus dieser Forderung ergibt sich, da dem Punkte z = — 1
gemif (88) und (83) die Werte w = 1 und { =4 entsprechen (in [83]
werden fir (=3 Zihler und Nenner einander gleich), sofort

a=—2b . (89)

Ferner muf} die Geschwindigkeit der Stromung in den Punkten z = 41
den Betrag 1 haben, wobei es aus Symmetriegriinden geniigt, die Rech-
nung etwa fir z = 4 ¢ durchzufithren. Zunichst entsprechen dem
Eckpunkt z = ¢ gemdf (88) und (83) bzw. (84) die Werte « = 0 und
¢ = 1. Weiterhin berechnen sich aus (81), (85) und (88) sofort die Gréf3en

[ dw ] dz
b—dz_—‘ gzl—-— 2a(a + b) [——(—i-z)-]w:oz -2

.1
(do] _ =7 fu%du P _m(2\°_ _ 3w
| d¢ Je-1 3 —  3\3) — 4
0

und daraus folgt schlieBlich gemid (82) als zweite Bedingungsgleichung
fir @ und b

(90)

1. (91)

dw _ 2a(@a+b)  4a(a+0b)
[dz ]zg,-__ ( T

dz 3x o 3n
—7) =2
Aus (89) und (91) lassen sich nun @ und b berechnen. Man erhilt

a=+V3ia b=F}Via (92)
und schlieBlich

w=3n(l—3?. (93)

Damit ist die Stromung berechnet. Die Losung wird gegeben durch (83),
(88) und (93). Die Geschwindigkeit ergibt sich aus (82), wobei die numeri-
sche Berechnung aller GroBen auf dem angegebenen Wege durch Aus-
wertung der bestimmten Integrale in (83) und (85) erfolgen kann.

Zweites Beispiel : Es soll die symmetrische Stromung um das in Abb. 16
dargestellte symmetrische Kreisbogenviereck mit den Ecken

0 0,352 + 0,074 ¢ 1 0,352 — 0,074 ¢
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berechnet werden, welches in diesen bzw. die Winkel

2 ‘ 1
‘;‘7* >4 T 7— JT T
besitzt.
Dieser Fall 1a8t sich gemidfl den Bemerkungen auf S. 96 bis 97 auf den

des Kreisbogendreiecks zuriickfilhren. Wenn wir die zu diesem Profil

724 9z Q2 Q¢ 0S8 06 a7 08 Q9
Abbildung 16

gehorende Differentialgleichung infolge der Symmetrie des Profils an
Stelle von (23) gemifl den Gleichungen

a, = —1 a, =0 a, =1 a, =00 (94)

normieren, wihrend wir alle andern fritheren Normierungsbedingungen
beibehalten, so ergibt sich zunichst gemiB (15), (20), (22), (24) und (94)

/ / / / § 25

por 0 = = == — ———

0% Xy 0 Ky 0 Oy 14
12 1

und daraus folgt gemidB (16) bis (18) und unter Beachtung der Tatsache,
daBl die Invariante aus Symmetriegriinden nur von (? abhingen kann,
fiir die normierte Gleichung (16) die Form

5 25
d2z* 7 odz* 196
2¥ = ()

daeE ¢ dr T -1 ’

(96)
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wihrend die zweite Normalform (31) die Gestalt
25 95

2ok ¥ Jo8 ET:Y: )
d?z _[ 196 196 ]z** —0 (97)

dse -1

annimmt. Macht man in (96) die Substitution {2 = (*, so folgt die
Gleichung

d*z* 1 1\ dz* 25
k(% __ _ — ¥ _ —_
= Dgpm (7 ‘ 7) 7S T
und das ist eine hypergeometrische Glei- 422
chung der Form (42) mit

1 25 1 ;

2*=0, (98)

Damit konnen nun auf dem S.92 bis 94
beschriebenen ersten Integrationsweg, der
den Umstdnden dieses Beispiels entspre- 21
chend leicht zu modifizieren ist, zwei li-
near unabhingige Losungen der Gleichung
(98) bzw. (96) vermittelst hypergeometri-
scher Reihen berechnet werden, woraus sich
dann die zugehorige Funktion (33) ergibt.

Im vorliegenden Beispiel wurden auf
diesem Wege die beiden Fundamentallo- 0 7

R(zs) R(:,)

(4

sungen 7"""”"‘°;N
19 l”a

5
¥ =C"P(C) ¥ =¢ MPa(C) (100) Abbildung 17

der Gleichung (97) lings der positiven reellen Achse berechnet. B,({)
und PB,(¢) bezeichnen dabei zwei regulire Potenzreihen, bei denen das
konstante Glied den Wert 1 hat. Der Verlauf der Funktionen (100) ist

in Abb. 17 dargestellt. Auf der negativen (-Achse stimmen zf* und z**

19, 5,
bis auf die Faktoren e wund e *  mit den entsprechenden Werten
fiir positive Argumente iiberein, so dafl gemd Abb. 17 der Verlauf von
z¥* und 2** lings der ganzen reellen Achse bekannt ist.
Nunmehr kann auch der Quotient (33) berechnet werden. Dieser bildet
die obere {-Halbebene auf das in Abb. 18 dargestellte Kreisbogenviereck

K, ab mit den Ecken
2,
0 1,263  —3,080+1482:  1263¢ 7

das mit der gegebenen Profilkurve kreisverwandt ist.
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Es handelt sich nun noch darum, die Funktionen (11), (13) und (25)
zu bilden. Zunichst ergeben sich die Konstanten ¢/, f, g, & in (25) ganz
entsprechend wie im ersten Beispiel. Man erhilt

't im i

e/ = 0,766 el f== 0 g = 1,148 et h=1,305¢ 1"
und also ©

2 = el (101)

1,500 w0 + 1,707e¢ 7

Fir die weiteren Rechnungen mufl zu-
nédchst gemifl (73) der Punkt @ be-
stimmt werden, der in unserem Fall
aus Symmetriegriinden auf der imagi-
nédren Achse liegt. Vermittelst der ge-
nannten Né#herungsmethoden ergibt
sich leicht

Q= 1,2654 . (102)

Gleichzeitig folgt auf Grund von (34)
(dje Konstante C hat in unserem Falle

den Wert —172~) sofort
5.
o' (Q) = 1,076 ™ . (103)

Daraus konnen nun die Konstanten «a,
b,c,d und U gemall (75) und (76) be-
stimmt werden. Die Ausrechnung ergibt

Abbildung 18

a = 0,890 b=0 c=0 d= 1,124 U = 0,279

und damit nehmen (13) und (11), da keine Zirkulation auftritt, die Ge-
stalt an

7 — 0,890 ¢ + 1,1247{ (104)
0,890 L — 1,124+
und
w = 0,279 (Z -+ -é—) . (105)

Durch (33), (101), (104) und (105), wobei die erste dieser Funktionen
vermittelst der angegebenen Methoden leicht auch fiir komplexe Werte
von ¢ berechnet werden kann, ist nun unser Problem geldst. Die Berech-
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nung der Geschwindigkeit erfolgt am besten auf Grund der Formeln (77)
und (79). Damit konnen auch, wie am_ Schlusse von Abschnitt 5 aus-
einandergesetzt, die iibrigen wichtigen Grofen der Strdmung berechnet
werden. Insbesondere ergibt sich aus dem Quadrat der Geschwindigkeit
nach Bernoulli sofort der Druck. In Abb. 16 ist das Quadrat der Ge-
schwindigkeit ldngs der Profilkurve gleichzeitig mit dieser letzteren
eingetragen.

Drittes Beispiel: Es soll die allgemeinste Stromung um ein Kreis-

bogenviereck mit den Winkeln % T, T, —;n, n berechnet werden, des-

sen Gestalt sich nicht zu weit von dem symmetrischen Profil mit diesen
Winkeln, also von dem im letzten Beispiel betrachteten Profil, entfernt.

Beim allgemeinen Viereck treten ein akzessorischer Parameter und eine
iiberschiissige singulire Stelle, also im ganzen zwei durch die Winkel
nicht bestimmte Parameter auf. Es handelt sich also darum, _die zum
allgemeinen Viereck mit den obigen Winkeln gehorende Differential-
gleichung

it |1 ettt e tap 8
— + — — %% (106)
e z? 7 F 1 I — &

mit den Parametern « und g (daB diese Gleichung zu den obigen Winkeln
fiihrt, verifiziert man unmittelbar) fiir drei verschiedene Kombinationen
von « und B, die in der Ndhe des symmetrischen Falles liegen, zu inte-
grieren. Dann kann durch Interpolation die Stromung um jedes be-
liebige, anndéhernd symmetrische Viereck berechnet werden. Die Glei-
chung (108) ist dabei, entsprechend (96) und (97), gemd den Gleichungen

normiert. Fir « und g wihlen wir die folgenden Wertekombinationen :

25 18 6 25

x=1f=—g0 a=lif=—g0 a=g;f=—55"

108
392 (10

Das erste dieser Wertepaare fiihrt, wie man durch Einsetzen sofort fest-
stellt, auf die Gleichung des letzten Beispiels, wihrend die beiden andern
unsymmetrische Profile ergeben. Es handelt sich also noch darum, die
zu den beiden letzten Wertepaaren gehorenden Gleichungen

PR 95 7 16 9
2y _ 196 _19—6__ 196 196 . 1
ac “‘[c“L ; c+1+c—1]z (109)
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und 95 5 10 -~ 25
d2z** 196 392 196 392
- = — —_— 2** 110
i | e T T+, _® (o)
5

zu integrieren.

Dies geschah nach der S. 103 bis 107 beschriebenen zweiten Integra-
tionsmethode. Bei dieser muB zuerst —J(¢) auf Grund der Formeln
(67) um jeden singuliren Punkt in eine Potenzreihe entwickelt werden.
Man erhilt z. B. fir die Gleichung (110) die Entwicklungen

95 5

—J (&) = lgf - 322 — 0,1041 + 0,0067 ¢ — 0,0879 22 + 0,0202 23. . .
_1_0_
—J(@) =~ +6 10,4685 + 0,9694 (¢ + 1) - 1,4609(¢ + 1)2
+ 1,9489(C + 1), .. (111)
ﬁfi_
—J () = 5y g + 0,3032 — 0,5422(0 — 1,2) 40,6903 (¢ — 1,2)

—0,7727(¢ — 1,2)%. ..

Nunmehr kann gemi8 (69) zu jedem singulidren Punkt eine Losung (66)
der zugehorigen Riccatischen Gleichung angegeben werden. Man errech-
net fiir die drei singuliren Punkte leicht die folgenden Lodsungen

19
uy (£) —lc‘i — 0,0047 — 0,0280 ¢ + 0,0014 2 — 0,0155 £3 4+ 0,0030 (4. .
u¥ (&) = Cj— T 0,0255 + 0,1560({ + 1) + 0,2443({ + 1)?

+ 0,2898(Z + 1)3 + 0,3140(Z + 1)8... (112)

uky (8) = f‘:—}T‘Z + 0,0319 + 0,1010(¢ — 1,2) — 0,1371(¢ — 1,2)?

+ 0,1377(¢ — 1,2)3 — 0,1256 (¢ — 1,2)°.

Aus diesen ergeben sich schlieBlich geméaf (71) die folgenden Abbildungs-
funktionen

of = _Zlgé—[ 0,5830 £ — 0,0132 {2 4 0,0980 {3 — 0,0009 (*
14

+ 0,0035 (5. .. (113)
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. 1

w2, = m[*(é’ + 1) — 0,1547(¢ + 1) — 0,0855(f + 1)*
— 0,0471(¢ + 1)5...] + 0,05101g (¢ + 1)
1
wy, = =13 [— (¢ — 1,2) — 0,0990( — 1,2)3 4+ 0,0492( — 1,2)

— 0,0233( — 1,25...] — 0,06381g (Z — 1,2) .

SchlieBlich handelt es sich noch darum, diese drei Losungen zu-
sammenzusetzen. Dies wurde unter Verwendung zweier weiterer Potenz-
reihen in der auf S.106 erwdéhnten Weise durchgefiihrt. Als Resultat ergab
sich das in Abb. 18 dargestellte Kreisbogenviereck K,. In ganz gleicher
Weise wurde das zur Gleichung (109) gehoérende Viereck K, bestimmt.

o

»

[L

’ %
Abbildung 19

Die Kreisbogenvierecke K,, K,, K, in Abb. 18 sind bereits in der auf
S. 98 bis 99 angegebenen Weise normiert. Eine ihrer Seiten fillt stets
auf die positive reelle Achse zwischen die Punkte 0 und 1. Ist nun ein
anderes Kreisbogenviereck gegeben mit den gleichen Winkeln, das an-
nihernd symmetrisch ist, so kann dieses ebenfalls in der obigen Weise
normiert und dann mit den Vierecken K,, K,, K, verglichen werden.
Auf diese Weise konnen dann durch Interpolation die zu dem gegebenen
Kreisbogenviereck gehérenden Parameter « und g und also auch die zu-
gehorige normierte Gleichung (29) bestimmt werden. Es handelt sich
dann noch darum, diese zu lésen und auf Grund davon die zugehorige
Stromung zu berechnen.

In Abb. 19 ist ein derartiges Beispiel durchgerechnet. Das dort dar-
gestellte Tragfliigelprofil ist ein unsymmetrisches Kreisbogenviereck mit

denWinkeln% 7T, n,; 7, n. Es wird von rechts her angestromt durch eine
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horizontale Stréomung, welche im Unendlichen die komplexe Geschwin-
digkeit ¥V = 1 besitzt und die auBlerdem nach der Forderung von Jou-
kowsky an der Hinterkante eine glatte Abstromung ergibt. Durch diese
beiden Eigenschaften ist die Stromung bestimmt. Das Profil in Abb. 19
ist mit dem Kreisbogenviereck K, in Abb. 18 kreisverwandt, so daf3 die
zugehorige Differentialgleichung gleich (109) ist. Ausgehend von dieser
Gleichung kann die Strémung in genau entsprechender Weise berechnet,
werden wie dies im letzten Beispiel ausfiihrlich durchgefiihrt wurde. Wir
begniigen uns deshalb im wesentlichen mit der Angabe der Resultate.

Wenn w({) wie im zweiten Beispiel diejenige Abbildungsfunktion
bezeichnet, die gleich dem Quotienten der beiden Fundamentallésungen
um den Punkt { = 0 ist, ergeben sich zunichst fiir die Funktionen (25)
und (13) die Gestalten

1

T o (1,12 — 0,304 1)

(114)

und
(0,778 4+ 0,143 ¢) { + (— 0,074 + 1,269 1)

2 =0778 —0,1439) ¢ + (— 0,074 — 1,2697) °

(115)

Ein kleiner Unterschied gegeniiber dem zweiten Beispiel ergibt sich
bei der Funktion (11), indem wir jetzt eine Zirkulation haben. Gemé&g (49)
bestimmt sich der Winkel ¢ aus der Gleichung

0,778 40,1437 .
"
0778 — 01435 = ° (116)

Daraus folgt sin ¢ = 0,3544 und gemdfl (51) I' = 1,310. Damit nimmt
(11) die Gestalt an

w = 0,294(2 4 -%) —0,208531g Z . (117)

Durch (114), (115), (117) und die zum jetzigen Profil gehorende Funktion
(33) ist nun unser Problem wieder gelost.

Zur Berechnung der komplexen Geschwindigkeit (und damit auch der
andern wichtigen Groflen der Strémung) gehen wir wieder aus von einem
Punkt der {-Ebene. Dann hat die Stromung im zugehorigen, durch (114)
gegebenen Punkt der z2-Ebene gemiB (78) die komplexe Geschwindigkeit

do __ [0(@)+1512— 0340 2,350p¢ — 04T +¢%)
dz o’ () (p* + ¢%)?

mit den Abkiirzungen p = 0,778 { — 0,074 und ¢ = 0,143 { 4 1,269.
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In Abb. 19 ist das Quadrat der Geschwindigkeit senkrecht iiber der Pro-
filkurve abgetragen. Bei der Eintrittskante wichst die Geschwindigkeit
theoretisch ins Unendliche, wihrend sie in den beiden Staupunkten ver-
schwindet.

8. Zusammenfassung

In der vorliegenden Arbeit wird gezeigt, daB die (symmetrischen)
automorphen Funktionen sowohl theoretisch wie praktisch ein wert-
volles Hilfsmittel zur Untersuchung ebener Potentialstrémungen sind, in
ersterer Hinsicht insofern als viele theoretisch wichtige Formen durch
Kreisbogenpolygone erfafit werden konnen, in letzterer deshalb, weil sich
auch die numerischen Rechnungen auf recht einfache Weise durchfiihren
lassen. Der wesentliche Punkt der Losung besteht erstens in der Auf-
stellung und zweitens in der Integration der zu einem gegebenen Kreis-
bogenpolygon gehorenden Differentialgleichung der Fuchsschen Klasse.
Wihrend der zweite dieser Schritte leicht durchgefiihrt werden kann,
stellt der erste ein zur Zeit noch nicht befriedigend geldstes Problem der
Theorie der automorphen Funktionen dar, da iiber die Abhingigkeit
eines Teiles der Parameter einer Gleichung der Fuchsschen Klasse von
der Gestalt des zu ihr gehoérenden Polygons im allgemeinen Fall sozu-
sagen nichts bekannt ist. Praktisch kann diese Schwierigkeit jedoch auf
Grund des Umstandes iiberwunden werden, dafl man bei gegebener Diffe-
rentialgleichung sehr leicht die Gestalt des zu ihr gehdérenden Polygons
angeben kann, so dal man, dhnlich wie bei den Joukowskyprofilen, die
genannten Parameter einfach unter Verwendung entsprechender Inter-
polationsmethoden so variieren kann, bis das Polygon geniigend genau
mit einer vorgegebenen Form iibereinstimmt. Auf diese Weise konnen
derartige Probleme, wie das auch aus den durchgerechneten Beispielen
hervorgeht, numerisch sehr gut gelost werden.

(Eingegangen den 5. Juli 1948.)
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