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On simply connected, 4-dimensional polyhedra
By J. H. C. WaiTEHEAD, Magdalen College, Oxford

1. Introduetion. Our main purpose is to show that the homotopy
type of a simply connected, 4-dimensional polyhedron is completely de-
termined by its inter-related co-homology rings, mod.m (m=20,1, 2,...),
together with one additional element of structure. The latter is defined
in terms of a product, which was introduced by L. Pontrjagin?'), and
which has recently been studied in greater generality by N. E. Steen-
rod 2). What we want here is Pontrjagin’s method of associating a 2n-
dimensional co-homology class, pz, mod.4r, with every n-dimensional
co-homology class, , mod.2r. We shall call px the Pontrjagin square
of . If f is a co-cycle, mod.2r, in the co-homology class x, then px
is represented by the co-chain which, in Steenrod’s notation, is written as

fuf+fu,of .

The co-homology rings of a polyhedron, P, with integers reduced
mod.m (m=20,1,2,...) as coefficients, may be combined into a
single ring by a method due to M. Bockstein3). We give this ring addi-
tional algebraic structure by introducing a certain operator 4 and also
the Pontrjagin squares. We describe the result as the co-homology ring
of P and prove that:

(1) any such ring, which satisfies the general algebraic conditions appro-
priate to a finite, simply connected polyhedron of at most four dimen-
sions, can be realized geometrically. That is to say, it is possible to
construct a polyhedron of this nature, whose co-homology ring is
“properly”’ isomorphic to the given ring. Also

(2) two such polyhedra are of the same homotopy type if, and only if,
their co-homology rings are properly isomorphic.

An example is given at the end of § 12 of two simply connected, 4-di-
mensional polyhedra, which are not of the same homotopy type though

1) See reference [1]. *
2) See [2].
3) See [4].
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their co-homology rings are isomorphic if the Pontrjagin squares are
ignored. They can be distinguished from each other by their third homo-
topy groups or by their Pontrjagin squares.

A note on the steps in the proof of the second of the two results stated
above may be helpful. Let K and L be two simply connected, 4-dimen-
sional polyhedra and let R(K) and R(L) be their co-homology rings,
as we are using the term. Let f*: R(L) - R(K) be what we call a
“proper homomorphism” of R(L) into R(K). Then we prove that f*
can be ‘realized geometrically” by a map f: K — L. That is to say,
there is a map, f: K — L, which induces the homomorphism f*. The
result (2) above then follows from the following theorem. Let K and L
be two simply connected complexes, of any dimensionality, and let
f: K — L be a map, which induces an isomorphism of each co-homology
group, H™(L), with integral coefficients, onto the corresponding group,
H"(K). Then K and L are of the same homotopy type and f is a homo-
topy equivalence ¢). This theorem shows the importance of the ‘‘realiza-
bility”’ of a given homomorphism f*: R(L) - R(K). The conditions
which we impose on the co-homology ring are designed to ensure that
every proper homomorphism, f*: R(L) - R(K), can be realized geo-
metrically.

We consider this matter of realizability in two stages. We first confine
ourselves to the additive group of the co-homology ring, or rather to the
“spectrum’” of co-homology groups, of which the additive group of the
ring is the ‘“finitely generated” direct sum. By the spectrum we mean
the aggregate of all the absolute and modular co-homology groups, relat-
ed by the homomorphisms, 4, u, defined in § 2 below%). We first con-
sider the realizability of “‘proper’”” homomorphisms of the co-homology
spectra by co-chain maps ®), not by geometrical maps. It is obvious from
the definition of 4 and u that any homomorphism of the co-homology
groups of L into those of K commutes with 4 and u if it is the homo-
morphism induced by a co-chain map. Lemma 4, at the end of § 2,
states the converse of this. This is valid for arbitrary (finite) complexes
K, L, but the resulting co-chain map cannot, in general, be realized by
a geometrical map K — L. The step from the cochain map to the geo-

%) i. e. there is a map ¢g:L->K such that gf~1, fgoo1, where = denotes the
relation of homotopy and 1 denotes the identical map, both in K and in L.

%) Our u includes and can be defined in terms of Bockstein’s 7z and @ but our 4 is an
additional element of algebraic structure.

®) i. 6. homomorphisms of the groups of co-chains which commute with the co-boundary
Operator (cf. [5] and pp. 145 et seq. in [6]).
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metrical map depends on the multiplicative structure of the rings, in-
cluding the Pontrjagin squares, and the special nature of the complexes.

2. The co-homology groups. This section is concerned exclusively
with additive properties. It is purely algebraic and depends only on a
sequence, C = {C"} (n = 0,1,...) of additive Abelian groups, related
by a ‘“‘co-boundary’’ homomorphism, §:C® — C*+1, for each n, such
that 66 = 0. We assume that each C" is a free Abelian group of finite
rank, no two having an element in common, and that O™ = 0 for all
sufficiently large values of n. We use the language of co-homology, but
this is purely conventional. To translate this section into the language
of homology we have only to delete the prefix “‘co” and re-write C* as
Cy_n, where N is such that C* =0 if n>N.

Let H”(m) be the n-dimensional co-homology group, defined in terms
of C and &, with integers reduced mod.m as coefficients (m = 0,1, 2,...;
H»(1) = 0). We shall write H"(0) = H"™, the co-homology group with
integers as coefficients. For convenience at a later stage we agree that
all the groups H"(m) have the same zero element. Given p>0, ¢ >0,
we define operators,

4,: H*(q) - H1  (¢>0) , Yyp,q P H™(q) — H"(p) ,

as follows. Let xz & H"(q) and 2’ex. That is to say z’ is a co-cycle,
mod.q, in the co-homology class . Then 6z’ = qy’, where y’ is an
(absolute) co-cycle. We define 4,z as the (absolute) co-homology class
of y’. Thus we could write A4,= (1/g)6. Let ¢ = (p,q). Then

6(%x’)=———q—y’=p(—q—y’) . 2.1)

Therefore (pfc)x’ is a co-cycle, mod.p, and we define u, ,x as its co-
homology class mod. p. It is easily verified that A,z and u, ,x depend
only on x & H*(q) and not on the particular choice of z’e . They are
obviously homomorphisms. If p | ¢, in which case ¢ = p, and in parti-
cular if ¢ = 0, then u, ,x is the co-homology class of the same co-
cycle z’, but calculated mod. p instead of mod. q. Thus u,, , is the na-
tural homomorphism of H" onto H" = H™ — mH"™. We shall sometimes
write A4,, u,, simply as 4, u.
As an immediate consequence of (2.1) we have

Apl‘p,qf:—@%g)“da . (2'2)
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Also I say that, if p,¢>0, r > 0, then

q(p,r)
®,9) g, r) ‘7

Hp,q Bg,r = (2.3)
Forlet xeH"(r), ’ex, andlet a=(q,r), b= (r,p), c=(p, q). Then
te,»xeH™(q) is represented by y’ = (g/a)z’ and u, ,u, ,xeH"(p) by
(plc)y’ = (pg/ca)x’. On the other hand u, ,zeH"(p) is represented by
(p/b)a’. Let d = (p,q,r) = (¢c,a). Then (ca/d)|q, since c|q, a|gq,
d = (c,a). Also d|b. Therefore ca|gb. That is to say g¢bjca is an
integer. But

Pq ., _ 95 _gxz

ca ca

>

whence both sides of (2.3), operating on x, are represented by the same
co-cycle, mod. p.

The union of all the groups, H"(m), related by the homomorphisms,
4, u, will be called the co-homology spectrum of the set of groups C. We
shall denote it by H. Notice that H is not the direct sum of the groups
H™(m). An element of H is an element of an arbitrary one of the groups
H™(m).

Let »: H® - H* be the endomorphism defined by » x = m x, for

a given value of m. Let u =y, ,, 4= 4,. Then the sequence of
homomorphisms

-«—> H* > H* - H*(m) — H*"*! —. .. (2.4)
4 v w 4 v

is exact, meaning that the kernel of each is the image group of the one
preceding 7) it. For it follows at once from the definition of v, u, 4 that
vA=10, uv=0, Au=0. Conversely, let vz = mxz =0, where
xeH", and let x’¢x. Then ma’ ~ 0. That is to say ma’ = du/, for
some u’eCn-1, Then u’ is a co-cycle, mod.m, and x = Au, where
u & H*1(m) is the co-homology class of «’. Therefore »=1(0)=AH"1(m).
Let yx = 0, where x¢ H", and let 2’¢x. Then 2’ is an absolute
co-cycle, and px is its co-homology class mod. m. Since yz = 0 there
are co-chains w’e (0", v'e¢(C"» ! such that z' = mu’ 4 év’. Then
mdéu’ = 0. Since O+ is a free Abelian group it follows that du’ = 0.
Therefore u’ is an absolute co-cycle and mu’ ~ z’. Therefore & = mu,
where w e H™ is the co-homology class of «’. Therefore u=1(0) = vH™.

_7) H? is the (free Abelian) group of co-cycles in C%, whence v: H°— H° is an isomor-
Phism of HO into itself,

51



Let Ax =0, where ¢ H*"(m), and let 2’ex. Let 2’ = mu'.
Then %' ¢ Ax and since Ax = 0 we have u’ = dv’, for some v’ ¢ (n.
Therefore dxz’ = m év’, or 6(x’ — mv’) = 0. That is to say z’ — me’
is an absolute co-cycle. Let y be its co-homology class. Then z = uy,
since 2’ = ' — mv’, mod.m. Therefore A-1(0) = uH", which com-
pletes the proof that (2.4) is exact?®).

It follows from the exactness of the sequence (2.4) that 4, H"(m) =
‘wH™1, the sub-group of H™*! consisting of all the elements, x ¢ Hn+!
such that max = 0. The group H"(m) (m>0) is a trivial extension
of®) u,, ,H™= H; by ,H"'. Hence there is an isomorphism A4} :
nH™1 — H™(m) (into, not necessarily onto) such that 4,4% = 1. We
shall describe A" in detail, but first observe that, in consequence of this,
H"(m) is the direct sum

H"(m) = H, + A4*(, H"t) , (2.5)
whence
H"(m) = 0,,(H" + ,H"*) , (2.6)

where 0, | H* = pp . 0 | wH™* = 4% . It will be convenient to allow
m =0 in (2.6), with 0,| H» =1, 0, H**1 = 0 (N. B. H"tl = H"+),
but we do not define A . We shall often write 4% and 6,, as A4* and 6.

We may subject the operator A4*, which is not determined uniquely,
to the condition :

poadty =231 oyl e @)

To prove this we recall that C*+! and hence H"+! has a finite number
of generators. Therefore H7+! is a direct sum of a free Abelian group and
finite cyclic groups U,,..., U,. Obviously

mHn+1 = mUl T+t mUt

for any m>0. Therefore it is enough to prove (2.7) with ye U, for
an arbitrary value of ¢ = 1,...,¢. Let us write U, = U, let u be @
generator of U and o its order. Let w'ew. Since ou = 0 there is an
n-dimensional co-chain, v’, such that év’ = ou. Let ve H"(s) be the

8) It can be proved in much the same way that the sequence ..., um, i, bm,im’
p,0dms pim,1s - .. is exact forany I, m>0. If 1 =0 thisis the same as (2.4), with
the convention that upm,i=7v, ujo=1 if 1 =0.

%) Cf. [7], pp- 218 et seq. A proof of this, which is in any case elementary, is included
in the proof of (2.7) below.
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co-homology class of v’. Then A,v = u. Let kue ,U. Since mku = 0
we have mk =0, mod. o, whence o |k(m,s). We define

k (m, o)

A,’,‘:ku=~——o————,um,av : (2-8)

Then it follows from (2.2) that

AmA;ku-:-kn(?—n&’—G)Amym’ov
_ k(m, o) . c Ay
o (m, o)
=ku .
Therefore A4, A% = 1. Let p,¢>0 be given and let a = (¢, 0), b =

(0,p), ¢=(p,q). Let kue,U and let k' = kg/c. Then pk'u =
(ple)gku = 0, whence k'ue , U. It follows from (2.8) and (2.3) that

Wwhich establishes (2.7).
Since 0, | H* = u, ,, 0, | H"' = A%, A,u, ,— 0 and 4,45 =1
(p>0) we have

Ar Ow(x + ?/) = Ap:up,ox + ApA:: Yy
s y 9 (2.9)

Where xe Hn, ye Hnl, Also, if e H®, ye H™' (¢>0) it follows
from (2.3), with r =0, and (2.7) that
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P, o 0a(X + 4) = tp, o, 0 @+ Hy, 47 Y

p
(»,9)

Hpo® + Ag‘: (pqq) y;

_p ! P 7 ,l

=250 B Y (210
Thus 4 and %) u are expressible in terms of A* and u,, ,. The conditions
A44* =1 and (2.7) are the same as (2.9) and (2.10) with z = 0. They
may therefore be interpreted as necessary and sufficient conditions, which
A* must satisfy in order that the operators 4, u, defined in terms of A*
and u,, , by (2.9),(2.10), shall be the same as those with which we start-
ed. Any operator A*: , H*+1 — H”(m), which is defined and is a homo-
morphism for every m >0, n >0 and satisfies the conditions 44* =1
and (2.7), will be called an admissible right inverse of A.

Now let a system of additive Abelian groups, H”(m) (m,n=0,1,...;
H"™(1) = 0) be given abstractly. We assume that each of them has a
finite number of generators and also that H"(m) = 0 for all suffigiently
large values of n. All the groups H"(m) shall have the same zero element
but no two shall have a non-zero element in common. As before let H" =
H™(0) and let H"(m) (m>0) be related to H,, and , H"*! by the equa-
tions (2.5), where A% : H»+1 — H"(m) is a given isomorphism (into).
We admit two possibilities. The first is that A4, u are given, satisfying
(2.2), (2.3). In this case we require 4* to satisfy 44* =1 and (2.7),
and hence (2.9) and (2.10). The second possibility is that 4, u are not
given, in which case we define them by (2.9) and (2.10). In either case
an admissible right inverse of 4 will mean the same as before and any two
admissible right inverses of 4 will be regarded as equivalent. Thusitis 4
and p which are fundamental, not a particular one of the operators 4*.

It is easily verified that (2.2) and (2.3) are formal consequences of
(2.9) and (2.10). It also follows formally from (2.9) and (2.10) that the
sequences (2.4) and ..., Uy 15 Bm.im> M2, 08m> Bim,is- -+ (I, m>0)are
exact. For example, if z & H", ye H" it follows from (2.10) that

Ium,lm culm,l el(x + y) = :um,lm elm(m x + ?/)
=0,(mz + ly)
=0,

10)j. e. 4 ¢ 8nd g, o with ¢>0. It is always to be unde;'stood that u,, , is the na-
tural homomorphism u, , =0, | H": H" >~Hy (n=0,1,...).
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gince 0, m H* =0, ye H"*'. Conversely, let

0= M, 1m Glm(x + y) = Bm(x + ly) s

where x e H", yeé&,, H"*1. Then x = mu (we H") and ly = 0, since
Ay is an isomorphism. Therefore ye H"*! and it follows from (2.10)
that

Pam,1 00 (v + y) = 0, (mu + y) =0, (x + ) .

Therefore u.%,(0) = w,;, , H*(l). The other relations follow from similar
arguments.

The system of groups H?"(m), related in this way by 4 and u, will be
called a spectrum of co-homology groups or simply a spectrum. As before
an element in such a spectrum will be an element in an arbitrary one of
the groups H™(m). Notice that the whole spectrum may be defined
in terms of the groups H™, in case we are given these groups alone. For
H™(m) may be defined by (2.5), where A is an isomorphism of , H»+
onto a newly defined group A4%(,H") (m>0).

By a proper homomorphism f:H — H of a spectrum, H, into a
spectrum, H , we mean a transformation such that f| H*(m) is a homo-
morphism of H"(m) into H» (m), for all values of m,n,and f4 = A4f,
fu = uf. Ialso f| H*(m) is an isomorphism onto H (m) for all values
of m, n, then f will be called a proper isomorphism of H onto H and H
will be described as properly isomorphic to H. If f: H — H isa proper
isomorphism of H onto H, then its inverse, f1, given by f1| Hv (m) =
{{| H"(m)}-1, is a proper isomorphism of H onto H. For f4 = Af,
fu = uf obviously imply f14 = Af, fu= uf?. A proper homo-
morphism f:H > H isa (proper) isomorphism onto if, regarded simply
as a transformation of the set of elements in H into those of H , it is onto
and (1 — 1). It is therefore a proper isomorphism if there is a transfor-
mation, f: H—>H, such that f/f=1, ff =1, in which case j' = f1.

Since an admissible right inverse, 4%, of A4 is not, in general, uniquely
defined, a proper homomorphism, f:H — H , does not necessarily

commute with A*. But let 4* be given in H and let f, : H® — H™ be the
homomorphism f| H" for each value of n. Then we have the lemma

Lemma 1. If each f,:H" —> H" is an isomorphism onto H*, then
there is an admissible right inverse, A * of Ain H, such that A*f, = fA4*.
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Let A*: Hn — Hn(m) be defined by A*g = f4* 17, for each
y e H*. Since Af = fA = f,A, where 4 denotes the operator 4 in
H, and since 44* =1 in H, we have

AA* = AfA* f71 = fo AA* f72 = fofit =1 .

Similarly (2.7), in H, follows from ul = fu and (2.7) in H. Therefore
A4* is an admissible right inverse of 4. Obviously A4* f, = fA4*.
Lemma 2. Let f: H — H bea proper homomorphism such that f| H»

18 an 1somorphism onto Hr for every value of n. Then f is a proper iso-
morphism of H onto H.

It follows from Lemma 1 that f A4* = A* fo with a suitable choice of
A* in H. Let 6 mean the same as in (2.6) and let 6 be the corresponding
with

similar relations in H, and since fltm, 0 = tm, ofo, fA* = A* fo we have

homomorphism in H. Since O | H™ =t o, 0| H" ' = 45,

—

fOn(®+y) = 0u(for + foy) (e H", ye, H*) .  (2.11)
Let f :H —H be defined by

F0,@+9) =0, z+f;'y) (@eHr, ye, H) .
Then

P 10,z 4+ y) = F 0,foz + foy)
= O,(x+ 9) ,

whence f'f= 1. Similarly ff' = 1. Therefore f is a proper isomor-
phism of H onto H, and the lemma is established.

Lemma 3. Any set of homomorphisms f,: H* — H» (n=0,1,...)
can be extended to a proper homomorphism f:H — H.

For f| H*(m) (m>0) may be defined by (2.11). Then it follows from
(2.9) and (2.10) that Af = fo4, uf = fu. This establishes the lemma.
Let Hn(m) be defined in terms of co-chain groups C* (n = 0, 1,...)

and an operator J, as at the beginning of the section. Let Hn(m) be

similarly defined in terms of co-chain groups C». We shall use j,, for
the natural homomorphism of the group of co-cycles, mod. m, in C™ onto
H»(m). Thus if @ ¢ C* is a co-cycle, mod. m, then j, a & H"(m) is it8
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co-homology class. We shall also use §,, to denote the natural homo-
morphism of co-cycles, mod. m, in C* onto Hn (m). By a co-chain map,
or mapping, of C" into C» we shall mean a set of homomorphisms ¢ :
o — O (n =0,1,...) such that gé = g, where & also denotes the
co-boundary operator in C*. A co-chain map, g, obviously induces a
proper homomorphism, f: H — H, which is defined by fin@ = inga,
where a is any co-cycle mod. m. Subject to this condition, which we write
simply as fj =jg, we say that f is realized by the co-chain map g.

Lemma 4. Any proper homomorphism f : H —H can be realized by a
co-chain map ¢ : C* — C".

As in the theory of finite complexes, there is a basis a,,...,a,, for
each group C", such that da, =00, (=1,...,t <q), da,=0
(t=t+1,...,q), where o, >1 and b,,...,b, are basis elements in

the basis for C*t1. We write da, = o0;b;, (¢t =1,...,q), with ¢, =0,
bj=0 if ¢>¢. A co-chain A,a, +---+ A,a, is a co-cycle mod. m
(m>0) if, and only if, 4,0, =0, mod.m, foreach ¢ =1,...,¢q. This
is equivalent to A,= 0, mod. g;, where') g, = m/(m, g;). Therefore the
group of co-cycles mod. m is generated by ¢, a,,..., 0,2, and j, 0, a,,
ooy Im 0q @, generate H™(m). Notice that

jm 0 a; = /"m,oi joi a; , (2- 12)

according to the original definition of 4. I say that a cochain map,
g :C" — C», realizes f provided only that

fjaia’izjoiga’i (i:“_l’""q) ’ (2‘13)

the analogous conditions being satisfied for all values of ». For, writing
0i=9, 6,=0, a;, =a, it follows from the relations (2.12) and from
fr=pf and (2.13) that

fim Qa’:f/um,ajaa' =f‘m,af?.aa’
::um,ojoga’:jmega’

== .7mg Q(l b
or that fj=4g.
Let N be such that Cr = 0 if » >N, let » < N and, starting with

90" =0 if r>N, assume that g: C* — C* has been defined for each

1) (m, 0) = m, whence 0; =1 if ¢2>¢.
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k>mn in such a way that fj =jg, g6 = dg. We proceed to define ¢:
Cn —>C». As before we write a,=a, o,=0c, and also da =o0ab
for an arbitrary valueof 1 =1,...,¢ (6 =0, b=0 if ¢>t). If i>¢,
then a is an absolute co-cycle and j,a ¢ H*. In this case we write
ga = a, when a is any (absolute) co-cycle in the co-homology class
fjoa. Then gda=0dga=0 and j,ga=j,a =/fj,a. Let ¢ <t,
so that ¢ #% 0, b 5% 0. Then b is an absolute co-cycle and j,b ¢ ;H"+1,
since cb=2da. Also gb is defined, since b ¢ C", and jogb-—-fjobs,,ﬁ"“.
Therefore 6 gb=6a, for some @& C". According to the original defi-
nition of 4 we have A4,j,a =7j,b, A, a = j,9b. Since j,g9b =
fiob and since fA = Af it follows that

Aajaazjogbzfjob:fdajoa
:‘:Aofjaa' .

Therefore 4,(fj,a — j, @) = 0. It follows from the exactness of the
sequence (2.4), with m = ¢, that

fjaa ”‘jaasﬂo,oﬂn

Therefore fj,a = j, & + jo % = j,(@ + %), where % ¢C" is an abso-
lute co-cycle. Let ga = a + u and define ga, in this way for each
value of ¢ =1,...,q, thus defining ¢ : C* —CO™. Since jo g Q=
jo(@ + u) = fj,a it follows from our preliminary result that fj=7jg¢
in C". Also dga=0da=0gb=gob=gda. Therefore g6 =4g.
Repeating this construction we define g throughout all the groups C"
(m=N, N—1,...,0) and the lemma is established.

3. The co-homology ring. We now assume that the group C», in the
system C, with which we started in § 2, is the group of n-dimensional
co-chains?) in a finite simplicial complex K. The additive group of the
co-homology ring, R, of K shall be the “finitely generated” direct sum
of the co-homology groups H"(m), for all values of m, n. That is to
say, the additive group of R shall consist of all finite sums z; + z, 4+ >
where each z; is in an arbitrary one of the groups3) H"(m). The product
fU g, which we write simply as fg, of co-chains fe C?, ge C2shall be

12) We distinguish between a chain and & co-chain, which is to be an integral valued
function of chains. All our chains will have integral coefficients.

13) As in § 2, the groups H™(m) all have the same zero element and we regard them
as imbedded in the additive group of R.
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defined by the éech-Whitney method *) in terms of a fixed ordering of
the vertices of K. The product, xy, of elements x ¢ H?(m), ye H%(m),
shall be the co-homology class, mod.m, of fg, where fex, ge y. Then

x y e HPH(m) , ry=(—1)Pyx . (3.1)
If xeH?(r), ye H%(s) we define zy as

TY = e, (%) the,5(Y) (3.2)

where ¢ = (r, s). Thus xy is the co-homology class of fg mod.(r, s),
where fex, gey. We then define the product, zy, of any two ele-
ments, z,y c R, by the condition that xy shall be bilinear. It is easily
verified that (zxy)z = x(y=z) for any xz,y,zc R. This defines R, ex-
cept for the Pontrjagin squares, which will he discussed in the next
section. Clearly R(m), the co-homology ring with integral coefficients
reduced mod.m, is a sub-ring of R for every m > 0. Also R has a unit
element, e e H®, which is the co-homology class of the co-cycle, which
has the constant value, unity, at every vertex of K.

Let A(m) denote the additive group of R(m). Then the homomor-
phisms u, ,, 4,, defined in the last section, may clearly be extended
through A (s) to give homomorphisms u, ,: A(s) - A(r), A,: A(s) —
A(0). I say that, if ze R(r), ye B(s), then

m(m,7,s)
(m,r)(m,s

Pm,r () pm,s () = ) tim,c (@ Y) (3.3)
for any m >0, where ¢ = (r, s). Because of the bi-linearity of xy and
the linearity of u it is sufficient to prove this for x e H?(r), y e H1(s).
Let this be so and let fex, gey. Let a =(m,r), b =(m,s), d =
(m,7r,8) = (m,c). Then (m/a)fep, x, (m/b)geu, y, whence

me
“d‘i)'fg & Um,r (%) fim,s (¥)
Also

(m|d) g e pm,(2Y)
and

md m m?
b '“J-fg——ﬁfg -

Therefore both sides of (3.3) are represented by the same co-cycle,

4) See [8], [9], [10], [11] and [6], chap. V.

59



mod.m, and (3.3) is established. Notice that (3.3) reduces to (3.2) if
m=c=(r,s). For then m = (m,r)=(m,8)=(m,r,s) and pu,
= ].

Out of respect for the operator A we display the formula

Me0 Ac(xy) = (Ac xc) Y. + (— l)p xc(Ac yc) ’ (34)

where x ¢ H?(r), ye RB(s), c = (r,s) and x, = u, .z, ¥y, = H,,y- This
follows without difficulty from the relations §(fg) = (6f)g + (—1)?f(4d9)
and (2.2), where fe(C?, ge C?. However we shall not need this because
of the special nature of our complexes.

4. The Pontrjagin squares. Let K mean the same as in §3. Let
feC?, ge (1. Following Steenrod®) we use fU,g to denote the (p-+q—1)-
dimensional co-chain, which was introduced mod.2 by Pontrjagin?'®), and
which is given by

p—1
(fUrg) oP+e7t = ¥ (— 1)e=ea (foF) (g of) ,

j=0

where oPt¢-1=q,...a, ., , is a given (p 4+ ¢ — 1) simplex and of =
q 16
Qoo @5 Qjpge . Qprgy, 0F =a;...a;,. Steenrod?®) proves that

6(fU,9) = (— 1P+ (fg — (— 1)P?gf)

+ 6fU 9+ (—1)*fU,dg . (4.1)
Let

pi=F+1U,df (P=Ff=fuh, (4.2)

where f is any co-chain. If f is a co-cycle, mod. 27, then pf is a co-cycle
mod.4r. For let 6f = 2ru. Then, calculating mod.4r, we have

opf=(6/)f £1(6f) + f(8f) — (6/)f + dfU,6f
= 2r(+fu + fu) + 4r*u U, u
= 0.
Let 6f = 2ru, g = 2rv, where f,gcC™. Then
p(f+9) —»f —pg =19+ g9f+ fU,d9 + g U, 6f
=fg 4+ gf + 2r(fUo + gUsu) . (4.3)

15) (1] and [2].
1¢) [2], Theorem (5.1), p. 296.
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It follows from Steenrod’s co-boundary formula®), with ¢ = 2, that
gU,u ~uU;g (mod.2), both g and u being co-cycles mod.2. Therefore

2rgU,u ~2ru U, g mod .4r . (4.4)

It follows from (4.1), with p = q = n, that

gf ~(—=1)"fg — 2r(fUv &= u U, g) . (4.5)
Calculating mod.4r, it follows from (4.3), (4.4) and (4.5) that

p(f+9) —vf—vg~fg+gf+ 2r(fUv 4 uU,g)
~ (I+(=1)")fg . (4.6)

Let f,,...,f, cC™ be co-cycles mod 2r. Then it follows from (4.6) and
induction on s that

8
ph+-+f)~Xpfi+v X fif, (4.7)
=1 <<j
where » =1 + (—1)~.
It also follows from (4.6) that pf,~p f,, mod.4r, if f, ~f,,
mod.2r, where f,,f,cC" are co-cycles mod.2r. For let g = 27h in

(4.6). Clearly p(27h) = 4r2ph, whence, calculating mod. 4r, we have

p(f 4+ 2rh) ~pf + (1 + (= 1)) 2rfh = pf .
Secondly, let ¢ = k. Then pg = (6h)2 = 6(hdh) ~ 0. Therefore, if
0f = 2ru, we have, mod. 47,
p(f + 6h) ~pf + (1 + (—1)") foh
~pfE (1 + (=) (6 h
= pf+ 2r(1 + (—1)*) ub

= pf .
Therefore

pf~p(f+ 2rh) ~p(f + 27k + O4") mod. 4r .

The co-homology class, mod.4r, of pf, where f is a co-cycle, mod. 27,
is independent of the ordering of the vertices of K. This follows from
(8.2) (4 = 1) and (8.3) (¢ = 0) on p. 302 of [2] and the (easily verified)
fact that, if u, v are co-cycles, mod. 2, then u \/,v ~ v V,u, mod. 2.

We now derive a rather cumbersome set of relations, (4.8), as a basis
for the relations (4.11) between p and u. Let f be a co-cycle mod. m,
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which may be even or odd, and let 6f = mu. Let a = (2r,m), o =
2rfa. Then of is a co-cycle mod.2r and we have

plef) = *(f* + fU.6f)
= ' + @*mfU u .

Since 2r| pm it follows that p?m = 0, mod.4r, if ¢ is even, which
it certainly is if m, and hence a, is odd. Also (47, 2m) = 2(27, m) = 2a,
whence ¢ = 2r/a = 4r[(4r,2m). Also if m is odd we have (4r,m) =
(2r, m) = (r, m), whence

4 72 . r 47r
(r,m)(dr,m)  (r,m) (4r,m)

=

Therefore, calculating mod.4r, we have

4 7r .
2 fe—n_ T ;
plefh=0¢o Pf—9(4r,2m)13f if m is even
plef) = 0*f? if m is odd
r 47r

— ) 2
T (r,m) (4r,m)f ) (4.8)

We now introduce Pontrjagin squares into the ring R, of § 3. These
are a family of maps p,,: H"(2r) — H2?"(4r), which are defined for all
values of n, r > 0. If xe¢ H*(27), fex then p,.x, or simply p=,
is the co-homology class, mod.4r, of pf. From (4.2) we have

a v g Das® == &2 r>0
(@) Har,ar P2 ( ) (4.9)
(b) Po = 2 (xe H") .
If z,...,z, cH*(2r) it follows from (4.7) that
Pzr(x1+"'+ws)=}3Pzrwﬁ-z'vxiwa, (4-10)
i=1 1<<j

where » 2, 2; =0 or 4, ,.(;2,) according as n is odd or even. Let
x ¢ H*(m). Then it follows from (4.8) that

Por U2r,m X = m')“ Uar.2m Pm 2 if m is even
== 7;*%—”')“ Mar,m T if m is odd. (4.11)
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It is obvious that
Poe=ce, (4.12)

where e is the unit element in R.

Notice that the relation 2p,, & = ug ,,2* (r>0), which is an ob-
vious consequence of (4.2), may be proved formally by operating on
both sides of (4.9a) with u,, ,,. The result then follows from (2.3).
Since s -+ 2s(s — 1)/2 = s? it follows from this and (4.10), with z, =
.=z, = x e H*(2r), that

Por(8%) = 8Py, if » is odd (4.13)

= 82 Py, & if n is even .

The ring R, complete with Pontrjagin squares, will be called the co-
homology ring of the complex K. Let R(K) and R(L) be the co-homo-
logy rings of complexes K and L. By a proper homomorphism R(K) —
R(L) we shall mean one, other than the trivial homomorphism R(K)—0,
which induces a proper homomorphism, H(K) - H(L), and which
commutes with the operator p, where H(K) and H(L) are the co-
homology spectra imbedded in R(K) and R(L).

5. Simple 4-dimensional co-homology rings. We now lay down the
conditions on a ring, B, which is given abstractly, in order that it may be
the co-homology ring of a finite simply-connected polyhedron of at most
four dimensions. We shall describe such a polyhedron as a simple, 4-di-
mensional polyhedron and the corresponding ring as a simple, 4-dimen-
sional co-homology ring. First of all the additive group of R shall be the
finitely generated direct sum of the groups, H"(m), in a spectrum of the
kind discussed in § 2, such that H° is cyclic infinite and H"(m) = 0 if
n=1 orif n>4. Since H'(m) = 0 it follows from (2.5) that H? con-
tains no element of finite order. It is therefore a free Abelian group.

As regards multiplication, R shall have a unit element, which is to be
a generator of H° Also (3.1) and (3.3), and hence (3.2), shall be satis-
fied.

A map p,,: H*(2r) — H?*(4r) is defined, for all values of n, r > 0,
which satisfies (4.9), (4.10), (4.11) and (4.12). We shall call p,,z the
Pontrjagin square of x¢ H™(27). Sometimes we shall write p,, simply
as p. —

Let R and R be two such rings. A homomorphism f: R — R will be
called a proper homomorphism if, and only if,

63



(1) f is not the trivial homomorphism R — 0,

(2) finduces a proper homomorphism, as defined in § 2, of the spectrum
of groups H»(m) c R into the corresponding spectrum in R.

(3) fp = pf, where p denotes the Pontrjagin square operator, both in
R and R.

In particular a proper homomorphism may be a proper isomorphism,
and R and R will be described as properly isomorphzc if, and only if, there
is a proper isomorphism of one onto the other. The inverse of a proper
isomorphism is obviously a proper isomorphism. If f: R — R is a pro-
per homomorphism, then f|H°® is an isomorphism of H° onto the cor-

responding group H°c R. For let e, e be the unit elements of R, R.
Since e, e generate H°, H° and since fH"c:I_f" we have fe = ke for
some value of k. Since e, e are idempotents and f is a homomorphism we
have ke =1Fk?e?=fe?=fe=1Fke. Since (k* —k)e =0 implies
k* =k it follows that £ = 0 or 1. If f(e) = 0, then f(x) = f(ex) =0
for every z ¢ R, which is excluded. Therefore f(e¢) =e and f| H° is
an isomorphism of H° onto H°.
Our main theorems are :

Theorem 1. Any simple, 4-dimensional co-homology ring can be realized
geometrically by a stmple, 4-dimensional polyhedron. That is to say, it s
possible to construct a simple, 4-dimensional polyhedron, whose co-homology
ring 18 properly isomorphic to a given ring of this type.

Theorem 2. Two simple, 4-dimensional polyhedra are of the same homo-
topy type if, and only if, their co-homology rings are properly isomorphic.

The part of Theorem 2, which is contained in the clause “ only if”
asserts that the co-homology ring is an invariant of the homotopy type.
This is true of any simplicial complex since the Pontrjagin squares of co-
homology classes, like the products, are independent of the ordering of
the vertices. More generally, let K and K’ be two simple, 4-dimensional
polyhedra and let R and R’ be their co-homology rings. Then a given
homotopy class of maps, f: K - K’, determines a unique proper homo-
morphism f* : R’ -~ R. Theorem 2 will be proved with the help of a
partial converse of this, namely :

Theorem 3. Let R and R’ be the co-homology rings of simple 4-dimen-
sional polyhedra, K and K'. Any proper homomorphism, f* : R’ — R, 13
the one determined by at least one homotopy class of maps f: K — K'.
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The fact that the homotopy class of maps f: K — K’ is, in general,
not determined uniquely by f* : R’ — R may be seen by taking K to be
a 3-sphere, 83, and K’ a 2-sphere, S2. Then H" = 0 unless n = 0 or
3 and H3 is cyeclic infinite. Similarly H'™ = 0 unless n = 0 or 2 and
H'? is cyclic infinite. There is only one proper homomorphism f* : R’
— R, which is determined by f*(e’) =e, f*H'?2 = 0, where ¢, ¢’ are
the unit elements of B, R’. This is induced by any map f: 8% — §2. In
order to establish a (1 — 1) dual correspondence between homotopy
classes of maps f: K — K’ and proper homomorphisms f*: R’ - R
one must, presumably, enrich the concept of a proper homomorphism.
For example!?), we may demand that, if we H'?, ve H'? are such that
f¥*(u) =0, wv =0 then an element

U*, u, v] e Hp+1-1 __ (f*H/p+q—1 + Hp—-lf*v)

is uniquely determined by f*, u, v. However we shall leave these possible
refinements aside and shall proceed to prove our theorems.

6. Theorem 3 implies Theorem 2. Let K and L be finite simply con-
nected complexes!®) of arbitrary dimensionality and let f: K — L be a
map which induces an isomorphism of each co-homology group H="(L),
with integral coefficients, onto the corresponding group H"(K). Then
Theorem 2 obviously follows from Theorem 3 and :

Theorem 4. Under these conditions K and L are of the same homotopy
type and f is a homotopy equivalence.

In proving this we may assume, after a suitable deformation of the
map f, if necessary, that fK"c L for each value of n, where K», L
are the n-sections of K, L. Then f determines a co-chain mapping,
f*:C*(L) -~ C*(K), where O"(K) and C»(L) are the groups of n-di-
mensional co-chains in K and L. By hypothesis the homomorphisms
H"(L) — H™(K), which are induced by f, and hence by f*, are all iso-
morphisms onto. It follows from a theorem due to Lefschetz1?) that the
homomorphisms, H,(K) - H,(L), of homology groups, which are in-

17) See [3].

18) These shall be simplicial or, more generally, cell complexes of the kind discussed in
§ 7 below.

19) [6], p. 148. There is a flaw in the paragraph following (10.11). For let there be just
one 2-dimensional chain, b, and just one 3-dimensional chain, d, such that Fd = 9d = 5b.
Then the chains 2b, 2d satisfy the conditions (a) and (b), with p = 2, but are not basis
elements in any canonical basis for the chains. This may be repaired by an elaboration
of Lefschetz’ argument. See also the following paragraph.
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duced by the chain mapping dual to f*, are also isomorphisms onto.
Since these are the homomorphisms induced by f the theorem follows
from a theorem which is proved in [12].

We give an alternative proof of the theorem of Lefschetz®). Let H (K)
and H(L) be the cohomology spectra of K and L and let A: H(L) —
H(K) be the proper homomorphism induced by the co-chain mapping
f*.Since h | H*(L) is an isomorphism onto, for each value of n, it follows
from Lemma 2 that % is a proper isomorphism of H (L) onto H(K). By
Lemma 4 its inverse, A~': H(K) - H (L), can be realized by a co-chain
mapping, g*:C"(K) — C"(L). Then f*g* induces the identical auto-
morphism of H(K) and g*f* induces the identical automorphism of
H(L). Tt follows from another Theorem of Lefschetz2°), with homology
replaced by co-homology, that f*g* and g*f* are each co-chain homo-
topic to the identity. That is to say, there are families of homomorphisms,
a*: (O*"+y(K) - C*(K), b*:C"*(L) - C"(L), such that

f¥g* — 1= da* +a*é , g¥f* — 1 = 6b* +b*¢ .

Therefore
gu [« — 1 =ad + da , fege —1 =004 db ,

where f,:C,(K)—>C,(L), g4+:C,(L)—C,(K) are the chain map-
pings dual to f*,¢9* and a:C,(K)—>C,,(K), b:C,(L) - C,(L)
are the duals of a*,b*. Hence f, is a chain equivalence, which esta-
blishes the theorem in question.

7. Cell complexes. Simplicial complexes are unsuitable for what
follows and we shall use instead a type of complex, which we shall de-
scribe as a (finite) cell complex, or simply as a complex. Let ¢ be a fixed
n-simplex and let ¢” be its boundary. A (finite) cell complex, K, consists
of a finite number of open cells, no two of which have a point in common
and each of which is homeomorphic to the interior of o” for some value
of n. Moreover the closure, e, of each n-cell, e ¢ K, is the image of ¢"
in & map, f:o" —e”, such that

(1) fo"c K*1, where K™ 1 isthe (n — 1)-section?) of K, and
(2) f] (6™ — o™) is a homeomorphism onto e®.

20) [6], Theorem (17.3), p. 155. This theorem, like the results in § 2, can equally well
be stated in terms of homology or co-homology.

2) i, e. the aggregate of cells in K, whose dimensionalities do not exceed n — 1. This
is a sub-complex, whose dimensionality does not exceed n—1, but need not be as great.
For example, an n-sphere is covered by a complex, K, consisting of one 0-cell and one
n-cell, in which K" = K°® if 0 <r<n.
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Such a map will be called a characteristic map for e». We do not, at
this stage, impose any other condition on a characteristic map. For
example, f ¢ need not coincide, as a point set, with a sub-complex of K.

Examples of cell complexes are :

(1) the complex projective plane, regarded as a complex, K, consisting
of a 0-cell, a 2-cell and a 4-cell, e*. The 2-section, K2, is a 2-sphere
and the ‘““homotopy boundary” fe*, of e*, as defined below, is a
generating element?2) of 7, (K?).

(2) the topological product, 8% x 82, of a 2-sphere with itself, regarded
as a complex K = e® + € + ¢ -+ et, where € = p, X py (p, & 8?),
e? = 82X p,, €2= p,x S2. In this case®) fe* = a,a,, where a,
is a generating element of m,(e?) (¢ =1, 2).

A cell complex may be built up cell by cell, starting with a finite set
of points K°. Assume that a complex, K, has been constructed and let
E™ be an m-element (i. e. a homeomorph of ¢"), which has no point in
common with K. Let f: En — Kn-1 be any map of E™, the boundary
of En, into Kn1. Let en = E» — E» and let p: KUE™ - KUe" be
the map which is given by ¢ | KUer =1, op=fp if peEn. Let
K + e® Dbe the space which consists of the points in K Ue® with the
identification topology determined by ¢. That is to say a set Xc K + e
is closed if, and only if, ¢~* X c KU E" is closed. It follows from this
definition that @| K, @ |e® are homeomorphisms, i.e. that K and e® retain
their topologies in K -+ e®. Therefore K + e™ is a complex, whose cells
are the cells in K, together with e”. If g: ¢® — E” is a homeomorphism
(onto), then ¢ g: o™ — K -4 em is a characteristic map for e». We shall
say that K + e is formed by attaching e™ to K by means of the map
f : E‘n — Kn-1,

Let K be a given complex and let K, = K + ¢f, K, = K-+ ¢}, be
complexes, each of which consists of K and one other cell, e} (1 = 0, 1).
Let f,:0" —¢? be a characteristic map for €} in K.

Lemma 5. If f,| o~ f,| o™ in K, then K, and K, are of the same
homotopy type.

Let p, be the centroid of o™ and let p be a variable point in o™. We
refer ¢” to ¢ polar’’ coordinates r, p, such that (r, p) is the point which

—

2) Cf. [2], §19, pp. 310, 311.

) Cf. [13), § 3, where ab was denoted by a.b (it is now often denoted by [a, b]). See
also & passage in the proof of Theorem 5, in § 12 below.
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divides the segment p,p in the ratio r:(1 — r). Then (0, p) = p,,
(1, p) = p. Let g,:0™ — K be a homotopy of g, = f,| 6" into g, =
fi| o™ and let h,: K, — K, be given by h,| K =1 and

ho folr, ) = f1 (27, p) if 0<
= Gaor P if 1<
let h,: K, - K, be given by h,| K =1 and
hy fi(r, p) = fo(27, p) if 0<
= Jor1 P if 1<

It is easily verified that %, k, are single-valued and hence continuous ).
We have

hy ko fo(r, p) = by f1(27, D) if 0<2r <1
=h192 2: P f1<2r<2.
Since k,| K =1 it follows that
by b folr, p) = fo(4r, ) if 0<<4r <1
= Gur1 P if 1< 4r<2
= (s arP if 1<2rg2.

Let &,: K, > K, be the homotopy, which is defined by &,| K = 1 and

Etfo("';p)zfo {(4“-'3t) T,p} if O<T<1/(4"— 3t)

. 2—1
= g(4—-3t)7'—-—1p lf "I‘:“é—t‘ < r < z—:—éz
= if 270 << 7.1)
= gt a—3tya—nP : 13 > r<l. (7.

It is easily verified that &, is single-valued, and hence continuous®), and
that & = h, hy, & = 1. A homotopy #,: K, - K,, such that 7, =
hohy, n,=1, is defined by (7.1) with f,,g, replaced by f,,g,_», where
A=(4—3t)r—1 or (4— 3t)(1 —r)/2, and the lemma is therefore
established.

®) See [15], § 5.
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If K and K’ are two complexes covering the same set of points and if
every cell of K’ is contained in a cell of K, then K’ will be called a sub-
division of K and a simplicial sub-division if K’ is a simplicial complex.
The following lemma is useful when considering complexes which are
constructed by the method of attaching cells. Let K, be a complex which
has a simplicial sub-division K;. Let K = K, + e», where the cell e

is attached to K, by a map En — Ky, which is simplicial with respect
to K, and some triangulation of Em.

Lemma 6. Under these conditions K has a simplicial sub-division, of
which K, is a sub-complezx.

This will be proved elsewhere.

8. Homology and co-homology in a cell complex. It follows from
[15] or [16] that a (finite) cell complex, K, is a locally contractible com-

pactum. Therefore all the standard homology theories (éech, singular,
etc.) are equivalent and all our remarks on homology are to be inter-
preted in terms of the singular theory. We orient each cell, e ¢ K, and
also the fixed simplex, o”, and restrict the characteristic maps, f: g®—e™,
to those which are of degree 1 in €. Let e7,..., ¢; be the n-cells in
K. Let e} also denote the element of the relative homology group,
H, (K, K»1), which is represented by a characteristic map for e, the
vertices of o™ being positively ordered **). Then H,(K", K*!) is a free
Abelian group?®) which is freely generated by ef,...,e. The natural

q
homomorphism H,(K") - H,(K) is onto and its kernal is

oH, (K™, K") cH,(K") ,

where @ is the homology boundary operator. Also the natural homo-
morphism H,(K") - H,(K"*, K1) is an isomorphism onto the sub-
group 0-1(0) c H,(K", K»1). Therefore, identifying each element of
H,(K") with the corresponding element of H, (K™, K»1), it follows
that the homology groups of K may be defined in terms of chain groups
C.(K)= H,(K», K1), and the boundary operator 9.

We define co-chains as integral valued functions of chains and C"(K)
will denote the group of n-dimensional co-chains in K. We shall use

) Cf. [5]. H,, (K™, K™-1) = Hy(K®) if n = 0. Every 0-dimensional chain is & cycle.
%) This and other assertions in this paragraph will be proved in a forthcoming book
by 8. Eilenberg and N. E. Steenrod. I have been greatly helped by a set of notes, prepared

by Eilenberg and Steenrod, for a course of lectures, which Eilenberg gave at Princeton in
194546,
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@t,. .., ¢; to denote the basis for (" (K), which is defined by ¢} ¢} =1,
¢; €f = 0 if 4 #j. We shall describe ¢7,..., ¢; as the co-chains dual
to ef,..., ¢;. Following Eilenberg and Steenrod we shall describe a map,
f: K - L, of K into a cell complex L, as cellular if, and only if, fK"c L
for each value of r = 0,1,.... A cellular map f: K — L determines a
chain map, g¢g:C,(K) -~ C,(L), as follows. Let k, be a characteristic
map for the cell ¢ ¢ K. Then ge?eC,(L) = H,(L" L") is the ele-
ment which is represented by the map f&,: (6®, ¢*) — (L*, L*1). The
dual co-chain map g¢*:(C"(L) — C"(K) is defined, as usual, by (g*y)c
= y(gc), where peC*(L), ce(C, (K). We shall say that g, and like-
wise g*, is realized by f: K — L. Any map f,: K — L is homotopic
to a cellular map?) f,: K — L and if two cellular maps of K into L are
homotopic to each other then the corresponding chain maps are chain
homotopiec.

We now assume that all our complexes have simplicial sub-divisions.
Let K’ be a simplicial sub-division of K. Then the identical map ¢: K
— K’ is cellular. Let ¢*:(C"»(K’) - C*(K) be the induced co-chain
mapping. The identical map 3’: K’ — K is not cellular, unless K’ = K.
However it is homotopic to cellular map j: K’ — K, with the proper-
ty %) that jK,c K,, where K, is any sub-complex of K and K, is the
sub-complex of K’ which covers K,. Let j*:C"(K) - C"(K’) be the
co-chain mapping which is induced by j. Since the maps ji: K — K
and 7j: K’ — K’ are each homotopic to the identity it follows that each
of ¢*4* and j*¢* is co-chain homotopic to the identity. Therefore i*
induces a proper isomorphism, as defined in §2, of the co-homology
spectrum H (K’) onto the spectrum H(K) and j* induces its inverse.

Let the co-homology ring, R(K’), be defined as in §§ 3, 4 and let
A(K'’) be its additive group. Let A4 (K) be the finitely generated direct
sum of all the (absolute and modular) co-homology groups H"(K, m)
(m,n=0,1,...). Then ¢* determines a proper isomorphism2) h:
A(K') - A(K). We define R(K) by making k a (proper) isomorphism
of R(K’') onto R(K). That is to say, if z,yc A(K), z¢ H*(K, 2r)
we define xy and pz by

xy =h{h1z)(hy)} , pz=hphlz. (8.1)

If K is a simple, 4-dimensional complex the ring R(K’), and hence
R(K), satisfies the conditions in § 5 for a simple, 4-dimensional co-

27) See § 16 below.
28) i, e. an isomorphism which induces a proper isomorphism H(K'’)—> H(K).
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homology ring. Moreover the unit element has the same geometric inter-
pretation in R(K) asin R(K’). Forlet ue C°(K), u' e C°(K’') be the
co-chains with constant value 1. Then the unit element, ¢/ ¢ R(K'), is
the co-homology class of u’. Obviously ¢*u’ = u, whence he’, the unit
element in R(K), is the co-homology class of «.

Let f: K — L be any map of K in a complex L. Let R(L) be defined
in the same way as R(K), by means of a simplicial sub-division, L', of
L. The map f determines a unique proper homomorphism R(L’) —
R(K’) and hence, in the obvious way, a unique proper homomorphism
R(L) - R(K).

For purposes of calculation, and especially for the sake of (8.4) below,
we need to define products and Pontrjagin squares of co-chains in K. If
@, p are given co-chains in K we define ¢y and py by

ey =1*{(1*p)(7*v)} , pe=1i*pj*e. (8.2)

When we pass from co-cycles to co-homology classes this obviously leads
to (8.1).

Let K, be any sub-complex of K and let K, be the sub-complex of K’
which covers K,. If ¢ ¢ C*(K) we shall denote the function ¢, restricted
to chains in K,, by ¢ | K,. Also ¢’| K, will have a similar meaning if
¢' ¢ Cn(K'). Let products of co-chains and Pontrjagin squares in K,
be defined by the same rule as in K’, the vertices in K, taking their order
from the ordering in K’. Then?)

¢ y'| Ko = (¢ | Ko)(y' | Ko) (5.3
(p¢') | Ko =p(¢'| Ko)
for any co-chains ¢’, v’ in K'.

Clearly 1K, = K, and we recall that jK,c K,. Let 4, = 1| K,,
jo=7| K, and let i¥:Cn(K]) - C"(K,), j&:C"(K,) —C"(K;) be
the co-chain maps induced by 4,, j,. Let products and Pontrjagin squares
of co-chains in K, be defined by (8.2), with ¢*, j* replaced by g, jg .
Then I say that

‘P’PlKo:(‘NKo)('/’lKo)

5 (8.4)
(Po) | Ko=plp| Ky , i

*) Cf. [9], condition P,, p.403.
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for any co-chains ¢, y in K. To prove this we first show that

(i*¢') | Ky =15 (¢ | Ky) , (7*v) | Ko = jo (v | Ky) , (8.5)

for given co-chains ¢’eC"(K’), peOn(K). Let u, = u'| K}, v,=
v| K,, where 4/, v are any co-chains in K’, K. Then (8.5) may be written
in the form

¢ )o=1id ¢,  ((*9o=1 vo -

Let ¢,eC,(K,) and let ¢, 7, also denote the chain mappings induced by
i: K —>K', i: K, > K;. Then icy = 1,¢0¢C,(K,), taking C, (K,) c
C, (K). Therefore ¢'ic,= ¢,t,c, and

(i* ¢’) co = @’ i ¢g = @y 19 €o = (ig @) Co -

Therefore (i* ¢’)y = iy @,. Similarly (j* )o = j&¥ v,. It follows from
(8.5) and (8.3) that

ey | Ko = (*{(j* 9)(i* v)}) | K,

= ig {(7* ) (7* v) | Ko} by (8.5)
= 15 {(7* 9)o(7* ¥)o} by (8.3)
= 15 {(Jo o) (Jo o)} by (8.5)
= @o¥%o -

Similarly (p @) = p @, which establishes (8.4).

9. A lemma on extensions of maps.” Let K be a simply connected
complex and let » > 3. Then it is an easy extension of a theorem due
to W. Hurewicz3%) that the natural homomorphism of the relative homo-
topy group, x,(K", K*1), into C,(K)= H,(K", K™1!) is an isomor-
phism onto. We identify corresponding elements in this isomorphism
and, as before, we use e* to stand both for an n-cell in K and for the
corresponding element in C,(K) = n,(K", K*1). Let kb be the natural
homomorphism % : x, (K*)—>n, (K", K* ). If a given element, acx, (K")
is represented by a map, f:o"*! - K", then ha is represented by the
same map. It follows that dc =h Bc, for any ceC, ,(K), where
B:m, (K", K*) =C, ,(K) >=n,(K") is the boundary homomor-
phism in the sense of homotopy. Since =,(K") =1 an element in
T piq (K*, K™) or 7, (K™) is uniquely, determined by a map of the form
(o"+1, gntl)— (K741, K7), or gn+!— K™, without reference to a base point.

%) 117], p. 522.
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Let K and L be simply connected complexes, let e” be a principal cell
(i. e. one which is an open sub-set) of K and let K, = K — e (n > 3).
Let g¢g:C.(K)—>C,(L) be a chain mapping such that the map
g|C.(Ky) (r=0,1,...) can be realized by a cellular map f,: K, - L.
Let f, B e® denote the element of z,_,(L"”!) into which B e is carried
by the map f,: K, — L.

Lemma 7. If f,fe* = Bge™ then f, can be extended to a map f: K—L,
which realizes the chain mapping g.

Let fofe” = Bger. Let h: o™ — e™ be a characteristic map for e” and
let k:(o" o™) — (L*, L™1) be a map which represents the element
gere C, (L) ==n,(L"*, L*1). The element Be"¢em,_ (K" 1) is represent-
ed by the map h|o™ and f,pem is represented by f,h|o™. Also
Bger is represented by k|om™. Since f,f5er = fger it follows that
k|o®~ foh| o™ in L1, A given homotopy of k| ¢" into foh|co™
can be extended throughout ¢ and we may therefore assume that
k| o™= f,h | o™. This being so, I say that the map kh1:em — L» is
single-valued. For it is single-valued in e”, since % | (6™ — ¢™) is a homeo-
morphism onto e” and h o™ = e® — em. If pee® — e® wehave h-lpco™,
whence kh1p = fohh'p = fop. Therefore kh~' 1is single valued,
and hence continuous?). Moreover kh-1|e”n K,=f,| e”n K,, since
e"NKy,==er —er and khlp=f,p if pcer —en. Also (kh)h=EF.
For kpekhhp (pee”) and since kA1 is single-valued it follows
that kp = k h~'h p. Therefore the required map f: K — L is defined
by f|Ko=fo, f]em = kA,

10. Reduced complexes. A simple, 4-dimensional complex, K, will
be called a reduced complex if, and only if, it satisfies the conditions

(1) K* = K°, a single point.

(2) The closures of the 2-cells, e3,...,e2, are 2-spheres, S3%,...,82,
attached to KP°.

(3 ) K=K+ e+ -+ &+ e, ,+-- +et+l, where ¢ (1 =1,.
< n) is attached to K2 by a map Ef — 82 of degree o,>0 and
¢;,; by a map of the form EH, —>K° (j=1,...,1). Thus €}, is

a 3-sphere, 8%, and K? consists of clusters of 2-spheres and of 3-spheres
attached to K", together with the bounded 3-cells €3,..., €.

(4) Each 4-cell is attached to K2 by a map of the form E* > K2
St 2
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Notice that each of the bounded 3-cells, €},..., €3, is a principal cell
of K.

In the above conditions we may have » = 0, in which case K2 = Ko,
Similarly we may have 1 = 0 or ¢ = 0 and there need be no 4-cells, in
which case K = K3.

A map f,: E® - 8%, by which ¢ is attached to K (i = 1,...,1), is
homotopic in K2 to a map of the form Ef — 8%, which is simplicial with
respect to a given triangulation of K? and a suitable triangulation of E‘;’
Since €2 is a principal cell of K, for each ¢ =1,...,¢, it follows from

Lemma 5 that K is of the same homotopy type as a reduced complex,
K,, in which each of the 3-cells ¢? is attached to K2 by a simplicial map

E? - 82. The 3-spheres S2,..., 8% may be triangulated and it follows
from Lemma 6 that K; has a simplicial sub-division. On applying a
similar argument to the 4-cells it follows that K, and hence K, is of the
same homotopy type as a reduced complex, which has a simplicial sub-
division. Therefore the condition that each of our complexes is to have
a simplicial sub-division does not restrict the homotopy type of a reduced
complex.

Lemma 8. Any simple, 4-dimensional complex is of the same homotopy
type as some reduced complex.

This will be proved in § 15 below.

If ¢t=0, in which case the bounded 3-cells e},...,¢} are absent
from K, then every 2-dimensional co-chain, ¢ ¢ C?(K), is an absolute
co-cycle. Therefore it follows from (4.2) that po = ¢ ¢. Let

Ky=K—(&+ -+ =K+ 8 +---+ 8 +ef+---+¢ .

Then p’' ¢ =@ ¢, where ¢ e C?(K,) = C%(K) and p’ denotes the oper-
ator pin K,. Also 9| K,=1v if peC*(K) for n = 2 or 4 since K,
contains all the 2-cells and 4-cells in K. Therefore it follows from (8.4)
that

Pe=m¢) | Ki=p(p| K)=17p"9p

—gp . (10.1)

Therefore if z ¢ H%2(K,2r) and if g ex, then p z is the co-homology
class®) of ¢ ¢, mod.4r. Thusif ¢ e C*(K) is a co-cycle, mod. 27, then

81) N. B. g@eC4(K) and every 4-dimensional co-chain is an absolute co-cycle.
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@ ¢ has invariant significance as a co-cycle mod.4r, as apart from
mod.27. Notice also that, if ¢,y < C?(K), then it follows from similar
arguments that ¢ ye C4(K) is the same whether it is calculated in K
or in K,.

11. 715 (K®), where K?® is reduced. Let K3 satisfy the conditions (1),
(2), (3) in §10 and let

Ki’sz—l—e;’ _{_..._{_eft’,
so that
K3=Kf+Si+---—|—S§.

Let b, be a generating element of 7,(S?) (¢ = 1,...,1). Then ny(K?3) is
the direct sum?32)

73 (K3) = 7t3(K:i) 4+ (by,. .., by) ,

where (b,,...,b;) is a free Abelian group, which is freely generat-
ed by b,,...,b,. We study =n;(K3). Let a,em,(K2%) be the element
which corresponds to a map o3 — S of degree 4 1. Then z,(K?2) is a
free Abelian group, which is freely generated by a,,...,a,, and fel =
o;a;, (1=1,...,t). Since Bel,...,p e are linearly independent the
natural homomorphism ¢: 7, (K?) — n,(K3) is onto3). That is to say,
each element in m,(K3}) has a representative map in K2. The group
m3(K?) is a free Abelian group, which is freely generated®) by the
n(n + 1)/2 elements e; =e,; (¢,j=1,...,n), where e; =a,;a,; if
t # 4 and e, is the generator of m,;(8%), which is represented by a map
ot — 82 with Hopf invariant + 1. It follows easily from the definition
of the product a;a; that a;a, has Hopf invariant 2. Therefore a,a; =
2e,;.

Let us also use a; and e;; to denote the images of a, e m,(K?) and
¢;; €y (K?) in the injection homomorphisms ¢ : z, (K2?) — 7, (K3),
@17, (K?) — 75(K3). These homomorphisms do not alter the fact that
€; = a,u; in wy(K3), if ¢ 4, and that a;a, = 2¢,;. Let g, be defined
for j=1,...,n by writing ¢,,,=+--=0,=0. Then (K3} is

. 32) [14], Theorem 19, p. 285. Strictly speaking there is a natural isomorphism of this
(.ilrect sum onto s, (K?). We have implicitly identified corresponding elements in this
1Somorphism.

) [13], Lemma 3, p. 417.
) %) This is an obvious generalization of the special case m = n = 2 of Theorem 2 (p. 413)
In [13], where the product ab was written as a.b. See also [1].
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generated by e,;, since ¢ : m,(K2?) — 7,(K?) is onto, subject to the rela-
tions )
(a) 0;a;0; =0 (t,j=1,...,n), |

b 5, (11.1)

iw =0,

which are a complete set. Since a;a;, =a,a, =¢,; if ¢ %4 and since
a;a;, = 2e; it follows that (11.1a) are equivalent to (o, 0,) e; = 0 if
t #9, 20;€; =0, on the understanding that (o;,0,) =0 if ¢, =0,
= 0. Therefore (11.1) are equivalent to

Oy =0, (11.2)

where o;; = (0;,0,) if ¢ #£§, 6, = (20;,0}) = 20, or o, according as
o; is even or odd.

Let y= X yie, (11.3)

i<i

be an arbitrary element in n4(K?2) and let y be represented by a map
f: 8% — K2, which is simplicial with respect to triangulations of S® and
K2, Then 9% is the linking coefficient L {f-1(p,), f~(¢;)}, where p;, g;
(p; # ¢q;) are inner points of 2-simplexes in S7. The matrix ||y || is
called the (generalized) Hopf invariant of any map 83 — K? in the classy,
or simply the Hopf invariant of y. In exactly the same way we may
define the Hopf invariant of a map of the form

B>Ky =K+ 8 +...+ 8

or the Hopf invariant of the corresponding element in ,(K3).

Let g¢: (K2 K° — (L%, L°) be a map of K2 into a reduced complex,
L2, which consists of a set of 2-spheres, S7%,..., 8}, attached to a point
L2, Let us also use g to denote the induced homomorphism ¢ : 7z, (K?) —
7,(L%) (n=2,3) and let a e m,(L? be the element represented by &
map o3 — 8.2 of degree 4 1. Then

v
I4
gai=2.¢:“a ’
a=1

85) [13], Lemma 4, p.418, and [1]. The relations (11.1a) express the fact that (¢;a;)a;=0
in m, (K:) since 0;a; =0 in 7, (K:). The relations (11.1b) express the fact that a map
of the form S’——)E:——:»S: (¢=1,...,t) is inessential in K:, where E’Z—>S: is a map
by which e; is attached to K?. If S3— ; has Hopf invariant 1, then §%—>§; has Hopf

invariant a-:. It is proved in [13] that these relations are complete.
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where g7 is the degree with which ¢|S? covers S/%. I say that, if y is
given by (11.3), then

gy = };ﬁnaﬁe;p , (11.4)
ass
where e,3 =agag if o #f, 2e, =a,a, and
1= X S iggl . (11.5)
i=1j=

It is obvious from the definition of the product a;a; that g(e;a;) =
(ga;)(ga,;). Also bb’ is bi-linear in b, b'c s, (L?). Therefore, using the
summation convention for ¢,j=1,...,n and «,f=1,...,p, we
have
29y = y79(a;a;) = y7(ga,)(g a;)

= v (g% a) (4} ap) = " g% 9F a, ap

=P a, ap

= 92 E ’I’]“B e&B 5

a<B
where 7*f is given by (11.5). Therefore (11.4) follows from the fact that
m3(L?), being a free Abelian group, contains no element of order 2.
Now let f: K® — L? be a cellular map of K3 into a reduced, simply

connected complex, L?, and let f also denote the induced homomorphism
|7y (K3) — my(L8). Then fi=14g, where g:m;(K?) — my(L?) is the
homomorphism induced by g = f|K? and 7 stands for both injection
homomorphisms 7 : 73 (K2) — 75(K3) and ¢ :m,(L2) — my(L3). It fol-
lows from the relation fi =4g and (11.4) that

fr=XnPey, (11.6)
a<p

where y and 78 are given by (11.3) and (11.5) and, as in (11.2), e;,, e;p
(=17eu,1 e(’!ﬁ) are interpreted as generators of @ m,(K?2), 1 my(L3).

12. Homotopy and co-homology in a reduced complex. Let K be a

reduced complex. Let ef,..., ¢! be the 4-cells in K, and, using the same
notation as in § 11, let
Ber= 3 ¥ ey + b7, (12.1)

1<y
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where b) ¢ (by,...,b;) and || ¥{’|| is the Hopf invariant in K? =

K2+ 8 +...4 8 of a map, Eﬁ — K3, by which e} is attached to
K3. Let {¢;} be the basis for C"(K), which is dual to the basis {e?}
for C,(K). The incidence relations between {e} and {el} are 9e! =

o.¢; (i =1,...,t), 8¢ =0 if j>¢. Therefore the co-boundaries of ¢
are 0 =o,¢; (i=1,...,1), ¢} =0 (j=1t-+1,...,n), whence ¢
is a co-cycle mod.s;, with ¢,,, =---= 0, =0. Also ¢} are absolute

co-cycles. Let z; be the co-homology class, mod.o;, of ¢3 and y, the
(absolute) co-homology class of ¢;. Then H*(K,m) is generated by
Yy(m),..., y,(m), where y,(m)= u, ,y). According to (3.2), z,x; =
(/“m,aixi)(lum,o,-x:i)’ where m = (0;,0,;), on the understanding that

m =0 and Him,0; = Pm,o; = 1 if 0,=0;,=0.

Theorem 536). If ¥} mean the same as in (12.1), then

(@) zz; = X '}’;-\j yx(m) with m = (o,, 0;) ,
A=1

: (12.2)
(b) px; = X »i* ya(20) if o, is even.
A=1
Assume that the theorem is true if { = 0, the bounded 3-cells é2,...,€

being absent from K. Then it is true if K is replaced by
Ky=K— (& +---+¢€) .

Since yi/ in (12.1) are the elements of the Hopf invariants in K3, of the

maps Eﬁ — K}, they are the same when calculated for K, as for K. It
follows from the theorem, with K replaced by K,, that, in K,,

r
o] — A e ~0. (12.3)
If ¢ = dy, in K,, where g ¢ C*(K,) = C*(K), yoe C3(K,), then p=0y,
where y ¢ C?(K) is any extension of y, (i. e. yel,..., pel have arbitrary

values)®). Therefore ¢ ~ 0 in K, implies ¢ ~ 0 in K, whence (12.3)
holds in K. It follows from the concluding remarks in § 10 that we ob-
tain (12.2a), in K, by taking (12.3) mod. (g;, 0,;) and (12.2b) by taking
(12.3) mod. 20, in case ¢ = j and o, is even. Therefore the theorem is
true in K if it is true in K,.

%) Cf. the main theorem in [1].
37) N. B. the group of cycles in C,(K) is generated by e? FETYRRE e:: 41+ Therefore (dy)e
= ¢ (dc) = ¥o(dc) = (3yq) ¢, where ce O,(K), ye¢ C¥(K), v,=v|K,.
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It remains to prove the theorem when ¢ = 0. In this case z;¢& H%(K)
and pz, = a7 for each 7 =1,...,n. Therefore we only have to prove
(12.2a). We do this by constructing a complex, L, which consists of
@ = 82x 8% together with complex projective planes, P, and P,, each
of which has one of the 2-spheres S%xp, and p,xXS? (p,e82) as a
basic 2-cycle. We use the Poincaré duality and intersection theory to
prove the theorem in L and then prove (12.2a), for given values of ¢, 4,
by means of the proper homomorphism, f*: R(L) - R(K), which is
induced by a certain map f: K — L.

Let @ = 82x 82, where S2 is an oriented 2-sphere. Let e'% = pyX p,
(poeS?), let SPP=82Xp,, Si=p,x 8% and let >=8;2—e'® (A1=1,2).
Let &': (0% 0% — (52 p,) be a map such that h’[ (02 — ¢2) is a homeo-
morphism onto 8% — p, of degree +1. Let E*= 0%Xo? and let
h:E* —@Q be given by h(x,, x,) = (b’ )X (h' x,) (z,, z,C o?). Then
h(o®X @,) = 82X (b x,), h(z,x0%) = (b’ ,)xS2, whence hE*=Q?—
82 4 8. Clearly h|(E* — E%) is a homeomorphism onto e/* = Q — Q2.
Therefore @ is a complex, @ = e'® 4 > + e, + ¢,t. We orient E* so
that 02X x, intersects x, X o with coefficient + 1, where z,,x,C ¢2—02,
and we orient e/ so that R (B¢ — E%) is of degree + 1. Then it follows
from [13] that Bey! = a az = 612, where a, ¢ 7,(Q?) is represented by
a characteristic map for e;*> and ew ¢ 713(Q?) is defined in the same way
as e emy(K?) (A,u=1,2).

Let u,, u,cC?(Q) be the co-cycles dual to e}?, e;?c 0,(Q) and let
Ve C*(Q) be defined by v, et = 1. Since 02Xz, and z,Xo? intersect
with coefficient 41 in E* so do 82X h’x, = k(02X x,) and h'z,xXS% =
h(x, X 0?%), and hence S;2 and ;% in Q. Therefore it follows from Poincaré
duality that w, u, = v,. Similarly «2 = u, u, = 0 (A =1, 2).

Let L = Q + ¢* + ¢/*, where ¢/* is attached to 8.2 by a map Ei—S;?
(4 =1, 2), with Hopf invariant + 1, of such a kind that e,* is a complex
Projective plane®) B. Then fe* =e),. Let wu,,u,c C*(L) = C2(Q)
mean the same as before and let v,, v,, v, C*(L) be the basic co-cycles
dual to ept, ef*, e;4c C(L), v, being the same as before. It follows from
(8.4) that e = (uyuy)e’ = (Ui B)et = (| P) et (A=1,2)
That is to say, u2e;* may be calculated in P,, ignoring the rest of L.
Since e)* is so oriented that §ej! = + e},, it follows from Poincaré dual-
ity and intersection theory *) that uej =1. Slmﬂarly uy e, =
(uy | B,)2 el=0if A£u (4, ,u...l 2). Also 4} e = (u)|@)%e '4-—0
as proved above. Therefore 42 =v, (A =1, 2). Slmllarly Uy Uy = V.

—

%) [2], p. 311.
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Let fo: K® - L8 =L12= L°+ S + 8 be a map such that f,K°
= L% and :
(1) /|8 is a homeomorphism onto 8,2, of degree 4 1, for a given value
of 7,
(2) if n>1, then f,|8} is a homeomorphism onto S;?, of degree 41,
for a given value of j #£71,
(3) folK® — (2 + S} =10, or f[o(K*—8)=1L° if n=1L.
Let g, : Ck(K3)—Ck(L?) be the chain mapping which is induced by f, and
let g:Ck(K)—>CE(L) be defined by®) ¢|C,(K)=g,|C,(K3) if k<4
and
gey =y e + 7 et + vi et (A=1,...,r) . (12.9)

Then g is a chain mapping, since f,8% = L°, whence gdej= dge; = 0.
Let a;en,(K) be the element which is represented by a characteristic
map for €. Then fya, = a;, fa; = a}, foa, = 0 if k s£4 or j, where
fo: 7 (K3) =7, (L?) is the homomorphism induced by f,: K® - L3. It
follows from (11.5) and (11.6) that fee,; = €}, foli; = €11> fo;; = €sa>
foepo = 0 for all other pairs p, q. Also fy(b,,...,b;) = 0 since f,85 = L°.

Therefore ] .
foBer=fo( X 8% e, + bY)

P<q

— nid ’ i/
'}’; 2 + 7;‘@ e + V3 ey
o s o s
=y Be + ¥ Be + viBe

=fge .
It follows from Lemma 7 that f, can be extended to a map f: K — L,
which realizes the chain map g. Let f*: R(L) - R(K) be the homo-
morphism induced by f and let wu) e H2(L), v, ¢ H4(L) also denote the
co-homology classes, which consist of the single co-cycles %), v,. Then
f*u, = x;, f*u, = z, and it follows from (12 4) that

f*v, = 2 7’1 Y > f*v, = E ?’A Y -

Therefore =
wox = (fFu)? = f* (u3) = f*v, = AZ; W
2, 2y = (f¥uy) (fFug) = f*(uyus) = f*v, = 2 ?’i’ Y >

A=1
which establishes the theorem.

et

%) Tt is obvious what modifications must be made here and in the following arguments
if » = 1. In this case we only need the sub-complex P, C L.
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This theorem shows the part played by the Pontrjagin squares. We
illustrate this by an example. Let K y =¢€" + € + € + ¢! be the com-
plex in Theorem 5 with n=t=1, ¢,=2, =0, r =1and ' =
y =0 in (12.1). Then K = e® + ¢ 4 ¢, where 09¢® = 2¢2, and
n,(K?) is generated by e;; and is of order (20,, 0%) = 4. Since fet =
y €5, 1t follows that =,(K,) is generated by e,,, subject to the relation
4e,, = 0 and the additional relation®) pe,, = 0. It is therefore a
cyclic group of order (y, 4). Thus ;(K,) A 7;(K,). The only non-trivial
products which occur in the co-homology ring are multiples of 22 =
yyeHY(K,,2), where x and y generate H?*(K,,2) and H*(K,,2).
Therefore the co-homology rings of K, and K, would be properly iso-
morphic to each other if the Pontrjagin squares were ignored. On the
other hand p x = y ¥y and now y may be taken mod. 4 and not merely

mod.2. Therefore K, and K, can be distinguished from each other by
means of the Pontrjagin squares.

13. Proof of Theorem 1. Let R be a given simple, 4-dimensional co-
homology ring, as defined in § 5. Let the group H? = H?2(0)c R be the
direct sum of a free Abelian group of rank p, and ¢,_, finite cyclic groups

of orders of'™,..., 0" (t; = 0). Let K mean the same as in §12
with n=1t, 4+ p,, t =1, 0,=0P (C=1,...,8), l=p+ 1, r=
ty + py and

de; = 0y e; pn  (A=1,...,1%)

de; = 0 (A=t + 1,...,t + pg) -

Then the co-bounding relations are

0} = dP¢d  (i=1,...,8),003=0 (=t+1,...,t+4 p),
op3 = 0 (A=1,. .. 6+ p),0¢) =000 (A=1,....1).

Therefore H"(K) ~ H" for n = 2, 3,4 and hence for all values of ».
It follows from Lemmas 3 and 2, in § 2, that there is a proper isomor-
phism of the co-homology spectrum, H, in R, onto the co-homology
spectrum H (K). This determines an isomorphism, %, of the additive
group, 4, of R, onto the additive group, 4 (K), of R(K). To simplify the
notation we identify each element z¢A with hxe A(K). Then R
becomes a ring whose additive group is the same as that of R(K) and the

operators A, u are the same in both. Let us write R(K) = R and let

40) [14], Theorem 18, p. 281.
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zy denote the product of z,ycA in R and zy their product in R.
The coefficients yi’ in (12.1) are still at our disposal and we shall show

how to choose them so that R = R.

Since zy is bi-linear in # and y and since both rings have the same
additive group, it is sufficient to consider products of the form xy, where
x ¢ H(a), yeH*®b). Moreover, if xe¢H(a), yeH*®b), then zy =
Um,a(X) b »(y), Where m = (a,b). Since u is the same for both rings
we have only to ensure that zy =z y if e H"(m), ye H*(m) for all
values of m, r, s. Since zy e H™**(m) if x¢ H"(m), y ¢ H*(m) and since
H*(m) =0 if n=1 or n>>4, we have zy =z y = 0 unless r =0
or §=0 or r=s=2. In either case zy=yz, zy =y=x.

We first dispose of the case x ¢ H°(m), y e H*(m). The unit element
of each ring, R and R, is one of the two generators of H°. Altering the
original identification of H® with H°(K), if necessary, we assume that
both rings have the same unit element, ¢. Then p,, oe is the unit element

of both rings R(m), R (m). It is also a generator of H°(m), whence any
element x & H°(m) is of the form x = k u,, ¢, for some value of k.
Therefore zy =z y = ky.

We now consider the products 2y, vy, where x, y < H2(m). Isay that
xy =wxy provided z,x;, =z, (i,j=1,...,n), where x, ¢ H*(o,) is
the co-homology class of ¢Z. For consider first the case m = 0. The
group H? = H?(0) is generated by z,,,,..., %,, whence zy==zy for
all z, yc H?, provided x,x; = z,x, for¢,j =¢4 1,...,n. Secondly
let m>0. Then H?*(m) is generated by wu, o #1,. .., Uy o, Z,, a8 shown
in the proof of Lemma 4, in § 2. Therefore, if z,z;, =z, it follows from
(3.3) in the form
m (m, o;, 0y)
(m 0'1,) (m 0,7) Iu'm c(x'i xa’) ’

(Mm,ﬂ'i xi) (Mm,cj xi) =

where ¢ = (0;, 0;), that 2y = z y for any elements z, yc H?(m), since
u is the same for both rings and products are bi-linear.
Assume that zy =zy Y for every palr z,yc R and consider the

Pontrjagin squares, px, px, in B and R. Since H°(m) is generated by
P, o€ (M =0, py o = 1) it follows from (4.12), (4.11) and (4.13) that,
if =8y o¢, then px =px = s% y,, o¢. Because of dimensionality
the only other non-zero Pontrjagin squares in either ring, if any, are of
the form px, px, where ¢ H%(2r). Let x, mean the same as in the
preceding paragraph. Then it follows from (4.11) and (4.10) that p,,z =
P,z for every xe H?(2r) and every value of r, provided p z; =P 2;
for every ¢ such that o, is even. Therefore Theorem 1 will have been
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established when we have chosen y;’ in (12.1) in such a way that z, x; =
zz;, (¢,j=1,...,n) and pz,=Dpz; if o, is even.

Let y,,...,y, mean the same as in § 12 and let y)(m) = p,, ,¥). It
follows from (2.3) that y,(p) = u, .¥a(g) if plg. Let 7),= o for
A=1,...,t; andlet 7y =0 for A=4¢+1,...,¢4 + p,. Then y, is
of order 7, and y,(m) is of order (m, 7)). In the given ring, R, let

r
(@) =z, = X Q)i\j Yr(m) with m = (g;, 0;)
A=1 (13.1)

(b) pzx, = AEI ot ¥y (20,) if o, is even.

Since y,(m) is of order (m, 1)) = (0;, 0;, 7)) the coefficients ¢!’ are
only determined mod.(o;, 0;, 7)). If ¢ %4, orif 7 =4 and o, is odd,
we give them arbitrary numerical values in the appropriate residue
classes. The coefficients g} are determined mod.(20;, 7)) and we give them
arbitrary values in the appropriate residue classes. It follows from (4.9)
that p,, o, P2; = 2}, in case o, is even. Also ug, 20,¥r(20,) = y) (o).
Therefore, operating on both sides of (13.1b) with u,, 5,;, We see that
0 = 0¥, mod. (o, 7))- Having assigned numerical values to 0%, in case
o; 1s even, we take ot = gt

Let 9/ = ¥ in (12.1). Then Theorem 1 follows from Theorem 5, the

products z; z; and the Pontrjagin squares p x;, in Theorem 5, being
formed in the ring R = R(K). This completes the proof of Theorem 1,

14. Proot of Theorem 3. Let P, @ be given simple, 4-dimensional
complexes and let f*: R(Q) - R(P) be a proper homomorphism. We
have to prove that f* can be realized by a map f: P — Q. We first show
that P, @ may be replaced by reduced complexes. By Lemma 8, in § 10,
there is a reduced complex, K, which is of the same homotopy type as P.
Let w: K— P, v: P—>K be maps such that vu~1,uv>~1. Let u*: R(P)
- R(K), v*: R(K) - R(P) be the proper homomorphisms induced by
wand v. Since vu >~ 1, uv ~ 1 it follows that w* v* =1, v*u* = 1.
Assume that the homomorphlsm w*f*: R(Q) - R(K) can be realized
by a map h: K —@Q. Then the homomorphism induced by hv: P —@Q
Is v* (u*f*) = p*u*f* = f*  Therefore we may replace P by the reduced
complex K. Similarly @ may be replaced by a reduced complex, L, and
the theorem will be established when we have proved it for K, L.

By Lemma 4, in § 2, the proper homomorphism of the co-homology
Spectrum, H (L), into the co-homology spectrum, H (K), which is induced
by f*:R(L)— R(K), can be realized by a co-chain mapping g*: C*(L)
= C0"(K). Let ¢g:C,(K)—C,(L) be the chain mapping dual to g.
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Assume that g can be realized by a cellular f: K — L and let f’': R(L)
— R(K) be the proper homomorphism induced by f. In each co-homo-
logy group, H"(L, m), f’ is the homomorphism induced by g*. Therefore
f'=/f in H*(L,m), whence f' = f* by linearity. Hence the theorem
will follow when we have shown that the chain map g can be realized by
amap f: K — L, using the fact that the dual co-chain map g* induces
a proper homomorphism f*: R(L) - R(K).

Each of K° and L° consists of a single O-cell, e®¢ K, ¢'%¢ L. Let
ueCK), veC°L) be the co-cycles defined by ue® =1, ve’0=1
and let u, v also denote the co-homology classes u ¢ H°(K), v ¢ H°(L), of
which the co-cycles u, v are the solitary members. Then «, v are the unit
elements of R(K), R(L). Therefore f*v = u, as proved in § 5. There-
fore g*v=1u, ge®=¢e’% and ¢|Cy(K) is realized by the map K! =
Ko — L° = I1,

Because of the natural homomorphisms x,(K?) &~ H,(K?), 7,(L?) ~
H,(L? it follows from an argument, which is similar to the one at the
beginning of the proof of Lemma 8, in § 15 below, that g, restricted to
the chains in K3, can be realized by a cellular map f,: K3 — L3. Let
fo: m3(K3) — 7,(L?) be the homomorphism induced by f,: K3 — L3.
If foBet=pget, for every 4-cell in K, then it follows from repeated
applications of Lemma 7, in § 9, that f, can be extended to the required
map f: K — L. However, this is not always possible. For example, let
K3 = 82 + 8%, where S2is a 2-sphere and S® a 3-sphere, which meets S*
in a single point, K°, and let K = K3 4 ¢* where e! is attached to K*
by an essential map E* > 8. Let L =K and let f* = 1. Then the
identical chain map g¢:C,(K3?) — C,(K3) is realized by a map, f,: K?
— K3, such that f,|S?2 =1 and f,|83 covers S with degree unity and
has an arbitrary Hopf invariant, y, in 82. Then f,fe* £ Bet =pfge!
unless y = 0. This shows that we may have to modify f, before extend-
ing it.

As in §11 let K=K4+e&+---+ €,
where e} = ;¢ and let

K=K +8+---+5.
Let b, be a generator of 7;(S?) and, as before, let us make the identific-
ation
7y (K2) = 7 (K3) + (by,. - -,b) .

Let h:m, (K® — H, (K% be the natural homomorphism. Clearly
h|(by,...,b;) is an isomorphism onto H, (K3 = H, (83 +. .-+ 8-
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Also 7y (K3) = i 7y (K?), whence =, (K3) = h20. Let us identify
each element b¢ (b;,...,b) with hbe H; (K3 . Then

73 (K?) = 1 75 (K?) + Hy(K?) .

Let us also identify each element in H,(K?) with the cycle, which is its
unique representative. Then b; is an element of H,(K3)c C,(K).

If ceCy(K) = (K, K?), then fic =yc + dc, where ycei ng(K?2),
oc=hpceH;(K3 and 0 = hf is the homology boundary operator.
We write =y + 0. Similarly

7y (L®) = 1 705 (L7) + Hy(LP)

and f, v, @, k will mean the same in L as in K. Since ¢: Cy(K) — C;(L)
isinduced by f,: K® — L®, wehave hf, = g h: 7, (K3 — H,(L?)c Oy4(L),
where f, now denotes f,: 7;(K®) — 7;(L3). Therefore  *

h(fo—PBg)=gd—dg=0.

Since A10 = ¢ m,(L?) it follows that (f, f — Bg)cei ny(L?) for any
ce Cy(K). Therefore f,8 — pfg is a homomorphism of the form
(foB — B 9): Cy(K) — 1 my(L2). That is to say, fo 8 — f ¢ is a 4-dimen-
sional co-cycle in K, with coefficients in ¢ z;(L?). Assume that f,f —
Bg~0 andlet fof — fg= 0y, where pe C3*{K,in;(L?)}. That is
to say, v is a homomorphism of the form y: C,(K) — ¢ ,(L?) and

foB—Bg=0p=1ypa .

Let b, ¢ 7, (K3) be defined by a homeomorphism &, : (83, p,) — (55, K°)
() =1,...,1), where 83, with base point p,e 83, is the standard
3-sphere in terms of which n;(K?) and z,(L?®) are defined. Let %;:
(83, po) — (L3, L% be a representative map of fob;, — p b; e 7;(L3) and
let f,: K3 -~ L3 be defined by f, =/f, in K3i, f,|8} = k;h;*. Then
f1b; e my(L3) is represented by the map f,h; = k;:S8* — L3. Therefore
fib; = fob; — wb;. Since f, =f, in K; and yb,;cimy(L?) it follows
that f, also realizes the chain mapping g¢: C, (K?) — C,(L3). If ¢ e O, (K),
then dc is of the form dc = n,b, +- - -+ n;b,, whence f,0c = f,0c — y dc
or f,0 = f,0 —yd. Also f,y = f,y, since yceim,(K?) and f,|K? =

fol K%. Therefore
f1B—B89="Fy+29 —Byg
=foy + 0 —ypo—fg
=foB—Bg—wpd
e ),
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Therefore f, can be extended throughout K to give the required map
f:K—->L.

We now prove that fo,8 — fg~0. Since the coefficient group,
1 mg(L?), is a direct sum of cyclic groups it is sufficient to prove that
(foB —Bg)c =0, mod.m, where ceC,(K) is any cycle, mod.m, for
any m=0,1,2,... Since =9+ 0 and Ay =0 we have 0=
hB =ho. Therefore h(f,0 —dg) =god — dg =0, whence f,0 — dg
is a co-cycle with coefficients in ¢ z,(L?). Since (f,9 — dg) ¢ = f,dc —
goc =0, mod. m, if dc = 0 mod. m, it follows that f,0 — 0g ~ 0.
Therefore it is sufficient to prove that

(foB — B9 — (fo0 —99) = foy —y9~0 .

" Let the notations, with respect to K, be the same as in the preceding
sections and let ¢ = n, e} +..-+ n,e; be a cycle mod. m. Then

T

4

yec = 3 N, 7Ye
y IO

r
= X n X vy e

A=1 1 <7
= X ’;ﬂje” ’
1<)

where

r
.s . ij
Y= 3 y’n
A=1
r

— 7 .4
= X ) ¢rC
i=1

2

= (9i ¥)) ¢ (mod. m) ,

the last step following from (12.3) and the fact that ¢ is a cycle mod.m.
Therefore
ye= X e;(¢i¢p)c  (mod. m). (14.1)
i<
Let €,..., ¢} be the 2-cells in L and let v3,...,y2c C%(L) be the
dual co-chains. Let

¥4

2 2 2 __ 2
ge; = X giey s 9*ve = X 97 9; -
x=1 )

9 ==

-

Let e,g ¢t my(L?) be defined in the same way as e;;. Then it follows from
(11.6) and (14.1) that, calculating mod.m,
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23
VAN
T
ry
T
p-l

= Z e(;ﬁ Z E (gz (pz) (ggﬁ 99?)0

a<p i=1 j=1
= X e, (g*v3) @*vh)c . (14.2)
a<B
Let &yl =7,9f,...,002 =7, 9,09l ,= - = 0yp2 =0, and let

Taf = (Tow tﬁ)(a #* ﬁ)s Taa = (Ti’ zra)’ Wlth &, ﬂ =1,..., Ps Tgpr =
.. =7,=0 and (0,0)=0. Then 7, e aB”" 0 in ¢ m,;(L?), as in
(11.2).

I say that  g*(yavs) ~(@*¥3) (9*vp)  mod. 7,g . (14. 3)
For let j, mean the same as in Lemma 4, in § 2. Then (3.2) may be
written in the form

(7.7‘ 'P) (js 'P,) = j(r,s) (1/’ ‘P,) ’
where y and y’ are co-cycles mod.r and mod.s, respectively. Also

Porfor ¥ =Jur P Y 5
if p is a co-cycle mod.2r. As proved in §10, py=yy if peC(P),

where P is a reduced, simple, 4-dimensional complex. Finally 7 g* = f* 4,
since g* realizes f*. Therefore, if 7 = 7, is even, whence 7,, = 27, we
have, writing ¢ for 2,
Jec 9 (YY) = Jou 9* DY =" Jo. P ¥

=Py =0, iy

- pz?rg*‘/’:jzng*'/’

= Ju (9% ¥) (g% ¥) .
This establishes (14.3) in case « = 8 and 7, is even. If o 7% 8 or if

a = f and 7, is odd it follows from a similar argument. Therefore there
are co-chains wu.ge C*(K), v,g¢ C3(K) such that

(9% v3) (9* v3) = g% (V% v5) + TapUag + Ov,p

Since 7 ToB e o = 0 and (0 vyg) ¢ = v,8(9c) = 0, mod.m, it follows from
(14.2) that

fove = X egg*(¥iva e (mod. m)

a<p

= 3 e (vavpgc
a<f
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Hence it follows from the analogue of (14.1) in L, with ¢ replaced by
gc, that foyc=ygc, mod.m, or that (foy —yg)c =0, mod.m.
Therefore f,y —y g ~ 0 and the proof is complete.

As an example of the applications of this theorem let P be a simple,
4-dimensional complex, in which there is no 2-dimensional or 3-dimen-
sional torsion. Then P is of the same homotopy type as a reduced com-
plex, K, without any bounded 3-cells (i. e. ¢ = 0) and without any 4-cells
which are bounded in the sense of homology. The homotopy type of such
a complex is completely determined by its Betti numbers and the “mixed
tensor ”’ which is the equivalence class of the set of components %’ under
transformations of the form

P4 __ 4P 49 a0 BA
np ""a’ia’jYA bp’

where ¢,7,p,¢q=1,...,n, A, u=1,...,r, repeated indices imply
summation and ||a?||, |] b:;l[ are unimodular matrices of integers.
The components pi’ are the coefficients of the trilinear form zyv =
(xU y)Nv, defined by Hassler Whitney*!), where z,yc H?(K), ve H,(K).
Thus the homotopy type of P is completely determined by its Betti
numbers and this tri-linear form. That is to say, two such complexes, P
and P’, are of the same homotopy type if, and only if, they have the
same Betti numbers and if there are isomorphisms (onto), a: H2(P') —
H*(P), b:H,(P)— H,(P'), such that

@z’)ay)v==a"y'(bv)

for all elements «’, y'c H*(P'), ve H,(P). In particular the problem
of classifying the homotopy types of complexes of this nature, whose
fourth Betti number is unity, is reduced to the classification of quadratic
forms, with integral coefficients, under unimodular transformations, on
the understanding that a quadratic form and its negative belong to the
same class.

156. Proof of Lemma 8. We have to prove that any simple, 4-dimen-
sional complex, P, is of the same homotopy type as a reduced complex.
First let P = P? and let K be a reduced 3-dimensional complex, whose
homology groups are isomorphic to those of P3. Then it follows from
Lemmas 3 and 4, interpreted in terms of homology rather than co-homo-
logy, that there is a chain map ¢: C,(P?) — C,(K3), which induces iso-
morphisms of the homology groups of P3 onto those of K3. Clearly
g|Cy(P?) can be realized by a map f,: P? — K2, such that f,P! = K°

) 9.
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Because of the natural isomorphisms x,(P?) ~ H,(P?) and n,(K?) ~
H,(K?) it follows easily enough from Lemma 7, in §9, that f, can be
extended to a map f: P?® — K3, which realizes g. Then f induces iso-
morphisms of the homology groups of P3 onto those of K2 and it follows
from [12] that f is a homotopy equivalence.

Now let P be any simple, 4-dimensional complex and let K? be a re-
duced complex, which is of the same homotopy type as P3. Let f: P3
— K3 be a homotopy equivalence, which is a cellular map. Assuming
that K3 does not meet P, we identify each point pe P? with fpe K3,
thus forming a space K, whose points are those of K3 and of P — P3.
Let ¢: P — K be the map, which is given by ¢|P3 ={, ¢|(P — P3)
= 1. Let e* be any 4-cell in P and let A: ¢* — P be a characteristic map
for et. Then ¢ h:o* — K is a map such that ¢ h|(c* — %) is a homeo-
morphism onto e* and ¢ h ¢*c K3. Therefore K is a complex, whose cells
are the cells in K3 and the 4-cells in P, the map ¢ h:0* - K being a
characteristic map for e¢* in K. Since f: P? — K? is a homotopy equi-
valence so is%? ¢: P — K.

The complex K is not necessarily reduced, since the frontier of a 4-cell
may meet one or more of the bounded 3-cells, €},...,elc K3. Let

Ky=K*+ 8 +---+8], Ki=KHe+-+e,
the notations being the same as in §§ 10, 11. As in § 11 we write

73 (K3) = ”3(Ki) + 7'53(5? +-+ S:;)
= 1 703 (K?) + 73 (87 +- - -+ 87)
:zns(Kg) s

where 4 :m,(K?%) — m5(K3), ©:m,(Kj) - 7;(K®) are the natural homo-
morphisms. Therefore every map of the form E*— K3 is homotopic in K?®

to a map of the form B K;. Therefore it follows from reiterated applic-
ations of Lemma, 5, in § 7, that each 4-cell in K may be replaced by one
which is attached to K2 by a map of the form E* — K}, without alter-

ing the homotopy type. This last operation transforms K into a reduced
complex and the proof is complete.

16. Note on cell complexes %3). It is clear from the definition of a
(finite) cell complex, K, that a sub-set of the cells in K constitutes a sub-

»

42) [15], Theorem 2.

3) The complexes referred to in this section need not have simplicial sub-divisions.
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complex if, and only if, the union of these cells is a closed sub-set of the
space K. Thus the union*¢) and intersection of any set of sub-complexes
are themselves sub-complexes. If X is any set of points in K we shall
denote by K (X) the intersection of all the sub-complexes of K, which
contain X . Thus K(X)c L if Lc K is any sub-complex which contains

X. Clearly K (X) = K(X), where X is the closure of X.
We shall describe a homotopy, f,: P — K, where P, K are complexes,
as restricted if, and only if,

f:Poc K(fo Py) (16.1)

for every sub-complex P,c P. Let f,,9,: P — K be restricted homo-
topies such that g, = f,. Then we have:

Lemma 9. The homotopy which consists of f, followed by g, is also
restricted.

It follows from (16.1) that

K (f,Py) c K(foPy) ,
whence
9. Poc K(9oPo) = K(f, Po) < K(fo Py) ,

which proves the lemma.

Let fo: P —> K be a given map and let ¢,:@Q — K be a restricted
deformation of the map g, = f,|@, where @ is a sub-complex of P. Then
we have :

Lemma 10. There is a restricted homotopy, f,: P — K, such that
/1€ = g,.

If P = @ there is nothing to prove and we proceed by induction on
the number of cellsin P — Q. Let P = Q' 4 e*, where e is a principal
cell in P — @, and assume that g, has been extended to a restricted
homotopy ¢,:Q" — K (95 = fo|Q’). Let h: (o™ ¢") — (P,Q’) be a
characteristic map for e” and let the homotopy g,k|a™ be extended to
a homotopy, &,:6" > K, of & = foh:0" - K, by the method used
on p. 501 of [7]. Then it follows from an argument, which is similar to
one used in the proof of Lemma 7, in § 9 above, that a (single-valued and
continuous) homotopy, f,: P — K, is defined by f,|Q" = g;,f: €" =
g, ht|er. Let P,c P be any sub-complex. Then f,P,c K (foPo) i
P,c @', since f,|Q =g, is restricted. Let P, = @, + e®, where
Q,c@Q'. Then h is of the form &: (o™, o) — (P,,Q;) and

g;h&”cg:Q{)cK(g(’, Q(’))CK'(foPo) .

44) N. B. there are but a finite number of sub-complexes of a (finite) complex.
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Also it follows from the formula at the bottom of p. 501 in [7] that the
set of points covered by &,0™ consists of £,06" = f,ho™ together with
the set covered by ¢} ho”c K(f,P,). Therefore

feerc & om0 UK (fy Py) = foemU K (f, P,) = K (fo Po) -
Since f,|Q’ is restricted it follows that

fiPo =1, Q' Uf,enc K(foQ(,))UK(fopo) = K(f, P,) .

Therefore f, is restricted and the Lemma is proved.
Let f,: P — K be a given map of a complex P in a complex K and
let fo|@ be cellular, where ¢ is a sub-complex of P. Then we have :

Theorem 6. There s a restricted homotopy, f,: P — K, such that
f, =1, in Q and f, is cellular.

This will follow from Lemmas 9 and 10 and induction on the numer
of cells in P — @ when we have proved it in case P =@ + e*. Let
P=@Q 4 e andlet L = K(f,e"). Let h:o"™ —e” be a characteristic
map for e*. Then ho”c@Q"! and since f,|Q is cellular it follows that
foh is of the form &, = f,h: (6%, 6*) — (L, L*-1). Assume that there is
a homotopy, &,: 0" — L, such that & = &, in ¢”, &,6"cL”, and let
f, be defined by f,=f, in Q, f,|e® =&,k 1|e”. Then f,enc§, o"c K
and f,|Q = f,|@, which is cellular. Therefore f, is cellular. Let P,c P
be any sub-complex. If P,c@Q, then f,P,= f,P,c K(f,P,), and if
P, =@, + er, with Q,c@, then

Je(@ 4 e™) = f, QU e C fo@Qo U & 0" C fo@o U K (foe™) K (fy Py) -

Therefore f, is restricted and the theorem follows.

It remains to prove the existence of £,, which we do by induction on
the number of cells in L — L*. If L = L® we may take &, — &,.
Otherwise let e™ be an m-cell in L, where m = dim L>n > 0, and let
g:0™—e™ be a characteristic map for e™. Let p, be the centroid of ¢™
and let p,: 0™ — p, - 6™ — p, be the radial deformation, which is
given in polar coordinates by o,(r, p) = {t + (1 —t)r, p} (p e o™). Then
the homotopy g g,g7:e™ — gy —>€™ — qo (9o = g P,) is single-valued,
and hence continuous??). Also ¢ g; g~*|g 0™ = 1. Therefore a homotopy
0,:L — qo—L — g, is defined by 0,|L —em=1,0,[e™ —q,=g0,97".
If ¢orc L — qgo we define &, = 0,§,.

Let g, & &,0m. Then the theorem will follow from the preceding para-
graph when we have proved that there is a homotopy, &;:o" — L
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(£50 = &,) such that &, =&, in ¢" and & o"c L —q,. Let E be a tri-
angulation of ¢”, whose mesh is so small that &, cce™ if gq,¢ &, 0, where
o is any (closed) simplex of E. Let A E be the sub-complex consisting
of all the closed simplexes which meet &;'q,. Then &,4 cem™ Let

B=FE — A. Each point of ¢&;'¢q, is obviously an inner point
of A, whence &, Bc L — q,. Therefore &,(4N B)ce™ — q,. Since
em — q, is arcwise connected (m >0) and x,(e™ —q,) =0 if 1 <<k <
n — 1<m — 1 the map &,|AN B can be extended to a map &': 4 —
(em — g,). Let e™ be given a Euclidean geometry and let & a (a ¢ A) be
the point which divides the linear segment (£,a)(£’a) in the ratio ¢: (1—t).
Then 5: : A —em is a deformation of &, into &/, such that E; = §, In
AN B. We extend &, throughout E by taking &, = &, in B. Then &),
thus extended, is a homotopy of &, such that & = &, ino™, &, o"c L—q,.
This completes the proof.

(Received the 17th January 1948.)
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