Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 22 (1949)

Artikel: Uber den Zusammenhang zwischen den Konvergenzabszissen, der
Holomorphie- und der Beschranktheitsabszisse bei der Laplace-
Transformation.

Autor: Bloch, Pierre Henri

DOl: https://doi.org/10.5169/seals-19189

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-19189
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber den Zusammenhang zwischen den
Konvergenzabszissen, der Holomorphie-
und der Beschranktheitsabszisse bei der
Laplace-Transformation

Von Pierre HENRI BrocH, Ziirich

§ 1. Voraussetzungen und Problemstellung

In der folgenden Arbeit wird der Laplace-Transformation
fis)=fx+iy)= [F(t)e*tdt
0

der Riemannsche Integralbegriff zugrunde gelegt.

Die Funktionen der Funktionenklasse, auf welche die Laplace-Trans-
formation angewendet werden soll, bezeichnen wir mit Doetsch?!) als
L-Funktionen. Sie sind durch folgende Eigenschaften charakterisiert :

1. F'(t) ist fiir jedes t>0 definiert,

T,
2. [F(t)dt existiert fir 0<T, <t < T,<oo,

Ty T
3. lim { F(t)dt existiert fir 7>0, £>0,
>0 ¢
4. Es existiert eine komplexe Zahl s, = z,+ ¢y, so, daf fir 7>0
w
lim | e=*tF(f)dt existiert und endlich ist.
w->o0 T

Es ist bekannt?), daB es bei der Laplace-Transformation fiinf charakte-
ristische Abszissen gibt, ndmlich

die Abszisse bedingter oder gewdhnlicher Konvergenz,
die Abszisse gleichméBiger Konvergenz,

die Abszisse absoluter Konvergenz,

die Holomorphieabszisse und

die Beschrinktheitsabszisse.

TS Re™

1) @. Doetsch, Theorie und Anwendung der Laplace-Transformation, Julius
Springer, Berlin 1937 (Dover publications 1943).

2) z.B. a.a. 0.1), 8. 15, 17, 43, 46, 56.
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Die Abszissen sind verbunden durch die Ungleichungen?)
azy=p=n, (1)
y=u=n . (2)

In dieser Arbeit soll bewiesen werden, dafl dies die einzigen Beziehun-
gen sind, die zwischen den fiinf charakteristischen Abszissen bestehen,
m. a. W. es soll gezeigt werden, daf} alle Anordnungen der Abszissen, die
nicht gegen (1) oder (2) verstoBen, moglich sind 4). Bisher wuf3te man
insbesondere nicht, wie sich x4 in die Ungleichung (1) einschaltet. Die
vorliegenden Untersuchungen beweisen, daBl alle drei Fille x < mog-
lich sind. Es wird im folgenden gezeigt, daf es stets moglich ist, Beispiele
mit beliebig vorgeschriebenen Kombinationen von g8, y, «, 7, u zu
konstruieren, die lediglich die Ungleichungen (1) und (2) befriedigen.

Fir Dirichletsche Reihen, die ein dhnliches Verhalten wie Laplace-
Integrale zeigen, wurden die dieser Arbeit entsprechenden Tatsachen be-
reits von Neder®) bewiesen. Wie bei Neder werden auch hier fiir alle
moglichen Kombinationen der Abszissen Beispiele angegeben, und zwar
zeigt es sich auch hier, dal bloB folgende fiinf spezielle Anordnungen
betrachtet werden miissen :

a) —oo=fLy=a=x<L 00, N=—00, U==xu,
b) —co=f=y<a=x< 0, =u=— o0,

c) —oo=fLy=0a=x2<L 0, N=p@= — o0,
Q) —co<f=yp=a=x<oco, np=p=—oo,

e) —ooLKff=y=a=x<oo, n=u==x%.

Alle andern Kombinationen der charakteristischen Abszissen erhilt

%) 7 < u folgt aus der Definition von 7 und g : » wird als untere Grenze der z definiert,
fur die f(s) in der rechten Halbebene holomorph ist, # wird definiert als untere Grenze
der #, fir die f(s) in der rechten Halbebene holomorph und beschrankt ist. Fiir die
brigen Ungleichungen (1) und (2) vgl. z. B. a. a. 0.1).

+ o0
%) Bei der Mellintransformation f F(t)e-8t dt, bei der die Grenziiberginge
R — 00

im lim § unabhingig voneinander vollzogen werden, gilt dquivalentes wie bei der
R>w R'>w ~-R’

einfachen Laplace-Transformation : es kénnen die Lagen der Konvergenz-, Holomorphie-
und Beschranktheitsabszissen vorgeschrieben werden, soweit nur den Ungleichungen (1)
und (2) entsprechende Ungleichungen erfiillt bleiben.

5) L. Neder, Uber die Lage der Konvergenzabszisse einer Dirichletschen

Reihe zur Beschranktheitsabszisse ihrer Summe, Arkiv fér Mat. Ast. och Fys. 16,
1922, Nr., 20.
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man als Summen mit Summanden, die den speziellen Anordnungen ent-
sprechen, denn stets gibt die Anordnung a) u, b) «, c) ¥, d) 8, e) g
bei der Summe an.

Eine leichte Vereinfachung ergibt sich dadurch, daf fiir die Konstanten
» nur die drei Werte —oo, 0 und -+ oo konstruiert werden miissen, um
alle andern Werte von » durch Multiplikation von F (t) mit e~ (r reell)
zu erhalten.

AuBer bei der Anordnung e), wo die Frage nicht behandelt wird, zeigt
sich noch, dafl man bei den im Endlichen gelegenen Abszissen vor-
schreiben kann, da8 das Integral auf der ganzen charakteristischen
Abszisse selbst, das durch die Abszisse gekennzeichnete Verhalten zeigt
oder, daBl dies auf der ganzen Abszisse nicht gilt. Der Fall, bei dem es
sich um eine Teilmenge der Abszisse handelt, werde nicht untersucht.
In der Folge werde die Tatsache, daBl z. B. auf der ganzen Konvergenz-
geraden x = 0 das Laplace-Integral konvergiert mit § = 0+ bezeichnet
und die Tatsache, dal das Laplace-Integral in allen Punkten von z = 0
divergiert, mit B = 0~ bezeichnet.

Die ersten Beispiele konnten durch geeignete Formulierung und An-
wendung des Riemannschen Lemmas®) konstruiert werden. Die Bei-
spiele des § 5 wurden mit gewissen Integralen konstruiert, zweckméfigen
Ubertragungen der von Neder?) benutzten Fejérschen Polynomen ®).

Die vorliegende Problemstellung wurde mir nach einem wissenschaft-
lichen Briefwechsel der Herren Doetsch und Saxer von letzterem mitgeteilt.

§ 2. Hilfssitze

Hilfssatz A: Das verallgemeinerte Riemannsche Lemma

: f(t) in 0 <a <t <<b<oo beschrinkt und im Riemannschen
Slnne 1ntegrabe1 "

Beh.: Zu jeder positiven Zahl M und zu jeder nicht negativen reellen
Zahl m existiert eine positive Zahl p so, daB fir a < 7T, < T, <0

T, N
| ff@) e eti®tdt | <M,
7

6) z. B. a. a. O.1), S. 50.
7) a.a. 0.5),

8) L. Fejér, Uber gewisse Potenzreihen an der Konvergenzgrenze, Sitzungs:
berichte der k. b. Akad. der Wissenschaften, math.-phys. Klasse, 1910.

9) Der Satz wiirde auch gelten, wenn f(f) im Lebesgueschen Sinne integrabel ware.
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wenn nur
"> und =z

S
\Y
l
3

ist 10).

Hilfssatz B:

Vor.: F(t) fir ¢t >0 im Riemannschen Sinne integrierbar,
F(t)=0(")y fir t—>00, n>0.

Beh.: In jeder rechten Halbebene geht fir m —co

Inln{(m+1)
| f Ft)etdt|

Inlnm

gleichmédBig gegen Null.

Beweis: Es gibt eine nicht negative Zahl M so, daB von einem gewissen
tp an | F(t)| < Me". Mit der Substitution

Inlnr=1t ,
Inr = et
dr y
r-lnr
e(lnln nt __ et”‘
hat man fir m> e
Inln (m+1) InIn (m+1)
| f F@yestdt|< [ |F@)|edt
Inlnm Ininm
m 10 I s dr
M e‘“’”) (In r)~—= :
4 rinr

Setzt man wieder Inlnr = ¢, so erkennt man, daB3 der Integrand des
letzten Integrales in jeder rechten Halbebene gleichmiBig gegen Null
geht, wenn m — co strebt:

e(lnln r)? (ln 7‘)‘(“’“) l — e;% e—tx+1) e—et — 0 fir t — oo .
r

Hieraus folgt, da das Integrationsintervall immer gleich lang bleibt,
die gleichmiBige Nullstrebigkeit des Integrales, w.z.b. w.

19) Beweis z. B. a. a. 0.1), S. 50.
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Fejérsche Integrale
Hilfssatz C:
Vor.: k positive Zahl >2.

k-1 d 2k—-1 d 2k—-1
2 4
q)k(s)‘:f e~* — -+ f e’—“m :f D, () dt ,
1 k+1 1
WO 1
D, (t) = — in 1<i<k—1 und k+1<t<2k—1,
0  sonst.

Beh.: Es gibt eine von k unabhdngige Zahl I' so, daB}
lg.®) | < T fir Rs>0.

Beweis: ¢,(s) ist eine ganze Funktion, die wir als k. Fejérsches Inte-
gral (k braucht nicht ganz zu sein) bezeichnen wollen. Es handelt sich
um Fejérsche Integrale im Gegensatz zu den Fejérschen Polynomen, die
Neder1!) verwendet und die von Fejér1®) definiert worden sind.

Zum Beweise nehmen wir zunichst an, es sei s =1y (y reell). Dann

gilt, wenn in k-1 2k—1
. dt . dt
y J— —iyt —tyt
9x(1y) fe k__t+fe k—t
1 k+1

beim ersten Integral die Substitution ¢ = & — « und beim zweiten Inte-
gral die Substitution ¢ =wu + k gemacht wird

k-1 k-1
. 1 , 1
. — —ty(k—w) _ dy — -1y (k+u)
ox(t y) f e ” U f e " du
1

1
k—1

= 27 . e-—’iﬂkf Wdu .
u
1

Wegen der Beschrinktheit dieses Dirichletschen Integrales'3) existiert
eine positive Zahl I" so, daB3

lee(iy) | < T

unabhéngig von k auf der ganzen Geraden x = 0 gilt.

1) g, a. 0.5).

12) a. a. 0.8),

13) z. B. R. Courant, Vorlesungen iiber Differential- und Integralrechnung,
Bd. I, Julius Springer, Berlin 1930, S.371.
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Fir z>0 erhdlt man durch partielle Integration

2k—-1 )
lpe@ | =1 [ Pul)ev = di|
4 2k—1 2k—1 t
Slewt [@y(w)evedu | |+ |z [ et ([By(w)evudu)dt]
1 1 1 1
< 2@k | g, (iy) | + (e — e=s@k-1) . 2. In(k — 1) .

@, (s) ist also fiir ein festes £ in der Halbebene x > 0 beschrinkt.
Auf z =0 gilt | p,(s)| < I'. Daraus folgt nach einem Satze von £. Phrag-
mén und . Lindelof1*), daBl in der ganzen Halbebene Rs>=0 |, ()| T
gilt, w.z.b. w.

Anwendungen

Das k. Fejérsche Integral

k—1 2k—1
Palz) = f e B f (k> 2)
1 k+1

geht durch die beiden Substitutionen

z:%,nreell}i); u= 2k —2)(t —m)+ 1, mganz > 0

iiber in s "l" n (8-+n) (m— -2—7;_—_—2—)
k—
sm+ 2k——22 m+1
) e—nt e—st dt e—nt e-—st dt
) _[ k—1—(2k—2)(t—m T f k—1—2k—2)(t—m)
m k
| Ky ey

Aus dem Hilfssatz C folgt

s+ n .
A S
"(2]0-2)’<F fir Rs>
Fir die reelle, nicht negative Funktion ¥,, (¢), die folgendermafien
definiert ist:

%) E. Phragmén und E. Lindelsf, Sur une extension d’un principe classique de

Panalyse et sur quelques propriétés des fonctions monogénes dans le voisi-
nage d'un point singulier, Acta math. 31, 1908, S. 382 ff.

39



_ —ni —
{2k —2) ¢ fir m<it<m+ k—2

k—1—(2k—2) (t —m) 2k —2 °
Yen (t) = 0 fiir m+k 2<t<+ k
on 2k —2 2k—2°
(2k — 2)e—"¢ . k
1 @h—2)(—m) & Mmtgp_gSi<mtl,
gilt deshalb
m—+1
| § Wi @) etdt | < ey fir Rs>—n-+1. (3)
m

Nimmt man £2>2 und n>0 als Funktionen von m an:
k=k(m), n = n(m)

und geht n(m) -oco fiir m —oo0, so stellt wegen (3) fiir beliebige reelle
Zahlen »,, _—

X (J Prmnom () "™ et di) (4)

m=0 m
eine in jeder rechten Halbebene gleichmiBig konvergente Reihe dar.
Wegen (3) ist ihre Summe in jeder rechten Halbebene beschrinkt ;
(4) stellt also eine ganze Funktion dar und 148t sich formal als Laplace-
Integral schreiben, fiir welches 7 =y = —oco ist:

f6)=[Fayetai,

wobei In :
m g t<m + 1 F(t) = ¢'vm gjk(m)n(m) (t) .
Wir werden noch folgende Beziehungen verwenden :

m+1

[ 1@ ] etdt <2 -e™in(k — 1) e fir >0, (5)
m+}
| Pe() et dt| > e In (k — 1) e=n fir <0, (6)
| § Pin(t)e=tdt| = enmDIn (k — 1) e~lalmiD figrbel. = . (7)

§ 3. Die Beispiele, bei denen — oo =< y=a=%< 0, n=—00, =%

#» = — oo: Hierher gehort die Funktion F(t) = e—* 15),
# =0, +oo: Die Funktionen F(t) werden folgendermafBen be-
stimmt : Fir

t<l sei F({)=0.

15) z. B. a.a. 0.1), S.17.
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In jedem Intervall
J,: m<Zt<m+1, m=1,2,..
werde F(t) angesetzt in der Form

F(t)=p(t) e,

wobei
fir pu=y=a=0" pt)=1 ,
fiir =0+, y=a=0" pit)y=1,
1
fir u=9=0*+, a=0" p(t):—i— ,
. 1
fir u=9y=a=0* (t)——ﬁ
und fir » = 4+ oo p(t) = et

Die Zahlen »,, sollen positiv sein. Wir bestimmen sie derart, dafB
folgende Bedingungen erfiillt werden:

Vo = Vo1 + 1, vo=20, (8)
T2 .
| j‘ p(¢) e'mt et e~ di | <(%—)m (9)
T
gilt gleichmiBig im Bereich m <7, <T,<m+1, 2> —m, y<Vm1,
L2
| j F(t)e*eidt| < (%)m (10)
gilt gleichmiBig im Bereich 0 <t, <t,<m, 2> —m, y >v,,.
Eine solche Zahlenfolge v, laﬁt swh wie folgt konstruieren :
Sei g,, 0,,... eine Folge positiver Zahlen, die vermoge des Hilfs-

satzes A so bestimmt werden, daB} fiir jedes m gleichmédBig im Bereich
mST <T,<m+1, x=—m, |y|=0n

T
| f ezt et p(t) dt | < (3)™

gilt. T,
Die Existenz der Zahlen »,, zeigen wir durch vollstindige Induktion. °’
Wir setzten 3, = 0 und nehmen als Induktionsvoraussetzung an, es
seien Zahlen v,, (m<< k — 1) gefunden, die den Ungleichungen (8), (9) und

(10) geniigen. Wir konstruieren »,.
Sei .
Ve = 0k T Vi
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Nach der Definition von g, gilt gleichmiBig im Bereich

k<T1<T2<k+l, x=—k, Y < Vi1 s ”?1’1,0
T,
| fpt) e e=tewidi| < (§)F,
T,

da unter diesen Voraussetzungen v — y > v, — v,_, = oy -

Da F(t) im Intervall 0 <<¢<k durch die als bekannt vorausgesetzten
Zahlen v, (m <k — 1) bestimmt ist, 148t sich nach dem Hilfssatz A
eine positive Zahl »;, bestimmen, derart, daB im Bereich 0 <t, <t, <k,
x> —k, y>1, gleichmiBig

| P o=t e dr| < ()

gilt.

Wir setzen », = max (vj, v, v;_, + 1). Fiir dieses », gelten dann die
Ungleichungen (8), (9) und (10), da »,>%, und v, >v].

Damit ist die Existenz der Zahlenfolge »,, gezeigt.

Fir das Laplace-Integral gilt folgendes: Aus (9) ergibt sich, daB
f = —oo. Nun betrachten wir die Folge s,,=x+1v,, m=1,2,..., wo-
bei x<<x beliebig, aber fest gedacht ist und zeigen f(s,) »>oo {iir
m —>oco. Sei r =[|x|]+ 1. Dann kann man schreiben

T m m+1 o0
flm ={+J+J + § =T+ +II+1IV.
r m m--

IIT geht mit m gegen Unendlich. Wir zeigen, dal die iibrigen Glieder
beschriankt bleiben : Das Glied I ist kleiner als das Integral des Absolut-

r
betrages j|F(t) | ezt dt. Die Glieder II und IV sind, da wegen
0

r =[|x|]4+ 1 fiir sie die Ungleichungen (10) und (9) gelten, wegen der
Summenformel fiir die unendliche geometrische Reihe kleiner zwei.

Das Verhalten der ersten vier Beispiele auf der Geraden x = 0 ist
leicht zu erkennen !$).

Damit ist alles gezeigt.

1

[o-] o0
dt .
) z2.B. u=yp=0%, a=0":p()= . Das Integralf | F(t)| dt = _f—? divergiert,
0 1

also « = 0-. DaB u =y = 0*, zeigt man mit der gleichen Methode, mit der man im
§ 4 bei x =0 bzw. + « beweisen wird, dal y =y = — .
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§ 4. Die Beispiele, bei denen — co=f=y<a=x< 0, n=p=— oo

x = —oo: Hierher gehort wieder F(f) = e~ 17),
%x=0, Joo: Fir t<Inln3 sei F(t)=0.

Fir t >Inln3 werde in jedem Intervall
Iy =InInm <t <Inln(m +1)=a,,,, m=3,4,..

F(t) angesetzt in der Form

F(t) = p(t) e'™ |
wobel fiir x» = 0+

1
fir » = 0—
p(t) =1
und fir » =
p(t) = e .

Die Zahlen »,, sollen reell und positiv sein.

Es ist offensichtlich, dafl im ersten und zweiten Fall « = 0 und daB
im dritten o =oo ist. Man erkennt auch, da8 im ersten Fall das Laplace-
Integral filr s = 0 absolut konvergiert und im zweiten Fall nicht.

Die Zahlen »,, werden nach dem Vorbild des § 3 so bestimmt, daB

Vo = V1 + 1, Vo =0 (11)

richtig ist und so, daB folgende beiden Ungleichungen, die (9) und (10)
entsprechen, gelten :

T, . .
| § @) &"™ ezt et dt | < ()™ (12)
T
gilt gleichméBig im Bereich a, <7, <7, < pyy, 2= —m, y<»

¢
| F(t) et vt dt | < (3)m (13)
3
gilt gleichmiBig im Bereich 0 <t,<t,<@,, x> —m, y>=v
Aus der Ungleichung (12) liest man ab,da g = — co. Es wird nun
gezeigt, dafl das Laplace-Integral in jeder rechten Halbebene gleichméig
konvergiert (also auch beschrinkt ist), woraus dann y = u = —oo folgt.

17) z. B. a.a. 0.1), 8.17
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Zum Beweis widhlt man eine beliebige natiirliche Zahl ¢ >3 und

zeigt, dafl fir x> —q | j F(t)estdt| gleichmidBig mit 7' gegen Null
T

strebt. Wir wollen sogleich annehmen, es sei 7'>Inlngq. Dann gelten

fir F(t) die Ungleichungen (12) und (13) und man kann | j' F(t)e*tdt|
wie folgt abschitzen.

Fallunterscheidung :

. T
1. y<w_,, wobei r=[e],
2. Y SasSyY<v .

Im ersten Falle hat man wegen (12)

o0 o %m41 o
IS fI<=@) =)
T m= r (9 m=r

und im zweiten Falle geht die Abschiatzung wie folgt :

Gp—1 ek 41 Im+1

I<EJ I+ 00+ S | |=I+I+1I.
1 ay

Gk—1 k+

Ny, 8

Wegen (13) fiir Z und (12) fiir 717 hat man I + I11 <(4)™2. Wegen des

Hilfssatzes B, der wegen F(t) = 0(e!") auf II angewendet werden kann,
geht I mit wachsendem 7' unabhingig von s (x> —g¢) gegen Null.

Damit ist alles gezeigt.

§ 5. Die Beispiele, bei denen — o< f=y=a=x<o0,n=p=—
und die Beispiele, bei denen —co=f<y=0=x< 0, n=p=—

Wir behandeln diese Beispiele gemeinsam, weil die Konstruktion aller
dhnlich ist.

Es handelt sich darum, zu den folgenden Anordnungen der Abszissen
Beispiele anzugeben :

. f=y=a=np=u= —o0,

2. f=y=a=0, p=p= —o0 ,
3. p =0+, y=a=0", N=pu= —oo ,
4. p=1y =0+, o= 0", n=u= —oo,
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5. f=y=a=0%, n=p= —oo,

6 f=—0, y=a=0, n=pu= —oo,

7 f=—c0, =0, a=0" np=u= —oco,

8 = —co, y=oa=0" N=u= —oo,

9 f=—0c0, y=a=00, N =p= —oo0
Die zugehorigen Funktionen sollen mit F,(¢), £ = 1,..., 9 bezeichnet
werden. F*(t) sei die Funktion des § 4, bei der fiir t>1 p(f)=1, also
f=9y= —oc0, a=0", n=pu= —oo gilt. Bei den Wurzeln mit dem

Radikanden m ist im folgenden stets der Hauptwert zu nehmen.

N

F,(t): F, ()= e 1),

F,(t): Die Funktion F,(t) erhdlt man mit dem Ansatz

(m% + I/E)

F,(t) = P, (), k=e +1, n=Vm (vgl §2).

Aus der Beziehung (5) ergibt sich

m+1 3 —
f | Fy(t) | e®tdt < 2-e‘m% e(’”2+V’”) M = 20 ™e-am  fiir x>0,

m

(14)

Nach (6) hat man
m+1/, = ( % V—«) .
| | F,(t)e=tdt| > ¢~ ImmtD) g\mE +fm) pzm_|,0  fiir m—>o0, <0 .

" (15)

Hieraus folgt B =9 = a = 0—. Aus der Beziehung (4) folgt 5 =pu
= — oo.

F,(t): Man setze

Fo(t) =W, (), k=e +1, n=Vm.
Wegen (5) hat man
" E o —ym) eom = 2 gVm gm0

[ 1 Fs@t) | e=tdt <2e™m e

fir m >o00, >0

——

18) z. B. a.a.0.1), S.17.
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und wegen (6)
m+/, —

_ s
| | Fs() etdt]| > g~/ mm+1) e(”‘g“vm)e—”m = e megam  fir <0,
m

Hieraus folgt f =9 = a = 0*. Wegen (4) gilt auch hier =y = —co.

F,(t): Man setze F,(t) = F4(t) + F*(t).

Fg¢(t): In jedem Intervalle J,,:m <t<m-+1, m=0,1,...
setzen wir

Fy(t) = Fy(t) '™, v reell
und bestimmen die »,, vermittels des Hilfssatzes A so, daf
T,
| fFe(t)e=tdt |<(3)m fir m<T,<Ty,<m+1, 2>—m.
T,

Da dann fiir jeden Punkt s= —m, m=1,2,3,... das Laplace-
Integral konvergiert, konvergiert es auch in jeder Halbebene z>—m.
Folglich ist § = —oco. Wegen (4) gilt auch hier n = y = —oo. Setzt
man 8, =z + ¢v,, wobei x <0, so gilt wegen (15)
m-1/,
| Fet)e*mdt—|>0 fir m—> oo .

m
Hieraus und aus (14) ergibt sich y = o = 0-.

Fg(t): Gleich wie man durch Modulation von F,(t) zu Fg(t) gelangt,
kommt man von Fg(t) zu Fg(t).

ool

2(t): Man setze F,(t) = F4(t) + F*(t).

y
[
—
=

: Hier schreibe man F,(t) = Fy(t) + Fq(t).

y
(-]

L
p

: In jedem Intervall J ,:m<t<m+1, m=0,1,... setzen wir

3
Fo) =™ W, (t), k=¢" +1, n=m, w,reell.
Die »,, bestimmen wir so, dafl », >7»,_;+ 1 und daB
T,
| fFo@) estdt| <(3)™ fir m<T,<T,<m+1, 2>-—m.
Ty
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Wieder gilt dann g = — oo. Aus der Beziehung (4) folgt, dall
n = p = — oo. Setzt man wieder s, =z -+ ¢v,, wobei x beliebig, aber
fest sein soll, so erhilt man aus der Ungleichung (7)

m--1/,
— 3 - .
= em L 3
| | Fo(t) e dt| = emimi) gm® g= 12140 5 o6 fiir  m — o0
m

daBl py = a =o0.

Damit ist alles gezeigt.

§ 6. Die Beispiele, bei denen —co < ff=y=a=x%<oco, n=pu=x%
% =—o0: F(t)=et 19,

x=0: F(t) = 120,

(Eingegangen den 19. Dezember 1947.)

1) 2. B. a.a.0.1), S.17.
%) z. B. a.a. 0.1), S.22.
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