Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 22 (1949)

Artikel: Über den Zusammenhang zwischen den Konvergenzabszissen, der

Holomorphie- und der Beschränktheitsabszisse bei der Laplace-

Transformation.

Autor: Bloch, Pierre Henri

DOI: https://doi.org/10.5169/seals-19189

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über den Zusammenhang zwischen den Konvergenzabszissen, der Holomorphieund der Beschränktheitsabszisse bei der Laplace-Transformation

Von Pierre Henri Bloch, Zürich

§ 1. Voraussetzungen und Problemstellung

In der folgenden Arbeit wird der Laplace-Transformation

$$f(s) = f(x + i y) = \int_{0}^{\infty} F(t) e^{-st} dt$$

der Riemannsche Integralbegriff zugrunde gelegt.

Die Funktionen der Funktionenklasse, auf welche die Laplace-Transformation angewendet werden soll, bezeichnen wir mit Doetsch 1) als L-Funktionen. Sie sind durch folgende Eigenschaften charakterisiert:

- 1. F(t) ist für jedes t>0 definiert,

- 4. Es existiert eine komplexe Zahl $s_{\mathrm{0}}=x_{\mathrm{0}}+i\;y_{\mathrm{0}}\;$ so, daß für T>0 $\lim_{\omega \to \infty} \int_{T}^{\omega} e^{-s_0 t} F(t) dt \text{ existiert und endlich ist.}$

Es ist bekannt²), daß es bei der Laplace-Transformation fünf charakteristische Abszissen gibt, nämlich

- die Abszisse bedingter oder gewöhnlicher Konvergenz,
- die Abszisse gleichmäßiger Konvergenz,
- die Abszisse absoluter Konvergenz,
- die Holomorphieabszisse und
- die Beschränktheitsabszisse.

¹⁾ G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Julius Springer, Berlin 1937 (Dover publications 1943).

²) z. B. a. a. O.¹), S. 15, 17, 43, 46, 56.

Die Abszissen sind verbunden durch die Ungleichungen³)

$$\alpha \geqslant \gamma \geqslant \beta \geqslant \eta , \qquad (1)$$

$$\gamma \geqslant \mu \geqslant \eta$$
 . (2)

In dieser Arbeit soll bewiesen werden, daß dies die einzigen Beziehungen sind, die zwischen den fünf charakteristischen Abszissen bestehen. m. a. W. es soll gezeigt werden, daß alle Anordnungen der Abszissen, die nicht gegen (1) oder (2) verstoßen, möglich sind 4). Bisher wußte man insbesondere nicht, wie sich μ in die Ungleichung (1) einschaltet. Die vorliegenden Untersuchungen beweisen, daß alle drei Fälle $\mu \leq \beta$ möglich sind. Es wird im folgenden gezeigt, daß es stets möglich ist, Beispiele mit beliebig vorgeschriebenen Kombinationen von β , γ , α , η , μ zu konstruieren, die lediglich die Ungleichungen (1) und (2) befriedigen.

Für Dirichletsche Reihen, die ein ähnliches Verhalten wie Laplace-Integrale zeigen, wurden die dieser Arbeit entsprechenden Tatsachen bereits von Neder⁵) bewiesen. Wie bei Neder werden auch hier für alle möglichen Kombinationen der Abszissen Beispiele angegeben, und zwar zeigt es sich auch hier, daß bloß folgende fünf spezielle Anordnungen betrachtet werden müssen:

a)
$$-\infty = \beta \leqslant \gamma = \alpha = \varkappa \leqslant \infty$$
, $\eta = -\infty$, $\mu = \varkappa$,

a)
$$-\infty = \beta \leqslant \gamma = \alpha = \varkappa \leqslant \infty$$
, $\eta = -\infty$, $\mu = \varkappa$,
b) $-\infty = \beta = \gamma \leqslant \alpha = \varkappa \leqslant \infty$, $\eta = \mu = -\infty$,

c)
$$-\infty = \beta \leqslant \gamma = \alpha = \varkappa \leqslant \infty$$
, $\eta = \mu = -\infty$,

d)
$$-\infty \leqslant \beta = \gamma = \alpha = \varkappa < \infty$$
, $\eta = \mu = -\infty$,

e)
$$-\infty \leqslant \beta = \gamma = \alpha = \varkappa < \infty$$
, $\eta = \mu = \varkappa$.

Alle andern Kombinationen der charakteristischen Abszissen erhält

³⁾ $\eta \leqslant \mu$ folgt aus der Definition von η und $\mu : \eta$ wird als untere Grenze der x definiert, für die f(s) in der rechten Halbebene holomorph ist, μ wird definiert als untere Grenze $\operatorname{der} x$, für die f(s) in der rechten Halbebene holomorph und beschränkt ist. Für die übrigen Ungleichungen (1) und (2) vgl. z. B. a. a. O. 1).

⁴⁾ Bei der Mellintransformation $\int\limits_{-\infty}^{+\infty} F(t) \, e^{-st} \, dt$, bei der die Grenzübergänge R $-\infty$ lim $\lim_{R\to\infty} \int_{R'\to\infty} unabhängig voneinander vollzogen werden, gilt äquivalentes wie bei der$ einfachen Laplace-Transformation: es können die Lagen der Konvergenz-, Holomorphieund Beschränktheitsabszissen vorgeschrieben werden, soweit nur den Ungleichungen (1) und (2) entsprechende Ungleichungen erfüllt bleiben.

b) L. Neder, Über die Lage der Konvergenzabszisse einer Dirichletschen Reihe zur Beschränktheitsabszisse ihrer Summe, Arkiv för Mat. Ast. och Fys. 16, 1922, Nr. 20.

man als Summen mit Summanden, die den speziellen Anordnungen entsprechen, denn stets gibt die Anordnung a) μ , b) α , c) γ , d) β , e) η bei der Summe an.

Eine leichte Vereinfachung ergibt sich dadurch, daß für die Konstanten \varkappa nur die drei Werte $-\infty$, 0 und $+\infty$ konstruiert werden müssen, um alle andern Werte von \varkappa durch Multiplikation von F(t) mit e^{-rt} (r reell) zu erhalten.

Außer bei der Anordnung e), wo die Frage nicht behandelt wird, zeigt sich noch, daß man bei den im Endlichen gelegenen Abszissen vorschreiben kann, daß das Integral auf der ganzen charakteristischen Abszisse selbst, das durch die Abszisse gekennzeichnete Verhalten zeigt oder, daß dies auf der ganzen Abszisse nicht gilt. Der Fall, bei dem es sich um eine Teilmenge der Abszisse handelt, werde nicht untersucht. In der Folge werde die Tatsache, daß z. B. auf der ganzen Konvergenzgeraden x=0 das Laplace-Integral konvergiert mit $\beta=0^+$ bezeichnet und die Tatsache, daß das Laplace-Integral in allen Punkten von x=0 divergiert, mit $\beta=0^-$ bezeichnet.

Die ersten Beispiele konnten durch geeignete Formulierung und Anwendung des *Riemannschen Lemmas* ⁶) konstruiert werden. Die Beispiele des § 5 wurden mit gewissen Integralen konstruiert, zweckmäßigen Übertragungen der von *Neder* ⁷) benutzten *Fejérschen Polynomen* ⁸).

Die vorliegende Problemstellung wurde mir nach einem wissenschaftlichen Briefwechsel der Herren *Doetsch* und *Saxer* von letzterem mitgeteilt.

§ 2. Hilfssätze

Hilfssatz A: Das verallgemeinerte Riemannsche Lemma

Vor.: f(t) in $0 \le a \le t \le b < \infty$ beschränkt und im Riemannschen Sinne integrabel 9).

Beh.: Zu jeder positiven Zahl M und zu jeder nicht negativen reellen Zahl m existiert eine positive Zahl ϱ so, daß für $a\leqslant T_1\leqslant T_2\leqslant b$

$$|\int_{T_1}^{T_2} f(t) e^{-xt} e^{\pm i \varrho' t} dt| < M$$
,

⁶⁾ z. B. a. a. O.¹), S. 50.

⁷⁾ a. a. O.⁵).

⁸⁾ L. Fejér, Über gewisse Potenzreihen an der Konvergenzgrenze, Sitzungsberichte der k. b. Akad. der Wissenschaften, math.-phys. Klasse, 1910.

 $^{^{9}}$) Der Satz würde auch gelten, wenn f(t) im Lebesgueschen Sinne integrabel wäre.

wenn nur

$$\varrho' \geqslant \varrho$$
 und $x \geqslant -m$

ist 10).

Hilfssatz B:

Vor.: F(t) für $t \ge 0$ im Riemannschen Sinne integrierbar,

$$F(t) = 0(e^{t^n})$$
 für $t \to \infty$, $n \geqslant 0$.

Beh.: In jeder rechten Halbebene geht für $m \to \infty$

$$\left|\int_{\ln \ln m}^{\ln \ln (m+1)} F(t) e^{-st} dt\right|$$

gleichmäßig gegen Null.

Beweis: Es gibt eine nicht negative Zahl M so, daß von einem gewissen t_0 an $|F(t)| \leq M e^{t^n}$. Mit der Substitution

$$\ln \ln r = t$$
 ,
 $\ln r = e^t$,
 $\frac{dr}{r \cdot \ln r} = dt$,
 $e^{(\ln \ln r)^n} = e^{t^n}$

hat man für $m > e^{e^{t_0}}$

$$|\int_{\ln \ln m}^{\ln \ln (m+1)} F(t) e^{-st} dt| \leqslant \int_{\ln \ln m}^{\ln \ln (m+1)} |F(t)| e^{-xt} dt$$
 $|\int_{m}^{m+1} e^{(\ln \ln r)^n} (\ln r)^{-x} \frac{dr}{r \ln r}.$

Setzt man wieder $\ln \ln r = t$, so erkennt man, daß der Integrand des letzten Integrales in jeder rechten Halbebene gleichmäßig gegen Null geht, wenn $m \to \infty$ strebt:

$$e^{(\ln \ln r)^n} (\ln r)^{-(x+1)} \frac{1}{r} = e^{t^n} e^{-t(x+1)} e^{-e^t} \to 0$$
 für $t \to \infty$.

Hieraus folgt, da das Integrationsintervall immer gleich lang bleibt, die gleichmäßige Nullstrebigkeit des Integrales, w. z. b. w.

¹⁰) Beweis z. B. a. a. O.¹), S. 50.

Fejérsche Integrale

Hilfssatz C:

Vor.: k positive Zahl >2.

$$\varphi_k(s) = \int\limits_1^{k-1} e^{-st} \, \frac{dt}{k-t} + \int\limits_{k+1}^{2\,k-1} e^{-st} \, \frac{dt}{k-t} = \int\limits_1^{2\,k-1} \varPhi_k(t) \, dt \ ,$$
 wo
$$\varPhi_k(t) = \begin{cases} \frac{1}{k-t} & \text{in} \quad 1 \leqslant t \leqslant k-1 \quad \text{und} \quad k+1 \leqslant t < 2k-1 \ , \\ 0 & \text{sonst.} \end{cases}$$

Beh.: Es gibt eine von k unabhängige Zahl Γ so, daß

$$\mid \varphi_k(s) \mid \leqslant \Gamma$$
 für $\Re s \geqslant 0$.

Beweis: $\varphi_k(s)$ ist eine ganze Funktion, die wir als k. Fejérsches Integral (k braucht nicht ganz zu sein) bezeichnen wollen. Es handelt sich um Fejérsche Integrale im Gegensatz zu den Fejérschen Polynomen, die Neder¹¹) verwendet und die von Fejér¹²) definiert worden sind.

Zum Beweise nehmen wir zunächst an, es sei s = iy (y reell). Dann gilt, wenn in

$$\varphi_k(iy) = \int_1^{k-1} e^{-iyt} \frac{dt}{k-t} + \int_{k+1}^{2k-1} e^{-iyt} \frac{dt}{k-t}$$

beim ersten Integral die Substitution t=k-u und beim zweiten Integral die Substitution t=u+k gemacht wird

$$\begin{split} \varphi_k(i \; y) &= \int\limits_1^{k-1} e^{-iy \; (k-u)} \, \frac{1}{u} \, du \, - \int\limits_1^{k-1} e^{-iy \; (k+u)} \, \frac{1}{u} \, du \\ &= 2i \cdot e^{-iyk} \int\limits_1^{k-1} \frac{\sin \; (y \cdot u)}{u} \, du \; . \end{split}$$

Wegen der Beschränktheit dieses $Dirichletschen\ Integrales^{13}$) existiert eine positive Zahl Γ so, daß

$$|\varphi_k(iy)| \leqslant \Gamma$$

unabhängig von k auf der ganzen Geraden x = 0 gilt.

¹¹⁾ a. a. O. 5).

¹²⁾ a. a. O. 8).

¹⁸) z. B. R. Courant, Vorlesungen über Differential- und Integralrechnung, Bd. I, Julius Springer, Berlin 1930, S. 371.

Für x>0 erhält man durch partielle Integration

$$\mid \varphi_{k}(s) \mid = \mid \int_{1}^{2k-1} \Phi_{k}(t) e^{-iyt} e^{-xt} dt \mid$$

$$\leqslant \mid e^{-xt} \int_{1}^{t} \Phi_{k}(u) e^{-iyu} du \mid + \mid x \int_{1}^{2k-1} e^{-xt} \left(\int_{1}^{t} \Phi_{k}(u) e^{-iyu} du \right) dt \mid$$

$$\leqslant e^{-x(2k-1)} \mid \varphi_{k}(iy) \mid + (e^{-x} - e^{-x(2k-1)}) \cdot 2 \cdot \ln(k-1) .$$

 $\varphi_k(s)$ ist also für ein festes k in der Halbebene $x\geqslant 0$ beschränkt. Auf x=0 gilt $|\varphi_k(s)|\leqslant \Gamma$. Daraus folgt nach einem Satze von E. Phragmén und E. Lindelö f^{14}), daß in der ganzen Halbebene $\Re s\geqslant 0$ $|\varphi_k(s)|\leqslant \Gamma$ gilt, w. z. b. w.

Anwendungen

Das k. Fejérsche Integral

$$\varphi_k(z) = \int_{1}^{k-1} e^{-zu} \frac{du}{k-u} + \int_{k+1}^{2k-1} e^{-zu} \frac{du}{k-u}$$
 (k > 2)

geht durch die beiden Substitutionen

$$z = \frac{s+n}{2k-2}$$
, n reell $\geqslant 0$; $u = (2k-2)(t-m)+1$, m ganz $\geqslant 0$

über in

$$\varphi_k\left(\frac{s+n}{2k-2}\right) = (2k-2) e^{(s+n)\left(m-\frac{1}{2k-2}\right)}.$$

$$\cdot \left\langle \int_{m}^{m+\frac{k-2}{2\,k-2}} \frac{e^{-nt}\,e^{-st}\,dt}{k-1-(2\,k-2)\,(t-m)} + \int_{m+\frac{k}{2\,k-2}}^{m+1} \frac{e^{-nt}\,e^{-st}\,dt}{k-1-(2\,k-2)\,(t-m)} \right\rangle \, .$$

Aus dem Hilfssatz C folgt

$$\left| \, arphi_k \Big(rac{s+n}{2\,k-2} \Big) \,
ight| \leqslant arphi \quad ext{ für } \quad \Re \, s \geqslant - \, n \, \ .$$

Für die reelle, nicht negative Funktion $\Psi_{kn}(t)$, die folgendermaßen definiert ist:

¹⁴) E. Phragmén und E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage d'un point singulier, Acta math. 31, 1908, S. 382 ff.

$$\varPsi_{kn}(t) = \begin{cases} \frac{(2k-2)\,e^{-nt}}{k-1-(2k-2)\,(t-m)} & \text{für} \quad m \leqslant t \leqslant m + \frac{k-2}{2\,k-2} \ , \\ 0 & \text{für} \quad m + \frac{k-2}{2\,k-2} < t < m + \frac{k}{2\,k-2} \ , \\ \frac{(2\,k-2)\,e^{-nt}}{k-1-(2\,k-2)\,(t-m)} & \text{für} \quad m + \frac{k}{2\,k-2} \leqslant t < m+1 \ , \end{cases}$$

gilt deshalb

$$|\int\limits_{m}^{m+1} \Psi_{kn}\left(t\right) \, e^{-st} \, dt \mid < \frac{\Gamma}{e^{(m-1)}} \quad ext{ für } \Re s > -n+1 \ .$$
 (3)

Nimmt man k>2 und n>0 als Funktionen von m an:

$$k = k(m)$$
, $n = n(m)$

und geht $n(m) \to \infty$ für $m \to \infty$, so stellt wegen (3) für beliebige reelle Zahlen v_m

$$\sum_{m=0}^{\infty} \left(\int_{m}^{m+1} \Psi_{k(m) \, n(m)} (t) \, e^{i \nu_m t} \, e^{-st} \, dt \right) \tag{4}$$

eine in jeder rechten Halbebene gleichmäßig konvergente Reihe dar. Wegen (3) ist ihre Summe in jeder rechten Halbebene beschränkt; (4) stellt also eine ganze Funktion dar und läßt sich formal als Laplace-Integral schreiben, für welches $\eta = \mu = -\infty$ ist:

$$f(s) = \int_0^\infty F(t) e^{-st} dt ,$$

wobei in

$$m \leqslant t < m+1$$
 $F(t) = e^{i\nu_m t} \Psi_{k(m)n(m)}(t)$.

Wir werden noch folgende Beziehungen verwenden:

$$\int_{m}^{m+1} | \Psi_{kn}(t) | e^{-xt} dt \leqslant 2 \cdot e^{-nm} \ln(k-1) e^{-xm} \quad \text{für} \quad x \geqslant 0 , \quad (5)$$

$$|\int_{m}^{m+\frac{1}{2}} \Psi_{kn}(t) e^{-xt} dt| \geqslant e^{-n(m+1)} \ln (k-1) e^{-xm} \quad \text{für} \quad x \leqslant 0 , \qquad (6)$$

$$|\int_{m}^{m+\frac{1}{2}} \Psi_{kn}(t) e^{-xt} dt| \ge e^{-n(m+1)} \ln (k-1) e^{-xm} \quad \text{für} \quad x \le 0 , \qquad (6)$$

$$|\int_{m}^{m+\frac{1}{2}} \Psi_{kn}(t) e^{-xt} dt| \ge e^{-n(m+1)} \ln (k-1) e^{-|x|(m+1)} \text{ für bel. } x . \qquad (7)$$

§ 3. Die Beispiele, bei denen $-\infty = \beta \leqslant \gamma = \alpha = \varkappa \leqslant \infty$, $\eta = -\infty$, $\mu = \varkappa$ $\varkappa = -\infty$: Hierher gehört die Funktion $F(t) = e^{-t^2 + 15}$). $\overline{\varkappa=0}$, $+\infty$: Die Funktionen F(t) werden folgendermaßen bestimmt: Für t < 1 sei $F(t) \equiv 0$.

¹⁵) z. B. a. a. O.¹), S. 17.

In jedem Intervall

$$J_m: m \leqslant t < m+1$$
, $m = 1, 2, \dots$

werde F(t) angesetzt in der Form

$$F(t) = p(t) e^{i \nu_m t} ,$$

wobei

$$\begin{array}{lll} \text{f\"{u}r} & \mu=\gamma=\alpha=0^- & p(t)=t \ , \\ \text{f\"{u}r} & \mu=0^+, \ \gamma=\alpha=0^- & p(t)\equiv 1 \ , \\ \text{f\"{u}r} & \mu=\gamma=0^+, \ \alpha=0^- & p(t)=\frac{1}{t} \ , \\ \text{f\"{u}r} & \mu=\gamma=\alpha=0^+ & p(t)=\frac{1}{t^2} \\ \text{und f\"{u}r} & \varkappa=+\infty & p(t)=e^{t^2} \, . \end{array}$$

Die Zahlen ν_m sollen positiv sein. Wir bestimmen sie derart, daß folgende Bedingungen erfüllt werden:

$$v_m \geqslant v_{m-1} + 1$$
 , $v_0 = 0$, (8)

$$|\int_{T_1}^{T_2} p(t) e^{i\nu_m t} e^{-xt} e^{-iyt} dt| < (\frac{1}{2})^m$$
(9)

gilt gleichmäßig im Bereich $\, m \leqslant T_{1} \! \leqslant \! T_{2} \! \leqslant \! m+1 \, , \, \, x \geqslant -m \, , \, \, y \! \leqslant \!
u_{m\!-\!1} \, , \,$

$$|\int_{t_1}^{t_2} F(t) e^{-xt} e^{-iyt} dt| < (\frac{1}{2})^m$$
 (10)

gilt gleichmäßig im Bereich $0 \le t_1 \le t_2 < m$, $x \ge -m$, $y \ge v_m$. Eine solche Zahlenfolge v_m läßt sich wie folgt konstruieren:

Sei $\varrho_1, \varrho_2, \ldots$ eine Folge positiver Zahlen, die vermöge des Hilfssatzes A so bestimmt werden, daß für jedes m gleichmäßig im Bereich $m \leqslant T_1 \leqslant T_2 \leqslant m+1, \ x \geqslant -m, \ |y| \geqslant \varrho_m$

$$|\int_{T_1}^{T_2} e^{-xt} e^{iyt} p(t) dt| < \left(\frac{1}{2}\right)^m$$

gilt.

Die Existenz der Zahlen ν_m zeigen wir durch vollständige Induktion. Wir setzten $\nu_0=0$ und nehmen als Induktionsvoraussetzung an, es seien Zahlen ν_m ($m\leqslant k-1$) gefunden, die den Ungleichungen (8), (9) und (10) genügen. Wir konstruieren ν_k .

Sei

$$\nu_k' = \varrho_k + \nu_{k-1} .$$

Nach der Definition von ϱ_k gilt gleichmäßig im Bereich

$$k\leqslant T_1\leqslant T_2\leqslant k+1$$
 , $x\geqslant -k$, $y\leqslant v_{k-1}$, $v\geqslant v_k'$
$$|\int_{T_1}^{T_2}p(t)\;e^{i\,vt}\;e^{-x\,t}\;e^{-iyt}\;dt\;|<\left(\frac{1}{2}\right)^k\;,$$

da unter diesen Voraussetzungen $v-y\geqslant v_k'-v_{k-1}=arrho_k$.

Da F(t) im Intervall $0 \leqslant t < k$ durch die als bekannt vorausgesetzten Zahlen ν_m ($m \leqslant k-1$) bestimmt ist, läßt sich nach dem Hilfssatz A eine positive Zahl ν_k'' bestimmen, derart, daß im Bereich $0 \leqslant t_1 \leqslant t_2 < k$, $x \geqslant -k$, $y \geqslant \nu_k''$ gleichmäßig

$$|\int\limits_{t_{1}}^{t_{2}}F(t)\,e^{-x\,t}\,e^{-iy\,t}\,dt\,|<(rac{1}{2})^{k}$$

gilt.

Wir setzen $v_k = \max(v_k', v_k'', v_{k-1} + 1)$. Für dieses v_k gelten dann die Ungleichungen (8), (9) und (10), da $v_k > v_k'$ und $v_k > v_k''$.

Damit ist die Existenz der Zahlenfolge v_m gezeigt.

Für das Laplace-Integral gilt folgendes: Aus (9) ergibt sich, daß $\beta = -\infty$. Nun betrachten wir die Folge $s_m = x + i \nu_m$, $m = 1, 2, \ldots$, wobei $x < \varkappa$ beliebig, aber fest gedacht ist und zeigen $f(s_m) \to \infty$ für $m \to \infty$. Sei $r = [\mid x \mid] + 1$. Dann kann man schreiben

$$f(s_m) = \int_0^r + \int_r^m + \int_m^{m+1} + \int_{m+1}^{\infty} = I + II + III + IV$$
.

III geht mit m gegen Unendlich. Wir zeigen, daß die übrigen Glieder beschränkt bleiben: Das Glied I ist kleiner als das Integral des Absolutbetrages $\int_0^r |F(t)| e^{-xt} dt$. Die Glieder II und IV sind, da wegen r = [|x|] + 1 für sie die Ungleichungen (10) und (9) gelten, wegen der Summenformel für die unendliche geometrische Reihe kleiner zwei.

Das Verhalten der ersten vier Beispiele auf der Geraden x = 0 ist leicht zu erkennen¹⁶).

Damit ist alles gezeigt.

¹⁶⁾ z. B. $\mu = \gamma = 0^+$, $\alpha = 0^-$: $p(t) = \frac{1}{t}$: Das Integral $\int_0^\infty |F(t)| dt = \int_1^\infty \frac{dt}{t}$ divergiert, also $\alpha = 0^-$. Daß $\mu = \gamma = 0^+$, zeigt man mit der gleichen Methode, mit der man im § 4 bei $\varkappa = 0$ bzw. $+\infty$ beweisen wird, daß $\gamma = \mu = -\infty$.

§ 4. Die Beispiele, bei denen $-\infty = \beta = \gamma \leqslant \alpha = \varkappa \leqslant \infty$, $\eta = \mu = -\infty$

 $\varkappa = -\infty$: Hierher gehört wieder $F(t) = e^{-t^2}$ 17).

 $\varkappa = 0$, $+\infty$: Für $t < \ln \ln 3$ sei $F(t) \equiv 0$.

Für $t \ge \ln \ln 3$ werde in jedem Intervall

$$J_m: a_m = \ln \ln m \leqslant t \leqslant \ln \ln (m+1) = a_{m+1}, \ m = 3, 4, ...$$

F(t) angesetzt in der Form

wobei für
$$\,arkappa=0^+$$

$$p(t)=p(t)\,e^{i\, {\it vm}\, t} \;\;,$$
 für $\,arkappa=0^-$
$$p(t)\equiv 1$$

und für $\varkappa = \infty$

$$p(t) = e^{t^2} .$$

Die Zahlen ν_m sollen reell und positiv sein.

Es ist offensichtlich, daß im ersten und zweiten Fall $\alpha = 0$ und daß im dritten $\alpha = \infty$ ist. Man erkennt auch, daß im ersten Fall das Laplace-Integral für s = 0 absolut konvergiert und im zweiten Fall nicht.

Die Zahlen ν_m werden nach dem Vorbild des § 3 so bestimmt, daß

$$v_m \geqslant v_{m-1} + 1 \quad , \qquad v_0 = 0 \tag{11}$$

richtig ist und so, daß folgende beiden Ungleichungen, die (9) und (10) entsprechen, gelten:

$$|\int_{T_1}^{T_2} p(t) e^{i\nu_m t} e^{-xt} e^{-iyt} dt| < \left(\frac{1}{2}\right)^m$$
 (12)

gilt gleichmäßig im Bereich $a_m \leqslant T_1 \leqslant T_2 \leqslant a_{m+1}, \ x \geqslant -m, \ y \leqslant \nu_{m-1}$,

$$|\int_{t_1}^{t_2} F(t) e^{-xt} e^{-iyt} dt| < (\frac{1}{2})^m$$
 (13)

gilt gleichmäßig im Bereich $0\leqslant t_1\leqslant t_2\!<\!a_m,\ x\geqslant\!-m,\ y\geqslant\! r_m$.

Aus der Ungleichung (12) liest man ab, daß $\beta = -\infty$. Es wird nun gezeigt, daß das Laplace-Integral in jeder rechten Halbebene gleichmäßig konvergiert (also auch beschränkt ist), woraus dann $\gamma = \mu = -\infty$ folgt.

¹⁷) z. B. a. a. O.¹), S. 17.

Zum Beweis wählt man eine beliebige natürliche Zahl $\ q\geqslant 3$ und zeigt, daß für $x \geqslant -q - |\int\limits_{\pi}^{\infty} F(t) \, e^{-st} \, dt \, |$ gleichmäßig mit T gegen Null strebt. Wir wollen sogleich annehmen, es sei $T > \ln \ln q$. Dann gelten für F(t) die Ungleichungen (12) und (13) und man kann $|\int_{a}^{b} F(t) e^{-st} dt|$ wie folgt abschätzen.

Fallunterscheidung:

1.
$$y < v_{r-1}$$
, wobei $r = [e^{e^T}]$,

2.
$$v_{r-1} \leqslant v_{k-1} \leqslant y < v_k$$
.

Im ersten Falle hat man wegen (12)

$$|\int\limits_T^\infty|\leqslant \sum\limits_{m=r}^\infty|\int\limits_{a_m}^{a_{m+1}}|<\sum\limits_{m=r}^\infty(rac{1}{2})^m=(rac{1}{2})^{r-1}$$

und im zweiten Falle geht die Abschätzung wie folgt:

$$|\int_{T}^{\infty}| \leqslant |\int_{T}^{a_{k-1}}| + |\int_{a_{k-1}}^{a_{k+1}}| + \sum_{m=k+1}^{\infty}|\int_{a_{m}}^{a_{m+1}}| = I + II + III$$
.

Wegen (13) für I und (12) für III hat man $I + III < (\frac{1}{2})^{r-2}$. Wegen des Hilfssatzes B, der wegen $F(t) = 0(e^{t^n})$ auf II angewendet werden kann, geht II mit wachsendem T unabhängig von s $(x \geqslant -q)$ gegen Null.

Damit ist alles gezeigt.

§ 5. Die Beispiele, bei denen
$$-\infty \leqslant \beta = \gamma = \alpha = \varkappa < \infty$$
, $\eta = \mu = -\infty$ und die Beispiele, bei denen $-\infty = \beta \leqslant \gamma = \alpha = \varkappa \leqslant \infty$, $\eta = \mu = -\infty$

Wir behandeln diese Beispiele gemeinsam, weil die Konstruktion aller ähnlich ist.

Es handelt sich darum, zu den folgenden Anordnungen der Abszissen Beispiele anzugeben:

1.
$$\beta = \gamma = \alpha = \eta = \mu = -\infty$$
,

2.
$$\beta = \gamma = \alpha = 0^{-}$$
, $\eta = \mu = -\infty$,
3. $\beta = 0^{+}$, $\gamma = \alpha = 0^{-}$, $\eta = \mu = -\infty$,
4. $\beta = \gamma = 0^{+}$, $\alpha = 0^{-}$, $\eta = \mu = -\infty$,

3.
$$\beta = 0^+$$
, $\gamma = \alpha = 0^-$, $\eta = \mu = -\infty$,

4.
$$\beta = \gamma = 0^+, \quad \alpha = 0^-, \quad \eta = \mu = -\infty$$

5.
$$eta=\gamma=lpha=0^+$$
 , $\eta=\mu=-\infty$,

6.
$$\beta = -\infty$$
, $\gamma = \alpha = 0^-$, $\eta = \mu = -\infty$,

7.
$$\beta=-\infty$$
, $\gamma=0^+$, $\alpha=0^ \eta=\mu=-\infty$,

8.
$$\beta = -\infty$$
, $\gamma = \alpha = 0^+$, $\eta = \mu = -\infty$,

9.
$$\beta = -\infty$$
, $\gamma = \alpha = \infty$, $\eta = \mu = -\infty$.

Die zugehörigen Funktionen sollen mit $F_k(t)$, $k=1,\ldots,9$ bezeichnet werden. $F^*(t)$ sei die Funktion des § 4, bei der für $t\geqslant 1$ $p(t)\equiv 1$, also $\beta=\gamma=-\infty$, $\alpha=0^-$, $\eta=\mu=-\infty$ gilt. Bei den Wurzeln mit dem Radikanden m ist im folgenden stets der Hauptwert zu nehmen.

$$F_1(t)$$
: $F_1(t) = e^{-t^2 - 18}$.

 ${F_{2}}(t)$: Die Funktion ${F_{2}}(t)$ erhält man mit dem Ansatz

$$F_2(t) = \Psi_{kn}(t) , \quad k = e^{\left(\frac{3}{m^2} + \sqrt{m}\right)} + 1, \quad n = \sqrt{m}$$
 (vgl. § 2).

Aus der Beziehung (5) ergibt sich

$$\int_{m}^{m+1} |F_{2}(t)| e^{-xt} dt \leq 2 \cdot e^{-m^{\frac{3}{2}}} e^{\left(m^{\frac{3}{2}} + \sqrt{m}\right)} e^{-xm} = 2 e^{\sqrt[4]{m}} e^{-xm} \quad \text{für} \quad x \geqslant 0.$$
(14)

Nach (6) hat man

$$|\int_{m}^{m+1/2} F_{2}(t) e^{-xt} dt| \ge e^{-\sqrt{m}(m+1)} e^{\left(\frac{3}{m^{2}} + \sqrt{m}\right)} e^{-xm} - || \to 0 \quad \text{für} \quad m \to \infty, \ x \le 0.$$
(15)

Hieraus folgt $\beta = \gamma = \alpha = 0^-$. Aus der Beziehung (4) folgt $\eta = \mu = -\infty$.

 $F_5(t)$: Man setze

$$F_{5}\left(t
ight)=arPsi_{kn}\left(t
ight)\,,\quad k=e^{e^{\left(m^{rac{3}{2}}-\sqrt{m}
ight)}}+1\;,\quad n=\sqrt{m}\;.$$

Wegen (5) hat man

¹⁸) z. B. a. a. O.¹), S. 17.

und wegen (6)

$$|\int_{m}^{m+\frac{1}{2}} F_{5}(t) e^{-xt} dt| \geqslant e^{-\sqrt{m}(m+1)} e^{\left(\frac{3}{m^{\frac{3}{2}}} - \sqrt{m}\right)} e^{-xm} = e^{-2\sqrt{m}} e^{-xm} \quad \text{für} \quad x \leqslant 0.$$

Hieraus folgt $\beta = \gamma = \alpha = 0^+$. Wegen (4) gilt auch hier $\eta = \mu = -\infty$.

 $F_4(t)$: Man setze $F_4(t) = F_5(t) + F^*(t)$.

 $F_6(t)$: In jedem Intervalle $J_m: m \leqslant t < m+1$, $m=0,1,\ldots$ setzen wir

$$F_6(t) = F_2(t) e^{i\nu_m t}, \ \nu_m \text{ reell}$$

und bestimmen die ν_m vermittels des Hilfssatzes A so, daß

$$|\int\limits_{T_1}^{T_2}\!\!F_6(t)\,e^{-x\,t}\,dt\,|$$

Da dann für jeden Punkt s=-m, m=1,2,3,... das Laplace-Integral konvergiert, konvergiert es auch in jeder Halbebene x>-m. Folglich ist $\beta=-\infty$. Wegen (4) gilt auch hier $\eta=\mu=-\infty$. Setzt man $s_m=x+i\,v_m$, wobei $x\leqslant 0$, so gilt wegen (15)

$$\int\limits_{m}^{m+1/2} F_6\left(t\right) \, e^{-s_m t} \, dt - \parallel \rightarrow 0 \qquad \text{für} \qquad m \rightarrow \infty \ .$$

Hieraus und aus (14) ergibt sich $\gamma = \alpha = 0^-$.

 $F_8(t)$: Gleich wie man durch Modulation von $F_2(t)$ zu $F_6(t)$ gelangt, kommt man von $F_5(t)$ zu $F_8(t)$.

 $F_7(t)$: Man setze $F_7(t) = F_8(t) + F^*(t)$.

 $F_3(t)$: Hier schreibe man $F_3(t) = F_5(t) + F_6(t)$.

 $F_9(t)$: In jedem Intervall $J_m: m \le t < m+1, m=0,1,\ldots$ setzen wir

$$F_{9}\left(t
ight)=e^{i
u_{m}t}\; \Psi_{kn}\left(t
ight),\;\;k=e^{e^{m^{3}}}+1\,,\;\;n=m\,,\;\;
u_{m} ext{ reell}\,.$$

Die v_m bestimmen wir so, daß $v_m \geqslant v_{m-1} + 1$ und daß

$$|\int\limits_{T_1}^{T_2}\!\!F_9(t)\,e^{-x\,t}\,dt\,|<\!\left(frac{1}{2}
ight)^{\!m}\qquad ext{für}\qquad m\leqslant T_1\leqslant T_2\leqslant m+1\,,\quad x\geqslant -\,m\,\,.$$

Wieder gilt dann $\beta = -\infty$. Aus der Beziehung (4) folgt, daß $\eta = \mu = -\infty$. Setzt man wieder $s_m = x + i \nu_m$, wobei x beliebig, aber fest sein soll, so erhält man aus der Ungleichung (7)

$$|\int\limits_{m}^{m+1/2} F_9(t) e^{-s_m t} dt| \geqslant e^{-m(m+1)} e^{m^3} e^{-|x|(m+1)} o \infty$$
 für $m o \infty$,

daß
$$\gamma = \alpha = \infty$$
.

Damit ist alles gezeigt.

§ 6. Die Beispiele, bei denen $-\infty \leqslant \beta = \gamma = \alpha = \varkappa < \infty$, $\eta = \mu = \varkappa$

$$\varkappa = -\infty$$
: $F(t) = e^{-t^2 - 19}$.

$$\underline{\varkappa=0}$$
: $F(t)\equiv 1^{20}$).

(Eingegangen den 19. Dezember 1947.)

¹⁹) z. B. a. a. O.¹), S. 17.

²⁰) z. B. a. a. O.¹), S. 22.