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Ûber den Zusammenhang zwischen den

Konvergenzabszissen, der Holomorphie-
und der Beschrënktheitsabszisse bei der
Laplace-Transformation
Von Piebre Henri Bloch, Zurich

§ 1. Voraussetzungen und Problemstellung

In der folgenden Arbeit wird der Laplace-Transformation

der Riemannsche IntegralbegrifE zugrunde gelegt.
Die Funktionen der Funktionenklasse, auf welche die Laplace-Transformation

angewendet werden soll, bezeichnen wir mit Doetsch1) als

.L-Funktionen. Sie sind durch folgende Eigenschaften charakterisiert :

1. F(t) ist fiir jedes t>0 definiert,

2. }F(t) dt existiert fur 0< ï\ < t < T2<oo
tx T

3. lim §F(t)dt existiert fiir T>0, e>0,
e->0 e

4. Es existiert eine komplexe Zahl so== x0 + i y0 so, daB fiir T > 0
a)

lim J e~*otF(t)dt existiert und endlich ist.

Es ist bekannt2), daB es bei der Laplace-Transformation fiinf charakte-
ristische Abszissen gibt, nâmlich

fi die Abszisse bedingter oder gewôhnlicher Konvergenz,
y die Abszisse gleichmâBiger Konvergenz,
a die Abszisse absoluter Konvergenz,
rj die Holomorphieabszisse und
fM die Beschrânktheitsabszisse.

1) G. Doetsch, Théorie und Anwendung der Laplaee-Transformation, Julius

Springer, Berlin 1937 (Dover publications 1943).

2) z. B. a. a. O.1), S. 15, 17, 43, 46, 56.
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Die Abszissen sind verbunden durch die Ungleichungen3)

oc>y >P>rj (1)

y > ii > n - (2)

In dieser Arbeit soll bewiesen werden, daB dies die einzigen Beziehun-

gen sind, die zwischen den funf charakteristischen Abszissen bestehen,
m. a. W. es soll gezeigt werden, daB aile Anordnungen der Abszissen, die
mcht gegen (1) oder (2) verstoBen, moglich sind4). Bisher wuBte man
msbesondere nicht, wie sich /lc in die Ungleichung (1) einschaltet. Die
vorliegenden Untersuchungen beweisen, daB aile drei Falle [i /? môg-
lich sind. Es wird im folgenden gezeigt, daB es stets moglich ist, Beispiele
mit beliebig vorgeschriebenen Kombinationen von (3, y, oc, rj, fx zu
konstruieren, die lediglich die Ungleichungen (1) und (2) befriedigen.

Fur Dirichletsche Reihen, die ein ahnliches Verhalten wie Laplace-
Integrale zeigen, wurden die dieser Arbeit entsprechenden Tatsachen be-
reits von Neder5) bewiesen. Wie bei Neder werden auch hier fur aile
moglichen Kombinationen der Abszissen Beispiele angegeben, und zwar
zeigt es sich auch hier, daB bloB folgende funf spezielle Anordnungen
betrachtet werden mussen :

a) — oo (3^y oc=x^oo, rj — oo ju x

b) — oo f} y^i(x=x^oo, yj [i — oo,
c) — oo /?<y a=#^oo, rj fi — oo

d) — oo^/? y a=#<oo, rj \i — oo,
e) — oo^f} y oc=x<oo, rj fi x

Aile andern Kombinationen der charakteristischen Abszissen erhâlt

3) rj <: u folgt aus der Définition von y und /u • rj wird als untere Grenze der x defimert,
fur die / (s) m der rechten Halbebene holomorph ist, fx wird defimert als untere Grenze
der x, fur die / (s) in der rechten Halbebene holomorph und beschrankt ist. Fur die
ubngen Ungleichungen (1) und (2) vgl. z. B. a a. O.J).

+ 00
4) Bei der Melhntransformation / F{t) e~8t dû, bei der die Grenzubergange

R -00
Iiiïi hm / unabhangig vonemander vollzogen werden, gilt aquivalentes wie bei der

R-±oo U'->-oo -Rf
emfachen Laplace-Transformation : es konnen die Lagen der Konvergenz Holomorphie-
^ind Beschranktheitsabszissen vorgeschneben werden, soweit nur den Ungleichungen (1)
und (2) entsprechende Ungleichungen erfullt bleiben.

5) L. Neder, Ûber die Lage der Konvergenzabszisse einer Dinchletschen
Reihe zur Beschranktheitsabszisse îhrer Summe, Arkiv for Mat. Ast. och Fys. 16,
1922, Nr. 20.
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man als Summen mit Summanden, die den speziellen Anordnungen ent-
sprechen, denn stets gibt die Anordnung a) ju, b) oc, c) y, d) /S, e) r\

bei der Summe an.
Eine leichte Vereinfachung ergibt sich dadurch, daB fur die Konstanten

x nur die drei Werte — oo, 0 und + oo konstruiert werden miissen, um
aile andern Werte von x durch Multiplikation von F(t) mit e~rt (r reell)
zu erhalten.

AuBer bei der Anordnung e), wo die Frage nicht behandelt wird, zeigt
sich noch, daB man bei den im Endliehen gelegenen Abszissen vor-
schreiben kann, daB das Intégral auf der ganzen charakteristisehen
Abszisse selbst, das durch die Abszisse gekennzeichnete Verhalten zeigt
oder, daB dies auf der ganzen Abszisse nicht gilt. Der Fail, bei dem es

sich um eine Teilmenge der Abszisse handelt, werde nicht untersucht.
In der Folge werde die Tatsache, daB z. B. auf der ganzen Konvergenz-
geraden x 0 das Laplace-Integral konvergiert mit /? 0+ bezeichnet
und die Tatsache, daB das Laplace-Integral in allen Punkten von x 0

divergiert, mit fi 0~ bezeichnet.
Die ersten Beispiele konnten durch geeignete Formulierung und An-

wendung des Biemannschen Lemmas*) konstruiert werden. Die
Beispiele des § 5 wurden mit gewissen Integralen konstruiert, zweckmâBigen
Ûbertragungen der von Neder7) benutzten Fejérschen Polynomen8).

Die vorliegende Problemstellung wurde mir nach einem wissenschaft-
lichen Briefwechsel der Herren Doetsch und Saxer von letzterem mitgeteilt.

§ 2. Hilfssâtze

Hilîssatz A: Das verallgemeinerte Riemannsche Lemma

Vor. : fit) in 0 ^ a ^ t ^ b<oo beschrânkt und im Riemannschen
Sinne integrabel9).

Beh. : Zu jeder positiven Zahl M und zu jeder nicht negativen reellen

Zahl m existiert eine positive Zahl q so, daB fur a ^ Tx ^ T2 ^ ^

\ff(t)e~xte±iQftdt\<M

•) z. B. a. a. O.1), S. 50.

7) a. a. O.5).

8) L. Fejér, Ûber gewisse Potenzreihen an der Konvergenzgrenze, Sitzungs-

berichte der k. b. Akad. der Wissenschaften, math.-phys. Klasse, 1910.

9) Der Satz wûrde auch gelten, wenn f(t) im Lebesgueschen Sinne integrabel ware.

36



wenn nur
q' ^ Q und x ^ — m

ist10).

Hilfssatz B:

Vor. : F (t) fur t > 0 im Riemannschen Sinne integrierbar,

F(t) O(etn) fur t ->oo n > 0

.Beft. : In jeder rechten Halbebene geht fur m ->oo

j
In In m

gleichmâBig gegen Null.

Beweis ; Es gibt eine nicht négative Zahl M so, daB von einem gewissen
^0 an | F{t) | < M ën. Mit der Substitution

In In r t

In r é

* -dtr - Inr

hat man fur m > ee °

j j
In In m In In m

m+l dr
<Jf f e(lnlny)n(lnr)^i rlnr

Setzt man wieder In In r t, so erkennt man, daB der Integrand des
letzten Intégrales in jeder rechten Halbebene gleichmâBig gegen Null
geht, wenn m -> oo strebt :

6<lnlnr)» fln r)-(x+l) 1 e^ e-«<a+l> e-e« _» Q fur OO

Hieraus folgt, da das Integrationsintervall immer gleich lang bleibt,
die gleichmâBige Nullstrebigkeit des Intégrales, w. z. b. w.

10) Beweis z. B. a. a. O.1), S. 50.
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Fejérsche Intégrale

Hilîssatz C:

Vor.: k positive Zahl >2.
k—1 Zk-l 2k~l

wo

-! und Jfc + 1 < *<2Jfc — 1

Es gibt eine von k unabhangige Zahl F so, da6

| <pk(s) | <T fur 91 s >0
Beweis. (pk(s) ist eme ganze Funktion, die wir als k Fejérsches Intégral

(k braucht nicht ganz zu sein) bezeichnen wollen Es handelt sich

um Fejérsche Intégrale îm Gegensatz zu den Fejérschen Polynomen, die

Neder11) verwendet und die von Feyér12) definiert worden smd.
Zum Beweise nehmen wir zunachst an, es sei s %y (y reell) Dann

gilt, wenn m t-1 2k_1

1 fc-fl

beim ersten Intégral die Substitution t k — u und beim zweiten Intégral

die Substitution t u + k gemacht wird

k-l k-l
(pk(iy) i e-%vik-u) — du — i er%v{k+u) — du

i
Wegen der Beschranktheit dièses Dirichletschen Intégrales13) existiert

eine positive Zahl F so, daB

\<pk(iy)\ <r
unabhangig von k auf der ganzen Geraden x 0 gilt

u) a a O 5)

12) a a O 8)

1S) z B i? Courant, Vorlesungen uber Differential und Integralrechnung,
Bd I, Julms Sprmger, Berlm 1930, S 371
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Fur x>0 erhâlt man durch partielle Intégration
1 r

t 2fc-l 2fc-l t

J <Pk(u) e-{vu du | | + | x J e-*« J #fc(^)
i 111e-xM-v | <pk(iy) | + (e-* - e-*2*-1*) 2 • ln(ik -

(pk{s) ist also fur ein testes k in der Halbebene x > 0 beschrànkt.
Auf x 0 gilt | <pk (s) | ^ F. Daraus folgt nach einem Satze von E. Phrag-
mén und E. Lindelof u), da8 in der ganzen Halbebene 91 s^ 0 | cpk (s) \ ^ F
gilt, w. z. b. w.

Anwendungen

Das k. Fejérsche Intégral

geht durch die beiden Substitutionen

z
~*~

n reell > 0 ; ^ (2k — 2) (£ — m) + 1, m ganz ^ 0

liber in _/. + »\__,ot m .<•+»(- jhj)

m+1
e-nte~stdtr e~nte-8tdt r e~nte~stdt

2k-2
Aus dem Hilfssatz C folgt

<Pk 2k
+ n\
-2J <F fur 5R s > — n

Fur die réelle, nicht négative Funktion Wkn (t) die folgendermaBen
definiert ist:

14) E. Phragmén und E. Lindelof', Sur une extension d'un principe classique de
l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage

d'un point singulier, Acta math. 31, 1908, S. 382 ff.
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(2i-2)e-«_ fûr ^^ k-2
^ 2

fur m+-j -<t<rn 2fc-2

lui m -f —-t <r

gilt deshalb
m+l

Nimmt man k > 2 und n > 0 als Funktionen von m an :

k k (m) n w (m)

und geht %(m) ->oo fur m ->oo, so stellt wegen (3) fiir beliebige réelle

Zahlen vm „ m+1
V f W (t\ pivml p-st fjf\ (A\2/ \ J *k(m)n(m) \P) 6 e a'c/ W

w»=0 »»

eine in jeder rechten Halbebene gleichmâBig konvergente Reihe dar.

Wegen (3) ist ihre Summe in jeder rechten Halbebene beschrânkt;
(4) stellt also eine ganze Funktion dar und làBt sich formai als Laplace-
Integral schreiben, fiir welches ^ fi — — oo ist :

wobei in
m < Km + 1 F(t) e""1 VUm)n{m) (t)

Wir werden noch folgende Beziehungen verwenden :

m+l

j | Wkn(t) | e~xi dt < 2 • e~nw ln()fc - 1) e~xm fiir a; > 0 (5)

J ^(0 e-^* dt | ^ e-w<^+1> In (k - 1) e"^ fiir x < 0 (6)
m

m + l
J !Ffcn(*) e~xt dt | > e-w^+1) In (k - 1) e-1*1 <m+D fûr bel. x (7)

§ 3. DieBeispiele, bei denen — oo=/3<y #=?i;<oo? iy — oo, // #

^ — oo : Hierher gehôrt die Funktion F(t) eri% 15).

x 0, +oo: Die Funktionen F(t) werden folgendermaBen be-

stimmt: Fûr _., vt<\ sei F(t) 0

15) z. B. a. a. O.1), S. 17.
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In jedem Intervall

Jm: ra<£<m+l, m=l,2,...
werde F(t) angesetzt in der Form

F(t) p(t)eiv™t
wobei

fur fx y oc 0- p{t) t

fur fi 0+, y a 0~ p(t) 1

fur ^ y 0+, oc 0~

fur ^ y a 0+

und fur x +oo

Die Zahlen vw sollen positiv sein. Wir bestimmen sie derart, daB

folgende Bedingungen erfullt werden:

gilt gleichmàBig

gilt gleichmàBig

im

im

Vm > Vm-1 + 1
>

| J p(t) eiVmt e-xt e

Bereich m < T1 ^

\ $ F(t) e~xt e~iy

Bereich 0 < tx $

vQ Q

:r2<^+i,;
'* * 1 < (l)m

g^2<m, x^

x^—m, y

— m, î/>i

(8)

(9)

(10)

Eine solche Zahlenfolge vm lâBt sich wie folgt konstruieren :

^ei Q19 Qz>' > • eine Folge positiver Zahlen, die vermôge des Hilfs-
satzes A so bestimmt werden, daB fur jedes m gleichmàBig im Bereich

m<ï71<T2<rn+ 1, a?>-m, \ y \ > Qm

| J er^U $
gilt. ^

Die Existenz der Zahlen rm zeigen wir durch vollstândige Induktion.
Wir setzten v0 0 und nehmen als Induktionsvoraussetzung an, es
seien Zahlen vm (m< fc — 1) gefunden, die den Ungleichungen (8), (9) und
(10) genugen. Wir konstruieren vk.

Sei
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Nach der Définition von gk gilt gleichmàBig im Bereich

p(t) eivt e-xt er*v* dt \ < (l)k/,

da unter diesen Voraussetzungen v — y ^ vk — vk_1 qk
Da F (t) im Intervall 0 ^ t < k durch die als bekannt vorausgesetzten

Zahlen vm (m ^ k — 1) bestimmt ist, Ia8t sich nach dem Hilfssatz A
eine positive Zahl v^ bestimmen, derart, daB im Bereich 0 ^ tx ^ t2< k,
x > — k, î/ > vl gleichmâBig

gilt.
Wir setzen vk max(^, r^, vk_x +1). Fur dièses vfc gelten dann die

Ungleichungen (8), (9) und (10), da vk>v'k und vk>vrk.
Damit ist die Existenz der Zahlenfolge vm gezeigt.
Fur das Laplace-Integral gilt folgendes : Aus (9) ergibt sich, daB

p — oo# ^un betrachten wir die Folge sm x + ivm, m — 1, 2,..., wo-
bei x<x beliebig, aber fest gedacht ist und zeigen f(sm) ->oo fur
m ->oo. Sei r [| x |] + 1. Dann kann man schreiben

r m m+1 oo

f(Sm)=$ + S+ J + S =I + II + III + IV
0 r m m+1

III geht mit m gegen Unendlich. Wir zeigen, daB die ûbrigen Glieder
beschrânkt bleiben : Das Glied / ist kleiner als das Intégral des Absolut-

betrages J | F(t) \ erxi dt. Die Glieder // und IV sind, da wegen

r [| x |] + 1 fur sie die Ungleichungen (10) und (9) gelten, wegen der

Summenformel fur die unendliche geometrische Reihe kleiner zwei.
Das Verhalten der ersten vier Beispiele auf der Geraden x 0 ist

leicht zu erkennen16).

Damit ist ailes gezeigt.

le) z. B. fi y 0+, a 0" : p{t) — : Das Intégral J | F(t) \ dt J —- divergiert,
* o 1 t

also a 0~. Da6 fx y 0+, zeigt man mit der gleichen Méthode, mit der man im
§ 4 bei k 0 bzw. -j- oo beweisen wird, dafi y (i — oo
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§ 4. Die Beispiele, bei denen —cx> j8 y<a ^<oo, ^ ^ —- oo

x — 00: Hierher gehôrt wieder F(t) e~*2 17).

h 0, +00: Fur t< In In 3 sei F(t) 0.

Fur £ > In In 3 werde in jedem Intervall

Jm :am In In m ^ t < In In (m + 1) am+1, m 3, 4,.

F(t) angesetzt in der Form

F(t) p(t) éVmt

wobei fur x 0+

fur x 0- r

und fur ^=00

Die Zahlen vm sollen reell und positiv sein.
Es ist offensichtlich, daB im ersten und zweiten Fall a 0 und daB

im dritten oc 00 ist. Man erkennt auch, daB im ersten Fall das Laplace-
Integral fur «5 0 absolut konvergiert und im zweiten Fall nicht.

Die Zahlen vm werden nach dem Vorbild des § 3 so bestimmt, daB

vm>vm_t+l vo O (11)

richtig ist und so, daB folgende beiden Ungleichungen, die (9) und (10)
entsprechen, gelten :

| J p(t) eiVmt e~xt e-M dt | < (\)m (12)
Ti

gilt gleichmâBig im Bereich am^T1 < T2 ^ am+1, x^ — m, y ^ vm_1

e~xt e-*y* dt \ < (\)m (13)

gilt gleichmâBig im Bereich 0 < ^< t2<am, x > — m, y > vm
Aus der Ungleichung (12) liest man ab, daB /3 — 00. Es wird nun

gezeigt, daB das Laplace-Integral in jeder rechten Halbebene gleichmâBig
konvergiert (also auch beschrânkt ist), woraus dann y fx — 00 folgt.

17) z. B. a. a. O.1), S. 17.
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Zum Beweis wâhlt man eine beliebige natiirliche Zahl q ^ 3 und
00

zeigt, daB fiir #> — q | J F (t) e~st dt | gleichmaBig mit T gegen Null

strebt. Wir wollen sogleich annehmen, es sei T>ln In g. Dann gelten
oo

fiir F(t) die Ungleiehungen (12) und (13) und man kann \jF{t) e~$t dt \

wie folgt abschâtzen. T

Fallunterscheidung :

]1. y < vr_x wobei r [ee ]

Im ersten Falle hat man wegen (12)

oo oo am+l oo

^ JE | J I < 21 (2) =z V2J
m=r am m=r

und im zweiten Falle geht die Abschâtzung wie folgt :

oo H-l afc+l oo am+l

IJKI J l + l J 1+ X I J 1 / + //-
T T ak_1 m=*+l am

Wegen (13) fiir / und (12) fiir /// hat man / + III < (|)r"2. Wegen des

Hilfssatzes B, der wegen F (t) 0 (e*n) auf // angewendet werden kann,

geht // mit wachsendem T unabhângig von s (#> — q) gegen Null.

Damit ist ailes gezeigt.

§ 5. Die Beispiele, bei denen —oo<^ y # ^<oo, ^ ^ — oo

und die Beispiele, bei denen — cx)==j8<y=&=tt<oo, ^=^= — 00

Wir behandeln dièse Beispiele gemeinsam, weil die Konstruktion aller

âhnlich ist.
Es handelt sich darum, zu den folgenden Anordnungen der Abszissen

Beispiele anzugeben :

1. fi y oL r) jLl= —OO

2. fi y oc= 0- r\ p —00

3. £ 0+, y oc 0- ^ ^=—00,
4. ^ r 0+, oc=0-, rj [i= -00
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5. (5 y oc 0+ r) fi — oo

6. (} —oo, y a 0~, r\ [à, —oo,
7. (3 —oo y 0+, oc 0~ rj ju —oo

8. P —oo y oc 0+ rj fi —oo

9. /S —oo y a =oo rj /u —oo

DiezugehôrigenFunktionensollenmit Fk(t), fc—l,...,9 bezeichnet
werden. F*(t) sei die Funktion des § 4, bei der fur t^l p(t) l, also

p y — oo, a 0~, rj /u — oo gilt. Bei den Wurzeln mit dem
Radikanden m ist im folgenden stets der Hauptwert zu nehmen.

i^2(^): Die Funktion F2(t) erhàlt man mit dem Ansatz

FS) ^(0 * * + 1, n l/m (vgl. § 2).

Aus der Beziehung (5) ergibt sich

1

e~xm 2 em e~xm fiir x ^
(14)

m+1 3/1 \ y—
J | j?2 (t) \e~xtdt^2- e~m eKm + Vm) e~xm 2 e e-^m fur a? > 0

Nach (6) hat man

f J
2

i^2 («) 6^* dt | > e ~ Vmim+l) e(m* + |/« e-xm_||^ Q fur
(15)

Hieraus folgt /S y oc 0~. Aus der Beziehung (4) folgt r\ p
— oo.

-P5 (t) : Man setze

Wegen (5) hat man

J | .F5 (0 | e-^* dt < 2 c"w2 elm2 "^ e~xm 2 e-^m e~xm -> 0
m

fur m -> oo a; ^ 0

18) z. B. a. a. O.1), S. 17.
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und wegen (6)

| "j 'V, (t) e~xtdt | > e-^(m+1) e(m* - * ¦»'
erxm e"2^ e-«» fur x < 0

Hieraus folgt /? y a 0+. Wegen (4) gilt auch hier r\ fi — oo.

JF4(0: Man setze J4(£) F5(t) + F* (t)

F6(t): In jedem Intervalle Jm : m ^t<m + 1, m 0, 1,...
setzen wir

FQ(t) F2(t) eiv™<, vmree\l

und bestimmen die vm vermittels des Hilfssatzes A so, da8

| §F6(t)e~xtdt |<(^)m fur m ^ Tt^ T2^m + l, x^—m.

Da dann fiir jeden Punkt s — m, m 1,2,3,... das Laplace-
Integral konvergiert, konvergiert es auch in jeder Halbebene x> — m.
Folglich ist p —ex). Wegen (4) gilt aueh hier rj // — oo. Setzt

man sm x + i vm, wobei x ^ 0, so gilt wegen (15)

m+V.
J i^6 (0 e~*wt df-||-> 0 ftir m -> cxd

m

Hieraus und aus (14) ergibt sich y a 0~.

jF8(ê): Gleieh wie man durch Modulation von J2(0 zu i^6(^) gelangt,

kommt man von J^5(0 zu F8(t).

F7(t): Man setze F7(t) F8(t) + F*(t).

F3(t): Hier schreibe man FB(t) F5(t) +Fe(t).

F9(t): In jedemIntervall Jm:m^t<m + 1, m 0,1,... setzenwir

Die vm bestimmen wir so, daB vm ^ vm_1 + 1 ^nd daB

| J ^(0 c-^* dt | < (|)w fur m < Tj < 3T2 < m + 1,
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Wieder gilt dann /? — oo. Aus der Beziehung (4) folgt, da8

yj p — oo. Setzt man wieder &m= x -\- i vmi wobei x beliebig, aber
fest sein soll, so erhâlt man aus der Ungleichung (7)

| j F9 (t) e-°mt dt | > e~m{m+1) e™3 e~ ' *! (m+1) -> oo fur m -> oo

daB y a =00.

Damit ist ailes gezeigt.

§ 6. Die Beispiele, bei denen —

k -oo: F(t) e~t2 19).

(Eingegangen den 19. Dezember 1947.)

19) z. B. a. a. O.1), S. 17.

20) z. B. a. a. O.1), S. 22.
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