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Uber die als Produkt zweier Untergruppen
darstellbaren endlichen Gruppen

Von J. Szip, Budapest

Wir betrachten eine endliche Gruppe ®, die sich als Produkt
6G=9H8K (1)

von zwei echten Untergruppen §, K darstellen 148t ; wir verstehen (1)
so, dafl die ausmultiplizierte rechte Seite jedes Element von & genau
einmal enthdlt. Notwendig und hinreichend zum Bestehen von (1) ist
bekanntlich, dafl die Untergruppen §, & kein Element auBer 1 gemein-
sam haben und fiir die Gruppenordnungen die dhnliche Gleichung

(0) = (H)(K)
gilt. Wegen der Symmetrie dieser Bedingungen folgt aus (1)
KHE=9HK . (2)

Unter der Annahme (1) 1dBt sich leicht eine zu $ homomorphe Per-
mutationsgruppe konstruieren, mit deren Hilfe man unter Umstinden
auf die Nichteinfachheit von ®, sogar auf die Existenz eines Normalteilers
von G in $ schlieBen kann.

Bezeichne H, K je ein Element von § bzw. &. Nach (2) gilt dann

KH=HEK' (3)

mit eindeutig bestimmten H’' ¢$, K’ e f. Bei festem H durchliuft K’
mit K zusammen alle verschiedenen Elemente von R; denn gilt neben
(3)auch K,H = H,K' mit H,¢$, K, R, sofolgt K, K= H; H'1
=1, K,= K, womit die Behauptung bewiesen ist.

Wir ordnen dem Element H von § die Permutation

K K
ﬂH = (K/) = (H/_l KH) (4:)
(der Elemente) von & zu. Hierfiir gilt
gE = Tg TE (H,He9) ; (5)
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denn gilt neben (3) die entsprechende Gleichung

Klﬁzﬁ/Kll
so fol
d KHH—=H K'H—=H H K",

K K\ (K’
TgH — (K//) = (K’) (K//) = g g -

Hiermit haben wir die erste Hilfte des folgenden Satzes bewiesen :

also

Satz 1. Gilt fur die endliche Gruppe & wund fir seine Untergruppen
9, | die Annahme (1), so bilden die durch (3) und (4) definierten Permuta-
tionen wy eine Untergruppe I1 aller Permutationen von K mat der durch die
Zuordnung ,,H — ng" vermittelten Homomorphie

O ~1II; (6)

wir nennen 11 die §) zugeordnete II-Gruppe. In dieser Homomorphie (6) ent-
spricht dem grofiten, in § enthaltenen Normalteiler R von ® dem Eins-
element von II, so daf also fir die Faktorgruppe die I1somorphie

SN~ I (7)
gelt.

Bezeichne némlich §, diejenige Untergruppe von §), die in der Homo-
morphie (6) dem Element 1 entspricht. Wir haben £, = R zu zeigen.
Nach (4) besteht §, aus denjenigen Elementen H von §, fiir die K = K’
(K € ), d. h. nach (3)

KHK e (K e R) (8)

gilt. Fiir den Fall H ¢ R trifft dies zu, und so folgt N < H,. Anderseits
zeigen wir, daB §), normal in  ist, woraus wegen $, S § auch H, & N,
d. h. die Behauptung $, =N folgen wird. Fiir jedes Elementenpaar
H (¢9y), K (e8) gilt nach (8)

H=KHEK'<$ . (9)

Es ist nur zu beweisen, daB auch H € $, gilt. Bezeichne hierzu K ein
beliebiges Element von K. Aus (9) folgt

KHEK' = (KK)H KKy .
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Da dieses Element nach (8) in § liegt, so gehort H ebenfalls nach (8)
in §,, womit wir Satz 1 bewiesen haben.

Nach diesem Satz (nach (7)) ist eine Gruppe jedenfalls nichteinfach,
wenn sie eine Zerlegung (1) zulaBt, wofiir die § zugeordnete I7-Gruppe

von niedrigerer Ordnung als § ist. Als Anwendung hiervon bekommen
wir den folgenden :

Satz 2. Bezeichne & eine endliche Gruppe und $, K 2wei echte Unter-
gruppen mit & = HKR. Gibt es in § ein Element n-ter Ordnung so, daf die
Summe der 1n n enthaltenen gréfiten Primzahlpotenzen nicht kleiner als die
Ordnung (K) von K ist, so ist ® nichteinfach und  enthilt einen Normal-
teiler von ®, dessen Ordnung zu n nicht prim ist.

Insbesondere also wenn es in §) ein Element von der Primzahlpotenzord-
nung p* = (K]) gibt, so enthdlt $ einen echten Normalteiler von & mit durch
p teilbarer Ordnung.

Bezeichne némlich H ein Element n-ter Ordnung von §, und es gelte
die Zerlegung

n=P...0T. (10)
Nach Satz 1 geniigt es zu zeigen, dal die Ordnung von ny kleiner als n
ist. Zerlege man ng in elementenfremde Zyklen von s;,s,,... Elemen-
ten, so dafB

R)=1+4+8+ 8 +---

gilt, wobei man s, = 1 setzen durfte. Die Ordnung von ny ist das kl.g.V.
aller s;,. Wire dieses gleich n, so miiite jedes p* in mindestens einem
Sy, 83,... aufgehen. Das ist aber wegen ((]) —1)=1s,+ 83+ -+ <
Pt + p32 - .. offenbar unmoglich, und so ist Satz 2 richtig.
Bemerkung. Wegen der Symmetrie lassen sich §, & in den Siitzen 1, 2
miteinander vertauschen. Bezeichne II' die | zugeordnete I7-Gruppe.
Offenbar ist /7 = IT’ = 1 dann und nur dann, wenn ® das direkte Pro-
dukt von §, K ist. Weiter ist (IT) = ($), (II') = (R) dann und nur
dann, wenn weder § noch & einen Normalteiler von G enthilt.

(Eingegangen den 6. Dezember 1947.)
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