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Ûber die als Produkt zweier Untergruppen
darstellbaren endlichen Gruppen
Von J. SzÉp, Budapest

Wir betrachten eine endliche Gruppe ©, die sich als Produkt

© §# (1)

von zwei echten Untergruppen <r>, Si darstellen lâBt ; wir verstehen (1)
so, da8 die ausmultiplizierte rechte Seite jedes Elément von © genau
einmal enthalt. Notwendig und hinreichend zum Bestehen von (1) ist
bekanntlich, daB die Untergruppen §, Si kein Elément auBer 1 gemein-
sam haben und fur die Gruppenordnungen die âhnliche Gleichung

gilt. Wegen der Symmetrie dieser Bedingungen folgt aus (1)

5*s $a. (2)

Unter der Annahme (1) laBt sich. leicht eine zu § homomorphe Per-
mutationsgruppe konstruieren, mit deren Hilfe man unter Umstânden
auf die Nichteinfachheit von ©, sogar auf die Existenz eines Normalteilers
von © in § schlieBen kann.

Bezeichne H, K je ein Elément von $ bzw. St. Nach (2) gilt dann

KH HfKf (3)

mit eindeutig bestimmten Hf € §, Kf e R. Bei festem H durchlàuft Kr
mit K zusammen aile verschiedenen Elemente von Si ; denn gilt neben
(3)aueh K1H H[Kf mit #{*£, KxeSi, so folgt K^-1 H^H'-1

1, Kt K, womit die Behauptung bewiesen ist.
Wir ordnen dem Elément H von § die Permutation

\k) '-1 K H)
(der Elemente) von 51 zu. Hierfiir gilt

nBB^nHnw (H,He%) ; (5)
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denn gilt neben (3) die entsprechende Gleichung

KfH H'K"
so folgt

__ _ __

KHH =:H'KrH H'HrK"
also

Hiennit haben wir die erste Hâlfte des folgenden Satzes bewiesen :

Satz 1. Gilt fur die endliche Gruppe (5 und fur seine Untergruppen

§, 51 die Annahme (l), so bilden die durai (3) und (4) definierten Permuta-
tionen nH eine Untergruppe II aller Permutationen von Si mit der durch die

Zuordnung ,,H -> nH" vermittelten Homomorphie

£~#; (6)

wir nennen II die § zugeordnete II-Gruppe, In dieser Homomorphie (6) ent-

spricht dem grôflten, in § enthaltenen Normalteiler 51 von © dem Eins-
element von II, so dafi also fur die Faktorgruppe die Isomorphie

n (7)

gilt.
Bezeichne nâmlich §0 diejenige Untergruppe von §, die in der

Homomorphie (6) dem Elément 1 entspricht. Wir haben §0 51 zu zeigen.
Nach (4) besteht §0 aus denjenigen Elementen H von §, fur die K Kf
(K € R), d. h. nach (3)

(#€#) (8)

gilt. Fur den Fall H e 91 trifft dies zu, und so folgt 91 £ §0. Anderseits

zeigen wir, dafi §0 normal in (5 ist, woraus wegen §0C§ auch $0 G 91,

d. h. die Behauptung §0 91 folgen wird. Fur jedes Elementenpaar
jff (c$0), Z (cil) gilt naeh (8)

H ^KHK-U% (9)

Es ist nur zu beweisen, dafi auch H € §0 gilt. Bezeichne hierzu iC ein

beliebiges Elément von 51. Aus (9) folgt

KHK-1 (KK) H (KK)-1
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Da dièses Elément nach (8) in § Hegt, so gehôrt H ebenfalls nach (8)
in £)o> womit wir Satz 1 bewiesen haben.

Nach diesem Satz (nach (7)) ist eine Gruppe jedenfalls nichteinfach,
wenn sie eine Zerlegung (1) zulàBt, wofur die <r> zugeordnete II-Gruppe
von niedrigerer Ordnung als <r> ist. Als Anwendung hiervon bekommen
wir den folgenden :

Satz 2. Bezeichne © eine endliche Gruppe und §, Si zwei echte Unter-
gruppen mit © jr>£t. Gibt es in £> ein Elément n-ter Ordnung so, dafi die
Summe der in n enthaltenen grôjiten Primzahlpotenzen nicht kleiner als die
Ordnung (Si) von 51 ist, so ist © nichteinfach und <r> enthâlt einen Normal-
teiler von ©, dessen Ordnung zu n nicht prim ist.

Insbesondere also wenn es in jr> ein Elément von der Primzahlpotenzord-
nung p* ^ (Si) gibt, so enthàlt £> einen ecliten Normalteiler von © mit durch

f teilbarer Ordnung.
Bezeichne nâmlich H ein Elément n-ter Ordnung von $$, und es gelte

die Zerlegung
n y* jp (10)

Nach Satz 1 genugt es zu zeigen, daB die Ordnung von nH kleiner als n
ist. Zerlege man nB in elementenfremde Zyklen von sx, s2,... Elemen-
ten, so daB

gilt, wobei man sx 1 setzen durfte. Die Ordnung von nH ist das kl.g.V.
aller s{. Wàre dièses gleich n, so miiBte jedes p** in mindestens einem
*2> *3>. • • aufgehen. Das ist aber wegen ((5^) — 1) s2 + 53 H— • ^
^î1 + Vt2 H— • offenbar unmôglich, und so ist Satz 2 richtig.

Bemerkung. Wegen der Symmetrie lassen sich §, $t in den Sàtzen 1, 2

miteinander vertauschen. Bezeichne II' die 51 zugeordnete /7-Gruppe.
Offenbar ist 77 II1 1 dann und nur dann, wenn © das direkte Pro-
dukt von §, Si ist. Weiter ist (II) ($), (IIr) (51) dann und nur
dann, wenn weder § noch Si einen Normalteiler von © enthâlt.

(Eingegangen den 6. Dezember 1947.)
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