Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 22 (1949)

Artikel: Proprietà tangenziali delle superficie continue.

Autor: Cesari, L.

DOI: https://doi.org/10.5169/seals-19186

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Proprietà tangenziali delle superficie continue

di L. Cesari, Bologna

In precedenti lavori, in relazione al problema della quadratura delle superficie, ho dimostrato numerose proprietà geometriche delle superficie continue in forma parametrica di area finita secondo Lebesgue¹). E' ben noto che esistono superficie continue che, pur avendo area finita secondo Lebesgue, non hanno piano tangente in nessun punto²). Tuttavia io ho dimostrato che ogni superficie continua di area finita secondo Lebesgue possiede quasi ovunque piano "quasi tangente,, e presenta, pure quasi ovunque, notevoli proprietà locali che mettono in luce, almeno in senso statistico, che l'elemento infinitesimo generico, se effettivamente a due dimensioni, è, in sostanza, quasi ovunque, piano³).

Scopo della presente nota è di dimostrare nuove proprietà locali delle superficie continue. Avrò occasione, in un lavoro successivo, di utilizzare tali proprietà in questioni riguardanti la nozione di integrale sopra una superficie.

§ 1. Generalità sulle superficie continue

 1^{0} — Sia S una superficie continua e sia

S:
$$x = x(u,v), y = y(u,v), z = z(u,v), (u,v) \in Q \equiv (0,1,0,1),$$
 (1)

una sua rappresentazione sul quadrato chiuso $Q \equiv (0, 1, 0, 1)$ del piano cartesiano (orientato) uv. Ad ogni punto $P \equiv (u, v)$ di Q le (1) fanno corrispondere un punto $R \equiv (x, y, z)$ dello spazio xyz che di-

¹⁾ L. Cesari, a) Sulla quadratura delle superficie in forma parametrica, Boll. U. M. I. Ser. II, Anno IV (1942), pp. 109—117; b) Caratterizzazio ne analitica delle superficie continue di area finita secondo Lebesgue; Annali Scuola Norm. Sup. Pisa, Ser. II, vol. X (1941), pp. 253—294, XI (1942), pp. 1—42; c) Sui fondamenti geometrici dell'integrale classico per l'area delle superficie in forma parametrica, Mem. Accad. Italia, Vol. XIII (1942), pp. 1323—1483; d) Una uguaglianza fondamentale per l'area delle superficie, Mem. Accad. Italia, Vol. XIV (1943), pp. 891—954.

²) S. Saks, On the surfaces without tangent planes, Annals of Mathematics, Ser. II, Vol. 34 (1933), pp. 114—124.

³⁾ loc. cit. in 1, c), pag. 1470, 1479.

remo S(P), immagine del punto P. Indicheremo con S anche l'insieme dei punti dello spazio xyz occupato dalla superficie S. L'insieme S è limitato e chiuso. Esiste pertanto un cubo K dello spazio xyz a spigoli paralleli agli assi x, y, z, contenente interamente nel suo interno l'insieme S. Siano K_1, K_2, K_3 i quadrati dei piani coordinati (y, z), (z, x), (x, y) nei quali il cubo K si proietta ortogonalmente.

Se $R \equiv (x, y, z)$ è un punto di S, ogni punto di Q la cui immagine coincide con R verrà detto un *modello* del punto R. Diremo $S^{-1}(R)$ l'insieme dei modelli del punto R.

Per ogni numero reale $o \leq \delta \leq \sqrt{2}$, diciamo $\omega(\delta)$ il massimo dei valori assunti dall'espressione

$$\{[x(u,v)-x(u',v')]^2+[y(u,v)-y(u',v')]^2+[z(u,v)-z(u',v')]^2\}^{\frac{1}{2}} (2)$$

per tutte le coppie (u, v) e (u', v') di punti di Q tali che

$$[(u-u')^2+(v-v')^2]^{\frac{1}{2}} \leqslant \delta$$
.

La funzione $\omega(\delta)$ è continua e tende a zero quando $\delta \to 0$. La funzione $\omega(\delta)$ dicesi il modulo di continuità della rappresentazione (1) della superficie S. Se I è un insieme di punti di Q diciamo $\eta(I)$ l'estremo superiore dei valori assunti dall'espressione (2) per tutte le coppie (u, v), (u', v') di punti di I. Il numero $\eta(I)$ dicesi l'oscillazione della rappresentazione (1) della superficie S sull'insieme I.

Se \overline{I} e I indicano rispettivamente la chiusura e la frontiera di un insieme I e $\delta(I)$ il diametro di I, si ha, per ogni insieme I di punti di Q,

$$\eta(I^*) \leqslant \eta(\overline{I}) = \eta(I) \leqslant \omega[\delta(I)].$$

Diciamo L(S) l'area secondo Lebesgue della superficie S. Considereremo inoltre le tre trasformazioni piane continue

$$\Phi_1: \quad y = y(u, v) , \qquad z = z(u, v) ,
\Phi_2: \quad z = z(u, v) , \qquad x = x(u, v) , \qquad (u, v) \in Q ,
\Phi_3: \quad x = x(u, v) , \qquad y = y(u, v) ,$$
(3)

e siano $\Psi(y,z;\Phi_1)$, $\Psi(z,x;\Phi_2)$, $\Psi(x,y;\Phi_3)$ le relative funzioni caratteristiche (4) e

$$W(\Phi_r) = \iint_{K_r} \Psi(x, y; \Phi_r) \ dx \ dy, \ r = 1, 2, 3,$$

⁴⁾ loc. cit. in la, b, c. Per la definizione di funzione caratteristica cfr. nota 5.

le variazioni totali delle trasformazioni Φ_r . In precedenti lavori (4) ho già introdotto le nozioni di trasformazione piana Φ a variazione limitata e assolutamente continua. In particolare ricordo qui che Φ_r è a variazione limitata se e soltanto se $W(\Phi_r) < +\infty$, r=1,2,3. Ho poi dimostrato il seguente

Teorema A. Condizione necessaria e sufficiente affinchè la superficie continua S abbia area finita secondo Lebesgue è che le tre trasformazioni piane Φ_1 , Φ_2 , Φ_3 siano a variazione limitata. Inoltre, per ogni superficie continua, si ha

$$W(\Phi_r) \leqslant L(S) \leqslant W(\Phi_1) + W(\Phi_2) + W(\Phi_3)$$
, $r = 1, 2, 3$.

§ 2. Le funzioni
$$T(r)$$
 e $G(r)$

 2^{0} — Sia S una superficie continua, sia Q il quadrato chiuso (0, 1, 0, 1) del piano cartesiano orientato uv, sia

S:
$$x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in Q,$$
 (1)

una rappresentazione della superficie S su Q e siano Φ_1 , Φ_2 , Φ_3 le relative trasformazioni piane. Sia r una regione di Jordan di Q e sia r^* la curva continua, semplice e chiusa costituente il contorno di r. Essendo fissato sul piano uv il verso positivo delle rotazioni, la curva r^* risulta naturalmente orientata. Sia C la curva continua chiusa ed orientata immagine di r^* secondo le (1) e siano C_1 , C_2 , C_3 le tre curve piane, chiuse ed orientate immagini di r^* secondo le trasformazioni Φ_1 , Φ_2 , Φ_3 . I piani coordinati yz, zx, xy sono orientati e quindi anche su di essi è fissato il verso positivo delle rotazioni. Pertanto sono definiti sui piani coordinati gli indici di Kronecker $O(y, z, C_1)$, $O(z, x, C_2)$, $O(x, y, C_3)$ relativi alle curve C_1 , C_2 , C_3 . Poniamo

$$\tau_1(r) = \iint\limits_{\mathbb{K}_1} O\left(y\,,z\,;\,C_1\right) dy\,dz\,, \quad t_1(r) = \left|\tau_1(r)\,\right|\,, \quad g_1(r) = \iint\limits_{\mathbb{K}_1} \left|O\left(y\,,z\,;\,C_1\right)\,\right|\,dy\,dz$$

ed analoga definizione abbiano $\tau_2(r)$, $t_2(r)$, $g_2(r)$, $\tau_3(r)$, $t_3(r)$, $g_3(r)$ relativamente alle curve C_2 , C_3 ed ai piani zx, xy. Sia inoltre

$$t(r) = \left[\tau_1^2(r) + \tau_2^2(r) + \tau_3^2(r)\right]^{\frac{1}{2}}, \ \ g(r) = \left[g_1^2(r) + g_2^2(r) + g_3^2(r)\right]^{\frac{1}{2}}.$$

Manifestamente

$$t_{s}(r) \leqslant g_{s}(r), \ s = 1, 2, 3, \ t(r) \leqslant g(r).$$

Sia $[r_i, i=1, 2, ..., n]$ una qualsivoglia suddivisione di Q in regioni di Jordan e siano C_i le curve continue e chiuse, immagini secondo le (1) delle curve continue e chiuse r_i^* costituenti la frontiera di r_i e C_{ri} , r=1,2,3, i=1,2,...,n, le proiezioni delle curve C_i sui piani coordinati. Poniamo

$$T(S) = \text{extr. sup.} \sum_{i=1}^{n} t(r_i)$$
, $G(S) = \text{extr. sup.} \sum_{i=1}^{n} g(r_i)$ (4)

per tutte le possibili suddivisioni $[r_i]$ di Q in regioni di Jordan ed analo-

gamente
$$T(\Phi_r) = \text{extr. sup.} \sum_{i=1}^n t_r(r_i)$$
, $G(\Phi_r) = \text{extr. sup.} \sum_{i=1}^n g_r(r_i)^5$.

Sia r una regione di Jordan di Q e consideriamo la superficie definita dalle (1) sulla regione chiusa di Jordan \overline{r} che si ottiene da r aggiungendovi i punti della frontiera r^* di r. Anche per questa superficie potremo definire le quantità (4) che indicheremo con T(r) e G(r). Così diremo L(r) l'area secondo Lebesgue di tale superficie. In modo analogo definiremo le quantità $T_s(r)$, $G_s(r)$ analoghe alle $T(\Phi_s)$ e $G(\Phi_s)$, s=1,2,3.

Io ho dimostrato il seguente assai riposto

Teorema B 6). Per ogni superficie S di area finita secondo Lebesgue si ha

$$T(S) = G(S) = L(S) .$$

Valgono inoltre i seguenti:

Lemma I⁰ 7). Se r è una regione di Jordan di Q e $[r_i, i = 1, 2, ..., n]$ una suddivisione di r in regioni di Jordan, allora

$$L(r) \geqslant \sum_{i=1}^{n} L(r_i)$$
.

Lemma II⁰8). Per ogni superficie continua S si ha:

$$[L^2(\Phi_1) + L^2(\Phi_2) + L^2(\Phi_3)]^2 \leqslant L(S) \leqslant L(\Phi_1) + L(\Phi_2) + L(\Phi_3)$$
 .

⁵) loc. cit. in 1a), 1c), pag. 1375. Ricordiamo inoltre che, per ogni (x, y) di K_r , è $\Psi(x, y, \Phi_1) = \text{extr. sup.} \sum_{i=1}^n |O(x, y; C_{1i})|$ per tutte le possibili suddivisioni r_i di A in regioni di Jordan. Analogamente $\Psi(x, y; \Phi_2)$, $\Psi(x, y; \Phi_3)$.

⁶⁾ loc. cit. in 1c), pag. 1451, 1d), pag. 892.

⁷⁾ loc. cit. in 1c), pag. 1375.

⁸⁾ loc. cit. in 1c), pag. 1379.

Teorema C (di approssimazione) 9). Sia S una superficie continua di area finita secondo Lebesgue; sia la (1) una sua rappresentazione e siano Φ_1 , Φ_2 , Φ_3 le relative trasformazioni piane. Ad ogni numero $\varepsilon > 0$ arbitrario si può far corrispondere un gruppo di poligoni semplici $[\pi_i, i = 1, 2, ..., n]$, interni a Q, a due a due senza punti interni in comune, tali che, se C_{ri} , r = 1, 2, 3, i = 1, 2, ..., n, sono le curve piane continue e chiuse immagini delle poligonali π_i^* costituenti la periferia di π_i rispetto alle trasformazioni Φ_r , risulta

$$\begin{split} & \big| \sum_{i=1}^{n} C_{ri} \big| < \varepsilon \;, \; \; r = 1, 2, 3 \;, \qquad \eta(\pi_i) < \varepsilon \;, \; \; i = 1, 2, \ldots, n \;, \\ & \sum_{i=1}^{n} t(\pi_i) > T(S) - \varepsilon \;, \qquad \sum_{i=1}^{n} t_r(\pi_i) > T(\Phi_r) - \varepsilon \;, \quad r = 1, 2, 3 \;, \\ & \sum_{i=1}^{n} g(\pi_i) > G(S) - \varepsilon \;, \qquad \sum_{i=1}^{n} g_r(\pi_i) > G(\Phi_r) - \varepsilon \;, \quad r = 1, 2, 3 \;. \end{split}$$

§ 3. I Jacobiani generalizzati

3º — Consideriamo la trasformazione piana continua

$$\Phi: \quad \dot{x} = x(u,v) , \quad y = y(u,v) , \quad (u,v) \in Q \equiv (0,1,0,1),$$

e sia K un quadrato del piano xy contenente nel suo interno l'insieme $\Phi(Q)$. Sia $P\equiv (u,v)$ un punto interno a Q, sia q un quadrato a lati paralleli agli assi uv contenente P e sia $\delta(q)$ il diametro di q. Se esiste il limite

$$\lim_{\delta(q)\to 0} \frac{T(q)}{|q|} = J(u, v) ,$$

si dice J(u, v) il Jacobiano generalizzato (assoluto) della trasformazione Φ nel punto $P \equiv (u, v)$. Io ho dimostrato altrove ¹⁰) che, se Φ è una trasformazione a variazione limitata, J(u, v) esiste quasi ovunque in Q e rappresenta una funzione quasi continua ed integrabile L in Q.

Sia di nuovo $P \equiv (u, v)$ un punto interno a Q, sia q un quadrato a lati paralleli agli assi u e v contenente P e sia $\delta = \delta(q)$ il diametro di q. Sia $[\pi_i, i = 1, 2, ..., n]$ un qualsiasi gruppo di poligoni semplici com-

⁹⁾ loc. cit. in 1c), pag. 1376.

¹⁰) loc. cit. in 1a) e 1c), pag. 1419.

pletamente interni a q a due a due senza punti interni in comune. Siano c_i , $i = 1, 2, \ldots, n$, le curve continue e chiuse immagini delle poligonali π_i . Poniamo:

$$m = \frac{1}{|q|} |E|$$
, $E = \sum_{i=1}^{n} c_i$, $\mu = \frac{1}{|q|} \left[T(q) - \sum_{i=1}^{n} t(\pi_i) \right]$.

Diremo talvolta che i numeri m, μ sono gli indici del gruppo di poligoni $[\pi_i]$ interni a q. In forza del teorema C, esistono quanti si vogliano gruppi di poligoni $[\pi_i]$ verificanti le condizioni dette e per i quali m, μ sono più piccoli di una qualsiasi quantità prefissata.

Se esiste finito il limite

$$\lim_{\substack{\delta \\ m \\ \mu} \right\} \to 0} \frac{1}{\mid q \mid} \sum_{i=1}^{n} \tau(\pi_i) = H(u, v) ,$$

si dice H(u, v) il Jacobiano generalizzato (relativo) della trasformazione Φ nel punto $P \equiv (u, v)$. Io ho dimostrato¹¹) che, se Φ è una trasformazione a variazione limitata, H(u, v) esiste quasi ovunque in Q, rappresenta una funzione quasi continua e integrabile L in Q e, posto $H(u, v) = \varepsilon(u, v)J(u, v)$, risulta $\varepsilon(u, v) = \pm 1$, quasi ovunque in Q e quindi, pure quasi ovunque in Q, |H(u, v)| = J(u, v).

Ho già dimostrato il seguente

Teorema D. Se la superficie S ha area finita secondo Lebesgue, allora le tre trasformazioni piane Φ_1 , Φ_2 , Φ_3 sono a variazione limitata e dotate quasi ovunque in Q di Jacobiani generalizzati $J_r(u,v)$, r=1,2,3. Queste funzioni sono integrabili L in Q e inoltre, posto

$$D(u,v) = [J_1^2(u,v) + J_2^2(u,v) + J_3^2(u,v)]^{\frac{1}{2}},$$

$$L(S) \geqslant \iint_{\mathbf{Q}} D(u,v) du dv.$$

Condizione necessaria e sufficiente affinchè in questa relazione valga il segno = è che le trasformazioni piane Φ_1 , Φ_2 , Φ_3 siano assolutamente continue.

Per quanto si è visto sopra, quasi ovunque in Q è anche

$$D(u,v) = \left[H_1^2(u,v) + H_2^2(u,v) + H_3^2(u,v)\right]^{\frac{1}{2}}.$$

si ha

¹¹⁾ loc. cit. in 1c), pag. 1432.

4º - E' noto il seguente

Lemma III ¹²). Se Oxyz, $O\xi\eta\zeta$ sono due terne ugualmente orientate di assi cartesiani ortogonali, se C è una curva continua, chiusa, orientata e rettificabile, se C_{xy} , C_{yz} , C_{zx} , $C_{\xi\eta}$, $C_{\eta\xi}$, sono le curve piane che si ottengono proiettando C sui piani coordinati xy, yz, zx, $\xi\eta$, $\eta\zeta$, $\zeta\xi$, se

$$\begin{split} &\tau_{xy} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(x,y\,;C_{xy})\,dx\,dy\,, \quad \tau_{yz} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(y,z,C_{yz})\,dy\,dz\,, \\ &\tau_{zx} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(z,x\,,C_{zx})\,dz\,dx\,, \quad \tau_{\xi\eta} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(\xi,\eta\,;C_{\xi\eta})\,d\xi\,d\eta\,, \\ &\tau_{\eta\xi} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(\eta,\zeta,C_{\eta\xi})\,d\eta\,d\zeta\,, \quad \tau_{\xi\xi} = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} O(\zeta,\xi,C_{\xi\xi})\,d\zeta\,d\xi\,, \end{split}$$

allora

$$\begin{aligned} \tau_{\xi\eta} &= \cos x \, \zeta \cdot \tau_{yz} + \cos y \, \zeta \cdot \tau_{zx} + \cos z \, \zeta \cdot \tau_{xy} \\ \tau_{\eta\zeta} &= \cos x \, \xi \cdot \tau_{yz} + \cos y \, \xi \cdot \tau_{zx} + \cos z \, \xi \cdot \tau_{xy} \\ \tau_{\zeta\xi} &= \cos x \, \eta \cdot \tau_{yz} + \cos y \, \eta \cdot \tau_{zx} + \cos z \, \eta \cdot \tau_{xy} \\ \end{aligned}$$

$$\tau_{\xi\eta}^2 + \tau_{\eta\xi}^2 + \tau_{\xi\xi}^2 = \tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2 .$$

e quindi

§ 4. Proprietà tangenziali delle superficie continue

 5^{0} — Sia S una superficie continua, siano Oxyz, $O\xi\eta\zeta$ due terne di assi cartesiani ortogonali. Siano

S:
$$x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in Q \equiv (0, 1, 0, 1), (5)$$

$$S: \xi = \xi(u, v), \ \eta = \eta(u, v), \ \zeta = \zeta(u, v), \ (u, v) \ \varepsilon \ Q \equiv (0, 1, 0, 1), \ (6)$$

due qualsiasi rappresentazioni della superficie S sul quadrato fondamentale Q nelle quali una volta è considerata la S come appartenente allo spazio xyz e una volta allo spazio $\xi \eta \zeta$. Si noti che da ogni rappresentazione (5) se ne può ottenere una (6) mediante le formule di trasformazione:

$$\begin{cases} \xi = \alpha_{11} x + \alpha_{12} y + \alpha_{13} z \\ \eta = \alpha_{21} x + \alpha_{22} y + \alpha_{23} z \\ \zeta = \alpha_{31} x + \alpha_{32} y + \alpha_{33} z \end{cases}$$
 (7)

¹²⁾ loc. cit. in 1c), pag. 1463.

ove

$$\alpha_{11} = \cos x \, \xi, \qquad \alpha_{12} = \cos y \, \xi, \qquad \alpha_{13} = \cos z \, \xi,
\alpha_{21} = \cos x \, \eta, \qquad \alpha_{22} = \cos y \, \eta, \qquad \alpha_{23} = \cos z \, \eta,
\alpha_{31} = \cos x \, \zeta, \qquad \alpha_{32} = \cos y \, \zeta, \qquad \alpha_{33} = \cos z \, \zeta.$$

Come è noto l'area L(S) secondo Lebesgue è indipendente dalla direzione degli assi.

Fissate due rappresentazioni (5) e (6) della superficie S, legate dalle relazioni (7), siano Φ_1 , Φ_2 , Φ_3 e Φ_1' , Φ_2' , Φ_3' le trasformazioni piane relative alle due rappresentazioni della superficie S.

Siano $J_r(u,v)$, $H_r(u,v)$, r=1,2,3, i Jacobiani assoluti e relativi delle trasformazioni Φ_r , e siano $J'_r(u,v)$, $H'_r(u,v)$, r=1,2,3, quelli relativi alle trasformazioni Φ'_r . Se la superficie S ha area finita secondo Lebesgue, allora tutte le trasformazioni Φ_r , Φ'_r , r=1,2,3, sono a variazione limitata e gli Jacobianni J_r , H_r , J'_r , H'_r esistono quasi ovunque in Q. Adopreremo talvolta anche le notazioni

$$J_1(u,v)=J_{yz}(u,v), \quad J_2(u,v)=J_{zx}(u,v), \quad J_3(u,v)=J_{xy}(u,v)$$
 ed analogamente

$$H_1(u,v) = H_{yz}(u,v), \ldots, J_1'(u,v) = J_{\eta \zeta}'(u,v), \ldots, H_1'(u,v) = H_{\eta \zeta}(u,v), \ldots$$

Siano inoltre τ , t, g, T, G ecc. le solite funzioni relative alla rappresentazione (5) e τ' , t', g', T', G' ecc. quelle relative alla rappresentazione (6). Anche qui si noti che al posto di τ_{yz} , τ_{zx} , τ_{xy} , ecc. scriveremo talvolta τ_1 , τ_2 , τ_3 , ecc. Si noti inoltre (teor. B) che

$$T(S) = G(S) = L(S) = T'(S) = G'(S)$$
.

Vale il seguente

Teorema I. Se S è una superficie di area finita secondo Lebesgue, se Oxyz, $O\xi\eta\zeta$ sono due terne cartesiane ortogonali ugualmente orientate, se (5) e (6) sono due qualunque rappresentazioni della superficie S legate dalle relazioni (7), allora quasi ovunque in Q esistono finiti i Jacobiani relativi delle trasformazioni Φ_r , Φ'_r , r=1,2,3, e, quasi ovunque in Q, si ha

$$H_{\xi\eta}(u, v) = \cos x \, \zeta \cdot H_{vz}(u, v) + \cos y \, \zeta \cdot H_{zx}(u, v) + \cos x \, \zeta \cdot H_{xv}(u, v)$$

$$H_{\eta\zeta}(u, v) = \cos x \, \xi \cdot H_{vz}(u, v) + \cos y \, \xi \cdot H_{zx}(u, v) + \cos z \, \xi \cdot H_{xv}(u, v) \quad (8)$$

$$H_{\zeta\xi}(u, v) = \cos x \, \eta \cdot H_{vz}(u, v) + \cos y \, \eta \cdot H_{zx}(u, v) + \cos z \, \eta \cdot H_{xv}(u, v)$$

e quindi
$$H_{\zeta\eta}^2 + H_{\eta\zeta}^2 + H_{\zeta\xi}^2 = H_{xy}^2 + H_{yz}^2 + H_{zx}^2$$
. (9)

Osservazione. Nelle condizioni del teorema I, se le trasformazioni Φ_r , r=1,2,3, sono assolutamente continue, anche le trasformazioni Φ'_r , r=1,2,3, lo sono. Infatti, se le trasformazioni Φ_r , r=1,2,3, sono assolutamente continue, allora (§ 3, Teorema D

$$L(S) = \int_{Q} \int \left[H_{1}^{2} + H_{2}^{2} + H_{3}^{2} \right] du \, dv$$

e quindi anche (teorema I)

$$L(S) = \int_{Q} \int \left[H_{1}^{2} + H_{2}^{2} + H_{3}^{2} \right] du \, dv .$$

Ne segue allora (§ 3, Teorema D) che le trasformazioni Φ'_r , r=1,2,3, sono assolutamente continue.

60 — Dimostrazione del teorema I.

Sia S_p , p=1, 2,..., una successione di superficie poliedriche tali che

$$\lim_{p \to \infty} S_p = S , \qquad \lim_{p \to \infty} L(S_p) = L(S)$$
 (10)

e siano

$$S_p: x = x_p(u, v), y = y_p(u, v), z = z_p(u, v), (u, v) \in Q, p = 1, 2, \dots, (11)$$

rappresentazioni tali delle superficie $S_{\mathfrak{p}}$ che, uniformemente in Q, si abbia

$$\lim_{p\to\infty} x_p(u,v) = x(u,v), \quad \lim_{p\to\infty} y_p(u,v) = y(u,v), \quad \lim_{p\to\infty} z_p(u,v) = z(u,v) ,$$

e ad ogni segmento (poligonale) di Q corrisponda, su ogni superficie S_p , una poligonale. Siano Φ_{pr} , r=1,2,3, le trasformazioni piane relative alle superficie S_p e agli assi x,y,z. Le (11) definiscono attraverso le (7) le funzioni $\xi_p(u,v)$, $\eta_p(u,v)$, $\zeta_p(u,v)$ e quindi le nuove rappresentazioni.

$$S_p: \xi = \xi_p(u, v), \ \eta = \eta_p(u, v), \ \zeta = \zeta_p(u, v), \ (u, v) \in Q, \ p = 1, 2, \ldots,$$

della superficie S_p negli assi ξ, η, ζ .

Uniformemente in Q si ha

$$\lim_{p\to\infty} \xi_p(u,v) = \xi(u,v), \quad \lim_{p\to\infty} \eta_p(u,v) = \eta(u,v), \quad \lim_{p\to\infty} \zeta_p(u,v) = \xi(u,v),$$

e inoltre, posto

$$\begin{split} \delta_{p} &= \max_{(u,v)} \; \{ [x(u,v) - x_{p}(u,v)]^{2} + [y(u,v) - y_{p}(u,v)]^{2} + \\ & + [z(u,v) - z_{p}(u,v)]^{2} \}^{\frac{1}{2}} \;, \\ \delta'_{p} &= \max_{(u,v)} \; \{ [\xi_{p}(u,v) - \xi_{p}(u,v)]^{2} + [\eta(u,v) - \eta_{p}(u,v)]^{2} + \\ & + [\zeta(u,v) - \zeta_{p}(u,v)]^{2} \}^{\frac{1}{2}} \;, \end{split}$$

risulta

$$\delta_p = \delta_p', \quad p = 1, 2, \ldots, \qquad \lim_{p \to \infty} \delta_p = \lim_{p \to \infty} \delta_p' = 0.$$

Siano Φ'_{pr} , r=1,2,3, $p=1,2,\ldots$, le trasformazioni piane relative alla superficie S_p e agli assi $\xi \eta \zeta$. Dalle (10) e dall'invarianza dalla direzione degli assi della nozione di area secondo Lebesgue, segue, in forza di un mio precedente risultato 13),

$$\lim_{r\to\infty}L(\varPhi_{r})=L(\varPhi_{r})\quad,\quad \lim_{r\to\infty}L(\varPhi'_{r})=L(\varPhi'_{r})\;,\quad r=1,2,3\;,$$

e quindi

$$\lim_{p\to\infty}W(\varPhi_{pr})=W(\varPhi_{pr})\;,\quad \lim_{p\to\infty}W(\varPhi'_{pr})=W(\varPhi'_r)\;,\quad r=1\,,\,2\,,\,3\;\;.$$

Ne consegue che le funzioni

$$\Psi(x, y; \Phi_r), \ \Psi(x, y; \Phi_{pr}), \ \Psi(\xi, \eta; \Phi'_r), \ \Psi(\xi, \eta; \Phi'_{pr}),$$
 $r = 1, 2, 3, \ p = 1, 2, \dots$

sono equi-assolutamente integrabili 14).

Sia $P_0 \equiv (u_0 v_0)$ un punto interno a Q nel quale esistano i Jacobiani $H_r(u,v)$, $H'_r(u,v)$, r=1,2,3. Sia $\varepsilon>0$ un numero arbitrario e sia $\gamma>0$ un altro numero tale che, per ogni quadrato q di centro P contenuto in Q a lati paralleli agli assi u,v, e di diametro $\delta<\gamma$, per ogni gruppo $[\pi_i, i=1,2,\ldots,n]$ di poligoni semplici di q, a due a due senza punti interni in comune e tali che

$$\frac{1}{|q|} |E_r| < \gamma, \ E_r = \sum_{i=1}^n C_{ri}, \ \frac{1}{|q|} \left[T_r(q) - \sum_{i=1}^n t_r(\pi_i) \right] < \gamma, \ r = 1, 2, 3,$$

risulti

$$\left| \frac{1}{|q|} \sum_{i=1}^{n} \tau_r(\pi_i) - H_r(u_0, v_0) \right| < \frac{\varepsilon}{3}, \quad r = 1, 2, 3.$$

Sia γ' l'analogo numero relativo agli Jacobiani $H'_{r}(u_{0}, v_{0}), r = 1, 2, 3$. Fissiamo un quadrato q di diametro $\delta < \min[\gamma, \gamma']$ e sia $\tau > 0$ un numero tale che, per ogni insieme misurabile $h \subset K_{r}, r = 1, 2, 3$, oppure $h \subset K'_{r}, r = 1, 2, 3$, con $|h| < \tau$, gli integrali

¹³⁾ L. Cesari, Sull'area secondo Lebesgue delle superficie continue. Rendiconti Accademia dei Lincei, Ser. VIII, Vol. III (1947).

¹⁴) loc. cit. in 1c), pag. 1348.

$$\begin{split} & \iint_{\hbar} \Psi(x,\,y\,;\,\varPhi_{r})\,dx\,dy \ , \qquad & \iint_{\hbar} \Psi(x,\,y\,;\,\varPhi_{pr})\,dx\,dy \ , \\ & \iint_{\hbar} \Psi(\xi,\,\eta\,;\,\varPhi_{r}')\,d\xi\,d\eta \ , \qquad & \iint_{\hbar} \Psi(\xi,\,\eta\,;\,\varPhi_{pr}')\,d\xi\,d\eta \ , \end{split}$$

 $r=1,2,3,\ p=1,2,\ldots$, siano tutti minori di $\varepsilon \mid q \mid /32$. Sia infine $\gamma_0=\min \left[\tau,\gamma,\gamma'\right]$.

In forza del teorema C esiste in q un gruppo di poligoni semplici $[\pi_i, i = 1, 2, ..., n]$, a due a due senza punti interni in comune, per il quale risulta

$$|E_r| < \gamma_0 |q|$$
, $E_r = \sum_{i=1}^n C_{ri}$, $|E_r'| < \gamma_0 |q|$, $E_r' = \sum_{i=1}^n C_{ri}'$, $r = 1, 2, 3$,

$$T_r(q) - \sum_{i=1}^n t_r(\pi_i) < \gamma_0 |q|, \quad T'_r(q) - \sum_{i=1}^n t'_r(\pi_i) < \gamma_0 |q|, \quad r = 1, 2, 3,$$

ove C_{ri} , C'_{ri} , r=1,2,3, $i=1,2,\ldots,n$, sono le curve continue e chiuse immagini delle poligonali π_i^* rispetto alle trasformazioni Φ_r , Φ'_r .

Per tale gruppo di poligoni risulta

$$\left| \frac{1}{|q|} \sum_{i=1}^{n} \tau_{r}(\pi_{i}) - H_{r}(u_{0}, v_{0}) \right| < \frac{\varepsilon}{8} , \quad r = 1, 2, 3 ,$$

$$\left| \frac{1}{q} \sum_{i=1}^{n} \tau_{r}'(\pi_{i}) - H_{r}'(u_{0}, v_{0}) \right| < \frac{\varepsilon}{8} , \quad r = 1, 2, 3 . \tag{12}$$

Sia $\varrho > 0$ un numero tale che

$$|(E_r)_{\varrho}| < |E_r| + \tau < 2\tau$$
, $|(E'_r)_{\varrho}| < |E'_r| + \tau < 2\tau$, $r = 1, 2, 3$.

Sia \overline{p} il più piccolo intero tale che per ogni $p \geqslant \overline{p}$, risulti $\delta_p = \delta_p' < \varrho$. Se indichiamo con $C_{ri}^{(p)}$, $C_{ri}^{(p)}$, $i=1,2,\ldots,n$, r=1,2,3, $p=1,2\ldots$, le curve piane e chiuse immagini delle poligonali π_i^* rispetto alle trasformazioni Φ_{pr} , Φ_{pr}' è chiaro che, per ogni $p \geqslant \overline{p}$ le curve $C_{ri}^{(p)}$ sono interamente contenute in $(E_r)_\varrho$, le curve $C_{ri}'^{(p)}$ sono interamente contenute in $(E_r')_\varrho$ e che, per ogni punto di $K_r - (E_r)_\varrho$, rispettivamente di $K_r' - (E_r')_\varrho$, risulta

$$O(x, y; C_{ri}) = O(x, y; C_{ri}^{(p)}), \ O(\xi, \eta; C_{ri}') = O(\xi, \eta; C_{ri}'^{(p)}),$$
 $r = 1, 2, 3, \quad p \geqslant \overline{p}, \quad i = 1, 2, ..., n.$

Se ne deduce, per ogni $p \geqslant \overline{p}$,

$$\sum_{i=1}^{n} \left| \tau_{r}(\pi_{i}) - \tau_{r}^{(p)}(\pi_{i}) \right| = \sum_{i=1}^{n} \left| \iint_{K_{r}} O(x, y; C_{ri}) \, dx \, dy - \iint_{K_{r}} O(x, y; C_{ri}^{(p)}) \, dx \, dy \right| = \\
= \sum_{i=1}^{n} \left| \iint_{(E_{r})_{Q}} O(x, y; C_{ri}) \, dx \, dy - \iint_{(E_{r})_{Q}} O(x, y; C_{ri}^{(p)}) \, dx \, dy \right| \leqslant \\
\leqslant \iint_{(E_{r})_{Q}} \sum_{i=1}^{n} \left| O(x, y; C_{ri}) \, dx \, dy + \iint_{(E_{r})_{Q}} \sum_{i=1}^{n} \left| O(x, y; C_{ri}^{(p)}) \, dx \, dy \right| \leqslant \\
\leqslant \iint_{(E_{r})_{Q}} \Psi(x, y; \Phi_{r}) \, dx \, dy + \iint_{(E_{r})_{Q}} \Psi(x, y; \Phi_{pr}) \, dx \, dy \leqslant 4 \, \frac{\varepsilon |q|}{32} = \frac{\varepsilon}{8} |q| \, . (13)$$

Analogamente si trova, per ogni $p\geqslant \overline{p}$,

$$\sum_{i=1}^{n} \left| \tau_r'(\pi_i) - \tau_r'^{(p)}(\pi_i) \right| < \frac{\varepsilon}{8} \left| q \right| . \tag{14}$$

Vale l'identità

$$\begin{split} H'_{\xi\eta}(u_{0},v_{0}) - & \left[\cos x\,\zeta \cdot H_{yz}(u_{0},v_{0}) + \cos y\,\zeta \cdot H_{zx}(u_{0},v_{0}) + \cos z\,\zeta \cdot H_{xy}(u_{0},v_{0})\right] = \\ = & \left[H'_{\xi\eta}(u_{0},v_{0}) - \frac{1}{|q|} \sum_{i=1}^{n} \tau'_{\xi\eta}(\pi_{i})\right] + \left[\frac{1}{|q|} \sum_{i=1}^{n} \tau'_{\xi\eta}(\pi_{i}) - \frac{1}{|q|} \sum_{i=1}^{n} \tau'_{\xi\eta}(\pi_{i})\right] - \\ - & \left[\cos x\,\zeta \left[H_{yz}(u_{0},v_{0}) - \frac{1}{|q|} \sum_{i=1}^{n} \tau_{yz}(\pi_{i})\right] + \cos y\,\zeta \left[\cdot \cdot \cdot\right] + \cos z\,\zeta \left[\cdot \cdot \cdot\right]\right] - \\ - & \left[\cos x\,\zeta \left[\frac{1}{|q|} \sum_{i=1}^{n} \tau_{yz}(\pi_{i}) - \frac{1}{|q|} \sum_{i=1}^{n} \tau'_{yz}(\pi_{i})\right] + \cos y\,\zeta \left[\cdot \cdot \cdot\right] + \cos z\,\zeta \left[\cdot \cdot \cdot\right]\right] + \\ + & \frac{1}{|q|} \sum_{i=1}^{n} \left\{\tau'_{\xi\eta}(\pi_{i}) - \left[\cos x\,\zeta \cdot \tau'_{yz}(\pi_{i}) + \cos y\,\zeta \cdot \tau'_{zx}(\pi_{i}) + \cos z\,\zeta \cdot \tau'_{xy}(\pi_{i})\right]\right\} = \\ = & s_{1} + s_{2} + s_{3} + s_{4} + s_{5} \end{split}$$

In forza del Lemma III si ha senz'altro $s_5=0$. Dalle (12) segue $\left|s_1\right|<\varepsilon/8$, $\left|s_3\right|<3\,\varepsilon/8$. Dalle (13) segue infine $\left|s_2\right|<\varepsilon/8$, $\left|s_4\right|<3\,\varepsilon/8$.

In definitiva

$$\begin{aligned} \left| H_{\zeta\eta}'(u_0, v_0) - \left[\cos x \, \zeta \cdot H_{yz}(u_0, v_0) + \cos y \, \zeta \cdot H_{zx}(u_0, v_0) + \cos z \, \zeta \cdot H_{xy}(u_0, v_0) \right] \right| \leq \\ & \leq \left| s_1 \right| + \left| s_2 \right| + \left| s_3 \right| + \left| s_4 \right| + \left| s_5 \right| < \varepsilon/8 + \varepsilon/8 + 3 \, \varepsilon/8 + 3 \, \varepsilon/8 + 0 = \varepsilon \end{aligned}$$

Dall'arbitrarietà di ε segue la prima delle (8). Analogamente si dimostrano le rimanenti. La (9) è una conseguenza delle (8). Le (8) e le (9) sono così dimostrate in tutti i punti $P_0 \equiv (u_0 \ v_0)$ nei quali esistono $H_r(u, v)$ e $H'_r(u, v)$, r = 1, 2, 3, ossia quasi ovunque in Q.

 7^{0} — Sia $P \equiv (u, v)$ un punto interno a Q e, per ogni quadrato q a lati paralleli agli assi contenente P nel suo interno e contenuto in Q, consideriamo il quoziente T(q) / |q|. Diciamo $\mathfrak{D}(u, v)$ il limite, se esiste

 $\mathfrak{D}(u,v) = \lim_{\delta(q) \to 0} \frac{T(q)}{|q|}, \qquad (15)$

ove $\delta |q|$ indica, al solito, il diametro di q. In forza del teorema B, per ogni superficie continua di area finita secondo Lebesgue, possiamo considerare, al posto della (15) le seguenti definizioni, tutte equivalenti

$$\mathfrak{D}(u,v) = \lim_{\delta(q)\to 0} \frac{T(q)}{|q|} = \lim_{\delta(q)\to 0} \frac{G(q)}{|q|} = \lim_{\delta(q)\to 0} \frac{L(q)}{|q|}.$$

In precedenti lavori ho dimostrato il seguente

Teorema II 15). Se S è una superficie continua di area finita secondo Lebesgue, allora in quasi tutti i punti (u, v) di Q risulta:

$$egin{align} D(u,v) &= \left[J_1^2(u,v) + J_2^2(u,v) + J_3^2(u,v)
ight]^{rac{1}{2}} = \ &= \left[H_1^2(u,v) + H_2^2(u,v) + H_3^2(u,v)
ight]^{rac{1}{2}} = \mathfrak{D}(u,v) \ . \end{split}$$

 8^{0} — Sia S la superficie continua

S:
$$x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in Q \equiv (0, 1, 0, 1),$$

di area finita secondo Lebesgue, e siano Φ_1 , Φ_2 , Φ_3 le relative trasformazioni piane. Sia $P \equiv (u, v)$ un punto interno a Q, siano definite in P le funzioni

$$J_1(u,v), \qquad J_2(u,v), \qquad J_3(u,v), \qquad \mathfrak{D}(u,v)$$

e valga la relazione $D(u,v)=\left[J_1^2+J_2^2+J_3^2\right]^{\frac{1}{2}}=\mathfrak{D}(u,v)$. Nel punto P siano pure definite le funzioni $H_1(u,v),\ H_2(u,v),\ H_3(u,v)$ e quindi anche le funzioni $\varepsilon_1(u,v),\ \varepsilon_2(u,v),\ \varepsilon_3(u,v)$ relative alle trasformazioni $\Phi_1,\ \Phi_2,\ \Phi_3$ e le funzioni $\varepsilon_r(u,v),\ r=1,2,3$, abbiano i valori ± 1 .

¹⁵⁾ loc. cit. in 1c), pag. 1456.

Poniamo

$$lpha_1=rac{arepsilon_1\,J_1}{D}=rac{H_1}{D}$$
 , $lpha_2=rac{arepsilon_2\,J_2}{D}=rac{H_2}{D}$, $lpha_3=rac{arepsilon_3\,J_3}{D}=rac{H_3}{D}$,

ossia $D\alpha_1=\varepsilon_1J_1$, $D\alpha_2=\varepsilon_2J_2$, $D\alpha_3=\varepsilon_3J_3$ se $D\neq 0$; altrimenti siano α_1 , α_2 , α_3 numeri arbitrari tali che

$$\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$$
.

Sia q un qualsiasi quadrato a lati paralleli agli assi uv di centro P e contenuto in Q. Sia $\delta = \delta(q)$ il diametro di q.

Sia $[\pi_i, i = 1, 2, ..., n]$ un qualsiasi gruppo di poligoni semplici interni a q a due a due senza punti interni in comune. Siano $C_{ri}, r = 1, 2, 3, i = 1, 2, ..., n$, le curve piane, continue e chiuse, immagini delle poligonali π_i^* costituenti la frontiera di π_i rispetto alle trasformazioni Φ_r . Sia inoltre

$$m = \max_{r=1,2,3} \frac{1}{|q|} \left| \sum_{i=1}^{n} C_{ri} \right|,$$

$$\mu = \max \left\{ \frac{1}{|q|} \left[T_r(q) - \sum_{i=1}^{n} t_r(\pi_i) \right], r = 1,2,3, \frac{1}{|q|} \left[T(q) - \sum_{i=1}^{n} t(\pi_i) \right] \right\}.$$

Manifestamente $m \ge 0$, $\mu \ge 0$. Si ha inoltre (§ 2)

$$\tau_r(\pi_i) = \int_{K_r} O(x, y; C_{ri}) dx dy, \quad |\tau_r(\pi_i)| = t_r(\pi_i), \quad r = 1, 2, 3, \quad i = 1, 2, \ldots, n,$$

$$t(\pi_i) = \left[t_1^2(\pi_i) + t_2^2(\pi_i) + t_3^2(\pi_i)\right]^{\frac{1}{2}}, \quad i = 1, 2, \ldots, n.$$

Se β_1 , β_2 , β_3 è una qualunque terna di numeri reali tali che $\beta_1^2 + \beta_2^2 + \beta_3^2 = 1$ risulta:

e quindi, ricordando che $t(\pi_i) \leqslant g(\pi_i), i = 1, 2, ..., n$, anche

$$g(\pi_i) - \left[\beta_1 \, \tau_1(\pi_i) + \beta_2 \, \tau_2(\pi_i) + \beta_3 \, \tau_3(\pi_i)\right] \geqslant 0$$
, $i = 1, 2, \ldots, n$.

In particolare

$$g(\pi_i) - [\alpha_1 \tau_1(\pi_i) + \alpha_2 \tau_2(\pi_i) + \alpha_3 \tau_3(\pi_i)] \geqslant 0$$
, $i = 1, 2, ..., n$.

90 - Vale il seguente

Teorema III. Se S è una superficie continua di area finita secondo Lebesgue, allora, quasi ovunque in Q, si ha

$$\lim_{\substack{\delta \\ m \\ \mu} \right\} \to 0} \frac{1}{|q|} \sum_{i=1}^{n} \left[\alpha_{1} \tau_{1} (\pi_{i}) + \alpha_{2} \tau_{2} (\pi_{i}) + \alpha_{3} \tau_{3} (\pi_{i}) \right] = D(u, v) . \quad (16)$$

Inoltre, comunque assegnato un numero $\sigma > 0$, quasi ovunque in Q risulta

$$\lim_{egin{array}{c} \delta \\ m \\ \mu \end{array} \}
ightarrow 0 \ \frac{1}{\mid q \mid} \sum_{\sigma} g\left(\pi_i\right) = 0 \ ,$$

ove la sommatoria è estesa ai soli poligoni π_i per i quali

$$g(\pi_i) - \left[\alpha_1 \tau_1(\pi_i) + \alpha_2 \tau_2(\pi_i) + \alpha_3 \tau_3(\pi_i)\right] \geqslant \sigma g(\pi_i).$$

La prima parte di questo teorema è già stata dimostrata in un precedente lavoro ¹⁶). Dimostriamo la seconda parte. Si ha

$$\begin{split} \sigma \ & \sum_{\sigma} g(\pi_{i}) \leqslant \sum_{\sigma} \left\{ g(\pi_{i}) - \left[\alpha_{1} \ \tau_{1}(\pi_{i}) + \alpha_{2} \ \tau_{2}(\pi_{i}) + \alpha_{3} \ \tau_{3}(\pi_{i}) \right] \right\} \leqslant \\ & \leqslant \sum_{i=1}^{n} \left\{ g(\pi_{i}) - \left[\alpha_{1} \ \tau_{1}(\pi_{i}) + \alpha_{2} \ \tau_{2}(\pi_{i}) + \alpha_{3} \ \tau_{3}(\pi_{i}) \right] \right\} = \\ & = \sum_{i=1}^{n} g(\pi_{i}) - \sum_{i=1}^{n} \left[\alpha_{1} \ \tau_{1}(\pi_{i}) + \alpha_{2} \ \tau_{2}(\pi_{i}) + \alpha_{3} \ \tau_{3}(\pi_{i}) \right] = \\ & = - \left[G(q) - \sum_{i=1}^{n} g(\pi_{i}) \right] + \left[G(q) - D(u, v) \ | \ q \ | \right] - \\ & - \left\langle \sum_{i=1}^{n} \left[\alpha_{1} \ \tau_{1}(\pi_{i}) + \alpha_{2} \ \tau_{2}(\pi_{i}) + \alpha_{3} \ \tau_{3}(\pi_{i}) \right] - D(u, v) \ | \ q \ | \right\rangle. \end{split}$$

$$Ma$$

$$0 \leqslant G(q) - \sum_{i=1}^{n} g(\pi_{i}) \leqslant T(q) - \sum_{i=1}^{n} t(\pi_{i}) \leqslant \mu \ | \ q \ | \ .$$

$$\lim_{\delta(q) \to 0} \frac{1}{|q|} G(q) = D(u, v) ,$$

e quindi, dividendo la (17) per $\sigma \mid q \mid$ e passando al limite, si trova, ricordando la (16) ,

$$\lim_{egin{array}{c} \delta \\ m \\ \mu \end{array}
angle
ightarrow 0 } \frac{1}{\mid q \mid} \sum_{\sigma} g\left(\pi_i\right) = 0 \; .$$

Il teorema III è così completamente dimostrato.

¹⁶) loc. cit. in 1c), pag. 1469.

 10^{0} — Sia $P \equiv (u, v)$ un punto di Q, sia $R \equiv (x, y, z)$ l'immagine di P sulla superficie S, sia $R \xi \eta \zeta$ una terna di assi cartesiani ortogonali orientata come O x y z ad avente l'origine nel punto R = S(P). Siano

S:
$$x = x(u, v)$$
, $y = y(u, v)$, $z = z(u, v)$, $(u, v) \in Q$,
S: $\xi = \xi(u, v)$, $\eta = \eta(u, v)$, $\zeta = \zeta(u, v)$, $(u, v) \in Q$, (18)

rappresentazioni della superficie S, relativamente alle terne Oxyz e $O\xi\eta\zeta$, legate tra loro dalle relazioni (7). Siano Φ_1 , Φ_2 , Φ_3 le tre trasformazioni piane relative alla superficie S e alla terna Oxyz, siano Φ_1' , Φ_2' , Φ_3' le tre trasformazioni piane relative alla superficie S e alla terna $R\xi\eta\zeta$. Siano τ , t, g, T, G, J, ecc. le solite funzioni relative alla terna Oxyz e siano τ' , t', g', T', G', J', ecc., le analoghe funzioni relative alla terna $R\xi\eta\zeta$.

In un precedente lavoro ho dimostrato il

Teorema IV¹⁷). Se la superficie continua S ha area finita secondo Lebesgue, allora a quasi ogni punto $P \equiv (u, v)$ interno ad A si può far corrispondere una terna di assi cartesiani ortogonali $R \xi \eta \zeta$, orientata come Oxyz, avente origine in R, immagine del punto P sulla superficie S, e tale che

$$J_1'(u,v) = \lim_{\delta(q) \to 0} \frac{T_1'(q)}{|q|} = D(u,v) = [J_1^2 + J_2^2 + J_3^2]^{\frac{1}{2}},$$

$$J_2'(u,v) = \lim_{\delta(q) \to 0} \frac{T_2'(q)}{|q|} = 0 , \qquad J_3'(u,v) = \lim_{\delta(q) \to 0} \frac{T_3'(q)}{|q|} = 0 .$$

Risulta altresì

$$\lim_{\delta(q)\to 0} \frac{L(q)}{|q|} = D(u,v) = \lim_{\delta(q)\to 0} \frac{L_{\xi\eta}(q)}{|q|},$$

ove L(q) è l'area secondo Lebesgue della porzione della superficie S definita delle (18) su q e $L_{\xi\eta}(q)$ è l'area della proiezione di tale porzione sul piano $\xi\eta$. La terna $R\xi\eta\zeta$ è unica se $D(u,v)\neq 0$, altrimenti è indeterminata.

Per tali proprietà diremo che il piano $Q \xi \eta$ è il piano quasi tangente alla superficie S nel punto Q e che l'asse $Q \xi$ è la quasi normale alla superficie S nello stesso punto O.

(Reçu le 22 novembre 1947.)

¹⁷) loc. cit. in 1c), pag. 1472.