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Proprietà tangenziali délie superficie continue
di L. Cesari, Bologna

In precedenti lavori, in relazione al problema délia quadratura délie
superficie, ho dimostrato numerose proprietà geometriche délie superficie
continue in forma parametrica di area finita secondo Lebesgue1). E' ben
noto che esistono superficie continue che, pur avendo area finita secondo

Lebesgue, non hanno piano tangente in nessun punto2). Tuttavia io ho
dimostrato che ogni superficie continua di area finita secondo Lebesgue
possiede quasi ovunque piano "quasi tangente,, e présenta, pure quasi
ovunque, notevoli proprietà locali che mettono in luce, almeno in senso
statistico, che Felemento infinitesimo generico, se effettivamente a due
dimensioni, è, in sostanza, quasi ovunque, piano3).

Scopo délia présente nota è di dimostrare nuove proprietà locali délie
superficie continue. Avrô occasione, in un lavoro successivo, di utilizzare
tali proprietà in questioni riguardanti la nozione di intégrale sopra una
superficie.

§ 1. Gêneralita sulle superficie continue

1° — Sia S una superficie continua e sia

S: x x(u,v), y== y(u,v), z z(u,v), (u,v)eQ (0, 1,0, 1), (1)

una sua rappresentazione sul quadrato chiuso Q (0, 1, 0, 1) del
piano cartesiano (orientato) uv. Ad ogni punto P (u,v) di Q le (1)
fanno corrispondere un punto R (x, y, z) dello spazio xyz che di-

x) L. Cesari, a) Sulla quadratura délie superficie in forma parametrica, Boll.
U. M. I. Ser. II, Anno IV (1942), pp. 109—117; b) Caratterizzazio ne analitica délie
superficie continue di area finita secondo Lebesgue; Annali Scuola Norm. Sup.
Pisa, Ser. II, vol. X (1941), pp. 253—294, XI (1942), pp. 1—42; c) Sui fondamenti
geometrici dell'integrale classico perl'area délie superficie in forma
parametrica, Mem. Accad. Italia, Vol. XIII (1942), pp. 1323—1483; d) Una uguaglianza
fondamentale per l'area délie superficie, Mem. Accad. Italia, Vol. XIV (1943),
pp. 891—954.

2) S. Saks, On the surfaces without tangent planes, Aimais of Mathematics,
Ser. II, Vol. 34 (1933), pp. 114—124.

8) loc. cit. in 1, c), pag. 1470, 1479.
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remo S(P), immagine del punto P. Indieheremo con 8 anche Finsieme
dei punti dello spazio xyz occupato dalla superficie 8. L'insieme 8 è

limitato e chiuso. Esiste pertanto un cubo K dello spazio xyz & spigoli
paralleli agli assi x, y,z, contenente interamente nel suo interno Fin-
sieme 8. Siano Kt, K2, Jl3 i quadrati dei piani coordinati (y,z), (z, x),
(x, y) nei quali il cubo K si proietta ortogonalmente.

Se R (x, y, z) è un punto di S, ogni punto di Q la cui immagine
coincide con R verra detto un modello del punto jB. Diremo /S~1(Jî) Fin-
sieme dei modelli del punto R.

Per ogni numéro reale o ^ ô < V2, diciamo a)(ô) il massimo dei
valori assunti dalFespressione

{[x(u9v)-x(u',v')]* + [y(u,v)-y(u',v')]*+ [z(u,v)-z(u'y)f}% (2)

per tutte le coppie (u, v) e (u\ vf) di punti di Q tali che

[(u - uff + (v- v'ff < à

La funzione co(<5) è continua e tende a zéro quando à -> 0. La funzione
co(ô) dicesi il modulo di continuité délia rappresentazione (1) délia superficie

8. Se I è un insieme di punti di Q diciamo r\ (I) Festremo superiore
dei valori assunti dalFespressione (2) per tutte le coppie (u, v), (uf, vf) di

punti di /. Il numéro rj{I) dicesi Vosdllazione délia rappresentazione (1)

délia superficie 8 sull'insieme /.
Se / e / indicano rispettivamente la chiusura e la frontiera di un

insieme / e ô (I) il diametro di /, si ha, per ogni insieme / di punti di Q,

Diciamo L (8) Farea secondo Lebesgue délia superficie 8. Considereremo
inoltre le tre trasformazioni piane continue

01: y y(uy v) z z(u, v)

02: z=z(u,v) x x(u9v) (u,v)eQ, (3)

0Z : x=x(u,v), y^=y(u,v),
e siano ^(y, z ; 0X), W(z, x ; 02) W(x, y ; &z) le relative funzioni
caratteristiche (4) e

=$$W{x,y ;0r)dxdy r=l,2,3,
4) loc. cit. in 1 a, b, c. Per la definizione di funzione caratteristica cfr. nota 5.
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le variazioni totali délie trasformazioni 0r. In precedenti lavori (4)

ho già introdotto le nozioni di trasformazione piana 0 a variazione
limitata e assolutamente continua. In particolare ricordo qui che &r è

a variazione limitata se e soltanto se W(0r) < + oo r 1, 2, 3

Ho poi dimostrato il seguente

Teorema A. Condizione necessaria e sufficiente affinchè la superficie
continua S abbia area finita secondo Lebesgue è che le tre trasformazioni
piane 01902, 0Z siano a variazione limitata. Inoltre, per ogni superficie
continua, si ha

W(0T) ^L(S) ^W(0X) + W(02) + W(03) r= 1,2,3

§ 2. Lefunzioni T(r) e G(r)
2° — Sia S una superficie continua, sia Q il quadrato chiuso (0,1,0,1)

del piano cartesiano orientato uv, sia

S: x=x(u,v), y=y(u,v), z z(u,v), (u,v)eQ, (1)

una rappresentazione délia superficie S su Q e siano 0X, 02, 0Z Ie relative
trasformazioni piane. Sia r una regione di Jordan di Q e sia r* la curva
continua, semplice e chiusa costituente il contorno di r. Essendo fissato
sul piano uv il verso positivo délie rotazioni, la curva r* risulta natural-
mente orientata. Sia C la curva continua chiusa ed orientata immagine
di r* secondo le (1) e siano Cl9 C2, O3 le tre curvepiane, chiuse ed orien-
tate immagini di r* secondo le trasformazioni 0l9 02, 0Z. 1 piani coordi-
nati yz, zx, xy sono orientati e quindi anche su di essi è fissato il verso
positivo délie rotazioni. Pertanto sono definiti sui piani coordinati gli
indici di Kronecker 0{y,z,C^), O(z, x,C2), O(x, y,Cz) relativi aile
curve Cl9 C2, C3. Poniamo

; CX) | dydz

ed analoga definizione abbiano r2(r), t2(r), g2(r), rs(r), ts(r), gz(r)
relativamente aile curve C2, C3 ed ai piani zx, xy. Sia inoltre

*(r) [tî(r) + Air) + ^(r)]*, g(r) [g\{r) + g\{r)

Manifestamente

t.(r)<g.(r), s= 1,2,3, *(r)<y(r)



Sia [r4, i 1, 2,..., n] una qualsivoglia suddivisione di Q in regioni
di Jordan e siano Ct le curve continue e chiuse, immagini secondo le
(1) délie curve continue e chiuse r* costituenti la frontiera di rt e

Crii r 1, 2, 3, i 1, 2,..., n, le proiezioni délie curve Ct sui piani
coordinati. Poniamo

n n
T(S) extr. sup. E t(rz) G (S) extr. sup. S g(rt) (4)

per tutte le possibili suddivisioni [rt] di Q in regioni di Jordan ed analo-
n n

gamente T(&r) extr. sup. Z tr(rt) G(&r) extr. sup. S gr(rt)5)
t=i i=i

Sia r una regione di Jordan di Q e consideriamo la superficie definita
dalle (1) sulla regione chiusa di Jordan F che si ottiene da r aggiungendovi
i punti délia frontiera r* di r. Anche per questa superficie potremo defi-
nire le quantité (4) che indicheremo con T(r) e G(r). Cosl diremo L(r)
l'area secondo Lebesgue di taie superficie. In modo analogo definiremo le

quantità T8(r), Gs(r) analoghe aile T(®8) e 0(0,), 5 1,2,3.
Io ho dimostrato il seguente assai riposto

Teorema B 6). Per ogni superficie S di area finita secondo Lebesgue

si ha

Valgono inoltre i seguenti :

Lemma 1° 7). Se r è una regione di Jordan di Q e [rt, i 1, 2,..., n]
una suddivisione di r in regioni di Jordan, allora

Lemma II0 8). Per ogni superficie continua S si ha :

f < L(S) < 1(0,) + L(02) + L(03

6) loc. cit. m la), le), pag. 1375. Ricordiamo inoltre che, per ogni (x, y) di Kr, è

n
W(x, y, ^j) extr. sup. S \O(x,y; Clt) \ per tutte le possibih suddivisioni rt di A m

i=l
regioni di Jordan. Analogamente *F(x, y ; <£2) W{x, y, $3)

6) loc. cit. m le), pag. 1451, ld), pag. 892.
7) loc. cit. in le), pag. 1375.
8) loe. cit. m le), pag. 1379.



Teorema C (di approssimazione)9). Sia S una superficie continua
di area finita secondo Lebesgue ; sia la (1) una sua rappresentazione e

siano &l9 &2, 0Z le relative trasformazioni piane. Ad ogni numéro e>0
arbitrario si puà far corrispondere un gruppo di poligoni semplici \nt,
i 1, 2,..., n], interni a Q, a due a due senza punti interni in comune,
tali che, se Cr%, r 1, 2, 3, i — 1, 2,..., n, sono le curve piane continue
e chiuse immagini délie poligonali n* costituenti la periferia di ni rispetto
aile trasformazioni 0r, risulta

1=1

n

\SCn\<e, r= 1,2,3, »?(»,)<«, »=l,2,...,n,
1

!ktr(nt)>T(0r)-e, r= 1,2,3,
t=i

-e, r=l,2,3.

^3. / Jacobiani generalizzati

3° — Consideriamo la trasformazione piana continua

0: *x=x(u,v), y=y(u,v), (u9v) sQ (0,1,0,1),

e sia K un quadrato del piano x y contenente nel suo interno l'insieme
0(0). Sia P (u,v) un punto interno a Q, sia q un quadrato a lati
paralleli agli assi uv contenente P e sia ô(q) il diametro di g. Se esiste il
limite

si dice J(u, v) il Jacobiano generalizzato (assoluto) délia trasformazione
0 nel punto P (u, v). Io ho dimostrato altrove10) ehe, se 0 è una
trasformazione a variazione limitata, J(u, v) esiste quasi ovunque in Q
e rappresenta una funzione quasi continua ed integrabile L in Q.

Sia di nuovo P (u, v) un punto interno a Q, sia q un quadrato a
lati paralleli agli assi u e v contenente P e sia ô ô(q) il diametro di q.
Sia [ni} i 1, 2,..., n] un qualsiasi gruppo di poligoni semplici coin-

9) loc. cit. in le), pag. 1376.
10) loc. cit. in la) e le), pag. 1419.



pletamente interni a g a due a due senza punti interni in comune. Siano

ci, i 1, 2,...., n, le curve continue e chiuse immagini délie poligo-
nali jti. Poniamo :

lïl
Diremo talvolta che i numeri m, jn sono gli indid del gruppo di poligoni
[jrt] interni a q. In forza del teorema C', esistono quanti si vogliano gruppi
di poligoni [a^] verifieanti le condizioni dette e per i quali m, ju sono

più piecoli di una qualsiasi quantità prefissata.
Se esiste finito il limite

lim
Si
m[->0

si diee H (u, v) il Jacobiano generalizzato (relativo) délia trasformazione
0 nel punto P (u, v). Io ho dimostrato11) che, se 0 è una trasformazione

a variazione limitata, H(u, v) esiste quasi ovunque inQ, rappresenta
una funzione quasi continua e integrabile i in Q e, posto H(u,v)
e(uyv)J(u, v), risulta e(u, v) ± 1

> quasi ovunque in Q e quindi, pure
quasi ovunque in Q, | H(u9v)\ J{u,v).

Ho già dimostrato il seguente

Teorema D. Se la superficie S ha area finita secondo Lebesgue, allora le

ire trasformazioni piane &l9 02, 0Z sono a variazione limitata e dotate quasi

ovunque in Q di Jacobiani generalizzati Jr(u, v), r 1, 2, 3. Queste fun-
zioni sono integrabili L inQ e inoltre, posto

D(u, v) [Jl(u9 v) + J*(u, v) + Jl(u, v)]*
si ha

L(S) ^H D(u,v)dudv

Condizione necessaria e sufficiente affinchè in questa relazione valga il segno

è che le trasformazioni piane 0l9 02, 0$ siano assolutamente continue.

Per quanto si è visto sopra, quasi ovunque in Q è anche

D(u, v) [Hl(u, v) + H22(u, v) + H*(u, »)]*

u) loo. cit. in le), pag. 1432.
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4© — E' noto il seguente

Lemma III12). Se Oxyz, OgrjÇ sono due terne ugualmente orientate
di assi cartesiani ortogonali, se G è una curva continua, chiusa, orientata
e rettificabile, se Cxy, Cyz, Czx, G^v, C^, C^ sono le curve piane che

si ottengono proiettando C sui piani coordinati xy, yz, zx, Çrj, rjÇ, ff,
se

-foo -f oo +<» + 00

rxv= J J O(x,y;Cxy)dxdy, ryz J J O(y,z,Cyz)dydz,
— OO — 00

t..=T1 °(z>x'c**) dzdx> riv 7 7
— 00 —OO —OO —00

Si 7 7 O(V,C,Cni) dridÇ r?| +f 7 °<?» f. Cit)dÇdt,
00 OO OO 00

allora

rîn cosa;f.Tyz + cos yÇ-rzx + ooszÇ-rxy

Tç| COS XTj'Tyz + COS t/?7 • Tzx + COS ZTj-Tx
e quindi

§ 4. Propriété tangenziali délie superficie continue

5° — Sia #una superficie continua, siano Oxyz, OÇrjÇ due terne di
assi cartesiani ortogonali. Siano

S: x x(u,v), y y(u,v), z z(u,v), (u,v)eQ (0, 1,0, 1), (5)

S: £ £{u, v), r\ r)(uyv), f Ç(u, v), {u, v) eQ (0, 1, 0, 1), (6)

due qualsiasi rappresentazioni délia superficie S sul quadrato fondamentale

Q nelle quali una volta è considerata la S corne appartenente allô
spazio xyz e una volta allô spazio f rçf. Si noti che da ogni rappresenta-
zione (5) se ne puô ottenere una (6) mediante le formule di trasforma-
zione :

r\ <xn x + *2a y + oc23 z (7)

12) loc. cit. in le), pag. 1463.



ove
(xn cos x f oc12 cos y | a13 cos z f
<%ai cos x r\, #22 cos y 17, #23 cos s V y

oc91 cos a; f #32 cos # £ «33 cos z £

Corne è noto l'area L(S) secondo Lebesgue è indipendente dalla dire-
zione degli assi.

Fissate due rappresentazioni (5) e (6) délia superficie S, legate dalle
relazioni (7), siano 0l9 0t9 03 e 0fl9 0'29 0'z le trasformazioni piane relative

aile due rappresentazioni délia superficie 8.
Siano Jr(u, v), Hr(u, v), r 1, 2, 3, i Jacobiani assoluti e relativi

délie trasformazioni 0r, e siano Jrr(u,v), Hfr(u,v), r 1, 2, 3, quelli
relativi aile trasformazioni @'r. Se la superficie S ha area finita secondo

Lebesgue, allora tutte le trasformazioni @r, @fr, r 1,2,3, sono a varia-
zione limitata e gli Jacobianni Jr, Hr,J'r, H!r esistono quasi ovunque inQ.
Adopreremo talvolta anche le notazioni

Ji(u> v) Jvz(u> v)> J2(u, v) Jzx(u, v), Js(u, v) Jxy(u, v)

ed analogamente

Siano inoltre r, t, g, T, 0 ecc. le solite funzioni relative alla rappresen-
tazione (5) e rr, tr, gf, Tf, Gr ecc. quelle relative alla rappresentazione
(6). Anche qui si noti che al posto di ryz, rzx, rxyi ecc. scriveremo
talvolta rl9 t2, t3, ecc. Si noti inoltre (teor. B) che

T(8) 0(8) L(S) Tf(S) G'(S)
Vale il seguente

Teoremal. Se 8 è una superficie di area finita secondo Lebesgue, se

Oxyz9 OÇrjÇ sono due terne cartesiane ortogonali ugualmente orientate,

se (5) e (6) sono due qualunque rappresentazioni délia superficie S legate

dalle relazioni (7), allora quasi ovunque in Q esistono finiti i Jacobiani relativi

délie trasformazioni 0r9 0rr9 r 1, 2, 3, e9 quasi ovunque in Q, si ha

> v)=gos x Ç-Hyz(u9 t>)+cos y Ç-Hzx(u9 v)+cos x Ç-Hxy(u9 v)

> ^)=cos x £-Hyz(u, v)+cob y Ç>Hzx(u9 v)+cos z ë-Hxy(u, v) (8)

9 v)=Gos X7]-Hyz(u, v)+cos yrj>Hzx(u9 v)+cos zr)-Hxv(u, v)

e quindi ff2 tt2 n2 _ 02 u2 02Hxy + ±iyz+ nzx

8



Osservazione. Nelle condizioni del teorema I, se le trasformazioni 0rt
r 1,2,3, sono assolutamente continue, anche le trasformazioni &'r,
r 1, 2, 3, lo sono. Infatti, se le trasformazioni 0r, r 1, 2, 3, sono
assolutamente continue, allora (§ 3, Teorema D

L(8) $$ [H2 + H22 + Hl] dudv
Q

e quindi anche fteorema I)

L(S) $$ [H? + H1* + H'fldudv
Q

Ne segue allora (§ 3, Teorema D) che le trasformazioni &fr, r 1, 2, 3,
sono assolutamente continue.

6° — Dimostrazione del teorema I.
Sia 8P, p 1, 2,..., una successione di superficie poliedriche tali che

lim 89 S lim L(89) L(S) (10)
P~>QO p->-OO

e siano

Sp: x=xp(u,v), y=yP(u,v), z=z9(u,v), (u,v)eQ, p=l,2,..., (11)

rappresentazioni tali délie superficie Sp che, uniformemente in Q, si abbia

limxp(u,v) x(u,v), lim yp(u,v) y(u, v), lim zp{u, v) z(u, v)
¦p—>oo p—>oo p—>oo

e ad ogni segmento (poligonale) di Q corrisponda, su ogni superficie Sp,
una poligonale. Siano &pr, r 1,2,3, le trasformazioni piane relative
aile superficie8P e agli assi x,y,z. Le (11) definiscono attraverso le (7) le
funzioni ÇP(u, v), rjP(u, v), ÇP{u, v) e quindi le nuove rappresentazioni.

8p: £ èp(u,v), rj riP{u,v), f Çp{u,v), (u,v)eQ, p= 1,2,...,
délia superficie 8P negli assi £,rj, f.

Uniformemente in Q si ha

limèP(u,v) Ç(u, v), lim r]p(u,v) ri{u,v)y lim ÇP(u, v) Ç(u, v)
î>--> oo p—> oo p—>-oo

e inoltre, posto

ôp max {[x(u, v) - xP(u, v)f + [y(u, v) - yp(u, v)]2 +
iu>v) + [z{u,v)-zp(u,v)]*}*

à'p max {[èP(u, v) — Çp(u, v)f + [rj(u, v) — rjp(u, v)]2 +



risulta
ÔP= à'p, p= 1,2,..., lira ô, lim ô'p 0

p—>-oo p—>oo

Siano &rpr, r 1, 2, 3, p 1, 2,..., le trasformazioni piane relative
alla superficie Sp e agli assi ÇrjÇ. Dalle (10) e dall'invarianza dalla dire-
zione degli assi délia nozione di area secondo Lebesgue, segue, in forza
di un mio précédente risultato13),

limi(^) L(0r) limi(<p;f) L(0'r) r 1, 2, 3
p—>oo p—>oo

e quindi

lim W(0pr) W(0pr) lim TT(0;r) W(0'r), r 1, 2, 3
p—>oo p—>-oo

Ne consegue che le funzioni

y ;0 ^
r 1,2,3, p=l,2,...

sono equi-assolutamente integrabili14).
Sia Po (wovo) un punto interno a Q nel quale esistano i Jacobiani

Hr(u,v), H'r(u,v), r=l,2,3. Sia e>0 un numéro arbitrario e

sia y > 0 un altro numéro taie che, per ogni quadrato q di centro P
contenuto in Q a lati paralleli agli assi u, v, e di diametro ô<y, per
ogni gruppo [V^-, i 1, 2,..., n\ di poligoni semplici di g, a due a

due senza punti interni in comune e tali che

-L-\Er\<y, Er kcri, 1^

risulti

triai)-Hr(u0,v0)
e

—, r=l,2,3

Sia y1 l'analogo numéro relativo agli Jacobiani Hfr(u0,v0), r 1, 2, 3.

Fissiamo un quadrato q di diametro <5<min[y,)/] e sia r>0 un

numéro taie che, per ogni insieme misurabile hcKr, r 1,2,3, oppure
h czKfr, r 1, 2, 3, con | h \ < x, gli integrali

18) L.Ce8arif Sull'area secondo Lebesgue délie superficie continue. Bendi-
conti Accademia dei Lincei, Ser. VIII, Vol. III (1947).

14) loc. cit. in le), pag. 1348.
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JJ W{x, y ; 0r) dx dy $$ W(x, y ; <!>„) dx dy
h h

r 1,2,3, p 1, 2,..., siano tutti minori di c | | / 32. Sia infine
ro min[r,y,/].

In forza del teorema C esiste in q un gruppo di poligoni semplici
|Vri} i l, 2,..., n], a due a due senza punti interni in comune, per D

quale risulta

\Er\<Yo\q\, Er=

Tfr(q) - 1<71 r=l,2,3,
ove Cri, C^, r 1, 2, 3, i 1, 2,..., n, sono le curve continue e

chiuse immagini délie poligonali n* rispetto aile trasformazioni &r, 0fr.

Per taie gruppo di poligoni risulta

1 n

e
— r=l,2,3,

:4". r=l,2,3 (12)

Sia g>0 un numéro taie che

\(Er)e\<\ET\ + x<2r \(E'r)e\<\E'r r=l,2,3.
Sia p il più piccolo intero taie che per ogni p ^ p, risulti àP d'p<q.
Se indichiamo con CÇj>, Crf\ i l,2, ...,n, r l,2,3, p=l,2...,
le curve piane e chiuse immagini délie poligonali n* rispetto aile
trasformazioni 0^, &'pT è chiaro che, per ogni
interamente contenute in (Er)e, le curve

le curve sono

e sono interamente con-
tenute in (E'r)e e che, per ogni punto di KT — {ET)V, rispettivamente
di K'r - (E'r)e, risulta

O(x, y ; CH) O(x, y ; Cft»),

r=l,2,3, P>

O(Ç, r, ;

11



Se ne deduce, per ogni p^ p

| Tr(«.) - t^K) | i | JJ O{x,y;Crt)dxdy-$$O(x,y
1 i=l JTr Zf

< 55 k\O(x,y;Cn)\dzdy + 55 Z\O(x,y ;

< JJ ¥{x,y;0r)dxdy + jj W(x,y ¦ &J dxdy < 4 -^|i -|-|g| (13)

Analogamente si trova, per ogni p^p,
k\<{^)-<W{nl)\<^\q\ (14)

Vale l'identità

1^ fao, t?0) — cos x C • ^2 (^o > v0) + cos 1/ C • Jï2aî K > ^o) + °os 2 C. Jï^ (^0, v0)

lïl i=i bi J Llïl »=i 5/ l?l t-i b/

— cos o;C ^«z (^o> ^o) i—r X ^ (^rj + cos y f F • • • 1 + cos 2 £ F • • • 1 —
L lïl »-i J J L

1

(COS^CI-Ar-i: T^^,) - jV-2 T(^(^)1 + COS2/C[...] +COS2C [••']! +

X) + cosyf - Tg>(jr.) + coszC- %fy(n%)
i -

In forza del Lemma III si ha senz'altro «5==0. Dalle (12) segue

*x j < c/8 |s3|<3e/8. Dalle (13) segue infine |52|<e/8, |54|<3e/8.

In definitiva

çv(u0, v0) — [cosxÇ-Hyz(u09v0) + cosi/£• ifzx(uo,vo) + cos zC• Hxy (uo,v0)]\ <

< |^i | + \*t | + |*a | + |«41 + |^51 < e/8 + fi/8 + 3^/8 + 3^/8 + 0 e

12



DalParbitrarietà di e segue la prima délie (8). Analogamente si dimo-
strano le rimanenti. La (9) è una conseguenza délie (8). Le (8) e le (9)
sono cosl dimostrate in tutti i punti Po (u0 v0) nei quali esistono

Hr(u, v) e H'r(u, v), r 1, 2, 3, ossia quasi ovunque in Q.

7° — Sia P (u, v) un punto interno a Q e, per ogni quadrato q
a lati paralleli agli assi contenente P nel suo interno e contenuto in Q,
consideriamo il quoziente T(q)j\q |. Diciamo 35(u,v) il limite, se

T(n\
X)(u,v) lim -pilL, (15)

ove ô\q\ indica, al solito, il diametro di g. In forza del teorema B, per
ogni superficie continua di area finita secondo Lebesgue, possiamo con-
siderare, al posto délia (15) le seguenti definizioni, tutte equivalenti

In precedenti lavori ho dimostrato il seguente

Teorema II15). Se S è una superficie continua di area finita secondo

Lebesgue, allora in quasi tutti i punti (u, v) di Q risulta :

D{u, v) [J*(u, v) + J\(u, v) + Jl(u, v)f

[B*{u,v) + H*(u,v) + H*(ufv)]t X>(u,v)

8° — Sia S la superficie continua

S: x=x(u,v), y=y(u,v), z z(u,v), lu,v) eQ (0,1,0,1),

di area finita secondo Lebesgue, e siano 0X, 02, $3 le relative trasforma-
zioni piane. Sia P (u, v) un punto interno a Q, siano definite in P le
funzioni

Jx(u,v), Jz(u,v), Jz(u,v), ^(u,v)

e valga la relazione D{u,v)= [J\ + J\ + Jl]2 2)(u, v). Nel punto P
siano pure definite le funzioni H1(u, v), H2(u, v), HB(u, v) e quindi
anche le funzioni e1(u,v)9 e%{u,v), ez{u,v) relative aile trasformazioni
^i, $2J ^3 e le funzioni er(u,v), r 1, 2, 3, abbiano i valori ±1.

16) loc. cit. in le), pag. 1456.
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Poniamo

ossia Dax e1Jli Doc% e2Jly Docz ezJz se D ^ 0 ; altrimenti
siano <%j, ôc2, <xz numeri arbitrari tali che

«î + «1 + 4 1

Sia q un qualsiasi quadrato a lati paralleli agli assi uv di centro P e con-
tenuto in Q. Sia <5 ô(q) il diametro di q.

Sia [n:t, i 1, 2,..., 7&] un qualsiasi gruppo di poligoni semplici
interni a;a due a due senza punti interni in comune. Siano Crt, r
1,2, 3, i — 1, 2,...,%, le curve piane, continue e chiuse, immagini délie

poligonali n* costituenti la frontiera di nt rispetto aile trasformazioni 0r.
Sia inoltre

1
m max

"r=l,2,S \q\

fi max j -yly [yr -^ «r (»,)] f 1,2, S -jl- [r(g) - 1 * (»,)] j

Manifestamente m ^ 0, /u ^ 0. Si ha inoltre (§ 2)

xf(nt)\ =«,(»,), r=l,2,3, *=1,2,...,»,

Se /?!, (î2, /S3 è una qualunque terna di numeri reali tali che fi\ + /ff| + ^3 1

risulta :

fii *i(w.) + /»• t,K) + ft t»(«.) < I fit *i W + ^i *•(».) + ^3 t,(«.) I <
\fii\ M»,) + 1/5,1 «,(«,) + IAI *,(«,)

e quindi, ricordando che t(nt) < gfai), i 1,2,.. .,n, anche

g(nt) - \fix Tx{7it) + 02 T2(nt) + #> rz(nt)] > 0 t 1, 2,..., n.

In particolare

gr(^) - [oct r^Tit) + <x2 xt(n%) + ocz rz{nt)] > 0 i 1, 2,..., rc.

9° — Vale il seguente

Teorema III. Se 8 è una superficie continua di area finita secondo

Lebesgue, allora, quasi ovunque in Q, si fia

14



lim -i—r y,
S) lïl*-i

m )->0
«,t, («,)] ¦» («,»)• (16)

Inoltre, comunque assegnato un numéro a>0, quasi ovunque in Q risulta

1 „lim
m J->0

kl

ove la sommatoria è estesa ai soli poligoni nt per i quali

g{nt) — [oct xx{n%) + oc2 r^jtj + a3 rz(nt)] > a g(jct)

La prima parte di questo teorema è già stata dimostrata in un précédente
lavoro16). Dimostriamo la seconda parte. Si ha

<* Eu g(n%) < Ea {g(n%) - [«! TjK) + <x2 r%(nt) + oc3 r3(nt)]} <

Ma

- [0{q) ~ k 9(nt)] + [G(g) - D(u,t>) | g |] -

0 < G (g) -

(17)

lim

e quindi, dividendo la (17) per a \ q\ e passando al limite, si trova,
ricordando la (16)

Km -±-
m J->0

II teorema III è cosl completamente dimostrato.

1<f) loc. cit. in le), pag. 1469.
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10° — Sia P (u, v) un punto di Q, sia R (x, y,z) Fimmagine
di P sulla superficie S, sia R£rjÇ una terna di assi cartesiani ortogonali
orientata corne Oxyz ad avente l'origine nel punto R S(P). Siano

S: x x(u,v), y=y(u,v), z=z(u,v), {u,v)eQ,
(18)

S: £=Ç(u,v), n r}(u,v), C=C(tt>fl), (u,v)eQ,

rappresentazioni délia superficie S, relativamente aile terne Oxyz e

OÇrjÇ, legate tra loro dalle relazioni (7) Siano 0l9 &2, 0$ 1© tre tra-
sformazioni piane relative alla superficie S e alla terna Oxyz, siano $[,
0f2, <Pr3 le tre trasformazioni piane relative alla superficie S e alla terna
RÇrjÇ. Siano r, t, g, T, 0, J, ecc. le solite funzioni relative alla terna
Oxyz e siano rf, tf, gf, Tf, Of, Jr, ecc, le analoghe funzioni relative
alla terna

In un précédente lavoro ho dimostrato il
Te ore m a IV17). Se la superficie continua 8 ha area finita secondo

Lebesgue, allora a quasi ogni punto P (u,v) interno ad A si puà far
corrispondere una terna di assi cartesiani ortogonali RÇrjÇ, orientata corne

Oxyz, avente origine inR, immagine del punto P sulla superficie 8, e

taie che

J[(u,v)= lim ^ Klim ^ D(u,v)[Jl + Jl
8(«)->o I q I

J'2(u,v) hm ——r 0 J'z(u,v) hm -—— 0
«(fl)->o lïl 8(«)->o \q\

Risulta altresi

ot?e JD (q) e Varea secondo Lebesgue délia porzione délia superficie 8 definita
délie (18) su q e L^(q) è Varea délia proiezione di taie porzione sul piano Çr).

La terna RÇrjÇ è unica se D(u, v) =fi 0, altrimenti è indeterminata.

Per tali proprietà diremo che il piano Q£r\ è il piano quasi tangente alla

superficie 8 nel punto Q e che Fasse QÇ è la quasi normale alla superficie S

nello stesso punto 0.

(Reçu le 22 novembre 1947.)

17) loc. cit. in le), pag. 1472.
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