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Sur une décomposition de la droite
Par Waclaw Sierpinski, Varsovie

Le but de cette Note est de démontrer ce

Théorème. Si 2*° £1? il existe une décomposition de la droite en
2**° ensembles disjoints de puissance 2No, tels que toute translation le long
de la droite transforme chacun de ces ensembles en lui-même, abstraction
faite d'un ensemble au plus dénombrable de points.

Démonstration. Soit X l'ensemble de tous les nombres réels. Si 2*°

Hi, il existe une suite transfinie du type Q,

xl9 z2,..., xw, 2Wi,..., xs,... (£<i2) (1)

formée de tous les nombres (distincts) de l'ensemble X.
Nous définirons maintenant par l'induction transfinie une suite transfinie

{PuJoL^Q comme il suit.
Posons px xx. Soit maintenant <x un nombre ordinal tel que 1 <oc

<Q et supposons que nous avons déjà défini tous les nombres pç, où

f«x.
L'ensemble Pa de tous les nombres

où Ç<oc et £i<(x pour i 1, 2,..., n (où n est un nombre naturel
quelconque) est au plus dénombrable (puisque <x<Q) : il existe donc des
nombres xt c X—Pa ; nous désignerons par pa le premier terme de la suite
(1) qui est un tel nombre xç.

La suite transfinie {pa}a< q est ainsi définie par l'induction transfinie,
et, comme on voit sans peine, tous leur termes sont distincts.

Soit Z l'ensemble de tous les nombres ordinaux <Q. Comme j^
Kiî il existe une décomposition de l'ensemble Z en j^ ensembles disjoints
de puissance j^l3 soit Z X^\- Désignons maintenant, pour

par Ex l'ensemble de tous les nombres
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où fê«% pour i 1, 2,..., n et a cZx. Les ensembles Ex sont évidemment

de puissance j^i pour X<Q. Je dis que

ExEfl 0 pour X<Q, fi<Q, A # /* (2)

En effet, si pcExEp9 on aurait

P P« ± *& ± *f, ±- • • ± *fo (3)

où ft<<% pour i=l,2,...,n et <%€J5^ et

où *?*</? pour i=l,2,...,m et /JcZ^.
Comme A^é/i, on a Z^Z^ — 0, donc, vu que (XcZx, /îcZ on a

« #0. Si «</3, (3) et (4) donnent:

P/j P« ± *& ± *& ±- • • ± xtn T^J^J-T xnmy

où ^4<oc<p pour t 1, 2,.. .,n, et ^</î pour i 1, 2,..., m,
ce qui contredit à la définition du nombre p$.

Si <x>p, on trouve

P« Pp ± xni ± xn% ±. • • ± xnm T *fl =F «fi T • • • T *ffl,

où ^<a pour i l,2,...,n, et rji<p<a pour t=l,2,...,m,
ce qui contredit à la définition du nombre pa.

La formule (2) est ainsi établie. Les ensembles Ex (X<Û) sont ainsi

disjoints.
Je dis qu'on a pour tout a réel

Ex(a) - Ex < Ko et Ex - Ex(a) < Xo (5)

où, généralement, H (a) désigne la translation de l'ensemble linéaire H
(le long de la droite) de longueur a. Vu la définition de la suite transfinie
(1), il existe pour le nombre réel a un nombre ordinal v<Q, tel que
a xv. Si p €Ex(a) — Ex, on a peEx(a), donc

P P0L±xèl±xîi±^'±xu + xv (6)

où £i«x pour t= l,2,...,n et <\€ZX.
S'il était a > v, il résulterait de (6) et de la définition de l'ensemble Ex

que pcEX3 contrairement à l'hypothèse que p € Ex(a) — Ex. On a donc
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oc <v. Or, l'ensemble de tous les nombres (6), où « < v est au plus
dénombrable. La première des inégalités (5) est ainsi établie.

Si p *E\ ¦— Ex(a), on a p e!5A, donc

p p*±*e1 ±*tt±---±x(n (7)

où £i<(x pour i=l,2,...,n, et oceZx-
Si oc>v, on aurait, d'après (7) et la définition de l'ensemble Ex:

p — xv eEx, ce qui donne tout de suite: peEx(xv)

contrairement à l'hypothèse que p *Ex — UA(a). On a donc oc <v et
on en déduit que l'ensemble des nombres (7) est au plus dénombrable.
La deuxième des inégalités (5) est ainsi établie.

Chacun des ensembles E\(k<Q) est donc transformé par toute translation

en lui-même, abstraction faite d'un ensemble au plus dénombrable
de points.

Posons encore E X — £ E\.

Soit, pour un nombre ordinal v<Q, p cE — E(xv)> On a donc, pour
un nombre ordinal X<Q, p — xveEx, donc

P Pa ± xtx ±- • • ± x{n + xv (8)

où ii<» pour t=l,2,...,n, et (%cZA.
Si a> v, on trouve, d'après (8) et d'après la définition de l'ensemble

Ex, pcEx, contrairement à peE. On a donc <*<v. Or, l'ensemble
de tous les nombres (8), où oc < v est au plus dénombrable. On a donc

Soit maintenant peE(xv) —E. On a donc pour un nombre ordinal
A<£>: pcEx, donc

P Poe ± x(l ± xÎ2 ±. • • ± xu (9)

où £,<<% pour i=l,2,...,n, et <xeZA d'où

2> ™ *v î>« ± ^x ± «& ±- * * ± XU - ^
où Si<» pour t l,2,...,n et occZx-

Si l'on avait <%>v, on aurait donc p — xv€Ex, d'où p — xveE,
ce qui donne j> c!?(#„), contrairement à l'hypothèse. On a donc oc < v.
L'ensemble de tous les nombres (9), où oc < v étant au plus dénombrable,

on trouve E(xv) —E<#o-
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Toute translation de l'ensemble E ne diffère donc de E que d'un
ensemble au plus dénombrable de points.

Nous pouvons évidemment adjoindre E à l'ensemble Ex sans altérer la
propriété de ce dernier (d'être de puissance 2Ro et de ne différer de ses
translations que d'un ensemble au plus dénombrable de points). X
(E -\~ Ex) ~\- £ Ex donne donc la décomposition de la droite satisfaisant

aux conditions de notre théorème qui se trouve ainsi démontré.
En modifiant un peu notre démonstration, on pourrait démontrer sans

faire appel à l'hypothèse du continu la proposition suivante :

II existe une décomposition de la droite en 2Ko ensembles disjoints de

puissance 2*° tels que toute translation transforme chacun de ces ensembles

en lui-même, abstraction faite d'un ensemble de points de puissance
inférieure à celle du continu.

Il est à remarquer que en 1932 S. Banach a démontré que si 2Ko fa,
il existe sur la circonférence un ensemble non mesurable qui est
transformé par chaque rotation en lui-même, abstraction faite d'un ensemble

au plus dénombrable de points1).

(Reçu le 15 juillet 1948.;

x) Fundamenta Mathematicae 19, p. 15.

320


	Sur une décomposition de la droite.

