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Sur une décomposition de la droite

Par WacLAw SIERPINSKI, Varsovie

Le but de cette Note est de démontrer ce

Théoréme. Si 2% — w,, il existe une décomposition de la droite en
2% ensembles disjoints de puissance 2%, tels que toute translation le long
de la droite transforme chacun de ces ensembles en lui-méme, abstraction
faite d’un ensemble au plus dénombrable de points.

Démonstration. Soit X ’ensemble de tous les nombres réels. Si 2% —
N1, il existe une suite transfinie du type 2,

Lys Lasesos Tayy Lygpnsesos Lgyo o (6< Q) (1)

w’

formée de tous les nombres (distincts) de I’ensemble X.

Nous définirons maintenant par I'induction transfinie une suite trans-
finie {p,},._o comme il suit.

Posons p, = x,. Soit maintenant x un nombre ordinal tel que 1<«
<& et supposons que nous avons déja défini tous les nombres p;, ou
f<u.

L’ensemble P, de tous les nombres

sl M i 7 e R o T

ol £f<x et &< pour ¢t =1,2,...,n (o n est un nombre naturel
quelconque) est au plus dénombrable (puisque &« <) : il existe donc des
nombres x; ¢ X— P, ; nous désignerons par p, le premier terme de la suite
(1) qui est un tel nombre .

La suite transfinie {p,},. o est ainsi définie par I'induction transfinie,
et, comme on voit sans peine, tous leur termes sont distincts.

Soit Z I’ensemble de tous les nombres ordinaux <. Comme x> =
X1, il existe une décomposition de I'ensemble Z en y, ensembles disjoints

de puissance X1, soit Z = X' Z,. Désignons maintenant, pour A<Q,
A<
par E, V’ensemble de tous les nombres

paj:x&:}:xgg i“'ﬂ:xfn ’
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ol §;<a pour ¢t =1,2,...,n et & eZ,. Les ensembles E, sont évidem-
ment de puissance x, pour A<Q. Je dis que

ExE,=0 pour A<Q, u<f, A#pu. (2)
En effet, si peE’AE“, on aurait
P=1DPy % + %, £+ 2, (3)
ou §,<ax pour ¢t =1,2,...,n et xeZ, et
p=ppte, +2,6 L£--t+2,, (4)

on 7, <p pour 1 =1,2,....,m et feZ,.
Comme A #pu, ona Z,Z,=0, donc, vu que axeZ,, feZ,, ona
o #pB. Si a<f, (3) et (4) donnent :

pp:pﬂixﬁixﬁ :‘:"'ixfnq: x’h:’: x’?z:{:”.:‘:xﬂm’

ou {;,<a<f pour t=1,2,...,n, et 5, <B pour ¢ =1,2..., m,
ce qui contredit a la définition du nombre pg.
Si «>p, on trouve

Pa=Dg 2, £, +--- Lz, F g F 2e, Foo-F 2gp»

ou <o pour 1=1,2,...,n, et 9, <f<a pour ¢t =1,2,...,m,
ce qui contredit & la définition du nombre p,.

La formule (2) est ainsi établie. Les ensembles E, (4 <) sont ainsi
disjoints.

Je dis qu’on a pour tout a réel

Ey(a) —E)< R0 et E),—E)(a)<Ro- (5)

ol, généralement, H(a) désigne la translation de I’ensemble linéaire H
(le long de la droite) de longueur a. Vu la définition de la suite transfinie
(1), il existe pour le nombre réel @ un nombre ordinal » <2, tel que
a=ux, Si peEy(a)—E,, ona pekE,(a), donc

P=1DPyt o £ & + L2 + 2, (6)

ou é,<x pour t=1,2,...,n et xeZ,.
S’il était « >, il résulterait de (6) et de la définition de ’ensemble ¥ )
que pek,, contrairement & ’hypothése que pe E,(a) — E,. On a donc
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o <w». Or, 'ensemble de tous les nombres (6), o « < v est au plus
dénombrable. La premiére des inégalités (5) est ainsi établie.
Si peE)y —E)(a), on a peE,, donc

P=Pa k% g -, (7)

ou §,<a pour t=1,2,...,n, et xeZ,.
Si a«>v, on aurait, d’aprés (7) et la définition de I’ensemble E, :

p —x,ek), ce qui donne tout de suite: pekE,(x,) ,

contrairement a ’hypothése que peE), — E,(a). On a donec « <» et
on en déduit que ’ensemble des nombres (7) est au plus dénombrable.
La deuxiéme des inégalités (5) est ainsi établie.

Chacun des ensembles E)(4<<2) est donc transformé par toute trans-
lation en lui-méme, abstraction faite d’un ensemble au plus dénombrable
de points.

Posons encore £ = X — 3 E,.
<8
Soit, pour un nombre ordinal v<£2, peE — E(x,). On a done, pour

un nombre ordinal A<Q, p — z,¢E),, donc

pzpa:txfxi”'ixfn_*'xV’ (8)

ou §;<a pour ¢=1,2,...,n, et xeZ,.

Si x>7», on trouve, d’aprés (8) et d’apres la définition de I’ensemble
E,, peE,, contrairement & peE. On a donc a <». Or, 'ensemble
de tous les nombres (8), ot & < » est au plus dénombrable. On a donc
E - E (xv) S KO'

Soit maintenant peE(z,) —E. On a donc pour un nombre ordinal
A<Q: pekE,, donc

p:paixfxixfzi'“ixfn’ (9)
ou §;<x pour t=1,2,...,n, et xeZ) d’ou
p-.xvzpﬂliwﬁixfa:}:'H:}:xfn_xv’

ou £,<x pour 1 =1,2,...,n et xecZ,.

Si ’'on avait >, on a,uralb donec p — z,ekl,, dou p—uz, eE’
ce qui donne p e E(x,), contrairement & I’hypothése. On a donc o <.
L’ensemble de tous les nombres (9), ou « <» étant au plus dénom-

brable, on trouve E(z,) —E < Ro-
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Toute translation de I’ensemble £ ne différe donc de £ que d’un en-
semble au plus dénombrable de points.

Nous pouvons évidemment adjoindre & & I’ensemble Z, sans altérer la
propriété de ce dernier (d’étre de puissance 2% et de ne différer de ses
translations que d’un ensemble au plus dénombrable de points). X =

(E+ E,)+ 2 E), donne donc la décomposition de la droite satisfaisant
1<a<@

aux conditions de notre théoréme qui se trouve ainsi démontré.
En modifiant un peu notre démonstration, on pourrait démontrer sans
faire appel & I’hypothése du continu la proposition suivante :

Il existe une décomposition de la droite en 2% ensembles disjoints de
puissance 280 tels que toute translation transforme chacun de ces ensembles
en lut-méme, abstraction faite d’'un ensemble de points de puissance infé-
rieure a celle du continu.

Il est & remarquer que en 1932 S. Banach a démontré que si 2% = y,,
il existe sur la circonférence un ensemble non mesurable qui est trans-
formé par chaque rotation en lui-méme, abstraction faite d’'un ensemble
au plus dénombrable de points?).

(Recu le 15 juillet 1948.)

1) Fundamenta Mathematicae 19, p. 15.
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