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Uber die Neumannsche Methode
zur Konstruktion von Abelschen Integralen

Von RoLF NEVANLINNA, Ziirich

Die folgenden Seiten bringen einige Ergénzungen zu den alternie-
renden Verfahren von Neumann, durch welches er eine einfache und
elegante Konstruktion der Abelschen Integrale gab (vgl. seine Darstellung
Abelsche Integrale, 2. Auflage, 1884). Die Neumannsche Methode ist
auch fiir gewisse Klassen von offenen Flichen anwendbar, die in neueren
Untersuchungen iiber die Funktionentheorie der Riemannschen Flidchen
eine wichtige Rolle spielen. Unter solchen allgemeinen Voraussetzungen
wird dann die Neumannsche Aufgabe auf eine Integralgleichung zuriick-
gefiilhrt werden, die durch das Iterationsverfahren einfach allgemein
gelost werden kann.

§ 1. Das Neumannsche Problem

1. Essei F eine geschlossene Riemannsche Fliche und « ein analyti-
scher Riickkehrschnitt, der die Fliche in zwei getrennte Teile A und A4’
zerlegt. In der Ndhe von « ziehe man in A4 einen zweiten Riickkehrschnitt
g, der ebenfalls ¥ zerlegt in zwei Teile B und B’. Der Durchschnitt 4 B
ist zweifach zusammenhéngend.

Die folgenden Ausfithrungen gelten auch unter etwas allgemeineren
Voraussetzungen :

Erstens ist es nicht notwendig, daB die zerlegenden Kurven « und f
aus je einem geschlossenen Bogen bestehen : sie konnen aus mehreren ge-
schlossenen Kurvenziigen zusammengesetzt sein. Das Durchschnitts-
gebiet A B kann hierbei mehrfach zusammenhingend sein oder sogar in
mehrere getrennte Teile zerfallen.

Zweitens sind die folgenden Uberlegungen auch fiir offene Flichen
giiltig, vorausgesetzt, daB ihre ideale Berandung I" das harmonische Mall
(Kapazitdt) Null hat. Dieser Umstand ist fiir gewisse neuere Fragen be-
treffend Abelsche Integrale auf offenen Fldchen von Bedeutung.
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2. Problemstellung. Im AnschluB an Neumann handelt es sich um
folgende Aufgabe :

Es seien a(z) und b(z) zwer in jedem Punkt des Gebietes A B definierte
Funktionen, welche harmonisch und eindeutig sind. Es soll eine in A B ein-
deutige harmonische Funktion f(z) konstruiert werden, so daf die Diffe-
renzen f(z) — a(z) = u(z) und f(z) — b(z) = v(z) im Gebiete A bzw. B
als eindeutige und beschrinkte harmonische Funktionen fortsetzbar sind.

Falls eine solche Funktion iiberhaupt existiert, so ist sie bis auf eine
additive Konstante wohlbestimmt. Die Differenz von zwei solchen Funk-
tionen ist ndmlich auf der ganzen Riemannschen Fliche F' harmonisch
und eindeutig. Eine solche Funktion ist aber konstant, sofern F ge-
schlossen ist. Ist wiederum F offen, jedoch so, daB3 ihr Rand I" von har-
monischem MaB Null ist, so gilt derselbe Schlufl vermoége der Voraus-
setzung, dal f —a und f — b in A bzw. B beschrinkt sind, oder, was
auf dasselbe hinauskommt, daf die Dirichletintegrale von f —a und
f — b, erstreckt iiber die genannten Gebiete, endlich sind.?)

§ 2. Zuriicktiihrung auf eine Integralgleichung

3. Angenommen es existiere eine Funktion f(x), welche den Bedin-
gungen des oben gestellten Problems geniigt, sollen zunéchst einige not-
wendige Bedingungen fiir die gesuchte Losung aufgestellt werden.

Wir fithren zu diesem Zweck das harmonische Mafl w,(x,2) eines

N

Randbogens z, x der Kurve &, gemessen im inneren Punkt z von 4 in
bezug auf dieses Gebiet 4, ein, d. h. diejenige in 4 beschrinkte harmoni-

sche Funktion w,, welche auf dem Randbogen =z, x den Wert 1, auf
dem komplementiren Randbogen den Wert 0 annimmt. Die Existenz
und die Einzigkeit dieser Randwertaufgabe ist durch das Dirichletsche
Prinzip und durch das Maximumprinzip garantiert, falls 4 kompakt ist.
Dasselbe gilt aber auch, wenn die Fliche F offen und nullberandet ist, in
welchem Fall 4 nichtkompakt sein kann (vgl. meine oben zitierte Note).

~~

Die analoge Bedeutung moge wg(x,2) haben fiir einen Teilbogen =, x
von f in bezug auf das Gebiet B.

Man hat dann, unabhingig davon, ob 4 und B kompakt oder nicht-
kompakt sind,

1) Vgl. hierzu meine Arbeit ,,UUber das Anwachsen des Dirichletintegrals einer
analytischen Funktion auf einer offenen Riemannschen Fliche' (Annales
Acad. Scient. Fennicae, Series A, I. Mathematica-Physica, Nr. 45, 1948).
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u(2) = [ u(y) doy(y, 2)
fiir jeden inneren Punkt z von A, also speziell auf 8, und

v(x) = gv(z) dwg(z, &)

tiir jeden inneren Punkt # von B, wo % und v die in § 1 eingefiihrten,
nach der gemachten Voraussetzung iiber die Existenz einer Lésung f
eindeutigen, in 4 bzw. B regulidren Potentialfunktionen sind.

Fiihrt man nun im letzten Integral den Wert ein:

v@e)=f—b=u+a—b= [u(y)do,(y,2)+a—0b,

so wird

v(x) = u(z) + a(x) — b(x)

= b’-(ju(y)dwa(y’z)) dwﬁ(z>x) + J; (a(z) "‘b(Z))de(z, x) s

also fiir z auf «:

u(z) = [u(y) do(y, =) + uo(2) , (1)
WO :

Uy () :éf(a(z) — b(2)) dwg(z, ) — (a(x) — b(x)) (1)
und

dp(y, @) =dﬁfwa(y,z) dag(z, x) . (1)

Die Funktion u,(x) ist gleich der Differenz von (5 — a) und von der-
jenigen in B harmonischen beschrinkten Funktion, welche auf f mit
(b — a) tibereinstimmt. Sie verschwindet also dann und nur dann iden-
tisch, wenn a — & in B eindeutig fortsetzbar ist.

Die totale Variation der Funktion ¢, welche monoton zunimmt, wenn

der Punkt y sich auf &« bewegt, so dafl der Bogen a:,\ y zunimmt, wird
(da das harmonische MaBl des ganzen Bogens « identisch gleich 1 ist)
gleich

"‘ d(p (y,2)=1,

a

unabhingig von .
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Wir haben so das Resultat :

Wenn das Problem von § 1 losbar ist, so geniigt die Funktion
u(z) = f(z) — a(x) (2)
der Integralgleichung (1) fir jeden Punkt x auf dem Bogen «.

4. Umgekehrt sei u(x) jetzt, eine beliebige Losung der Integral-
gleichung (1).

Dann existiert eine Losung f(z) des Problems von § 1, so daf in jedem
Punkt x auf « gilt

u(z) = f(z) —a(z) .

In der Tat hat die durch den Ausdruck
f(2) = a(z) + fu(z) dw,(z, 2) (3)

definierte Funktion f(z) alle in § 1 geforderten Eigenschaften. Denn die
Differenz f(z) — a(z) ist gleich derjenigen in A beschrinkten Potential-
funktion, die auf dem Rand x die Werte u(x) annimmt, und diese Diffe-
renz ist also, was verlangt wurde, im ganzen Gebiet 4 reguldr harmonisch
fortsetzbar. Zweitens liBt sich die Differenz f — b in B als eine be-
schrinkte eindeutige Potentialfunktion fortsetzen.

Um diese letzte Behauptung zu beweisen, bemerke man, daB die Diffe-
renz f — b im Durchschnittsgebiet A B als eine harmonisch regulire
Funktion gegeben ist. Wir behaupten, daB das Integral

0(E) = [ () — b)) dopz, &) , (4)

welches in B als eine beschrinkte, regulire Potentialfunktion definiert
ist, die harmonische Fortsetzung von f — b im Gebiet B gibt. Um dies
einzusehen, geniigt es nachzuweisen, daBl die Gleichheit f — b = v in
jedem Punkt des Gebietes A B besteht. Dies ist aber sicher dann der
Fall, wenn diese Gleichheit auf dem Rand « + f von A4 B in Kraft ist.
Nun ist aber offenbar v = f — & auf 8, denn v ist nichts anderes als die
mittels der Randwerte f — b auf § bestimmte, in B regulire Potential-
funktion. Also geniigt es zu zeigen, daB f — b = v auch auf dem Bogen «
gilt.

20 Commentarii Mathematici Helvetici 305



Sei also jetzt y ein Punkt auf «. Setzt man dann & = y in (4) und
filhrt man hier den Wert (3) von f ein, so wird

v(y) = § ul(z)de(z, y) + Af (2(2) — b(2)) dwp(z, y) .

Da nun u der Integralgleichung (1) geniigt, so ist dieser Ausdruck gleich
u(y) + a(y) — b(y), woraus die Behauptung folgt.

b. Das Neumannsche Problem ist so auf die Auflosung der Integral-
gleichung (1) zuriickgefiihrt : die Losungen f(z) des ersten Problems
und die Losungen u(x) des zweiten Problems entsprechen einander ein-
eindeutig, und wir haben oben die Formeln angegeben, welche die eine
dieser Losungen zu berechnen erlauben, wenn die andere Losung bekannt
ist.

§ 3. Losung der Integralgleichung
6. Wir werden jetzt die Integralgleichung

u(2) = [ uly)do(y, z) + uo(2) (A)

ndher studieren. Oben wurden « und y als Punkte einer Kurve « auf der
gegebenen Riemannschen Fliche interpretiert. Wir konnen aber die
Punkte der Kurve « mit Hilfe eines im Intervall (0, 1) verdinderlichen
Parameters ¢ darstellen und dann in (1) die Verdnderlichen x, y mit
diesem Parameter identifizieren. Ohne Bezugnahme auf die vorliegende
potentialtheoretische Aufgabe soll die Integralgleichung (A) jetzt gelost
werden, wobei wir folgende Voraussetzungen zugrunde legen :

1) wuy(x) ist im Intervallx: (0<2=<1) eine stetige oder mindestens
integrable Funktion.

2) Der Kern ist im Quadrat (0<z=<1, 0<y=<1) definiert als eine

monotone Funktion von y, so daBl fiir jedes x

1
j de(y, z) =¢@(l,z) —@(0,z)=1.

y=0

Ferner werden sich einige Stetigkeitseigenschaften von ¢ als notwendig
erweisen. Wir setzen voraus:
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3) Die partielle Ableitung ¢, (y, ), die wegen der vorausgesetzten
Monotonie von ¢ fast iiberall existiert und nichtnegativ ist, soll fiir
0=z=<1, 0=y=<1 stetig und positiv sein.

Alle Bedingungen 1, 2, 3 sind bei dem vorliegenden potentialtheore-
tischen Problem wegen der Voraussetzungen von Nr. 1 und 2 reichlich
erfiillt.

7. Mittels fortgesetzter Iteration ergibt sich aus (1) die dquivalente
Integralgleichung

1

u(z) = f(;u(y) dgmi(y, ) + u,(2) , (A%)

y==
wo der iterierte Kern ¢"t! durch die Rekursionsformel

1
P(y, x) = ow"(y,t)qu(t,x) (t=1,2,...; ¢! = @) (4)

| A

bestimmt ist, wihrend

Uy () = uo(2) + fouo(y) dd™(y, x) | (5)
mit

" (y, x) = :‘: 'y, x) .

i=1
8. Um den Grenziibergang n —>oo vorzubereiten, setze man
Mn(y) =m&x¢2(y,x) ’ mn(x)—’:mm‘p:(ysx)
fir 0<x<1. Es ist nach (4) und wegen der Voraussetzung 2)

my(y)s=me(y)=---; M,(y)=zM,(y)=---

Wir behaupten, daB
M,(y) — m,(y) >0 fir n —oo
gleichmiBig in y gilt.
In der Tat hat ¢,(y, ) ein positives Minimum m und ein endliches
Maximum M im ganzen Quadrat 0=z=<1, 0=sy=1l:

0=mEm,(y)S=M,(y)SM<oo .
Somit ist fiir jedes Wertepaar z,, z, und fiir jedes y

M = de(y,x,) m
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Nach dieser Vorbereitung schreiben wir, mit Riicksicht auf 2)

1
M. (y) — 3y, 2) = __I(Mn(y)—wf;(y,t))dw(t,x)

und fixieren, fiir ein gegebenes y, zwei Werte x;, und z,, fiir welche der
Ausdruck ¢)*'(y, x) sein Maximum bzw. sein Minimum erreicht :

¢:+1(y; xl) = Mn+1(y) ’ (p:+l(y’ xz) = mn+1(y) .

Es wird dann, unter Beachtung der obigen Ungleichung

M) — M @) = [ (M) — 93 .0) do(t,3)

= [ (M) — 53 0.0) TG dp (e,

= f (M. (y) —wZ(y,t)—M— - dep (¢, )
m
—._ﬂ‘ (Mn (y) - mn+l(y)) .
Ahnlich ergibt sich fiir die Funktion

e (y, ) — m,(y) = Io(qf; (y,t) — m,(y))do(t, x) ,

wenn r = r, gesetzt wird

1

M (9) — ma(0) = [ (#5000 — ma(9)) G2 dp ¢,

t=0

z 3 [ (9.0 —m. @) dpt,2)
=25 (M) —m, (@) -
Die Addition der erhaltenen Ungleichungen gibt
(M, (y) — m,(¥) — (M1 (y) — Mmpya(9)) 2

%(Mnﬂ(?/) - mn+1(y)) + (M”(y) o m"(y)) ’
also
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M, @y —m,, () < %;Z . (Mn(i’/) - mn(?/))

und schlieBlich

M, \(y) — my () =S¢ (M, (y) — my(y) < (M — m)
WO

= M+m<1'

9. Es ist somit M,(y) — m,(y) >0 fir n -oo, und daraus folgt
die Existenz des Grenzwerts

lim ¢} (y, x) = ¢'(y) (m < ¢'(y) = M)

gleichméfig im Quadrat 0<x<1, 0<y<1. Ferner ist

| 3y, 2) — ¢'(9) |ISM,(y) — m,(y) =" (M —m) , (6)

und gleichmaBig
@' (¢) dt .

0

lim ¢ (y, 2) = @(y) =

n > oco i

Il S

10. Wir kehren nun zu der in Nr. 7 eingefithrten Summe @"(y, z) zu-
rick und setzen

vy, 2) =y, 2) —nply) = (¢(y,2) —o(y)) .

Wegen (6) existieren die Grenzwerte

lim v} (y, ) = y,(y, *)
und

lim p*(y, 2) = y(y, )

7 >0

gleichmiBig, und es ist

(Y, 2) = E (¢"(y, 2) — o (®)) -

11. Nunmehr ergibt sich die Auflosung‘der Integralgleichung sofort.
Um zunichst eine notwendige Bedingung fiir die zu suchenden Losungen
% anzugeben, nehmen wir an, u(x) sei eine integrable Losung der Inte-
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gralgleichung (A) und somit auch der Gleichung (A’). In dem Ausdruck
() fihrt man den Wert

" = ¥ + n p(y)
ein, und erhdlt so
u(z) = uy(z) + fuo(y) av*(y, x) + nj“o(?/) dy
+ fu(y) dp(y) + fu(y) d(e"(y, 2) — (y)) -

Durch den Grenziibergang » —oo folgt dann, daB

n fuy(y) dp(y) — u(x) — fue(y) dP(y, 2) — uo(x) — [u(y) do(y) ,

woraus, da rechts eine von n unabhingige Zahl steht
1
[ wo(y) dp(y) =0 . (7)
y £ ]

Jede integrable Losung u(x) der Integralgleichung (A) genilgt der Bedin-
gung (7) und muf notwendig die Form

1
u(z) = ug(x) + § uo(y)d¥(y, ) + C (8)

y=0
haben, wo C konstant ist.

12. Umgekehrt ist jede Funktion » welche durch (8) gegeben ist,
eine Losung der Integralgleichung. Durch Einsetzen von (8) in die rechte
Seite von (A) findet man ndmlich den Ausdruck

uy(z) + C + juo )de(y, x) + ‘ff uo(t) ¥i(t, y) @uly, ) dt dy .
Hier ist

o0

1
St ey, ) dy=3 [ (eft, y) — (1) pu(y, ) dy

n=1 y=0

-3 (g7, 2) — @.(t)

Nl

= Z,(t, 2) — (9.t 2) — 9,)
und also

§ e Pult, 9) @y (y, @) di dy = fue(t) AP, 2)
— fug(t) do(t, ) +,§ uo(t) dop () -
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Das letzte Glied hat wegen (7) den Wert Null. Fiir die rechte Seite der
Gleichung (A) ergibt sich also der Ausdruck

Uy (2) + fuo(t) d¥(t, 2) + C

also nichts anderes als u(z), w.z.b.w.

13. Es gilt somit der Satz:

Seir @(y, x) eine tm Quadrat @: 0<z<1, 0<y=<1 gegebene stetige
Funktion von der Art, daf die partielle Ableitung @, (y, x) stelig und posi-
tav 18t und daf fir alle Werte 0<z<1

j‘ d(p(y, x) = ‘P(l’ x) — (P(O’x) =0 .

y=0
Unter diesen Voraussetzungen hat die Integralgleichung

1

u(x) = uo(x) + jou(y) dp(y, z) ,

y ==
wo ug(x) eime integrable Funktion ist, als einzige integrable Losung

1

u(2) = u(@) + | up(y) d¥(y, 2) + const. , (9)

y=0

wo der losende Kern W¥(y, x) durch die vm Quadrat Q gleichmdfig konver-
gente Rethe

¥y, ») = 3 (9", ) — p(®)) ®")

dargestellt wird und ¢(y) der ebenfalls gleichmdpig existierende Grenzwert

¢(y) = lim ¢"(y, )

n>oo

8¢, vorausgesetzt, daf die gegebene Funktion wuy(x) der GQleichung

1
| uo(2) dop(z) = 0
geniigt. el

§ 4. Losung des Neumannschen Problems

14. Wir gehen zuriick zu dem Neumannschen Problem. Nach den
Resultaten von § 2, 3 besitzt dieses Problem eine bis auf eine additive
Konstante eindeutig bestimmte Losung dann und nur dann, wenn die
Bedingung (7) erfiillt ist. Im AnschluB an Neumann soll nun eine dqui-
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valente, sich direkter auf die gegebenen Funktionen a und b beziehende
Bedingung hergeleitet werden.

Die folgenden Betrachtungen beruhen wesentlich auf nachstehender
Bemerkung :

Wenn die Potentialfunktion w im Gebiet A regulir, eindeutig und be-
schrinkt ist, so 18t der totale Zuwachs ihrer (nicht notwendig exndeutigen) kon-
jugierten Funktion uw auf dem Rand x gleich Null :

Falls A kompakt ist, so ist die Behauptung wegen der Eindeutigkeit
des Differentials du evident. Ist wiederum A4 nichtkompakt, so ergibt
sich die Behauptung unter Beriicksichtigung der Voraussetzung, daB die
Fliche F, auf welcher A liegt, einen Nullrand hat?).

Dieser Hilfssatz bleibt auch dann richtig, wenn man die Kurven « mit
einem System von endlich vielen, punktfremden Kurven y ersetzt, so da@
jede geschlossene Teilkurve von y ein (kompaktes oder nichtkompaktes)
Teilgebiet von 4 begrenzt, welches an die Rundkurve « grenzt.

Es ist evident, daB dieser Hilfssatz auch im Gebiet B verwendet wer-
den kann.

16. Nehmen wir wieder fiir einen Augenblick an, dal das Neumann-
sche Problem eine Losung f(z) hat. Der obige Hilfssatz ergibt dann,
wenn man ihn einmal auf die Funktion f — a im Gebiet A, das andere
Mal auf die Funktion f — b im Gebiet B — A B anwendet, die Glei-

chungen - -
fd(f—a)=[d(f—b)=0,
[+ 4 [+ 4

und man erhilt hieraus durch Subtraktion

fd(@—b)=0. (10)

Diese notwendigen Bedingungen kann man auch so aussprechen, dafl
die analytische Funktion

(@—0b)+i(@—b)

den Zuwachs Null erhilt, wenn man die Kurve « einmal durchliuft.
Da nun andererseits nach den §§ 2 und 3 das Neumannsche Problem
dann sicher losbar ist, falls die ,,Orthogonalitdtsbedingung*

fuo )de(y) =0 (11)

2) Vgl. meine Arbeit ,,Quadratisch integrierbare Differentiale auf einer Rie-
mannschen Mannigfaltigkeit, Ann. Acad. Scient. Fenn., Ser. A I. Mathematica
Physica, Nr. 1, 1941.
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besteht, so sieht man, daB diese letztere Bedingung die oben gefundene
notwendige Bedingung (10) impliziert. Tatséchlich sind diese Bedingun-
gen dquivalent, denn umgekehrt folgt die Gleichung (11) aus (10), was
jetzt bewiesen werden soll, wieder im AnschluB an die klassische Neu-
mannsche Methode, die im vorliegenden Fall noch anwendbar ist.

16. Vorausgesetzt, daBl die Bedingung (10) erfiillt ist, gilt es also
nachzuweisen, dafl auch die Gleichung (11) besteht. Da nun die Be-
ziehung

fuo ) do™(y, x) —+Iuo (%) do(y)

gleichmiBig fiir jedes x auf « gilt, so geniigt es zu zeigen, daB die Funktion

§uo ) dg™(y, ) =0 , (12)

fiir mindestens einen Punkt x der Kurve . Daf3 das Bestehen der Glei-
chung (10) diese letzte Eigenschaft zur Folge hat beweist man in leichter
Verallgemeinerung der Beweisidee von Neumann wie folgt :

17. Man konstruiere im Gebiet A B diejenige harmonische Funktion
o (z), welche auf « gleich 1, auf g gleich Null ist. Die konjugierte harmo-
nische Funktion sei w(2).

Ist nun U(z) eine beliebige, in A B eindeutige Potentialfunktion und
U ihre konjugierte Funktion, so ist der totale Zuwachs von U auf dem
Rand des Gebietes 0<w=<A1 (A<1) gleich Null, und es wird

wi%%dw—- Ld‘ﬁ:!dﬁ_—:const.

fir alle Werte 4 des Intervalls 0<A<1.
Nach dieser Vorbereitung betrachten wir die Funktionsfolge

ug(2), 0(2), u(2), 0:1(2),... ,
WO uy(2) die friihere Bedeutung (1’) hat und
v,‘(z Ju dwa(x Z) un—}—l(z):j‘vn(y)dwﬁ(y,z) (n:l, 2y- . ) . (13)
B

Es ist offenbar

z)—fuo(x " (x, 2) rn=1,2,...). (14)
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Die Funktionen v, sind alle in 4, die Funktionen u, alle in B als ein-
deutige, regulire und beschrinkte Potentialfunktionen definiert.
Wir betrachten jetzt den Mittelwert

m(, U)= [ UG da@)  (dw20)

fir alle Funktionen U =u,,v, (n =0,1,2,...).
Nach dem obigen Hilfssatz ist

m @)= Laz= [ av=0
on
W= A W=
fir 0<A<1 und fiir simtliche Funktionen U = v,, u,, v,,..., die ja

entweder in 4 oder in B eindeutig, regulidr und beschriankt sind. Dasselbe
gilt aber auch fiir die erste Funktion U = u;:

U (2) = !(a(x) — b(x)) dwg(z,z) — (a(z) — b(2)) ,

ndmlich fiir das Integral rechts, weil es ebenfalls eine in B regulire, be-
schrinkte Potentialfunktion darstellt, fiir das zweite Glied (@ — b) wie-
derum vermdge der Voraussetzung (10).

Der Mittelwert m ist also fiir jede der betrachteten Funktionen U
konstant im Intervall (0<A<1), und speziell wird

m(0, U) = m(1, U) .

Nun ist aber gemidB (13) v, =w, auf x und u, , =9, auf § (n =
0,1,...), also

m(l,u,) =m(0,v,), m(0,u,,)=m(,v,) .
SchlieBlich ist u,(z) = 0 auf g, somit m (1, u,) = 0, und folglich
m(Ad,u,) =m(A,v,) =0 0=2=<1; n=0,1,...).

Die Gleichung
0=m(l,u,) = fu,do
3

spricht nun aus, da der Mittelwert der Funktion (12), die ja nach (13)
mit u, identisch ist, verschwindet, und hieraus folgt, dafl es auf &« min-
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destens einen Punkt x gibt, wo das Integral (11) gleich Null wird. Dies

hat aber, wie in Nr. 15 gezeigt wurde, das Verschwinden des Grenz-
werts (10) zur Folge, w.z.b. w.

Zusammenfassend ergibt sich hieraus :

Das Neumannsche Problem hat dann und nur dann eine Losung, wenn
die gegebenen Funktionen a und b der Bedingung (10) gemiigen.

18. Es ist nicht ohne Interesse zu sehen, in welcher Form die Lésung
f(2) des Neumannschen Problems durch die gegebenen Funktionen a(z)
und b(z) ausgedriickt wird. Zunéchst hat man dann im Gebiet 4 B
nach Nr. 3

f2) = a(2) + fu(2) doy(z,2) .

Fithrt man hier die Werte von « (Formel (9)) und von wu4(z) (vgl. (1’)
ein, so wird, nach einigen leichten Umformungen

f2) = a(2) + f(a(z) — b(x)) dQ,(x, 2)
+ f(aly) — b(y)) d2:(y, 2) + const. , (15)
B

wo die Kerne Q, und Q, durch die geometrische Konfiguration (¥, 4, B)
allein bestimmt ist; es ist leicht, die expliziten Ausdriicke fiir diese
Kerne vermittels der harmonischen Masse w, und wg anzugeben.

Die obige Formel enthilt also, sobald die singuldren Bestandteile a
und & beliebig, jedoch so, daBl die Bedingung (10) erfiillt ist, vorgegeben
sind, die allgemeine Losung des Neumannschen Problems.

19. Dieses Resultat gestattet eine interessante Anwendung auf die
Theorie der automorphen Funktionen. Falls 2 eine von endlich oder un-
endlich vielen linearen Transformationen erzeugte Gruppe ist, die ein
Gebiet @ der z-Ebene als Fundamentalgebiet hat, so nenne ich X eine
Nullgruppe, wenn die durch Identifikation der dquivalenten Randpunkte
von G hergestellte Riemannsche Fliche entweder geschlossen ist oder
einen Nullrand hat. Mit Hilfe der Fundamentaltransformationen der
Gruppe X allein kann man nun die losenden Kerne 2,, 2, des Neumann-
schen Problems fiir @ herstellen, wobei man die Kurven « und # zum Bei-
8piel als zwei konzentrische Kreise in G wihlen kann. Die obige Formel
liefert dann, bei beliebiger Wahl der singuléren Bestandteile a und b in @,
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sobald die Bedingung (10) erfiillt ist, den allgemeinen Ausdruck fiir ein
automorphes Potential, welches die durch ¢ und b vorgegebenen Singu-
laritdten besitzt. Ist speziell das Geschlecht der Nullgruppe X' gleich Null,

und wihlt man ¢ = 0 und & als die Funktion , WO 2, ein innerer

0
Punkt von @ ist, so erhilt man aus (15) einen Ausdruck fiir den Realteil

der einfachsten, in bezug auf die Gruppe 2 automorphen Funktion. Sie
ist bis auf eine additive Konstante eindeutig bestimmt durch den Pol z,,
sofern ihr Dirichletintegral, erstreckt iiber das ganze Fundamentalbereich
@, woraus ein kleiner Kreis um den Pol z = 2, auszuschlieBen ist, end-
lich ist.

(Eingegangen den 11. Juni 1948.)
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