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Ûber die Neumannsche Méthode

zur Konstruktion von Âbelschen Integralen

Von Rolf Nevanlestna, Zurich

Die folgenden Seiten bringen einige Ergânzungen zu den alternie-
renden Verfahren von Neumann, durch welches er eine einfache und
élégante Konstraktion der Abelschen Intégrale gab (vgl. seineDarstellung
Abelsche Intégrale, 2. Auflage, 1884). Die Neumannsche Méthode ist
auch fur gewisse Klassen von offenen Flâchen anwendbar, die in neueren
Untersuchungen uber die Funktionentheorie der Riemannschen Flâchen
eine wichtige Rolle spielen. Unter solchen allgemeinen Voraussetzungen
wird dann die Neumannsche Aufgabe auf eine Integralgleichung zuruck-
gefûhrt werden, die durch das Iterationsverfahren einfach allgemein
gelôst werden kann.

§ 1. Das Neumannsche Problem

1. Es sei F eine geschlossene Riemannsche Flâche und oc ein analyti-
scher Rûckkehrschnitt, der die Flâche in zwei getrennte Teile A und A'
zerlegt. In der Nâhe von oc ziehe man in A einen zweiten Rûckkehrschnitt
/S, der ebenfalls F zerlegt in zwei Teile B und Bf. Der Durchschnitt A B
ist zweifach zusammenhangend.

Die folgenden Ausfiihrungen gelten auch unter etwas allgemeineren
Voraussetzungen :

Erstens ist es nicht notwendig, daB die zerlegenden Kurven oc und /?

aus je einem geschlossenen Bogen bestehen : sie kônnen aus mehreren ge-
schlossenen Kurvenzûgen zusammengesetzt sein. Das Durchschnitts-
gebiet A B kann hierbei mehrfach zusammenhangend sein oder sogar in
mehrere getrennte Teile zerfallen.

Zweitens sind die folgenden tîberlegungen auch fur offene Flâchen

giiltig, vorausgesetzt, daB ihre idéale Berandung F das harmonische MaB

(Kapazitât) Null hat. Dieser Umstand ist fur gewisse neuere Fragen be-

treffend Abelsche Intégrale auf offenen Flâchen von Bedeutung.
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2. Problemstellung. Im AnschluB an Neumann handelt es sich um
folgende Aufgabe :

Es seien a(z) und b(z) zwei in jedem Punkt des Gebietes A B definierte
Funktionen, welche harmonisai und eindeutig sind. Es soll eine in A B ein-
deutige harmonische Funktion f(z) konstruiert werden, so da/î die Diffe-
renzen f(z) — a(z) u(z) und f(z) — b(z) v(z) im Gebiete A bzw. B
dis eindeutige und beschrànkte harmonische Funktionen fortsetzbar sind.

Falls eine solehe Funktion ûberhaupt existiert, so ist sie bis auf eine
additive Konstante wohlbestimmt. Die Differenz von zwei solchen
Funktionen ist nàmlich auf der ganzen Riemannschen Flàche F harmonisch
und eindeutig. Eine solehe Funktion ist aber konstant, sofern F ge-
schlossen ist. Ist wiederum F offen, jedoch so, dafi ihr Rand F von har-
monischem MaB Null ist, so gilt derselbe SchluB vermôge der Voraus-
setzung, daB / — a und f — b in A bzw. B beschrânkt sind, oder, was
auf dasselbe hinauskommt, daB die Dirichletintegrale von / — a und
f — b, erstreekt iiber die genannten Gebiete, endlich sind.1)

§ 2. Zurûckîûhrung auf eine Integralgleichung

3. Angenommen es existiere eine Funktion f(x), welche den Bedin-

gungen des oben gestellten Problems geniigt, sollen zunàchst einige not-
wendige Bedingungen fiir die gesuchte Lôsung aufgestellt werden.

Wir fûhren zu diesem Zweck das harmonische MaB G>a(#,z) eines

Randbogens xx x der Kurve oc, gemessen im inneren Punkt z von A in
bezug auf dièses Gebiet A, ein, d. h. diejenige in A beschrànkte harmonische

Funktion coa, welche auf dem Randbogen xx x den Wert 1, auf
dem komplementâren Randbogen den Wert 0 annimmt. Die Existenz
und die Einzigkeit dieser Randwertaufgabe ist durch das Dirichletsehe
Prinzip und durch das Maximumprinzip garantiert, falls A kompakt ist.
Dasselbe gilt aber auch, wenn die Flâche F offen und nullberandet ist, in
welchem Fall A nichtkompakt sein kann (vgl. meine oben zitierte Note).

Die analoge Bedeutung môge coa{x, z) haben fiir einen Teilbogen x2 x
von /? in bezug auf das Gebiet B.

Man hat dann, unabhângig davon, ob A und B kompakt oder
nichtkompakt sind,

1) Vgl. hierzu meine Arbeit ,,Ûber das Anwachsen des Dirichletintegrals einer
analytischen Funktion auf einer offenen Riemannschen Flàche'* (Annales
Acad. Scient. Fennicae, Séries A, I. Mathematica-Physica, Nr. 45, 1948).
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u(z) J v>(y)dcoa(y,z)
a

fur jeden inneren Punkt z von A, also speziell auf /?, und

v(x) | v(z)da)p(z,oc)

fur jeden inneren Punkt a; von J5, wo u und i> die in § 1 eingefûhrten,
nach der gemachten Voraussetzung xiber die Existenz einer Lôsung /
eindeutigen, in A bzw. B regulâren Potentialfunktionen sind.

Fiihrt man nun im letzten Intégral den Wert ein :

v(z) / — 6 u + a — b J u(y) dcojy, z) + a — b

a

so wird
v(x) w(a;) + a(a;) —- b(x)

$($u(y)d(ooc(yJz))da)p(z,x) +$ (a(z)~-b(z))d(op(z,x)

also ftir # auf « :

u(x) $u(y) d<p(y, x) + uo(x) (1)
a

WO

und

d<p(y, x) d§<oa(y,z)d(Dp(z,x) (1")

Die Funktion %(x) ist gleich der Differenz von (6 — a) und von der-

jenigen in B harmonischen beschrânkten Funktion, welche auf f} mit
(6 — a) ubereinstimmt. Sie verschwindet also dann und nur dann iden-

tisch, wenn a — b in B eindeutig fortsetzbar ist.

Die totale Variation der Funktion q>, welche monoton zunimmt, wenn

der Punkt y sich auf & bewegt, so da6 der Bogen x9 y zunimmt, wird
(da das harmonische MaB des ganzen Bogens oc identisch gleich 1 ist)
gleich

unabhangig von x.
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Wir haben so das Résultat :

Wenn das Problem von § 1 losbar ist, so geniïgt die Funktion

u(x) f(x) -a{x) (2)

der Integralgleichung (1) fur jeden Punkt x auf dem Bogen oc.

4. Umgekehrt sei u(x) jetzt# eine beliebige Lôsung der
Integralgleichung (1).

Dann existiert eine Lôsung f(z) des Problems von § 1, so dafi in jedem
Punkt x auf oc gilt

u(x) f(x) —a(x)

In der Tat hat die durch den Ausdruck

$u(x)da>Jx,z) (3)

definierte Funktion f(z) aile in § 1 geforderten Eigenschaften. Denn die
Differenz f(z) — a (z) ist gleich derjenigen in A beschrankten Potential-
funktion, die auf dem Rand oc die Werte u(x) annimmt, und dièse Differenz

ist also, was verlangt wurde, im ganzen Gebiet A regulâr harmonisch
fortsetzbar. Zweitens làBt sich die Differenz / — 6 in B als eine be-
schrânkte eindeutige Potentialfunktion fortsetzen.

Um dièse letzte Behauptung zu beweisen, bemerke man, da8 die Differenz

/ — b im Durchschnittsgebiet A B als eine harmonisch regulàre
Funktion gegeben ist. Wir behaupten, da6 das Intégral

{z9S) (4)

welches in B als eine beschrânkte, regulàre Potentialfunktion definiert
ist, die harmonische Fortsetzung von / — b im Gebiet B gibt. Um dies
einzusehen, genligt es nachzuweisen, daB die Gleichheit / — b v in
jedem Punkt des Gebietes AB besteht. Dies ist aber sicher dann der
Fall, wenn dièse Gleichheit auf dem Rand oc + fi von A B in Kraft ist.
Nun ist aber offenbar v f — b auf (3, denn v ist nichts anderes als die
mittels der Randwerte / — 6 auf fi bestimmte, in B regulàre Potentialfunktion.

Also gentigt es zu zeigen, daB / — b v auch auf dem Bogen oc

gilt.
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Sei also jetzt y ein Punkt auf oc. Setzt man dann £ y in (4) und
fuhrt man hier dien Wert (3) von / ein, so wird

v(y) J u(x)d<p(x, y) + j (a(z) - 6

Da nun u der Integralgleichung (1) genûgt, so ist dieser Ausdruck gleich
u(y) + a(y) — b(y), woraus die Behauptung folgt.

6. Das Neumannsche Problem ist so auf die Auflôsung der
Integralgleichung (1) zuriickgefûhrt : die Lôsungen f(z) des ersten Problems
und die Lôsungen u(x) des zweiten Problems entsprechen einander ein-

eindeutig, und wir haben oben die Formeln angegeben, welche die eine
dieser Lôsungen zu berechnen erlauben, wenn die andere Lôsung bekannt
ist.

§ 3. Losung der Integralgleichung

6. Wir werden jetzt die Integralgleichung

u(x) J u(y) dq>(y, x) + uQ(x) (A)
a.

nâher studieren. Oben wurden x und y als Punkte einer Kurve oc auf der
gegebenen Riemannschen Flâche interpretiert. Wir kônnen aber die
Punkte der Kurve oc mit Hilfe eines im Intervall (0,1) ver&nderlichen
Parameters t darstellen und dann in (1) die Verânderlichen x, y mit
diesem Parameter identifizieren. Ohne Bezugnahme auf die vorliegende
potentialtheoretische Aufgabe soll die Integralgleichung (A) jetzt gelôst
werden, wobei wir folgende Voraussetzungen zugrunde legen :

1) u0 (x) ist im Intervall oc : (0 <£ x S1) eine stetige oder mindestens

integrable Funktion.

2) Der Kern ist im Quadrat (0^a:^l, O^y^l) definiert als eine

monotone Funktion von y, so daB fur jedes x

i
J d<p(y, x) (p(l, x) - ç?(0, x) 1

Ferner werden sich einige Stetigkeitseigenschaften von <p als notwendig
erweisen. Wir setzen voraus :
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3) Die partielle Ableitung q>y(y, x), die wegen der vorausgesetzten
Monotonie von ç? fast ûberall existiert und nichtnegativ ist, soll fur
O^a^l, O^y^l stetig und positiv sein.

Aile Bedingungen 1,2,3 sind bei dem vorliegenden potentialtheore-
tischen Problem wegen der Voraussetzungen von Nr. 1 und 2 reichlich
erfullt.

7. Mittels fortgesetzter Itération ergibt sich aus (1) die âquivalente
Integralgleichung

î
u{x) j" u(y) dq>n+i(y, x) + «.(«) (A')

» o

wo der iterierte Kern q>n+1 durch die Rekursionsformel

<Pi+1{y,x)= )<pi(y,t)d<p{t,x) (i=l,2,...;^ ç>) (4)

bestimmt ist, wâhrend

un(x) uo(x) + J uo(y) d0"(y, x) (5)

mit
n

0n(y, x) S <pHy,x) •

i l

8. Um den Grenziibergang n ->oo vorzubereiten, setze man

Mn(y) max^(t/, x) mn(x) min <pny{y, x)

fur 0 <J x <L 1. Es ist nach (4) und wegen der Voraussetzung 2)

Wir behaupten, da8
Mn(y) - mjy) ->0 fur w ->oo

gleichmâBig in y gilt.
In der Tat hat <pv(y, x) ein positives Minimum m und ein endliches

Maximum M im ganzen Quadrat O^œf^l, Ogjl

Somit ist fur jedes Wertepaar xx, x2 und fur jedes y

m < dg>(y,xx) < M
M ^ d<p(y,x2) ^ m
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N#eh dieser Vorbereitung schreiben wir, mit Riicksicht auf 2)

.Àif. (y) - <pny+1(y, *) j (if.(y) - <p"»(y, *)) <*?>(*> x)

und fixieren, fur ein gegebenes y, zwei Werte xx und x2, fur welche der
Ausdruck <pj+1(t/, x) sein Maximum bzw. sein Minimum erreieht :

<Pnv+1(y> xx) Mn+1(y) ^+1(y, x%) ^w+i(2/) •

Es wird dann, unter Beachtung der obigen Ungleichung

1

if,(y) - Mn+1 (y) f (M„(y) - <pny{y ,t)) d<p(t,x,)

J]L(Mn(y)-mn+1(y)).

Âhnlich ergibt sich fur die Funktion
1

9^+%> ^) - *My) J (ç»J (y, 0 - mn(y))d(p(ty x)

wenn a; ^2 gesetzt wird

mn+1(y) - mn(y) J {<p«y(y ,t) - mn(y))

- ~W

Die Addition der erhaltenen Ungleichungen gibt

(Mn(y) - mn(y)) - (Mn+1{y) - mn+1{y)) ^

^ïr(Mn+1{y) - m^iy)) + (Mn(y) - mn{y))
also
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Mn+Ay) - mn+1(y) ^ -û^ - {Mn(y) - ™

und sehlieBlieh

Mn+1(y) - rrin+M^riM^y) - m^y) ^ qn(M - m)
wo

^ M — m0^ 1

9. Es ist somit Mn(y) — mn(y) -> 0 fûr n ->oo, und daraus folgt
die Existenz des Grenzwerts

lim (fi(y, x)

gleichmàBig im Quadrat

und gleichmàBig

\im<pn(y,

<p

x)

(y)

si,
Uy) -

<p(y)

(m ^ <p

OS|,£l.

-mAy)^q

î <p'(t
J=0

{y)<M)

Femer

n-HM -

)dt.

ist

m) (6)

10. Wir kehren nun zu der in Nr. 7 eingefûhrten Summe &n(y, x) zu-
riick und setzen

n

vn(y»x) 0n(y>x) - n<p(y) ^s (^(2/, #) - ^(2/)) •

Wegen (6) existieren die Grenzwerte

limv>y(#> x) y>y(y, x)

und

lim^(^, x) f(y,x)
n->oo

gleichmàBig, und es ist
00

y>(y, x) E (<pn(y, *) - <p(y)) ¦
1

11. Nunmehr ergibt sich die Auflôsung der Integralgleichung sofort.
Um zunàchst eine notwendige Bedingung fur die zu suchenden Lôsungen
u anzugeben, nehmen wir an, u{x) sei eine integrable Lôsung der Inte-
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gralgleichung (A) und somit auch der Gleichung (Ar). In dem Ausdruck
(5) fuhrt man den Wert

ein, und erhâlt so

u{x) uo(x) + §uo(y) dWn(y, x) + n §uQ(y) dy

+ §*(v) d<p(y) + $u(y) dir+Hy, x) -
Dureh den Grenzûbergang n ->oo folgt dann, da8

n $uo(y) d<p(y) -> u(x) - §uQ(y) dW(y, x) - uo(x) - $u(y) dq>(y)

woraus, da rechts eine von n unabhângige Zahl steht

)uo(y)d<p(y) O (7)

Jede integrable Losung u(x) der Integralgleichung (A) genilgt der Bedin-

gung (7) und muf} notwendig die Form

u{x) uo(x) + uo(y) dV(y, x) + C (8)

haben, wo C konstant ist.

12. Umgekehrt ist jede Funktion u welche durch (8) gegeben ist,
eine Lôsung der Integralgleichung. Durch Einsetzen von (8) in die rechte
Seite von (A) findet man nàmlich den Ausdruck

t*o(*) + C + $uQ(y)d<p(y,x)+ SSuQ(t)Wt(t

Hier ist

n=»l y 0

2i(<PÏ+1(t,x)-<Pt(t))

Vt{t, x) - (<pt(t, x) - <pt(t))
und also

f«(*. y) <p*(y>x) dt dy J«o(0 dW(t, x)
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Das letzte Glied hat wegen (7) den Wert Null. Fur die rechte Seite der
Gleichung (A) ergibt sich also der Ausdruck

also nichts anderes als u(x), w. z. b. w.

13. Es gilt somit der Satz :

Sei q>(y,z) eine im Quadrat Q : O^x^l, O^y<Ll gegebene stetige
Funktion von der Art, dafî die partielle Ableitung (py(y, x) stetig und posi-
tiv ist und dafi filr aile Werte 0 ^ x ^ 1

J

Unter diesen Voraussetzungen hat die Integralghichung

î
u(x) uo(x) + J u{y) d<p(y, x)

y o

wo Uq(x) eine integrable Funktion ist, als einzige integrable Losung

î
u(x) uo(x)+ J uo(y)dW(y,x) + const. (9)

wo der losende Kern W(y, x) durch die im Quadrat Q gleichma/iig konver-

gente Reihe ^

dargestellt wird und <p(y) der ebenfalls gleichmaflig existierende Chrenzwert

<p(y) lim<pn(y, x)

ist, vorausgesetzt, daji die gegebene Funktion uQ(x) der Gleichung

î
J uo(x)dcp(x) 0

genOgt. i
§ 4. Losung des Neumannschen Problems

14. Wir gehen zurûck zu dem Neumannschen Problem. Nach den
Resultaten von §2,3 besitzt dièses Problem eine bis auf eine additive
Konstante eindeutig bestimmte Losung dann und nur dann, wenn die
Bedingung (7) erfûllt ist. Im AnschluB an Neumann soll nun eine âqui-
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valente, sich direkter auf die gegebenen Funktionen a und 6 beziehende

Bedingung hergeleitet werden.
Die folgenden Betrachtungen beruhen wesentlich auf nachstehender

Bemerkung :

Wenn die Potentialfunktion u irn Gebiet A regular, eindeutig und 6c-

schrànkt ist, so ist der totale Zuwachs ihrer (nicht notwendig eindeutigen) Jcon-

jugierten Funktion û auf dem Band a gleich Null :

Falls A kompakt ist, so ist die Behauptung wegen der Eindeutigkeit
des Differentials du évident. Ist wiederum A niehtkompakt, so ergibt
sich die Behauptung unter Berûcksichtigung der Voraussetzung, daB die
Flâche F, auf welcher A liegt, einen Nullrand hat2).

Dieser Hilfssatz bleibt auch dann richtig, wenn man die Kurven <x mit
einem System von endlich vielen, punktfremden Kurven y ersetzt, so daB

jede geschlossene Teilkurve von y ein (kompaktes oder nichtkompaktes)
Teilgebiet von A begrenzt, welches an die Rundkurve a grenzt.

Es ist évident, daB dieser Hilfssatz auch im Gebiet B verwendet werden

kann.

16. Nehmen wir wieder fur einen Augenblick an, daB das Neumann-
sche Problem eine Lôsung f(z) hat. Der obige Hilfssatz ergibt dann,
wenn man ihn einmal auf die Funktion f — a ira Gebiet A, das andere
Mal auf die Funktion f — b ira Gebiet B — AB anwendet, die Glei-
chungen

und man erhàlt hieraus durch Subtraktion

- 6) 0 (10)

Dièse notwendigen Bedingungen kann man auch so aussprechen, daB

die analytische Funktion
(a — 6) + i (a — b)

den Zuwachs Null erhàlt, wenn man die Kurve oc einmal durchlàuft.
Da nun andererseits nach den §§2 und 3 das Neumannsche Problem

dann sicher lôsbar ist, falls die ,,Orthogonalitatsbedingung"

o (ii)

2) Vgl. meine Arbeit ,,Quadratisch integrierbare Differentiale auf einer Rie-
mannschen Mannigfaltigkeit", Ann. Acad. Scient. Fenn., Ser. A I. Mathematica
Physica, Nr. 1, 1941.
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besteht, so sieht man, daB dièse letztere Bedingung die oben gefundene
notwendige Bedingung (10) impliziert. Tatsâchlich sind dièse Bedingun-
gen àquivalent, denn umgekehrt folgt die Gleichung (11) aus (10), was
jetzt bewiesen werden soll, wieder im AnschluB an die klassische Neu-
mannsche Méthode, die im vorliegenden Fall noch anwendbar ist.

16. Vorausgesetzt, daB die Bedingung (10) erfullt ist, gilt es also
nachzuweisen, daB auch die Gleichung (11) besteht. Da nun die Be-
ziehung

$uo(y) dcpn(yy x) -> $uo(y) d(p(y)

gleichmàBig fur jedes x auf <x gilt, so geniigt es zu zeigen, daB die Funktion

5uo(y)d<p»(y,x) O (12)
oc

ftir mindestens einen Punkt x der Kurve oc. DaB das Bestehen der
Gleichung (10) dièse letzte Eigenschaft zur Folge hat beweist man in leichter
Verallgemeinerung der Beweisidee von Neumann wie folgt :

17. Man konstruiere im Gebiet A B diejenige harmonische Funktion
(j»(z), welche auf a gleich 1, auf /? gleich Null ist. Die konjugierte harmonische

Funktion sei ëô(z).

Ist nun U(z) eine beliebige, in A B eindeutige Potentialfunktion und
U ihre konjugierte Funktion, so ist der totale Zuwachs von U auf dem
Rand des Gebietes O^co^A (A^l) gleich Null, und es wird

const.—- do) — \ dU \ dU

fur aile Werte A des Intervalls 0 ^ A ^ 1.
Nach dieser Vorbereitung betrachten wir die Funktionsfolge

wo uo(z) die friihere Bedeutung (lf) hat und

"n(*)=5un(x)dœa(z,z), un+1(z)=$vn(y)da>p(y,z) (»=1,2,...) (13)

Es ist offenbar

x,z) (»=1,2,...) (14)
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Die Funktionen vn sind aile in A, die Funktionen un aile in B als ein~

deutige, regnlâre und beschr&nkte Potentialfunktionen definiert.
Wir betrachten jetzt den Mittelwert

m(X, U) | U(z)(fà(z) (dïï^O)

fur aile Funktionen U un,vn (n 0, 1, 2,...).
Nach dem obigen Hilfssatz ist

m

fur 0 <£ A g 1 und fur sàmtliche Funktionen U v0, %, v2,..., die ja
entweder in A oder in B eindeutig, regulâr und beschrànkt sind. Dasselbe

gilt aber auch fur die erste Funktion U u0 :

«o(«) J(«(«) - 6(^)^(^,2) - (a(z) - 6(2))

nàmlich fur das Intégral rechts, weil es ebenfalls eine in B regulâre, be-
schrànkte Potentialfunktion darstellt, fiir das zweite Glied (a — b) wie-
derum vermôge der Voraussetzung (10).

Der Mittelwert m ist also flir jede der betrachteter* Funktionen U
konstant im Intervall (O^A^l), und speziell wird

m(0, 17) m(l, U)

Nun ist aber gemâB (13) vn un auf <x und un+1 vn auf p (n
0, 1,...), also

SchlieBlieh ist uo{z) 0 auf /S, somit m(l, u0) 0, und folglich

m{X,un) m(X,vn) 0 (0 ^ A ^ 1 ; w 0, 1,...).

Die Gleichung

sprieht nun aus, dafi der Mittelwert der Funktion (12), die ja nach (13)

mit un identisch ist, verschwindet, und hieraus folgt, daB es auf <x min-
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destens einen Punkt x gibt, wo das Intégral (11) gleich Null wird. Dies
hat aber, wie in Nr. 15 gezeigt wurde, das Verschwinden des Grenz-
werts (10) zur Folge, w. z. b. w.

Zusammenfassend ergibt sich hieraus :

Das Neumannsche Problem hat dann und nur dann eine Lôsung, wenn
die gegebenen Funktionen a und b der Bedingung (10) genilgen.

18. Es ist nicht ohne Interesse zu sehen, in welcher Porm die Lôsung
f(z) des Neumannschen Problems dureh die gegebenen Funktionen a (z)
und b(z) ausgedruckt wird. Zunâchst hat man dann im Gebiet AB
nach Nr. 3

f(z) a(z) + $u(x) rfewa(z, z)

Fûhrt man hier die Werte von u (Formel (9)) und von uQ(x) (vgl. (1')
ein, so wird, nach einigen leichten Umformungen

f(z) a(z) + $(a{x) - b(x)) dQ±(x, z)
a

+ $(a(y) - b(y)) dQ2(y, z) + const. (15)

wo die Kerne Qt und Q2 durch die geometrische Konfiguration (F, A,B)
allein bestimmt ist ; es ist leicht, die expliziten Ausdriicke fur dièse
Kerne vermittels der harmonischen Masse coa und cop anzugeben.

Die obige Formel enthâlt also, sobald die singulâren Bestandteile a
und 6 beliebig, jedoch so, dafi die Bedingung (10) erfûllt ist, vorgegeben
sind, die allgemeine Lôsung des Neumann&chen Problems.

19. Dièses Résultat gestattet eine intéressante Anwendung auf die
Théorie der automorphen Funktionen. Falls £ eine von endlich oder un-
endlich vielen linearen Transformationen erzeugte Grappe ist, die ein
Gebiet 0 der z-Ebene als Fundamentalgebiet hat, so nenne ich 27 eine

Nullgruppe, wenn die durch Identifikation der âquivalenten JRandpunkte
von G hergestellte Riemannsche Flâche entweder geschlossen ist oder
einen Nullrand hat. Mit Hilfe der Fundamentaltransformationen der
Grappe Z allein kann man nun die lôsenden Kerne Qx, Q2 des Neumann-
schen Problems fur 0 herstellen, wobei man die Kurven <x und fi zum Bei-
spiel als zwei konzentrische Kreise in 0 wàhlen kann. Die obige Formel
Kefert dama, bei beliebiger Wahl der singulâren Bestandteile a und 6 in G,

315



sobald die Bedingung (10) erfûllt ist, den allgemeinen Ausdruck fur ein
automorphes Potential, welches die dureh a und b vorgegebenen Singu-
laritâten besitzt. Ist speziell das Geschlecht der Nullgruppe E gleich Null,

und wâhlt man a 0 und 6 als die Funktion wo zQ ein innerer
Z Zq

Punkt von G ist, so erhâlt man aus (15) einen Ausdruck fiir den Realteil
der einfachsten, in bezug auf die Gruppe Z automorphen Funktion. Sie

ist bis auf eine additive Konstante eindeutig bestimmt durch den Pol z0,
sofern ihr Diriehletintegral, erstreckt liber das ganze Fundamentalbereich
G, woraus ein kleiner Kxeis um den Pol z z0 auszuschlieBen ist, end-
lich ist.

(Eingegangen den 11. Juni 1948.)
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