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Quelques théorémes
de géométrie différentielle globale

Par ANDRE LicHNEROWICZ, Strasbourg

Introduction

Je me suis proposé ici d’étudier, pour quelques cas simples et par des
méthodes de géométrie différentielle globale, la relation qui existe, au
point de vue de I’homologie entre un espace fibré compact £ et son espace
de base B. Au cours de ce travail, ’espace de base B sera supposé doué
soit d’une structure de variété riemannienne soit d’une structure de
variété finslerienne. Dans ce dernier cas, mes résultats m’ont conduit &
étendre & des variétés finsleriennes compactes le calcul de la caracté-
ristique d’Euler-Poincaré tel qu’il a été donné, pour des variétés rieman-
niennes, par Allendoerfer, Weil et Chern.

1. — Définition des espaces fibrés

Pour plus de clarté, nous commencerons par rappeler quelques défini-
tions et quelques résultats indispensables relatifs & la théorie des espaces
fibrés.

Considérons un espace topologique oonnexe K et soit B une relation
d’équivalence dans £ . A I'espace B = E/R quotient de E par la relation
R, nous donnerons le nom d’espace de base. Nous désignerons par p et
nommerons projection I’application canonique de K sur B correspondant
a la définition de B comme espace quotient. L’image réciproque p!(x)
d’un point z ¢ B, c’est-a-dire la classe d’équivalence de E correspondant
& z, sera dite la fibre F, associée au point x.

Supposons qu’il existe un espace topologique F et un groupe d’auto-
morphismes G de F jouissant des propriétés suivantes :

1o Tes F, sont toutes homéomorphes & ’espace F', la famille H, des
homéomorphismes d’une méme fibre F', sur F étant telle que b, k, ¢ H,,
Pautomorphisme k,%;' appartienne au groupe G.

20 Tl existe une famille de voisinages ouverts U qui recouvre B,
Fimage réciproque p!(U) étant un produit topologique. D’une maniére
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plus précise, il existe un homéomorphisme ¢,, dépendant de U, qui
applique p!(U) sur le produit topologique U XF et qui induit, pour
tout x ¢ U, un homéomorphisme de F,sur {x}xF, donc sur F, appar-
tenant a H,.

Si U et V sont deux voisinages de la famille considérée, les homéomor-
phismes ¢, et ¢, définissent par suite, pour x ¢ UNV, des homéomor-
phismes &, et k, de F, sur F tels que k,h;'eG.

Lorsqu’il en est ainsi, I’ensemble H des familles H, d’homéomorphismes
définit sur £ une structure d’espace fibré E (B, F, G, H) admettant F pour
frbre-type et G pour groupe structural ). Si G se réduit a la transforma-
tion identique, H, ne comprend qu’un seul élément et 1’espace K n’est
autre que le produit topologique BxF.

2. — Espaces fibrés différentiables

Supposons que K, B, F soient des variétés différentiables. Si E est
doué d’une structure d’espace fibré différentiable 2), la projection p, les
homéomorphismes ¢, sont eux-mémes différentiables et les fibres F, sont
des variétés différentiables plongées dans £. Dans le cas ol £ est com-
pact, la proposition suivante a été énoncée par Ehresmann :

Si1 B est compact, toute application différentiable p de E sur une variété B
de dimension n, p étant en tout point de rang n, détermine sur E une struc-
ture d’espace fibré différentiable.

Dans le présent travail, nous n’envisagerons que le cas ou E est un
espace fibré différentiable de classe ¢, (r>>3), les variétés B, F et E
étant supposées compactes et de plus orientables. Nous désignerons par
n,q et m 4+ q les dimensions respectives de B, F' et E.

I. — Les variétés riemanniennes fibrées
et la méthode des formes harmoniques

3. — La métrique riemannienne de B

Sous nos hypothéses, on peut envisager la variété différentiable B de
classe ¢”, (r>>3), comme une variété riemannienne au moins deux fois
différentiable. La métrique de B, que nous représenterons par ds%, peut
étre définie localement par une décomposition en carrés

i=n
ds% = ¥ (w;)®? (3,§,etc....=1,2,...,n) . (3.1)
i=1

1) Sur la théorie des espaces fibrés cf. Ehresmann [4], [6] et. [7] et. Chern [3].
2) Cf. Ehresmann [7].
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Il en est de méme pour la variété E, mais on peut adapter la métrique
riemannienne choisie pour E & sa structure d’espace fibré. Il est clair en
effet que 'on peut construire pour E une métrique de la forme 3)

dst, = dsy + 3 (m,)?
a1 (3.2)

(x,B,etc. ... =1,2,...,9 ou n+1,...,n4q)

A la donnée d’une telle métrique ds% correspond dans E un champ I7
d’éléments de contact & n dimensions défini localement par les équations
7, = 0 et qui est iransversal aux fibres, c’est-a-dire dont 1’élément asso-
cié & zeE ne contient aucune direction tangente & la fibre F,,. Ce
champ est deux fois différentiable. On sait qu’il existe toujours de tels
champs transversaux aux fibres.

La métrique que nous adopterons pour Z pourra donc étre définie
localement par la décomposition en carrés

i=n a=q
dsy, = ;1 (w:)* + E_l (7)? . (3.3)

4. — Formes adjointes

Considérons une variété riemannienne V, orientée, & m dimensions de
metrique a=m
2
sy = 3 (,)° . (4.1)
a=1

On sait*) que ’on peut faire correspondre a toute forme différentielle
extérieure ¥ de degré p, définie sur une telle variété, une forme de degré
(m — p) qu’on appelle son adjointe et que nous représenterons par la
notation * ¥. La notion de forme adjointe joue un role essentiel pour la
définition des opérateurs qui interviennent dans la théorie des formes
harmoniques.

L’opérateur d’adjonction * étant un opérateur linéaire, il suffit pour le
calcul de I’adjointe, de rappeler comment on construit ’adjointe d’une
forme représentée localement par le mondme

V=1 AT Aot ATy, .
L’adjointe de ¥ est alors donnée par la formule :

* ¥ = ¢ T Ao AT (4.2)

@y 8z...0p Ap+1...Cm  Ap+1 * am

8) Cf. Ehresmann [5].
) Cf. G. de Rham [11], p. 6—1.
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ou a,;a,...a,a,,,...a, constitue une permutation sans répétition de la

suite 1,2,...,m et ou ¢ désigne I'indicateur de cette permutation. On
en déduit immédiatement que pour toute forme ¥ de degré p, on a
xx Y= (— 1)Pmil) (4.3)

Nous désignerons dans la suite, par d 'opérateur de différentiation
extérieure d’une forme et introduirons®) I'opérateur adjoint de d

d* = (— 1)mP+D+1 wdx | (4.4)

Appliquons les considérations précédentes & des formes définies sur
les variétés B et E. A toute forme différentielle extérieure 2 définie sur
B, correspond une forme p! 2 définie sur £ qui est dite I'image réci-
proque de 2 et qui admet localement méme expression que 2. Cher-
chons & exprimer I’adjointe de la forme p! Q2 définie sur £ & partir de

Padjointe de la forme 2 elle-méme. A cet effet introduisons la forme
différentielle extérieure définie sur E

O=xpinl. (4.5)

La forme *1 n’est autre que I’élément de volume de B et se trouve re-
présentée localement par

*1=w1/\w2/\.../\60n. (4.6)

Les indices grecs étant considérés comme congrus & » 4+ 1,n + 2,...,
n + ¢q, la forme @ admet pour représentation locale

O=mAmA... A7, . (4.7)

Si la forme 2 est représentée localement par le mondéme

Qz whAwiaA oo A(Dip
il vient :
* Q= Eiyiy...ipipty...in Qippy N o oo AWy - (4.8)
D’autre part
210 — —_—
*plQ = Eiyip iptreenin TFL...AFT Qg N oo AQE AT A L AT
Soit
*plg—: (-——-1)(""’””(7!1/\%2/\ . ./\ﬂq)(eil.“ip ip41-..n wip_HA eos A win) .
(4.9)

5) Cf. G. de Rham [12], p. 136—137.
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On en déduit que, pour toute forme {2 de degré p définie sur B, on peut
passer de * 2 & * p!Q par la formule

*PLQ = (—1)-2e@rplx Q . (4.10)

5. — Les opérateurs d et d* pour Uimage réciproque d’une forme de B.

Si Q désigne toujours une forme définie sur la variété B, p!Q son
image réciproque sur ¥, on a manifestement

d(p* Q) = 5'(09) . (5.1)

L’équation (5.1) peut étre traduite par la ,,formule de commutation®
entre opérateurs

dpt —pld=0 . (5.2)

Cherchons & étudier, & l'aide de la formule (4.10), l'opérateur

d* p! — p' d*, appliqué aux formes extérieures définies sur B. On a
d’abord, d’aprés la définition de d*:

d* 51 0 — (_. 1)(n+q)(m+1)+1 * d * 'ﬁl 0 . (5.3)
Or en vertu de la formule (4.10)
de Pl Q = (—1)»P2d (O Ap* *x Q)
soit
dxplQ = (—1)2[dOap' + Q + (—1)2O0 rdp* » 2] .
Posons
X0 — (_ 1)(n+1) (g+1)4np [d@ A 51 * _Q] . (5.4)
Il vient ainsi d’aprés (5.2) et (5.3)
d*ﬁlg__: X0Q 4 (—1)r(P+a+D+1 & [@Aﬁld *Q] . (5.5)

Or d’aprés (4.3) et (4.4)

dx Q= (—1)Pxd*Q
et d’aprés (4.10)

@A'ﬁl ® d*0 = (_1)(n-—p+1)q * 51 a*Q .
Il en résulte, en reportant dans la formule (5.5)
d*z‘ol Q=XQ + (— 1)(n+q+1)(p+1) * %k '2',‘1 a*0 .
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Soit en vertu de (4.3), appliquée & une forme de degré (p — 1) définie
sur K,
d*plQ — prd*Q = XQ .
Ainsi Dopérateur
d*p! — pld* =X

qui fait passer d’une forme de degré p définie sur B a une forme de degré
(p — 1) définve sur K, est donné par la formule

XQ = (— 1)@ @40 5 [dO AP # Q] . (5.6)

L’opérateur X faisant intervenir d’une maniére essentielle la forme
d®, nous allons chercher & évaluer cette forme & partir des éléments de la
connexion riemannienne associée & la métrique (3.3) de E.

6. — Quelques théorémes de géométrie différentielle riemannienne

Nous appelons repére associé a un point z de K, un systéme de (n + q)
vecteurs unitaires, tangents en 2z & £ et deux a deux orthogonaux, le
systéme étant muni d’une certaine orientation. Les repeéres utilisés seront
adaptés a la forme (3.2) de la métrique, c’est-a-dire seront tels que les

7 premiers vecteurs ( Z) appartiennent & 1’élément en z du champ 77 et que

les ¢ derniers (Zx) soient tangents & la fibre F,,. Les formules de Frenet
relatives & un tel repére s’écrivent

- - -
dz= Y w, e, + X 7, e, (6.1)
i o
et
- > - - - -
j B i 8
Sia, b, ete. ... désignent des indices pouvant prendre les valeurs 1,
2,...,n + q, on a manifestement
Wap + Wy =0 . (6.3)
Nous poserons
Wap = X Vapi @; + X Vava T - (6.4)
? [+ 4
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La nullité de la torsion de la connexion riemannienne considérée se tra-
duit par les formules :

7 B

dy, = X wy; A 0; + X wyg A 7g (6.6)
] 8

7

dont les derniéres fournissent les différentielles extérieures des formes .
Le second membre de (6.5) ne devant contenir aucun terme en g\ 7y,
on notera que

yaiﬁ - 78501 s

Cela posé, cherchons a évaluer la différentielle extérieure de la forme

O =m ATA ... AT, .
On a manifestement
d@=z(——l)"“ldna/\nll\...Aga/\.../\nq (6.8)

a

ou le signe A signifie que le facteur correspondant doit étre omis dans le
produit extérieur considéré. Si ’on substitue dans (6.8), la valeur de
dm, donnée par (6.6) et tient compte de 'antisymétrie des w,,, il vient

A
d0 = 3 (—1)*Pw AW, AT A ATLA L AT,
@,j

Or
Wyj = % Yais g + ‘I? Yair P -
Il en résulte

A0 = [ 3 (X Voio) O] AT AT A ... AT,
] a

+ ¥ (~—1)°‘[§kj Vosi @5 N O] AN A L AT AL AT, . (6.9)
o 7

Considérons la forme différentielle linéaire intrinséquement définie sur la
variété E par la formule

u= 3 (X you'a) ;. (6'10)
j

o

A P'aide de la forme u, la différentielle extérieure d® peut s’exprimer par
40 = ur0O + (=12 Sypm@; A 0] AT AL ATLA L AT, . (6.11)
« ik
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La forme d@ apparait ainsi comme la somme de deux formes définies
sur E, I'une homogeéne et de degré 1 par rapport aux w,, ¢ par rapport
aux m,, ’autre homogene et de degré 2 par rapport aux w;, (¢ — 1) par
rapport aux s;,. Cherchons & quelles conditions I'une ou l'autre de ces
formes est nulle.

Pour que le second terme de d@ soit nul, il faut et il suffit que les ¢
équations

-}i Vi V5N 0 =0 (x=1,2,...,9)
’,

soient identiquement satisfaites. Or, d’aprés (6.6), ces équations ex-
priment que les équations

dnazo (a=1,2,..-,Q)
sont des conséquences des équations
m, = 0 (x=1,2,...,9)

autrement dit que le champ /7 d’éléments de contact est complétement
intégrable. Nous énoncerons.

Théoréme 1. Pour que la forme dO soit égale ¢ uA@, il faut et
il suffit que le champ II d’éléments de contact @ n dimensions soit com-
plétement intégrable. Lorsqu’il en est ainsi, il existe des parameétres locaux
BB =1,2,...,q9) tels que

Ty == aBdEB

et la métrique (3.2) de la variété E est réductible localement a la forme

dsy = g,;(x) da* da? + g,p(2) dE* d£P (6.12)

- .

dsy = g;;(x) da* dat . (6.13)

La forme @ peut alors étre représentée d U'aide des paramétres locaux par

Vexpression —
B O = VT dsindetn... ndée (6.14)

ou I' désigne le déterminant des gog.

1l résulte de plus d’une proposition d’Ehresmann®) que, dans nos
hypothéses la projection p de E sur B définit chacune des variétés inté-
grales complétes de I7 comme revétement de B.

8) Cf. Ehresmann [7], proposition 2.
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Etudions maintenant & quelles conditions la forme u est nulle. Pour
qu’il en soit ainsi, il faut et il suffit que les quantités

EY(XQ’(X (jzl,2a"'n)
(44

soient nulles, c’est-a-dire que le vecteur courbure moyenne

..;.

= X (E ywa) 6 (6-15)
j

a

des fibres ¥, considérées comme variétés plongées dans E, soit nul.
Chaque fibre F', est alors une variété minima de £ pour la métrique envi-
sagée. Il en est en particulier ainsi lorsque, pour un choix convenable du
repére, les ng quantités y,;, sont nulles: il existe alors, sur F_,q lignes
asymptotiques deux & deux orthogonales. Nous énoncerons.

Théoréme 2. Pour que la forme u soit nulle, il faut et il suffit que les
fibres F, soitent des variétés minima de la variété riemannienne E . La forme
dO est alors homogeéne, de degré 2 par rapport aux w,, (9 — 1) par rapport
auxr 7w,

Dans ce cas, nous dirons brlevement que la variété riemannienne K est
a fibration minima.

Pour que I'opérateur (5.6) soit identiquement nul, il faut et il suffit
manifestement que la forme d@ soit nulle. En réunissant les résultats des
théorémes 1 et 2, nous aboutissons ainsi au théoréme.

Théoréme 3. Pour que Uopérateur X, défini par (5.6), soit tdentique-
ment nul, il faut et il suffit que la variété riemannienne E soit a fibration
minima, le champ IT associé étant complétement intégrable.

Lorsqu’il en est ainsi, on a simultanément
dpt —pld =0 ; d*pl—pld*=0 (6.16)
et la méthode des formes harmoniques nous permettra de comparer les
nombres de Betti des variétés B et E.
II. — La méthode de représentation directe

— Cas d’un produit topologique

Consuiérons d’abord un espace fibré différentiable & fibre compacte F
qui soit un produit topologique BxF. Un point de E sera désigné par
(x, &),  appartenant & B et & & F'. Désignons par @ une forme de degré
q définie sur E et représentable en coordonnées locales par la formule
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D(x, &) =A(x, E)dEEADEEN ... Ad& (7.1)

ou £, £2%..., & désignent les coordonnées locales d’un point & de F'.

La fibre F étant compacte, cette forme @ nous permet de faire correspondre
a toute forme A définie sur E, de degré p<m, une forme 2, de méme degré,
définie sur B et telle que si C, désigne une p-chaine quelconque de B, la
cochaine

Jo= fArd. (7.2)
Cp P (Cp)
Nous désignerons par
Q=[ArD (7.3)
Fy

Popérateur qui fait, passer de la forme A & la forme 2. En chaque point
de B, la forme 2 se trouve définie par une intégration effectuée sur la
fibre F, issue de ce point.

8. — Le cas général
Considérons maintenant un espace fibré différentiable quelconque E,

a fibre compacte F'. On sait?) qu’un atlas différentiable de £ sur BXF
se trouve défini de la maniére suivante :

a) U désignant un ensemble ouvert de B appartenant au recouvrement
introduit au § 1, une carte locale est définie par un homéomorphisme
différentiable ¢, de p'(U) sur UXF.

b) Un changement de coordonnées locales est un homéomorphisme
différentiable de U xF sur lui-méme de la forme z' = z, & = f(x, &),
ou z, z’ appartiennent & U et &, &' &4 F.

Soit ¥ une forme définie sur £ qui soit partout de rang q. A cette
forme se trouve associé un champ I7(¥) d’éléments de contact & » di-
mensions défini par le systéme de Pfaff associé de V7.

Cela posé, supposons qu’il existe une forme @ de degré q, définie sur E
et qui soit partout de rang q, le champ I1(D) étant transversal aux fibres et
complétement intégrable. La fibre F étant compacte, cette forme @ nous
permet encore de faire correspondre & toute forme A, définie sur £, de
degré p<n, une forme 2 de méme degré définie sur B, la correspon-
dance étant une extension de la correspondance étudiée au § 7.

) Cf. Ehresmann [7].
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Le point 2z de E étant représenté dans une carte locale sur (z, &)
e UXF, la forme @ sera représentée, dans U XF, par une forme
@ (z, &) qui, par un changement de coordonnés locales peut étre ramenée
a la forme (7.1). Dans les mémes conditions, la forme A définie sur E,
se trouve représentée par une forme que nous noterons A(z, £). Sur le
produit topologique U XF, nous pouvons effectuer 1’opération

ﬁLM%ﬂA¢WJL

Cette opération définit sur U une forme QU), cette forme satisfaisant,
pour toute p-chaine C, appartenant & U, & la relation

f o= [ Aro . (8.1)

Cp ?1(Cp)

Soient U et V deux voisinages appartenant au recouvrement considéré
de B. Sur UNV se trouvent définies les deux formes QU et Q7).
Or, si C, désigne une p-chaine quelconque appartenant &4 UN V, on a

fArD =[o®=[om.
Cp

p1 (Cp) Cp

Il en résulte que les deux formes A7) et Q) coincident sur UNV .
Sur I’espace de base B, nous définissons ainsi une forme 2 que nous
appellerons I’mage de A par la forme @ et que nous représenterons par
la notation
Q=[ArD . (8.2)
Fg

9. — La différentielle extérieure d’une forme image

La forme @ considérée peut étre représentée en coordonnées locales
par la formule (7.1). Il en résulte qu’il existe une forme linéaire 4, dé-
finie sur E, dont la restriction aux fibres est nulle et telle que

iD= And . (9.1)

Cela posé, considérons une forme A de degré p< n, définie sur E, et
son image Q par @. Cherchons & évaluer la différentielle extérieure de 2
a ’aide de la formule de Stokes. Désignons par C,,, une p + 1-chaine
arbitraire appartenant & un voisinage U de B. Si oC,,; désigne sa fron-
tiére, il vient d’aprés la définition de la forme image:

Q= [ ArD. (9.2)

0Cp+1 p1(@Cp+1)
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Or p(dC,,,) n’est autre que la frontiére de p(C,,,). En vertu de la
formule de Stokes, on a donc

[ o= (do
0Cp+1 Cp+1
et
j AAND = j' d(AnD) .
p1(0Cp+1) 1 (Cp+v)

On en déduit en vertu de (9.1) et (9.2):
jd!): f [dA + AnA]r @ .

Cp+1 21 (Cp+1)

Cette égalité ayant lieu quel que soit C,,, appartenant & U, il en résulte
que

Q= [ [dA+ AnA]rn D . (9.3)
Fg
Nous énoncerons :

Théoréme. Si Q est 'image par @ de la forme A, sa différentielle exté-
rieure df2 est I'image par @ de la forme

dA+ in A

ou la forme linéaire A est définie par (9.1).

10 — Le théoréme de représentation

Conformément & la terminologie habituelle, nous dirons qu’une forme
¥, définie sur une variété V, est fermée si sa différentielle extérieure est
nulle. Nous dirons qu’elle est homologue a zéro (~0) si elle est la diffé-
rentielle extérieure d.= d’une forme définie sur V. Sur les formes fermées,
de degré déterminé p, I’addition définit une structure de groupe abélien
qui admet pour sous-groupe le groupe de celles des formes qui sont ~0.
Leur groupe quotient est le groupe de cohomologie H,(V) de la variété
V, 'anneau des coefficients étant I’anneau des réels.

Cela posé, supposons la forme @ fermée. Si

Q=(Ar® (10.1)
Fyg
il vient alors
dQ = [dArD . (10.2)
Fz .

De plus, si 'on prend 4 =1, la formule (10.2) donne
diy 2] =0.
[ 2]
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Soit j' & = const.
Fg

constante que nous supposerons non nulle 8). Réduisons-la par exemple
a 'unité en multipliant @ par une constante. Si 2 est une forme quel-
conque définie sur B, I'image de p! Q

fprQne
Fg

n’est alors autre que la forme Q2 elle-méme.

Ainsi, d’aprés (10.2), les opérateurs de différentiation extérieure et
d’image sont permutables. L’'image d’une forme fermée sur E est une
forme fermée sur B ; I'image d’une forme ~0 sur E est une forme ~0
sur B. De plus toute forme 2 fermée, définie sur B, peut étre considérée
comme I’image d’une forme p'2 fermée, définie sur E. — Nous pouvons
donc énoncer

Théoréme. S’il existe une forme @ fermée, définie sur K, de degré et
rang q, telle que le champ II1(D) transversal aux fibres soit complétement
intégrable et que

j@¢o
Fy

la formule (10.1) définit une représentation du p°-groupe de cohomologie

H,(E) sur le p°-groupe de cohomologie H,(B), [p<n].

II1. — Applications

11. — La variété riemannienne E est a fibration minima

Donnons-nous, dans ’espace £, un champ II d’éléments de contact
& n dimensions transversal aux fibres et deux fois différentiable. Sup-
posons E doué d’une structure de variété riemannienne fibrée telle que
le champ précédent soit associé & la métrique ; la forme définie sur £

O=xplxl (11.1)

est de degré et rang ¢ et le champ considéré n’est autre que le champ
II(@) défini par cette forme.

Supposons le champ IT complétement intégrable et la variété riemannienne
E a fibration minima.

%) En particulier, F, n’est pas homologue & zéro sur E.
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En vertu du théoréme 3 du paragraphe 6, la forme @ est alors fermée
et nous pouvons appliquer notre théoréme de représentation en prenant
® = @. L’opérateur

Q=§Ar06
Fgp

définit ainsi une représentation de H_(E) sur H,(B). Nous pouvons
donc énoncer :

Théoréme 1. 8¢ la variété riemannienne fibrée E est a fibration mi-
nmima, le champ II associé étant complétement intégrable, on a, entre les
nombres de Bettv b,(E) et b,(B) de Uespace fibré et de l'espace de base, les
wnégalités ’

b,(B)<b,(E) (p=0,1,...,n). (11.2)

La théorie des formes harmoniques permet de retrouver ce résultat par
une voie moins directe, mais assez suggestive. On sait®) qu’une forme
est dite cofermée ou cohomologue & zéro si son adjointe est fermée ou
homologue & zéro. Une forme & la fois fermée et cofermée est dite har-
monique. Chaque classe d’homologie des formes différentielles fermées, dé-
finies sur une variété, contient exactement une forme harmonique.

Cela posé, dans les hypothéses du théoréme précédent @ est fermée.
Or elle est cofermée puisque son adjointe

pl*x1

qui n’est autre que I'image réciproque de 1’élément de volume de B, est
toujours fermée. Ainsi les variétés riemanniennes fibrées considérées sont
les variétés a forme @ harmonique.

L’opérateur X étant nul, il résulte des formules (6.16) que toute forme
harmonique sur B a pour image réciproque une forme harmonique sur E.
On retrouve ainsi les inégalités (11.2). On sait de plus que toute forme 2,
définie sur B, peut étre décomposée, d’'une maniére et d’une seule, en
une somme d’une forme homologue & zéro, d’une forme cohomologue &
zéro et d’une forme harmonique sur B

‘degl+d*g2+gh . (11.3)
On en déduit
PR=dpQ +d*p ' Q, +p' 2, (11.4)

%) Pour tout ce qui concerne la théorie des formes harmoniques cf. Hodge [8] et G. de
Rham [11] et [12].

284



ce qui constitue la décomposition canonique de la forme p! 2 définie sur
E. Au théoreme 1 correspond ainsi, du point de vue de la théorie des
formes harmoniques, le théoréme suivant

Théoréme 2. Si la variété riemannienne fibrée E est & forme @ harmo-
nique, toute forme harmonique sur B a pour image réciproque une forme
harmonique sur E. A la décomposition canonique d’une forme 2 définie sur
B correspond, par vmage réciproque, la décomposition canonique sur E de
pt Q.

On notera que si £ est une forme fermée, non ~0 sur B, son image
réciproque ne peut étre ~0 sur £. Si Q2 est harmonique sur B, il en est
de méme de *; par suite p1* 2, *pl*xQ et @ Ap! 2 sont har-
moniques sur ¥ .

12. — Cas ou le premier groupe de cohomologie relative de E est nul

Introduisons la notion de groupe de cohomologie relativement & un
champ I complétement intégrable. Nous dirons qu’'une forme A,
définie sur E, est II-fermée st sa différentielle extérieure est égale & celle
d’une forme s’annulant sur /7. Nous dirons que la forme A est I7T-homo-
logue a zéro si elle différe de la différentielle extérieure d=5 d’une forme
définie sur & par une forme s’annulant sur /7. Il est clair que toute
forme I7-homologue & zéro est aussi /I-fermée. Par suite, sur les formes
II-fermées de degré déterminé p, l'addition définit une structure de
groupe abélien qui admet pour sous-groupe le groupe de celles des formes
qui sont I7-homologues & zéro. Leur groupe quotient est le groupe de
cohomologie H,(E,II) de la variété E, relativement au champ II.

Plagons nous dans les hypothéses suivantes
a) Il existe un champ II transversal aux fibres complétement intégrable.

b) Le premier groupe de cohomologie H,(E, II) relative & II est nul.

Le champ I7 étant associé & une métrique ds3,, il résulte du théoréme 1
du paragraphe 6 que l'on a
d@ = pun 0@ (12.1)
ou la forme linéaire u satisfait & la relation
dun®=0 (12.2)

qui se déduit immédiatement de (12.1) par différentiation extérieure.
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D’aprés (12.2) la forme p est /I-fermée. Elle est par suite /7-homologue
& zéro et il existe une fonction f définie sur £ telle que

UNO =dfrO .
Soit
de = dfn O . (12.3)
Introduisons la fonction
@ = exp. (—f) .
Il vient ainsi
dp@) =dpnr® + ¢dO =0 (12.4)

et la forme ¢ @ est une forme fermée, de degré et rang ¢, dont le champ
associé, transversal aux fibres, est complétement intégrable. Il résulte
ainsi du théoréme de représentation 1’énoncé suivant :

Théoréme. S Uespace fibré K admet un champ d’éléments de contact a
n dimensions deux fois différentiable, transversal aux fibres, complétement
tntégrable et st H, (B, II) est nul, on a les inégalités

b,(B)< b, (L) p=20,1,...,n) . (12.5)

On peut encore remarquer que si 'on substitue & la métrique initiale ds;
de l’espace E la métrique

£ = ds3 + @' (ds — ds%) (12.6)
a la forme @ se trouve substituée la forme fermée
O0=90,

qui est harmonique pour la nouvelle métrique. Ainsi, avec la métrique
(12.6), la variété riemannienne fibrée £ est & forme @ harmonique et
les résultats du théoréme 2 du paragraphe 11 lui sont applicables.

13. — Cas ou les fibres sont des sphéres

Nous supposons dans ce paragraphe que la fibre type de £ est une
sphére S, et que les sphéres fibres peuvent étre orientées continiment. 11
résulte d’une proposition de Leray!?) que dans ce cas les nombres de
Betti de E sont inférieurs ou égaux & ceux du produit topologique BXF.

10) Cf. Leray [9].
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Nous allons établir la proposition suivante:

Théordme. 8i la variété riemannienne fibrée E admet pour fibre une
sphére S, (g=n — 1) orientée contindiment et si elle est & forme @ harmo-
nique, les nombres de Betti de E sont ceux du produit topologique B X8,.

En effet désignons par

"+ b (B)t* 1 ...+ b, (B)t"P ...+ b, (B)t+1
et par

t2 4 1
les polynémes de Poincaré de B et S,. En effectuant leur produit, on ob-
tient, d’apres la proposition de Leray, un polynome qui majore le poly-

néme de Poincaré de E. Il en résulte les inégalités :

a) pour q>n

bz)(E) < b,(B) (p=0,1,...,n)
b,(E)=0 p=n+1,...,9—1) z (13.1)
by(E) < b, o(B) P=q,....,n +9q)

b) pour g =mn,n—1
bz)(E)<bp(B) (p=20,1,...,9—1)
b?(E) <1+ bq(B) (p=gq,n) (13.2)
b,(E) <b,(B) (p=n+1,..,n+7q)

Or la forme @ étant harmonique, on a, d’aprés les résultats du para-
graphe 11, les inégalités

b,(B) < b,(E) (p=0,1,...,m) . (13.3)

Dans le cas (a), les inégalités (13.3), jointes au théoréme de dualité, en-
trainent 1’égalité dans (13.1). Dans le cas (b), on notera que, @ étant har-
monique, il existe une forme de degré ¢ harmonique sur £ qui n’est pas
Iimage réciproque d’une forme harmonique sur B. Il en résulte que
I'égalité est nécessairement réalisée dans (13.2) et le théoréme est dé-
montré.

14. — Les espaces fibrés F'7 associés & une variété riemannienne

Désignons par B une variété riemannienne satisfatsant aux hypothéses
des paragraphes 2 et 3.
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La théorie des variétés riemanniennes conduit naturellement ) 3
associer & B des espaces fibrés " admettant B pour espace de base et

définis de la maniére suivante :
-> > -> >
Soit (x,,,1,,...,1,) unrepere de B c’est-a-dire un systéme de n vec-

teurs unitaires d’origine z ¢ B, deux a deux orthogonaux, tangents & B.
Etant donné un entier » (1<{r<n), considérons la classe de tous les
repéres pour lesquels le point « et les r vecteurs [,,1,,...,[. sont iden-
tiques. Ces classes de repéres définissent sur B, avec la topologie natu-
relle, un espace fibré, que nous désignerons par F. Ainsi Uespace FT
est Uespace fibré de tous les ensembles ordonnés de r vecteurs unitaires de B,
deux a deux orthogonaux. Sa fibre admet pour dimension

nn—1)—n—rn—r—1)
q= B

On notera que F'Y n’est autre que I'espace fibré des vecteurs unitaires
tangents & B et ™ l'espace fibré fondamental de B, c’est-a-dire I’es-
pace fibré défini par tous les repéres de B.

Nous ferons dans ce paragraphe, les conventions suivantes relatives
aux indices

t,7,k,l=1,2,...,m; A, B=1,2,...,r; I, J=r+1,...,n.

Ecrivons pour B les formules fondamentales de la géométrie rieman-
nienne : les formules de Frenet :

> -
dx == 2 wi li (14.1)
— ) >
)
> -
relatives au repére (xz,l,,1,,...,1,) introduisent, sur ™, n(n 4 1)/2
formes de Pfaff satisfaisant aux équations de structure
dwi == 2 wij/\ 0)5 (14.3)
i
do,; = kE Wi A 0 + 2y (2 + 24 =0) (14.4)
ou les formes
Q=3 By oph o (14.5)

k,1)
sont les formes de courbure.

11) Cf. par exemple l’excellent exposé de Chern [3], p. 20—24.
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Cela posé, donnons-nous un espace ™ et considérons les formes w,; .

En un point de ", par une substitution orthogonale conservant
-> > -

(, 1, 1,,...,1,), ces formes se transforment selon les formules

_ ) _ J’
Wyp= Wyrpgr ; Wy = 2, A7 w40 g
7

ou les A7 sont les coefficients de la substitution orthogonale. Il en résulte
que la forme quadratique

dsiin = 3 (0 + X (04) (14.6)

1 (4,%)

définit sur F" une métrique riemannienne adaptée o sa structure d’espace
fibré. Les q formes w,; jouent ici le rdole des mx, de la théorie générale.
Or d’apres (14.4), il vient

dei: EwAkAwk,-+.QM (14.7)
k

et le second membre de (14.7) ne contient aucun terme en w,;. On en
déduit le théoréme suivant.

Théoréme 1. Tout espace F' associé a une variété riemannienne,
peut étre doué d’une structure de variété, riemannienne fibrée telle que les
fibres sotent des variétés minima plongées dans F.

La forme 0= IT o,
(4,9)
admet pour différentielle extérieure
d0 = X642, I wp;

4,1 (B,i)+(4,%)
ou l'indicateur ¢,; & la valeur 4-1. La forme @ est harmonique si
‘QAi =0
c’est-a-dire si
RAi,kl =0 .
Il en résulte 1’énoncé suivant :

Théoréme 2. Tout espace FM, associé a une variété localement eu-
clidienne, peut étre doué d’une structure de variété riemannienne fibrée a
forme @ harmonique.
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Dans le cas oit 7 = 1, la fibre est constituée par une sphére S,_, que
I’on peut orienter contintiment et le théoréme du paragraphe 13 s’applique.
11 résulte ainsi du théoréme 2.

Théoréme 3. L’espace des vecteurs unitaires tangents a une variété lo-
calement euclidienne B (compacte, orientable), d n dimensions, admet pour
nombres de Betty ceux du produit topologique B X S

n—-1°

Au lieu d’introduire sur B la connexion riemannienne associée & la
métrique ds}, on peut considérer B comme un espace admettant une con-
nexion euclidienne avec torsion compatible avec la métrique de B. Les
formules fondamentales (14.1), (14.2) et (14.4) ne sont pas modifiées
et, au second membre de (14.3) seulement, apparaissent les formes de
torsions 2; qui ne peuvent jouer aucun roéle dans notre théorie. Il en
résulte que les théorémes 2 et 3 sont encore valables si B, au lieu d’étre locale-
ment euclidien, est un espace @ connexion euclidienne a ,,parallélisme ab-
solu®, c’est-a-dire sans courbure. Des résullats analogues sont encore va-
lables st B est une variété hermétique ?) sans courbure mais pouvant avosr
une torsion (non Kdihlerienne).

IV. — Quelques théorémes de géométrie finslérienne globale

15. — L’espace fibré FWV associé a une variété finslérienne
Désignons par V une variété finslérienne & n dimensions compacte, de

classe C?(s>3). Si x désigne un point de V, la métrique de V s’ex-
prime par rapport aux coordonnées locales («*) de = par la formule

ds® = L?(«t, da?) , (15.1)

ol L est une fonction positivement homogéne et du premier degré des
variables dzt.

Nous conviendrons d’appeler repére associé a un pornt x de V un systéme
de » vecteurs unitaires dans (15.1), tangents en z & V et deux & deux
orthogonaux, le systéme étant muni d’une certaine orientation. On
définira comme pour une variété riemannienne les espaces fibrés F'"
admettant ¥V pour espace de base. Nous nous intéressons particuliére-
ment ict @ Uespace FV, a (2n — 1) dimensions, des vecteurs unitaires
tangents a V.

Soit Tun vecteur unitaire tangent en « & V. Convenons d’attacher a

- >

>
tout élément linéaire (x, I) de ¥V un repére (z,1l,,,,...,1,); les compo-

12) Cf. par exemple Chern [2], p. 109—113.
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- -
santes de [ par rapport & ce repére seront désignées par I, ; le vecteur !
étant unitaire, ses composantes satisfont a la relation

S )r=1. (15.2)

Si 'on désigne par 0; les composantes du vecteur dl par rapport au

repére considéré, il vient N

-
dl= X 6,1, (15.3)
et les formes de Pfaff 0, satisfont & la condition
>1,6,=0. (15.4)

16. — Les formules fondamentales de la géométrie finslérienne

Dans la suite de ce travail, nous utiliserons les notations classiques
d’E. Cartan pour la géométrie finslérienne. Nous ferons essentiellement
usage de la méthode du repére mobile et nous sommes ainsi amenés &
traduire les formules données par E. Cartan, qui sont généralement
écrites a ’'aide des coordonnées locales et non & 1’aide des composantes
relatives au repére mobile.

Les formules de Frenet > -
2 =3 w,l, (16.1)
i

(]
d i =X w5l (054 0;=0) (16.2)

7

-> >

relatives au repére (x,[,,l,,...,1,) introduisent » formes de Pfaff w, et
n(n — 1)/2 formes w,;;. Celles-ci appartiennent au dual de I’espace vec-
toriel tangent & ¥V et peuvent par suite étre exprimées par des combi-
naisons linéaires des formes w; et 0,. De plus d’aprés (15.3) et (16.2)

\

>

les composantes 6, du vecteur dl dépendent des variations dl; des compo-
>

santes de ! et de la rotation infinitésimale du repére selon les formules

Bi - dlt + E lj wﬁ . (16.3)
)

Les composantes w; et w,; du déplacement infinitésimal du repére satis-
font aux équations de structure

do; = 3 o Aoy + 2, (16.4)
k

doy; = X g A 0 + Qu L2y+82,,=0). (16.5)
k
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Les formes quadratiques 2, et 2,; définissent respectivement la torsion
finslerienne et la courbure finslérienne de V. Par les formules

Q, =3 Ay ;A0 (16.6)
ik

-Qij :5 Si:‘,kl 0 A0, +k§l: P.';,kz w, A0, +k2t Rz‘j,kl WA 0w, (16.7)

elles permettent de définir quatre tenseurs, un de torsion et trois de
courbure. D’aprés (15.4), le tenseur de torsion A4,;, et les deux tenseurs
de courbure S;; ,; et P, ,;, sont astreints aux conditions

Aijo E % lk A‘i)'k = O (16.8)
Sii,koz§ LSiiwe=0; Piyu= 51.: LPiw=0. (16.9)

Nous dirons que la variété V est une variété de Berwald. si le tenseur S,; 4,
est 1dentiquement nul.

Cette propriété est équivalente & la suivante : on peut faire, sur ’espace
euclidien, la carte des éléments linéaires issus d’un point de maniere que
P’angle de deux éléments linéaires infiniment voisins soit conservé ; la
métrique angulaire de V est, comme dans 1’espace euclidien, de courbure
constante égale a 1.

En prenant la différentielle extérieure des deux membres des équa-
tions (16.4) et (16.5), on obtient les identités qui généralisent, en géo-
métrie finslérienne, les identités de Bianchi. Il vient ainsi

dQ; = 3 (i N wg — Qi A 0) (16.10)
k
dQ;; = X (Queh 05 — Qi A 0y) . (16.11)

k

17. — Changement de repére

~>
Nous avons convenu d’attacher a chaque élément linéaire (z,1) de

- > > -
V un repére (z,1;,,,...,1,). Le choix du repére ainsi associé & (x,1)

est arbitraire sous les conditions de continuité et de différentiabilité. Ce
choix étant fait, on peut effectuer la transformation :

> ->
li=X A, (17.1)
j
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ou les 4, sont les éléments d’une matrice orthogonale propre d’ordre ».
Les A,; sont, bien entendu, des fonctions différentiables jusqu’a un ordre
suffisant des coordonnées locales de V. Les différents éléments intro-
duits se transforment alors selon les lois classiques. On a ainsi notamment

j

lézzAiilj 5 ea{:E_Aﬁo
j j

‘Q'c{,j = :‘:l Aik An th .

->
Il est souvent commode d’adopter pour repére attaché a (z, 1) un re-
- -
peére tel que le vecteur [, coincide avec le vecteur ! considéré. Si nous
convenons que, dans la suite, un indice grec n’est susceptible que des

valeurs 1,2,...,n — 1, on a pour ce choix particulier du repére mobile

l,=0, 1, =1; 6,=0w,, 0,=0. (17.2)

18. — Les différentielles extérieures des formes 6;.

11 est facile & I’aide des formules (16.3) et (16.5) d’évaluer les différen-
tielles extérieures des formes 6; qui jouent un réle important dans la
suite. De (16.3) on déduit par différentiation extérieure

do; =X 0,7 w;; + X ;(dw;; — % Wi A ©;)
i ]

soit en vertu de (16.5)
dei = E w”‘/\ Oj + 'Qoi (18.1)

i
ou I'indice 0 désigne, selon la convention classique, la multiplication con-

>
tractée par le vecteur I. En explicitant 2,; dans (18.1) et tenant compte
de (16.9), il vient

40, =3 w;;A0; + 3 Poy gy 070 + X Ryy g h 0y . (18.2)
k,l k,l

j

Il résulte des équations (18.2) que pour que le systéme

801t complétement intégrable, il faut et il suffit que le tenseur R, ,, soit identi-
quement nul.
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19. — La forme ®,.
Considérons la forme définie sur F’ et représentée localement, par
rapport aux repeéres considérés par 1’expression

¢0:28 .ineill\eizl\.../\o- l

in-y i”

(19.1)

i 1'2 .o
ou 4y, ts,...,%, est une permutation quelconque de la suite 1, 2,...,n
et ou ¢ est I'indicateur de cette permutation. Par un changement de re-
pére, le second membre de (19.1) se trouve multiplié par le déterminant
| 4;5] qui est égal & 4 1. Par suite la forme @, est bien une forme
intrinséquement définie par (19.1) sur 'espace fibré F.

Cherchons & évaluer la différentielle extérieure de @,. Pour abréger
- ->
les calculs, choisissons des repéres tels que le vecteur 7, coincide avec [.

Avec un tel choix des reperes, @, se réduit a

¢o:(n—"1)!61,\02/\.../\ 07’&—1 (19.2)
et il vient

A, = (n — 1)1 3 (— 1)*1d, A O A Oy Ave A B A...AO,_, .
Substituons & df, sa valeur tirée de (18.2). Il vient ’expression commode
dd, = [%j (%j Py, 1a) 03] A Dy +
+ ¥ (— 1)1 [5 Roo 1 @i A ] A O A OgA .. .A’(;a/\ oon0,_; . (19.3)
« .

Il est d’ailleurs facile de trouver une expression de d®, valable quels que
soient les repeéres utilisés. On a en effet d’aprés (18.1)

A, = (n — 1)1 5 (— 1% Q0 A Oy A Oy Avr AO A A O,
soit «

APy = (n — 1) X €4 0. an—12pay N Oy A Oy Ao A By, .

On en déduit pour d®, I’expression indépendante des repéres choisis

n—1
2 e siliz""in

dd, = Q.. A0

A...ANDO

indy iy in- ° (19.4)

De (19.3), il résulte que pour que la forme D, soit fermée, il faut et il suffit
que les deux conditions sutvantes soient satisfaites.

ROi,kl == O ’ (19.5)
E POl,kl - O . (19.6)
!
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La condition (19.6) est d’ailleurs équivalente &
Ay o=0 (19.7)

ou A, ; désigne la dérivée covariante du vecteur 4, déduit par contrac-
tion du tenseur 4,;; de torsion.

20. — Les variétés finslériennes a forme @, fermée.

Nous nous proposons d’établir le théoréme suivant :

Théorédme. Si une variété finslérienne V d n dimensions est telle que les
deux tenseurs Ry; ., et Ay o soient nubs

1° Les nombres de Betti de Uespace FV des vecteurs unitaires tangents a V
sont égaux a ceux du produit topologique V X8, _;.

2° La caractéristiqgue d’ Euler- Poincaré de V est nulle.

1° Sous nos hypothéses, la forme @,, de degré et rang (n — 1) d’aprés
(19.2), est fermée. Le tenseur R, ,, étant nul, le systéme 0, = 0 est

complétement intégrable. Si I'on adopte des reperes tels que le vecteur
-> ->
l, coincide avec I, on peut douer l'espace F de la métrique rie-

mannienne définie localement par

a=n—1

cw=§ﬁmﬁ+zimv (20.1)
=1 o=

3 désignant un point de W il existe sur F*) des paramétres locaux z¢,
&* tels que la métrique (20.1) puisse localement se mettre sous la forme

ds? = g,,(3) do’ da’ + g,p(3) dE* dEP . (20.2)

Pour cette métrique, la forme @, ne différe que par un facteur constant
de I’élément de volume de la fibre et I'intégrale de @, étendue & la fibre
ne peut étre nulle. En particulier @, n’est pas homologue & zéro sur .
Le champ II(®,) associé & la forme @, étant transversal aux fibres et
complétement intégrable, la forme @, satisfait aux hypothéses du théo-
reme de représentation. Il résulte donc de ce théoreme, les inégalités

b (V)<b,(FY)  (p=0,1,...,m).
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D’autre part les fibres étant des sphéres que I’on peut orienter continf-
ment, I’inégalité de Leray s’applique. Enfin la forme @, qui n’est pas ~0
sur ) a elle-méme pour image, dans la représentation, une forme identi-
quement nulle. La premiére partie du théoréme est donc établie.

2° Etant donné un point x,de V, donnons-nous au voisinage de x, un
-
champ continu de vecteurs unitaires ! qui est éventuellement singulier

en z,. Désignons par 8 I’hypersurface géodésique tracée dans V, de centre
z, et de rayon s arbitrairement petit. En chaque point de 8, le champ

-
considéré définit un vecteur I; par suite & S correspond dans F une

variété image 2'a (n — 1) dimensjons. D’apres la formule de Kronecker,
Pindice I du champ en x, a pour expression, avec une orientation con-
venable de X

= A,,_li: (n -—01)!

ou A, _, représente 'aire de I’hypersphére euclidienne de rayon 1 et de

dimension (n — 1), soit
n
..
A, = 2 (20.3)

On en déduit

I= np(g) !qz, . (20. 4)

272(n —1)!

Cela posé, la variété V étant compacte, on peut définir sur V un champ
continu de vecteurs n’admettant qu'un nombre fini de points singuliers
Zy, Z3,. .., Z,,. Entourons chacun de ces points singuliers par une hyper-
sphere géodésique de rayon ¢ arbitrairement petit. Le champ de vecteurs
aux points de ¥ non contenus & l'intérieur de ces hypersphéres géodési-
ques définit dans F* une chaine C, de bord 9C, . De (20.4) on déduit

()

2n2(n-—~1

fooa®o=Li+L+-- -+ 1,

oun I,,1,,...,1, sont les indices du champ aux points z,, Z,,..., Tp-
Comme il est bien connu, la somme de ces indices est égale & la caracté-
ristique d’Euler-Poincaré y(V) de la variété V. Il en résulte

296



2 (V) = ) fcp (20.5)

2n2 n—1)! don
Or, s1 la forme @D, est fermée, la formule de Stokes donne

| @, _jdcbo_o

dcn

ce qui démontre notre théoréme.

A la connaissance de I'auteur, ce théoréme est nouveau méme dans le
cas trés particulier des espaces de Minkowski (espaces pour lesquels les
deux tenseurs R; ;; et A, sont nuls). Il en résulte en particulier gu’il
ne peut exister de métriqgue de Minkowskr partout réguliére sur une sphére
de dimension paire, ce qui constitue la généralisation d’un résultat clas-
sique sur les métriques localement euclidiennes.

21. — La forme 2 de courbure totale

La seconde partie du théoréme précédent rappelle la généralisation
donnée par Chern?), en géométrie riemannienne de la formule classique
de Gauss-Bonnet. Nous nous proposons de montrer qu’une telle générali-
sation peut aussi étre obtenue en géométrie des variétés de Berwald.

Soit V une variété finslérienne satisfaisant aux hypothéses du para-
graphe 15 et de dimension n = 2k paire. Considérons la forme de degré =»
définie sur F*) par ’expression

1
'Q = (—l)km E 81:11:2...7:2]; Qil’ig A Qis 14 AoooA 'Q’l:zkl_ligk ’
(21.1)
ainsi que les formes de degré (» — 1) définies par
¢?:2651 ig...ingil’bg A'thp——zp—ltzpl\oi2p+ll\. * .Aeiik—lli@k (21'2)
ou l'entier p peut prendre les valeurs
p=0,1,---a(k"‘1) . (21'3)

Un changement de repére laisse invariants les seconds membres de
(21.1) et (21.2); par suite (21.1) et (21.2) définissent bien sur F des
formes 2 et @,. Au sujet de ces formes, nous nous proposons d’établir le
théoréme suivant :

) Cf. Chern [1].
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Théoréme. La forme 2 est la différentielle extérieure d’une combinaison
linéaire, a coefficients constants des formes D,,.

Considérons en effet les formes ¥, définies sur ¥ par la formule

Wp et 811 tg...%3k Qh tg Aevoh 'Qtzpq tap A 'Qtzp-i-l 13k /\le +2 Ao olak-x

ou I'entier p peut prendre les valeurs (21.3). Par différentiation exté-
rieure de (21.2), un calcul, qui ne différe pas essentiellement de celui de
Chern %), conduit & la formule

n— 2 1
a0, = —¥pu — 50 i—!l—) i

D’apres (19.4), cette formule est encore valable pour p = 0 & condition
de prendre

(p=1,2,...,k—1). (21.4)

W-—l = 0 .
Cela posé, en résolvant la récurrence (21.4) par rapport aux ¥,, il vient
¥Y,=dT, (p=20,1,....,k—1)
ou 'on a

B m=p  m 2m+2)...(2p 4+ 2)
T”———mgo( 1) 2k—2m —1)... 2k —2p—1) ™

En appliquant ce résultat pour p =k — 1 et en remarquant que

1

2= =0 aggy Fomr -
On voit que
Q =dQ (21.5)
ou 'on a posé
_ 1 m=k— 1
U=_F X U 1 3. .Gk —2m —Dormmiome 210

ce qui démontre le théoréme.

22. — Les formules de Chern et d’ Allendoerfer-Weil pour une variété de
Berwald.

Supposons désormais que la variété V soit une variété de Berwald

Sy =0 (22.1)

1) Cf. Chern [1], p. 675—8676.
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et reprenons le calcul de I'indice d’'un champ continu de vecteurs uni-
—>

taires [ au point éventuellement singulier x,. Adoptons pour coordonnées
locales dans V un systéme de coordonnées normales d’origine x,, soit

xt = s ut (t=1,2,...,n)

ou les u? sont les cosinus directeurs de la tangente & la géodésique con-

sidérée issue de x,. Sur I’hypersphére géodésique S de centre z, de rayon

Sy GE 5 dxt = s dut .

Pour p=>1, les formes @, sont des sommes de termes contenant en fac-

teur une forme Q,; au moins et par suite, dans ’hypothése (22.1), sont

des sommes de termes contenant un facteur dz* au moins. On en déduit

que .
lim (¢,=0 (p=1,2,...,k—1) (22.2)
§=0 2

ol les notations sont identiques a celles de la seconde partie du para-

graphe 20. D’autre part, d’apres (20.4)

(k—1)!
I = =T gdio : (22.3)

Des formules (21.6), (22.2) et (22.3), on déduit
I=1m | Q. (22.4)

8>0 2
Considérons sur ¥, comme dans la seconde partie du paragraphe 20, un
champ continu de vecteurs admettant un nombre fini de points singu-
liers et entourons chacun de ces points d’une hypersphere géodésique de
rayon 8, arbitrairement petit. Nous définissons ainsi dans ) une chaine
C, de bord aC,. En raisonnant comme au paragraphe 20, on voit que

2(V)=1lm [ @
8>0 dCp

soit en transformant le second membre par la formule de Stokes

2(V)=1lm | @, (22.5)

8->0 Cp
Le second membre étant indépendant du champ de vecteurs choisi, nous
pouvons poser par définition

[Q=Im [ Q (22.6)
VvV 8->0 Cp
et nous énoncerons
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Théoréme. Pour toute variété de Berwald V, la caractéristique d’ Euler-
Poincaré est donnée par la formule de Chern

x(V)zjVQ.

Ce résultat est en particulier valable pour tout espace de Finsler a deux
dimensions. Nous retrouvons ainsi un résultat signalé dans ce cas par
E. Cartan.

On établit par un raisonnement analogue la généralisation de la for-
mule d’Allendoerfer-Weil pour un polyédre différentiable. Soit P, un
polyeédre différentiable dont, le bord 9P, est une variété différentiable &
(n — 1) dimensions, orientable, plongée dans V. A chaque point de 9P,
attachons levecteur unitaire normal & dP, et orienté vers I'intérieur.
L’ensemble de ces vecteurs définit dans F une variété & (n — 1) di-
mensions ; l'intégrale de £ sur cette variété sera représentée par le

symbole
2.

0Pn

Le champ des vecteurs unitaires normaux & 9P, peut étre prolongé en
un champ continu sur tout le polyedre P,, sauf peut-étre en un nombre
fini de points singuliers. Si nous isolons encore ces points singuliers
par de petites hypersphéres de rayon s et désignons par I, la chaine
définie dans F par ’ensemble des vecteurs du champ aux points de
P, non contenus & l’intérieur des hypersphéres, on a

lim | Q= | Q4 (P, (22.7)

8>0 I'y aPn

1 (P,) désignant la caractéristique intérieure de P,. Le premier membre
de (22.7) est indépendant de la maniére dont on a prolongé le champ des
vecteurs unitaires normaux & 0P, et nous pouvons poser par définition

fo=1lm [0Q. (22.8)
Pp

8>0 1'p

On aboutit ainsi & une généralisation de la formule d’Allendoerfer-Weil
a4 une variété de Berwald

Je=f§®@+,P,). (22.9)
Py 0

Py
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