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Quelques théorèmes
de géométrie différentielle globale

Par Andbé Lichnerowicz, Strasbourg

Introduction
Je me suis proposé ici d'étudier, pour quelques cas simples et par des

méthodes de géométrie différentielle globale, la relation qui existe, au
point de vue de l'homologie entre un espace fibre compact E et son espace
de base B. Au cours de ce travail, l'espace de base B sera supposé doué
soit d'une structure de variété riemannienne soit d'une structure de
variété finslerienne. Dans ce dernier cas, mes résultats m'ont conduit à
étendre à des variétés finsleriennes compactes le calcul de la caractéristique

d'Euler-Poincaré tel qu'il a été donné, pour des variétés rieman-
niennes, par Allendoerfer, Weil et Chern.

1. — Définition des espaces fibres

Pour plus de clarté, nous commencerons par rappeler quelques définitions

et quelques résultats indispensables relatifs à la théorie des espaces
fibres.

Considérons un espace topologique connexe E et soit R une relation
d'équivalence dans E. A l'espace B EjR quotient de E par la relation
R, nous donnerons le nom d'espace de base. Nous désignerons par p et
nommerons projection l'application canonique de E sur B correspondant
à la définition de B comme espace quotient. L'image réciproque ^px(x)
d'un point x c B, c'est-à-dire la classe d'équivalence de E correspondant
à x, sera dite la fibre Fx associée au point x.

Supposons qu'il existe un espace topologique F et un groupe d'auto-
morphismes G de F jouissant des propriétés suivantes :

1° Les Fx sont toutes homéomorphes à l'espace F, la famille Hx des

homéomorphismes d'une même fibre Fx sur F étant telle que hx, kx* Hx,
l'automorphisme kx h'1 appartienne au groupe G.

2° II existe une famille de voisinages ouverts U qui recouvre B,
l'image réciproque px(U) étant un produit topologique. D'une manière

271



plus précise, il existe un homéomorphisme <pv, dépendant de U, qui
applique p1(î7) sur le produit topologique UxF et qui induit, pour
tout x € U, un homéomorphisme de Fx sur {x} xF, donc sur F,
appartenant à Hx.

Si U et V sont deux voisinages de la famille considérée, les homéomor-
phismes <pv et (pv définissent par suite, pour x e U C\ V, des homéomor-
phismes hx et kx de Fx sur F tels que kxh~l cG.

Lorsqu'il en est ainsi, l'ensemble H des familles Hx d'homéomorphismes
définit sur E une structure d'espace fibre E (B,F ,G, H) admettant F pour
fibre-type et G pour groupe structural 1). Si G se réduit à la transformation

identique, Hx ne comprend qu'un seul élément et l'espace E n'est
autre que le produit topologique BxF.
2. — Espaces fibres différentiables

Supposons que E, B, F soient des variétés différentiables. Si E est
doué d'une structure d'espace fibre différentiable 2), la projection p, les

homéomorphismes (fjj sont eux-mêmes différentiables et les fibres Fx sont
des variétés différentiables plongées dans E. Dans le cas où E est
compact, la proposition suivante a été énoncée par Ehresmann :

Si E est compact, toute application différentiable p de E sur une variété B
de dimension n, p étant en tout point de rang n, détermine sur E une structure

d'espace fibre différentiable.

Dans le présent travail, nous n'envisagerons que le cas où E est un
espace fibre différentiable de classe cr, (r^3), les variétés B, F et E
étant supposées compactes et de plus orientables. Nous désignerons par
n, q et n -f- q les dimensions respectives de B, F et E.

I. — Les variétés riemanniennes flbrées

et la méthode des formes harmoniques

3. — La métrique riemannienne de E
Sous nos hypothèses, on peut envisager la variété différentiable B de

classe cr, (r>3), comme une variété riemannienne au moins deux fois
différentiable. La métrique de B, que nous représenterons par ds%, peut
être définie localement par une décomposition en carrés

ds% %£(a>4)* (t, j, etc. 1,2,...,»). (3.1)

*) Sur la théorie des espaces fibres cf. Ehresmann [4], [6] et. [7] et. Chern [3].
2) Cf. Ehresmann [7].
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Il en est de même pour la variété E, mais on peut adapter la métrique
riemannienne choisie pour E à sa structure d'espace fibre. Il est clair en
effet que l'on peut construire pour E une métrique de la forme 3)

«=1 (3.2)
(oc, p, etc. -= 1, 2,...,g ou n+l,...,n

A la donnée d'une telle métrique ds\ correspond dans E un champ II
d'éléments de contact à n dimensions défini localement par les équations
n^ — o et qui est transversal aux fibres, c'est-à-dire dont l'élément associé

à z e E ne contient aucune direction tangente à la fibre Fvz. Ce

champ est deux fois différentiable. On sait qu'il existe toujours de tels
champs transversaux aux fibres.

La métrique que nous adopterons pour E pourra donc être définie
localement par la décomposition en carrés

ds% l£ («,)« + "È W2 • (3.3)
%=\ a=l

4. — Formes adjointes
Considérons une variété riemannienne F, orientée, à m dimensions de

métrique a==m

«feV .s (*„)'• (4.i)

On sait4) que l'on peut faire correspondre à toute forme différentielle
extérieure W de degré p, définie sur une telle variété, une forme de degré
(m — p) qu'on appelle son adjointe et que nous représenterons par la
notation * W. La notion de forme adjointe joue un rôle essentiel pour la
définition des opérateurs qui interviennent dans la théorie des formes
harmoniques.

L'opérateur d'adjonction * étant un opérateur linéaire, il suffit pour le
calcul de l'adjointe, de rappeler comment on construit l'adjointe d'une
forme représentée localement par le monôme

^ rai A ra2 A A Tap

L'adjointe de W est alors donnée par la formule :

8) Cf. Ehresmann [5].
4) Cf. O. de Rham [11], p. 6—7.
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où ax a2.. ,ap ap+i-. .&m constitue une permutation sans répétition de la
suite l,2,...,w et où e désigne l'indicateur de cette permutation. On
en déduit immédiatement que pour toute forme W de degré p, on a

** W= (- l)P(m+l) W (4.3)

Nous désignerons dans la suite, par d l'opérateur de différentiation
extérieure d'une forme et introduirons6) l'opérateur adjoint de d

d* (-. 1)»<*+d+i ?d* (4.4)

Appliquons les considérations précédentes à des formes définies sur
les variétés B et E. A toute forme différentielle extérieure Q définie sur
JS, correspond une forme pxû définie sur E qui est dite l'image
réciproque de Q et qui admet localement même expression que Q.
Cherchons à exprimer l'adjointe de la forme p1 Q définie sur E à partir de

l'adjointe de la forme Q elle-même. A cet effet introduisons la forme
différentielle extérieure définie sur E

0= ?pi* 1 (4.5)

La forme * 1 n'est autre que l'élément de volume de B et se trouve
représentée localement par

* 1 o)1 A a>2 A A con (4.6)

Les indices grecs étant considérés comme congrus à w+ l,% + 2,...,
n + q, la forme 0 admet pour représentation locale

0 izx A;rc2 a A nq (4.7)

Si la forme Q est représentée localement par le monôme

Q O)h A (Oh A A (Oip

il vient :

D'autre part

Soit

*p1i2= (-lp-^foA^ a ..*n9)(eilt.mip ip+t...in <%+1 a a œin)

(^
*) Cf. Q. de Bham [12], p. 136—137.
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On en déduit que, pour toute forme Q de degré p définie sur B, on peut
passer de * Q à * p1 i2 par la formule

*p1Q (—lyn-wer.p1* Q (4.10)

5. — Les opérateurs d et d* pour l'image réciproque d'une forme de B.
Si Q désigne toujours une forme définie sur la variété B, p1 Q son

image réciproque sur £, on a manifestement

d(p1Q) p1(dQ) (5.1)

L'équation (5.1) peut être traduite par la ,formule de commutation"
entre opérateurs

dp1 -pid 0 (5.2)

Cherchons à étudier, à l'aide de la formule (4.10), l'opérateur
d^p1 — pid*, appliqué aux formes extérieures définies sur B, On a
d'abord, d'après la définition de d* :

d* p1 Q (— 1) (n+«> (*+1)+1 *d*p1Û (5.3)

Or en vertu de la formule (4.10)

d*p1Q= {—iyn'
soit

d*])1®^ (-l)(w-p)*[d<9A^1*fl + (-ipOAdp1* Q]
Posons

XQ (- l)(n+D(fl+l)+np * [d<9 A p1 * Q] (5.4)

II vient ainsi d'après (5.2) et (5.3)

d*piQ XQ+ (— 1)»<»+«+!)+!? [0Apxd *JQ] (5.5)

Or d'après (4.3) et (4.4)

d*Q (~iy*d*Q
et d'après (4.10)

Il en résulte, en reportant dans la formule (5.5)

Q XQ + (-lp+^+iHp+D **p
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Soit en vertu de (4.3), appliquée à une forme de degré (p — 1) définie
sur E,

Ainsi Vopérateur
d* p1 - p1 d* X

qui fait passer d'une forme de degré p définie sur B à une forme de degré

(p — 1) définie sur E, est donné par la formule

XQ — i)<»+ix«+i>+np * \d0t,px* Q] (5.6)

L'opérateur X faisant intervenir d'une manière essentielle la forme
d0, nous allons chercher à évaluer cette forme à partir des éléments de la
connexion riemannienne associée à la métrique (3.3) de i?.

6. — Quelques théorèmes de géométrie différentielle riemannienne

Nous appelons repère associé à un point z de E, un système de (n + q)

vecteurs unitaires, tangents en z à E et deux à deux orthogonaux, le

système étant muni d'une certaine orientation. Les repères utilisés seront
adaptés à la forme (3.2) de la métrique, c'est-à-dire seront tels que les

n premiers vecteurs (e^) appartiennent à l'élément en z du champ II et que

les q derniers (ea) soient tangents à la fibre Fpz. Les formules de Frenet
relatives à un tel repère s'écrivent

et

dt{ E co^t + E coipt^ ; dta J£>ai 7. + J£ co^îp (6.2)

Si a, b, etc. désignent des indices pouvant prendre les valeurs 1,

2,.. ,,n -\- q, on a manifestement

Nous poserons
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La nullité de la torsion de la connexion riemannienne considérée se
traduit par les formules :

d(*>i X o>u A o)j + J£ cois A n0 (6.5)
; fi

dn* X waj a oo,. + J£ eo^ A ^ (6.6)
i

dont les dernières fournissent les différentielles extérieures des formes jza.
Le second membre de (6.5) ne devant contenir aucun terme en n
on notera que

Cela posé, cherchons à évaluer la différentielle extérieure de la forme

0 — jz1 a jr2 a a nq
On a manifestement

A JTX A A £a A A 7lq (6.8)

où le signe /\ signifie que le facteur correspondant doit être omis dans le
produit extérieur considéré. Si Ton substitue dans (6.8), la valeur de
dn^ donnée par (6.6) et tient compte de l'antisymétrie des cwa/3, il vient

d& Jj£ (— l)0*"1 CO^j A COj A Tti A A 71^ A A 71q

a,;
Or

II en résulte

de [y; (jg yaia) &,] a ^i a tt2 a a nq
i oc

+ £ (-l)a[£ VoLiTc^i A O)k] A^A... AÎtaA AJTa (6.9)
a ;,*

Considérons la forme différentielle linéaire intrinsèquement définie sur la
variété E par la formule

A l'aide de la forme fi, la différentielle extérieure d© peut s'exprimer par

.A7rfl (6.11)
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La forme d& apparaît ainsi comme la somme de deux formes définies
sur E, l'une homogène et de degré 1 par rapport aux cot, q par rapport
aux na, l'autre homogène et de degré 2 par rapport aux eut, (q — 1) par
rapport aux na. Cherchons à quelles conditions l'une ou l'autre de ces
formes est nulle.

Pour que le second terme de d& soit nul, il faut et il suffit que les q

équations
*Aû>fc O (a 1,2,..., q)

soient identiquement satisfaites. Or, d'après (6.6), ces équations
expriment que les équations

0 (<x 1,2,..., g)

sont des conséquences des équations

^a ° (*= 1,2,...,g)

autrement dit que le champ II d'éléments de contact est complètement
intégrable. Nous énoncerons.

Théorème 1. Pour que la forme dO soit égale à /M0, il faut et

il suffit que le champ II d'éléments de contact à n dimensions soit
complètement intégrable. Lorsqu'il en est ainsi, il existe des paramètres locaux

1,2,..., g) tek que

et la métrique (3.2) de la variété E est réductible localement à la forme

ds\ gi${x) dx* dx* + g^{z) dp d& (6.12)
où

ds\ ^g^dxidxi (6.13)

La forme 0 peut alors être représentée à Vaide des paramètres locaux par
Vexpression ,—6 Vr dp a dP a A dp (6. H)

où F désigne le déterminant des g^.

Il résulte de plus d'une proposition d'Ehresmann6) que, dans nos

hypothèses la projection p de E sur B définit chacune des variétés
intégrales complètes de II comme revêtement de B.

•) Cf. Ehtesmann [7], proposition 2.
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Etudions maintenant à quelles conditions la forme (jl est nulle. Pour
qu'il en soit ainsi, il faut et il suffit que les quantités

-S Y*i* 0' l,2,...n)
a

soient nulles, c'est-à-dire que le vecteur courbure moyenne

C=2 (lyje, (6.15)
i a

des fibres Fx, considérées comme variétés plongées dans E, soit nul.
Chaque fibre Fx est alors une variété minima de E pour la métrique
envisagée. Il en est en particulier ainsi lorsque, pour un choix convenable du
repère, les nq quantités yaia sont nulles : il existe alors, sur Fx,q lignes
asymptotiques deux à deux orthogonales. Nous énoncerons.

Théorème 2. Pour que la forme ju, soit nulle, il faut et il suffit que les

fibres Fx soient des variétés minima de la variété riemannienne E. La forme
d© est alors homogène, de degré 2 par rapport aux cot, (q — 1) par rapport
aux na.

Dans ce cas, nous dirons brièvement que la variété riemannienne E est
à fibration minima.

Pour que l'opérateur (5.6) soit identiquement nul, il faut et il suffit
manifestement que la forme dO soit nulle. En réunissant les résultats des

théorèmes 1 et 2, nous aboutissons ainsi au théorème.

Théorème 3. Pour que l'opérateur X, défini par (5.6), soit identiquement

nul, il faut et il suffit que la variété riemannienne E soit à fibration
minima, le champ II associé étant complètement intégrable.

Lorsqu'il en est ainsi, on a simultanément

dpi —jpi(i O ; d*pl— p1d* 0 (6.16)

et la méthode des formes harmoniques nous permettra de comparer les

nombres de Betti des variétés B et E.

II. — La méthode de représentation directe

7. — Cas d'un produit topologique

Considérons d'abord un espace fibre différentiable à fibre compacte F
qui soit un produit topologique BxF. Un point de E sera désigné par
{x, £), x appartenant à B et f à F. Désignons par 0 une forme de degré
q définie sur E et représentable en coordonnées locales par la formule
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0(xy S) A(x, £) dp a dS** ...h dp (7.1)

où P9 |2,..., |5 désignent les coordonnées locales d'un point f de F.

La fibre F étant comporte, cette forme 0 nous permet de faire correspondre
à toute forme A définie sur E, de degré p^n, une forme Q, de même degré,

définie sur B et telle que si Cp désigne une p-chaîne quelconque de B, la
cochaîne

J Q= J Aa0 (7.2)
cP F (Cp)

Nous désignerons par
$ (7.3)

l'opérateur qui fait passer de la forme A à la forme Q. En chaque point x
de B, la forme Q se trouve définie par une intégration effectuée sur la
fibre Fx issue de ce point.

g _ £e ca5 général

Considérons maintenant un espace fibre différentiable quelconque E,
à fibre compacte F. On sait7) qu'un atlas différentiable de E sur BxF
se trouve défini de la manière suivante :

a) U désignant un ensemble ouvert de J? appartenant au recouvrement
introduit au § 1, une carte locale est définie par un homéomorphisme
différentiable <pv de px(U) sur UxF.

b) Un changement de coordonnées locales est un homéomorphisme
différentiable de UxF sur lui-même de la forme x! x, £; f(x, f),
où x, x1 appartiennent à U et f, |r à F.

Soit W une forme définie sur E qui soit partout de rang q. A cette
forme se trouve associé un champ TI(W) d'éléments de contact à n
dimensions défini par le système de Pfaff associé de W.

Cela posé, supposons qu'il existe une forme 0 de degré q, définie sur E
et qui soit partout de rang q, le champ 11(0) étant transversal aux fibres et

complètement intégrable. La fibre F étant compacte, cette forme 0 nous

permet encore de faire correspondre à toute forme A, définie sur E, de

degré p^n, une forme Q de même degré définie sur B, la correspondance

étant une extension de la correspondance étudiée au § 7.

7) Cf. Ehresmann [7].
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Le point z de E étant représenté dans une carte locale sur (x, £)
eUxF, la forme 0 sera représentée, dans UxF, par une forme
0(x, f) qui, par un changement de coordonnés locales peut être ramenée
à la forme (7.1). Dans les mêmes conditions, la forme A définie sur E,
se trouve représentée par une forme que nous noterons A(x, £). Sur le
produit topologique UxF, nous pouvons effectuer l'opération

S A(z, f)Atf(s, f)

Cette opération définit sur U une forme Q{U), cette forme satisfaisant,
pour toute ^-chaîne Cp appartenant à U, à la relation

J J /La<2> (8.1)
Cp P1 (Cp)

Soient U et V deux voisinages appartenant au recouvrement considéré
de B. Sur U f] V se trouvent définies les deux formes Q^ et i2*F).

Or, si C^ désigne une p-ehaine quelconque appartenant à U 0 V, on a

J 4 a 0 | £(l7> J

II en résulte que les deux formes Q(U) et Q{V) coïncident sur U (1 V.
Sur l'espace de base B, nous définissons ainsi une forme Q que nous

appellerons Vimage de /l par la forme 0 et que nous représenterons par
la notation

Q $ Aa0 (8.2)

9. — La différentielle extérieure d'une forme image

La forme 0 considérée peut être représentée en coordonnées locales

par la formule (7.1). Il en résulte qu'il existe une forme linéaire A,
définie sur E, dont la restriction aux fibres est nulle et telle que

d0 Xh0 (9.1)

Cela posé, considérons une forme A de degré p^n, définie sur E, et
son image Q par 0. Cherchons à évaluer la différentielle extérieure de Q
à l'aide de la formule de Stokes. Désignons par Cp+1 une p+ 1-chaîne
arbitraire appartenant à un voisinage U de B. Si dCp+1 désigne sa
frontière, il vient d'après la définition de la forme image :

J Q J Aa0 (9.2)
dCp+x pitfCp+i)
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Or p1(dC9+1) n'est autre que la frontière de pM^p+i)- En vertu de la
formule de Stokes, on a donc

J û J dQ
d

et
J

p (Cp+1)

On en déduit en vertu de (9.1) et (9.2):

Cette égalité ayant lieu quel que soit Cp+1 appartenant à U, il en résulte

que
dQ J [dA + A a A] a 0 (9.3)

Nous énoncerons :

Théorème. Si û est Vimage par 0 delà forme A, sa différentielle
extérieure dû est Virnage par 0 delà forme

dA + X a A

où la forme linéaire X est définie par (9.1).

10 — Le théorème de représentation

Conformément à la terminologie habituelle, nous dirons qu'une forme
W, définie sur une variété F, est fermée si sa différentielle extérieure est

nulle. Nous dirons qu'elle est homologue à zéro (~0) si elle est la
différentielle extérieure dS d'une forme définie sur F. Sur les formes fermées,
de degré déterminé p, l'addition définit une structure de groupe abélien

qui admet pour sous-groupe le groupe de celles des formes qui sont ^0.
Leur groupe quotient est le groupe de cohomologie HP(V) de la variété
F, l'anneau des coefficients étant l'anneau des réels.

Cela posé, supposons la forme 0 fermée. Si

Q~$An0 (10.1)

il vient alors

Aa0 (10.2)

De plus, si l'on prend A 1, la formule (10. 2) donne

d\
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Soit f 0 const.

constante que nous supposerons non nulle 8), Réduisons-la par exemple
à l'unité en multipliant 0 par une constante. Si Q est une forme
quelconque définie sur B, l'image de p1 Q

n'est alors autre que la forme Q elle-même.
Ainsi, d'après (10.2), les opérateurs de différentiation extérieure et

d'image sont permutables. L'image d'une forme fermée sur E est une
forme fermée sur B ; l'image d'une forme ~0 sur E est une forme ~0
sur jB. De plus toute forme Q fermée, définie sur J5, peut être considérée

comme l'image d'une forme pxQ fermée, définie sur E. — Nous pouvons
donc énoncer

Théorème. S'il existe une forme 0 fermée, définie sur E, de degré et

rang q, telle que le champ 11(0) transversal aux fibres soit complètement
intégrable et que

la formule (10.1) définit une représentation du pe-groupe de cohomologie

HP(E) sur le pe-groupe de cohomologie HP(B),

III. — Applications

11. —La variété riemannienne E est à fibration minima

Donnons-nous, dans l'espace E, un champ 77 d'éléments de contact
à n dimensions transversal aux fibres et deux fois difiEérentiable.

Supposons E doué d'une structure de variété riemannienne fibrée telle que
le champ précédent soit associé à la métrique ; la forme définie sur E

0=*p1*l (11.1)

est de degré et rang q et le champ considéré n'est autre que le champ
11(0) défini par cette forme.

Supposons le champ II complètement intégrable et la variété riemannienne
E à fibration minima.

8) En particulier, Fx n'est pas homologue à zéro sur E.
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En vertu du théorème 3 du paragraphe 6, la forme 0 est alors fermée
et nous pouvons appliquer notre théorème de représentation en prenant
0=0. L'opérateur

définit ainsi une représentation de HP{E) sur HP(B). Nous pouvons
donc énoncer :

Théorème 1. Si la variété riemannienne fibrée E est à fibration mi-
nima, le champ II associé étant complètement intégrable, on a, entre les

nombres de Betti bv{E) et bp(B) de Vespace fibre et de Vespace de base, les

inégalités
bp(B)^bp(E) (p 0, 1,..., n). (11.2)

La théorie des formes harmoniques permet de retrouver ce résultat par
une voie moins directe, mais assez suggestive. On sait9) qu'une forme
est dite cofermée ou cohomologue à zéro si son adjointe est fermée ou
homologue à zéro. Une forme à la fois fermée et cofermée est dite
harmonique. Chaque classe d'homologie des formes différentielles fermées,
définies sur une variété, contient exactement une forme harmonique.

Cela posé, dans les hypothèses du théorème précédent 0 est fermée.
Or elle est cofermée puisque son adjointe

p1 * 1

qui n'est autre que l'image réciproque de l'élément de volume de B, est

toujours fermée. Ainsi les variétés riemanniennes fibrées considérées sont
les variétés à forme 0 harmonique.

L'opérateur X étant nul, il résulte des formules (6.16) que toute forme
harmonique sur B a pour image réciproque une forme harmonique sur E.
On retrouve ainsi les inégalités (11.2). On sait de plus que toute forme Q,
définie sur B, peut être décomposée, d'une manière et d'une seule, en

une somme d'une forme homologue à zéro, d'une forme cohomologue à

zéro et d'une forme harmonique sur B

Q dQ1 + d*Qz + Qh (11.3)
On en déduit

p1 Q dp1 Q1 + d*p1Q2 + p1Qh (11.4)

9) Pour tout ce qui concerne la théorie des formes harmoniques cf. Hodge [8] et G. de

Eham [11] et [12].
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ce qui constitue la décomposition canonique de la forme p1 Q définie sur
E. Au théorème 1 correspond ainsi, du point de vue de la théorie des
formes harmoniques, le théorème suivant

Théorème 2. Si la variété riemannienne fibrée E est à forme 0 harmonique,

toute forme harmonique sur B a pour image réciproque une forme
harmonique sur E.Ala décomposition canonique d'une forme Q définie sur
B correspond, par image réciproque, la décomposition canonique sur E de

p^Q.
On notera que si Q est une forme fermée, non ~0 sur B, son image

réciproque ne peut être <^0 sur E. Si Q est harmonique sur B, il en est
de même de * Q ; par suite p1 * Q xp1 * Q et 0 Np1 Q sont
harmoniques sur E

12. — Cas où le premier groupe de cohomologie relative de E est nul
Introduisons la notion de groupe de cohomologie relativement à un

champ 77 complètement intégrable. Nous dirons qu'une forme A,
définie sur E, est 77-fermée si sa différentielle extérieure est égale à celle
d'une forme s'annulant sur 77. Nous dirons que la forme A est Tl-homo-
logue à zéro si elle diffère de la différentielle extérieure dS d'une forme
définie sur E par une forme s'annulant sur II. Il est clair que toute
forme 77-homologue à zéro est aussi 77-fermée. Par suite, sur les formes
77-fermées de degré déterminé p, l'addition définit une structure de

groupe abélien qui admet pour sous-groupe le groupe de celles des formes
qui sont 77-homologues à zéro. Leur groupe quotient est le groupe de

cohomologie HP(E, II) de la variété E, relativement au champ II.
Plaçons nous dans les hypothèses suivantes

a) II existe un champ II transversal aux fibres complètement intégrable.

b) Le premier groupe de cohomologie H1 (E, II) relative à 77 est nul.

Le champ 77 étant associé à une métrique ds%, il résulte du théorème 1

du paragraphe 6 que l'on a
(10 ^*0 (12.1)

où la forme linéaire fi satisfait à la relation

<^a<9=0 (12.2)

qui se déduit immédiatement de (12.1) par différentiation extérieure.
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D'après (12.2) la forme /x est /7-fermée. Elle est par suite 77-homologue
à zéro et il existe une fonction / définie sur E telle que

[A A 0 df A 0
Soit

d<9 d/A<9 (12.3)
Introduisons la fonction

Il vient ainsi
d(<p0) dq>K 0 + cpd0 0 (12.4)

et la forme ç> 0 est une forme fermée, de degré et rang q, dont le champ
associé, transversal aux fibres, est complètement intégrable. Il résulte
ainsi du théorème de représentation l'énoncé suivant :

Théorème. 8i l'espace fibre E admet un champ d'éléments de contact à

n dimensions deux fois différentiable, transversal aux fibres, complètement
intégrable et si H^E,!!) est nul, on a les inégalités

bp(B)^bp(E) (p 0,l,...,n) (12.5)

On peut encore remarquer que si l'on substitue à la métrique initiale ds%,

de l'espace E la métrique

Si ds% + <p%l* (ds% - ds%) (12.6)

à la forme 0 se trouve substituée la forme fermée

qui est harmonique pour la nouvelle métrique. Ainsi, avec la métrique
(12.6), la variété riemannienne fibrée E est à forme 0 harmonique et
les résultats du théorème 2 du paragraphe 11 lui sont applicables.

13. — Cas où les fibres sont des sphères

Nous supposons dans ce paragraphe que la fibre type de E est une

sphère 8g et que les sphères fibres peuvent être orientées continûment. Il
résulte d'une proposition de Leray10) que dans ce cas les nombres de

Betti de E sont inférieurs ou égaux à ceux du produit topologique B XF.

10) Cf. Leray [9].
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Nous allons établir la proposition suivante:

Théorème. Si la variété riemannienne fibrée E admet pour fibre une
sphère SQ (q^n -— 1) orientée continûment et si elle est à forme 0 harmonique,

les nombres de Betti de E sont ceux du produit topologique Bx8q.

En effet désignons par

t* + 6X(J5) ^-1 + • • • + bp(B) tn~P + •-.+ bn^(B) t + 1

et par
t?+ 1

les polynômes de Poincaré de B et Sq. En effectuant leur produit, on
obtient, d'après la proposition de Leray, un polynôme qui majore le
polynôme de Poincaré de E. Il en résulte les inégalités :

a) pour q>n
^bp(B) (p 0, 1,..., n)

(13.1)

b) pour q n, n — 1

bp(E) ^l+bq(B) (p q,n) (13.2)
b9(E) ^bp_q(B) (p n+l,...,n + q)

Or la forme 0 étant harmonique, on a, d'après les résultats du
paragraphe 11, les inégalités

bP(B)^bp(E) (p 0, 1,..., n) (13.3)

Dans le cas (a), les inégalités (13.3), jointes au théorème de dualité,
entraînent l'égalité dans (13.1). Dans le cas (b), on notera que, 0 étant
harmonique, il existe une forme de degré q harmonique sur E qui n'est pas
l'image réciproque d'une forme harmonique sur B. Il en résulte que
l'égalité est nécessairement réalisée dans (13.2) et le théorème est
démontré.

14. — Les espaces fibres 2f(r) associés à une variété riemannienne

Désignons par B une variété riemannienne satisfaisant aux hypothèses
des paragraphes 2 et S.
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La théorie des variétés riemanniennes conduit naturellement u) à

associer à B des espaces fibres <Ç(r) admettant B pour espace de base et
définis de la manière suivante :

_>. _> _> »

Soit (x, lt, l2,..., ln) un repère de B c'est-à-dire un système de n
vecteurs unitaires d'origine xeB, deux à deux orthogonaux, tangents à JS.

Etant donné un entier r (l^r^.n), considérons la classe de tous les

repères pour lesquels le point x et les r vecteurs l±,l2,.. .tlr sont
identiques. Ces classes de repères définissent sur JS, avec la topologie naturelle,

un espace fibre, que nous désignerons par 2f(r). Ainsi l'espace 3f(r)

est Vespace fibre de tous les ensembles ordonnés de r vecteurs unitaires de B,
deux à deux orthogonaux. Sa fibre admet pour dimension

n (n — 1) —- (n — r) (n — r — 1)
g_" 2 '

On notera que 5(1) n'est autre que l'espace fibre des vecteurs unitaires
tangents à JS et gr(n) l'espace fibre fondamental de B, c'est-à-dire
l'espace fibre défini par tous les repères de JB.

Nous ferons dans ce paragraphe, les conventions suivantes relatives
aux indices

i,j,k,l l,2,...,n; A, B 1, 2,..., r ; I,J r+l,...,n.
Ecrivons pour B les formules fondamentales de la géométrie rieman-
nienne : les formules de Frenet :

>> ->
dx J£ coJi (14.1)

i
dît 2 <»iX («>« + <*>» 0) (14.2)

j

relatives au repère (x, ll912,..., ln) introduisent, sur g(n), n(n + l)/2
formes de Pfaff satisfaisant aux équations de structure

dcùi Jg <t>ij* <t>j (14.3)

dû>w J£ a>« A ©w + Ûo (ûw + Û* 0) (14.4)
k

où les formes

Ûw= U-R«wû>*a coj (14.5)

sont les formes de courbure.

ai) Cf. par exemple l'excellent exposé de Ghern [3], p. 20—24.
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Cela posé, donnons-nous un espace 3f(r) et considérons les formes coAi.
En un point de 5(f), par une substitution orthogonale conservant

-> -> ->
(x, ll9l2,..., lr), ces formes se transforment selon les formules

où les -4j' sont les coefficients de la substitution orthogonale. Il en résulte

que la forme quadratique

d,»)

définit sur 5(r) ime métrique riemannienne adaptée à sa structure d'espace

fibre. Les q formes coAi jouent ici le rôle des n^ de la théorie générale.
Or d'après (14.4), il vient

d(oAi ZcoAk* œki + QAi (14.7)

et le second membre de (14.7) ne contient aucun terme en coAi. On en
déduit le théorème suivant.

Théorème 1. Tout espace 3f(r) associé à une variété riemannienne,
peut être doué d'une structure de variété, riemannienne fibrée telle que les

fibres soient des variétés minima plongées dans 5(r).

La forme ~ „.0= II coAi

admet pour différentielle extérieure

<«¦¦* Ai Ai Bj

où l'indicateur eAi à la valeur ± 1. La forme 0 est harmonique si

c'est-à-dire si

II en résulte l'énoncé suivant :

Théorème 2. Tout espace g(r), associé à une variété localement

euclidienne, peut être doué d'une structure de variété riemannienne fibrée à
forme 0 harmonique.
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Dans le cas où r 1, la fibre est constituée par une sphère #n-1 que
l'on peut orienter continûment et le théorème du paragraphe 13 s'applique.
Il résulte ainsi du théorème 2.

Théorème 3. L'espace des vecteurs unitaires tangents à une variété
localement euclidienne B (compacte, orientable), à n dimensions, admet pour
nombres de Betti ceux du produit topologique B X 8n_1.

Au lieu d'introduire sur B la connexion riemannienne associée à la
métrique ds%, on peut considérer B comme un espace admettant une
connexion euclidienne avec torsion compatible avec la métrique de B. Les
formules fondamentales (14.1), (14.2) et (14.4) ne sont pas modifiées
et, au second membre de (14.3) seulement, apparaissent les formes de

torsions Qt qui ne peuvent jouer aucun rôle dans notre théorie. Il en
résulte que les théorèmes 2 et 3 sont encore valables si B, au lieu d'être localement

euclidien, est un espace à connexion euclidienne à ,,parallélisme
absolu", c'est-à-dire sans courbure. Des résultats analogues sont encore
valables si B est une variété hermétique12) sans courbure mais pouvant avoir
une torsion (non Kdhlerienne).

IY. — Quelques théorèmes de géométrie flnslérienne globale

15. — L'espace fibre 2f(1) associé à une variété finslérienne

Désignons par F une variété finslérienne à n dimensions compacte, de

classe C8 (s ^ 3) Si # désigne un point de F, la métrique de F
s'exprime par rapport aux coordonnées locales (x1) de x par la formule

(15.1)

où L est une fonction positivement homogène et du premier degré des

variables dxl.
Nous conviendrons d'appeler repire associé à un point xde F un système

de n vecteurs unitaires dans (15.1), tangents en a; à F et deux à deux

orthogonaux, le système étant muni d'une certaine orientation. On
définira comme pour une variété riemannienne les espaces fibres 2f(r)

admettant F pour espace de base. Nous nous intéressons particulièrement

ici à l'espace ${1), à (2 n — 1) dimensions, des vecteurs unitaires
tangents à F.

Soit l un vecteur unitaire tangent en a; à F, Convenons d'attacher à

tout élément linéaire (x, l) de F un repère (x, ll912,..., ln) ; les compo-

12) Cf. par exemple Chern [2], p. 109—113.
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santés de l par rapport à ce repère seront désignées par l4 ; le vecteur l
étant unitaire, ses composantes satisfont à la relation

-£(Ï<)8=1 • (15.2)
i

->
Si l'on désigne par 0{ les composantes du vecteur dl par rapport au

repère considéré, il vient

dl= E ®iX (15.3)
i

et les formes de Pfaff 6{ satisfont à la condition

2lt0i 0 (15.4)
i

16. — Les formules fondamentales de la géométrie finslérienne
Dans la suite de ce travail, nous utiliserons les notations classiques

d'E. Cartan pour la géométrie finslérienne. Nous ferons essentiellement

usage de la méthode du repère mobile et nous sommes ainsi amenés à

traduire les formules données par E. Cartan, qui sont généralement
écrites à l'aide des coordonnées locales et non à l'aide des composantes
relatives au repère mobile.

Les formules de Frenet -> ~>
dx £ (oJi (16.1)

i
-> i ->

dl4 S <»uh (»« + °>h °) (l6•2)
i

relatives au repère (x, ^, l2,..., ln) introduisent n formes de Pfaff a>t. et
n (n — l)/2 formes coti. Celles-ci appartiennent au dual de l'espace
vectoriel tangent à 3f(1) et peuvent par suite être exprimées par des
combinaisons linéaires des formes co* et 0*. De plus d'après (15.3) et (16.2)

->
les composantes 0{ du vecteur dl dépendent des variations dlt des compo-

->
santés de l et de la rotation infinitésimale du repère selon les formules

0t. dl, + S h <»n • (16.3)
j

Les composantes o>i et cot7 du déplacement infinitésimal du repère satisfont

aux équations de structure

o» S coik A cokj + Q» {Qit + QH 0) (16.5)
h
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Les formes quadratiques Qt et Q%i définissent respectivement la torsion
finslérienne et la courbure finslérienne de F. Par les formules

@i 2 ^i,ifc w, a 9fc (16.6)

A4tJ J^ &i}tici "k A "i ~r JL> -Li},ki Wjc A ul -f- 2^ Kxikl cok A ù)l (lb.7)

elles permettent de définir quatre tenseurs, un de torsion et trois de
courbure. D'après (15.4), le tenseur de torsion At3k et les deux tenseurs
de courbure St3kl et Ptjtkl sont astreints aux conditions

Ai3O=ZlkAt3k O (16.8)
k

StStk0 S h St3tkl 0 ; P,,iW 2 h P»,id ° • (16-9)

Nous dirons que la variété V est une variété de Berwald si le tenseur 8t3kl
est identiquement nul.

Cette propriété est équivalente à la suivante : on peut faire, sur l'espace
euclidien, la carte des éléments linéaires issus d'un point de manière que
l'angle de deux éléments linéaires infiniment voisins soit conservé ; la
métrique angulaire de F est, comme dans l'espace euclidien, de courbure
constante égale à 1.

En prenant la différentielle extérieure des deux membres des équations

(16.4) et (16.5), on obtient les identités qui généralisent, en
géométrie finslérienne, les identités de Bianchi. Il vient ainsi

dQt J£ (Qk a œlk — QtkA wk) (16.10)
k

dQt3 X (iitk a <oik — Qik a cotk) (16.11)
k

11. — Changement de repère

Nous avons convenu d'attacher à chaque élément linéaire (x, l de

F un repère (x, lx, l2,..., ln). Le choix du repère ainsi associé à (x, l)
est arbitraire sous les conditions de continuité et de différentiabilité. Ce

choix étant fait, on peut effectuer la transformation :

*{ 2M«ï, (17.1)
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où les Aiô sont les éléments d'une matrice orthogonale propre d'ordre n.
Les Aif sont, bien entendu, des fonctions différentiables jusqu'à un ordre
suffisant des coordonnées locales de 5(1)- Les différents éléments introduits

se transforment alors selon les lois classiques. On a ainsi notamment

Û<',= £AikAnQkl
k,l

II est souvent commode d'adopter pour repère attaché à (x, l) un re-

père tel que le vecteur ln coïncide avec le vecteur l considéré. Si nous
convenons que, dans la suite, un indice grec n'est susceptible que des

valeurs l,2,...,rt— 1, on a pour ce choix particulier du repère mobile

J« 0, Zw 1 ; ^ft)ftaJn 0. (17.2)

18. — Les différentielles extérieures des formes 0^.

Il est facile à l'aide des formules (16.3) et (16.5) d'évaluer les différentielles

extérieures des formes 0{ qui jouent un rôle important dans la
suite. De (16.3) on déduit par différentiation extérieure

dQi X 0* a ™h + -S h(dù)n ~ -S «>/* A a>ki)
j j k

soit en vertu de (16.5)
ddi= £ OhAOi + Q* (18.1)

où l'indice 0 désigne, selon la convention classique, la multiplication con-
->

tractée par le vecteur L En explicitant Qoi dans (18.1) et tenant compte
de (16.9), il vient

dO{ S &ti a 0j + £ Poitkl cok a 0t + £ Boiy kl (0kAœl (18.2)
; k,l k,l

II résulte des équations (18.2) que pour que le système

soit complètement intégràble, il faut et il suffit que le tenseur Roitkl soit
identiquement nul.
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19. — La forme &0.

Considérons la forme définie sur 2?(1> e*> représentée localement, par
rapport aux repères considérés par l'expression

#o s sh,2... in eh a oi2 a ...a ein_x iin (19.i)

où ix, i2,..., in est une permutation quelconque de la suite 1, 2,..., n
et où s est l'indicateur de cette permutation. Par un changement de
repère, le second membre de (19.1) se trouve multiplié par le déterminant
| A€i | qui est égal à +1. Par suite la forme &0 est bien une forme
intrinsèquement définie par (19.1) sur l'espace fibre 5(1).

Cherchons à évaluer la différentielle extérieure de &0. Pour abréger

les calculs, choisissons des repères tels que le vecteur ln coïncide avec L
Avec un tel choix des repères, 0Q se réduit à

<po (n- 1)10^02 a-..a 0n_! (19.2)
et il vient

d0o= (n — 1)!JS (— l)a-1d0aA01A02A...A0aA...A0w_1
oc

Substituons à d0a sa valeur tirée de (18.2). Il vient l'expression commode

k a

[ fM COk A (O,] A 01 A 62 A A 0a A A 6n^ (19.3)
a k,l

II est d'ailleurs facile de trouver une expression de d@0 valable quels que
soient les repères utilisés. On a en effet d'après (18.1)

d0o (n - 1) S (- l^A** a 0x a 02 a .a 0a a .a 0nmml

soit a

d0o (n - 1) £ eaia2...an_1Qnotl a

On en déduit pour d&0 l'expression indépendante des repères choisis

De (19.3), il résulte que pour que la forme &0 soit fermée, il faut et il suffit

que les deux conditions suivantes soient satisfaites.

B0Ukl 0 (19.5)

l
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La condition (19.6) est d'ailleurs équivalente à

^fc|0 0 (19.7)

où Ak\ i désigne la dérivée covariante du vecteur Ak déduit par contraction

du tenseur Aijk de torsion.

20. — Les variétés finslériennes à forme 0O fermée.

Nous nous proposons d'établir le théorème suivant :

Théorème, Si une variété finslérienne V à n dimensions est telle que les

deux tenseurs BOitki, et Ak\ 0 soient nuh

1° Les nombres de Betti de V espace g(1) des vecteurs unitaires tangents à V
sont égaux à ceux du produit topologique VxSn^.1.

2° La caractéristique d'Euler-Poincaré de V est nulle.

1° Sous nos hypothèses, la forme &0, de degré et rang (n — 1) d'après
(19.2), est fermée. Le tenseur ROitkl étant nul, le système Bi 0 est
complètement intégrable. Si l'on adopte des repères tels que le vecteur
-> ~>

ln coïncide avec l, on peut douer l'espace 3f(1) de la métrique rie-
mannienne définie localement par

i=l a=l

3 désignant un point de %{1) il existe sur 2f(1) des paramètres locaux xi,
|a tels que la métrique (20.1) puisse localement se mettre sous la forme

cfo2 gu (3) dx* dxi + g^ (3) dp de (20.2)

Pour cette métrique, la forme 0O ne diffère que par un facteur constant
de l'élément de volume de la fibre et l'intégrale de &0 étendue à la fibre
ne peut être nulle. En particulier &0 n'est pas homologue à zéro sur 3f(1)-

Le champ II (&0) associé à la forme 0O étant transversal aux fibres et
complètement intégrable, la forme &0 satisfait aux hypothèses du théorème

de représentation. Il résulte donc de ce théorème, les inégalités
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D'autre part les fibres étant des sphères que l'on peut orienter continûment,

l'inégalité de Leray s'applique. Enfin la forme &0 qui n'est pas ~0
sur g(1) a elle-même pour image, dans la représentation, une forme
identiquement nulle. La première partie du théorème est donc établie.

2° Etant donné un point xQ de F, donnons-nous au voisinage de x0 un

champ continu de vecteurs unitaires l qui est éventuellement singulier
en x0. Désignons par 8 l'hypersurface géodésique tracée dans F, de centre
x0 et de rayon s arbitrairement petit. En chaque point de 8, le champ

considéré définit un vecteur l ; par suite à S correspond dans 3f(1) une
variété image Z à (n — 1) dimensions. D'après la formule de Kronecker,
l'indice / du champ en x0 a pour expression, avec une orientation
convenable de Z

1

où An_x représente l'aire de Phypersphère euclidienne de rayon 1 et de
dimension (n — 1), soit

(20.3)

On en déduit

\ (20.4)

Cela posé, la variété F étant compacte, on peut définir sur F un champ
continu de vecteurs n'admettant qu'un nombre fini de points singuliers
xl9 #2,..., xm. Entourons chacun de ces points singuliers par une hyper-
sphère géodésique de rayon s arbitrairement petit. Le champ de vecteurs
aux points de F non contenus à l'intérieur de ces hypersphères géodési-

ques définit dans 5(1) une chaîne Cn de bord dCn. De (20.4) on déduit

2m(n — 1)

où Il9 /2,..., Im sont les indices du champ aux points xl9 x29..., xm.
Comme il est bien connu, la somme de ces indices est égale à la caractéristique

d'Euler-Poincaré %(V) de la variété F. Il en résulte
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r(n)
~~ f*o • (20.5)
(w1)! a

Or, si la forme &0 est fermée, la formule de Stokes donne

dCn Cn

ce qui démontre notre théorème.
A la connaissance de l'auteur, ce théorème est nouveau même dans le

cas très particulier des espaces de Minkowski (espaces pour lesquels les
deux tenseurs Eijkl et Aijk^ sont nuls). Il en résulte en particulier qu'il
ne peut exister de métrique de Minkowski partout régulière sur une sphère
de dimension paire, ce qui constitue la généralisation d'un résultat
classique sur les métriques localement euclidiennes.

21. — La forme Q de courbure totale

La seconde partie du théorème précédent rappelle la généralisation
donnée parChern13), en géométrie riemannienne de la formule classique
de Gauss-Bonnet. Nous nous proposons de montrer qu'une telle généralisation

peut aussi être obtenue en géométrie des variétés de Berwald.
Soit V une variété finslérienne satisfaisant aux hypothèses du

paragraphe 15 et de dimension n 2k paire. Considérons la forme de degré n
définie sur 2f(1) Par l'expression

(21.1)
ainsi que les formes de degré (n — 1) définies par

où l'entier p peut prendre les valeurs

p=0,l,...,(*-l) (21.3)

Un changement de repère laisse invariants les seconds membres de
(21.1) et (21.2) ; par suite (21.1) et (21.2) définissent bien sur g*1* des
formes Q et &v. Au sujet de ces formes, nous nous proposons d'établir le
théorème suivant :

18) Cf. Chern [1].
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Théorème, La forme Q est la différentielle extérieure d'une combinaison
linéaire, à coefficients constants des formes 0P.

Considérons en effet les formes *P9 définies sur 3f(1) par la formule

ÎP, S <W. .i2* Qix i% A • • A Qi%^x hp A Qhp+1 i%h A6iip + 2
A A 6itk_x

où l'entier p peut prendre les valeurs (21.3). Par différentiation
extérieure de (21.2), un calcul, qui ne diffère pas essentiellement de celui de
Chern 14), conduit à la formule

VjÎ/ ^ (P=l,2f...,t-1). (21.4)

D'après (19.4), cette formule est encore valable pour p 0 à condition
de prendrex XJJ c\j^ ^- zzzz \J

Cela posé, en résolvant la récurrence (21.4) par rapport aux Wpi il vient

où l'on a

P ^o (2k — 2m—l)...(2k — 2p — l) m

En appliquant ce résultat pour p k — 1 et en remarquant que

On voit que
Q^dQ (21.5)

où l'on a posé

ce qui démontre le théorème.

22. — Les formules de Chern et d'Allendoerfer-Weil pour une variété de

Berwald.

Supposons désormais que la variété F soit une variété de Berwald

£«.« <> (22-1)

") Cf. Chern [1], p. 676—676.
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et reprenons le calcul de l'indice d'un champ continu de vecteurs

unitaires l au point éventuellement singulier x0. Adoptons pour coordonnées
locales dans F un système de coordonnées normales d'origine xQ, soit

xl s iil (i 1, 2,..., n)

où les nl sont les cosinus directeurs de la tangente à la géodésique
considérée issue de x0. Sur l'hypersphère géodésique S de centre x0 de rayon
5, on a

dx% s d[ix

Pour p ^ 1, les formes 0P sont des sommes de termes contenant en
facteur une forme Qi} au moins et par suite, dans l'hypothèse (22.1), sont
des sommes de termes contenant un facteur dxi au moins. On en déduit
que

lim J<^ 0 (p=l,2,...,i-l) (22.2)

où les notations sont identiques à celles de la seconde partie du
paragraphe 20. D'autre part, d'après (20.4)

(k - 1) ç1
2**(2*-l)! 4 ° '

Des formules (21.6), (22.2) et (22.3), on déduit

/ lim j" H (22.4)

Considérons sur F, comme dans la seconde partie du paragraphe 20, un
champ continu de vecteurs admettant un nombre fini de points singuliers

et entourons chacun de ces points d'une hypersphère géodésique de

rayon s, arbitrairement petit. Nous définissons ainsi dans 3f(1) UI*e chaîne
Cn de bord dCn. En raisonnant comme au paragraphe 20, on voit que

lim J Q
»->0 dCn

soit en transformant le second membre par la formule de Stokes

X(V) lim J Q (22.5)

Le second membre étant indépendant du champ de vecteurs choisi, nous
pouvons poser par définition

lim J Q (22.6)
8+0 Cn

et nous énoncerons
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Théorème. Pour toute variété de Bervxild F, la caractéristique d'Euler-
Poincaré est donnée par la formule de Chern

Ce résultat est en particulier valable pour tout espace de Finsler à deux
dimensions. Nous retrouvons ainsi un résultat signalé dans ce cas par
E. Cartan.

On établit par un raisonnement analogue la généralisation de la
formule d'Allendoerfer-Weil pour un polyèdre différentiable. Soit Pn un
polyèdre différentiable dont le bord dPn est une variété différentiable à

(n — 1) dimensions, orientable, plongée dans F. A chaque point de dPn
attachons levecteur unitaire normal à dPn et orienté vers l'intérieur.
L'ensemble de ces vecteurs définit dans 5(1) une variété à (n — 1)

dimensions ; l'intégrale de Q sur cette variété sera représentée par le

symbole

Le champ des vecteurs unitaires normaux à dPn peut être prolongé en
un champ continu sur tout le polyèdre Pn, sauf peut-être en un nombre
fini de points singuliers. Si nous isolons encore ces points singuliers
par de petites hypersphères de rayon s et désignons par Fn la chaîne
définie dans g(1) par l'ensemble des vecteurs du champ aux points de

Pn non contenus à l'intérieur des hypersphères, on a

lim J £1= J Q + X'(Pn) (22.7)
s-*o r« dPn

Xf (Pn) désignant la caractéristique intérieure de Pn. Le premier membre
de (22.7) est indépendant de la manière dont on a prolongé le champ des

vecteurs unitaires normaux à dPn et nous pouvons poser par définition

f £ lim J Q (22.8)

On aboutit ainsi à une généralisation de la formule d'Allendoerfer-Weil
à une variété de Berwald

J£= J (Q + x'Pn) • (22.9)
Pn dPn
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