Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 22 (1949)

Artikel: Versuch einer Systematik des mathematischen Mittelwertbegriffs.

Autor: Jecklin, H.

DOI: https://doi.org/10.5169/seals-19201

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Versuch einer Systematik des mathematischen Mittelwertbegriffs

Von H. JECKLIN, Zürich

Obwohl der Begriff des Mittelwertes sehr alt ist, existiert bis heute keine umfassende Systematik der Mittelwerttypen. Die einzelnen Mittelwertdefinitionen beziehen sich fast ausnahmslos auf formelmäßige Mittelwertbestimmung, und die Klassifikation — soweit vorhanden — ebenfalls. Eine vollständige Systematik muß jedoch auf einer umfassenden Mittelwertdefinition fußen können. Eine solche — leider weitgehend in Vergessenheit geratene - umfassende Definition ist durch Cauchy in seinem Cours d'Analyse, Paris 1821, gegeben: "Ein Mittel zwischen mehreren gegebenen Größen ist eine neue Größe, welche zwischen der kleinsten und der größten der gegebenen Größen liegt." Um auch die kontinuierlichen Mittelwertbestimmungen miteinzubeziehen, kann man die Cauchysche Definition entsprechend ergänzen: "Mittelwert bezüglich aller oder einzelner Punkte des Intervalles [a, b], unter Einbezug der Grenzen, ist ein Wert m, für welchen gilt $a \leq m \leq b$." (Das eine oder andere Gleichheitszeichen kann in gewissen Grenzfällen gelten.) Nach dieser einfachen Definition ist das "Zwischenliegen" die charakteristische Fundamentaleigenschaft eines Mittelwertes.

Die genannte sehr einfache Definition des Mittelwertbegriffes ist eine ausgezeichnete Basis für eine Klassifikation der Mittelwerttypen. Vorerst ergibt sich die natürliche Scheidung in willkürlich und methodisch festgelegte Mittelwerte, von welchen nur die letzteren für eine mathematische Klassifikation in Frage kommen. Jede der verschiedenen Methoden zur eindeutigen Festlegung eines Mittelwertes repräsentiert dann eine Klasse (oder einen Mittelwerttypus)¹). So kann man z. B. der Strecke [a, b] als Mittelwert m jenen Wert zuordnen, für welchen gemäß Mittelwertsatz der Differentialrechnung $F'(m) = \frac{F(a) - F(b)}{a - b}$ erfüllt ist, wobei über die stetige Funktion F(x) noch präzisierende Annahmen zu

¹) *H.Jecklin*, La Notion de Moyenne, Metron, Revista internazionale di Statistica, Roma 1948.

machen sind. (Als Spezialfälle ergeben sich hier der "häufigste Wert" und der "schwerste Wert", beides sogenannte lagebedingte statistische Mittelwerte.) Oder man kann den Mittelwert m festlegen durch die Gleichsetzung zweier bestimmter Integrale (bzw. Summen) über eine näher zu präzisierende stetige Funktion, in folgender Art $\alpha \cdot \int_a^m F(x) dx = \beta \cdot \int_m^b F(x) dx$, wobei α und β Konstante. (Als Spezialfälle ergeben sich hier der "Zentralwert" und der "Scheidewert", beides ebenfalls sogenannte lagebedingte Mittel der Statistik.) Oder man kann, wenn F(x) eine näher zu präzisierende stetige Funktion, einen Mittelwert m definieren durch $F(m) = \alpha \cdot F(a) + (1-\alpha)F(b)$, wobei α eine Konstante < 1. (Interpolation nach einer Funktion F(x), mit dem Spezialfall der regula falsi.)

So kann man zweifellos noch eine Menge von Methoden zur Festlegung eines Mittelwertes aufstellen, von welchen jede eine charakteristische Mittelwertklasse repräsentiert, innerhalb welcher sich durch zusätzliche Bedingungen systematisch Unterteilungen treffen lassen. Eine solche Bearbeitung des Mittelwertbegriffes liegt u. W. bis heute nicht vor, wäre aber zumindest theoretisch recht interessant. Ich möchte im folgenden insbesondere die Möglichkeit einer Systematik der speziellen Klasse der formelmäßigen Mittelwerte skizzieren als jener Klasse, welche für die Mathematik und die mathematische Statistik von großer praktischer Wichtigkeit ist.

Seien gegeben n reelle Werte $x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n$ und eine analytische Funktion $m = f(x_1 \cdots x_n)$. Wenn diese Funktion stets Werte m liefert, welche der Cauchyschen Fundamentalbedingung $x_1 \leqslant m \leqslant x_n$ genügen, so sprechen wir von einer Mittelwertformel bzw. es ist ein m formelmäßig bestimmter Mittelwert. Die Funktion $f(x_1 \ldots x_n)$ muß, um der Fundamentalbedingung genügen zu können, folgende zwei Eigenschaften haben:

- 1. Wenn alle n Werte x_i einander gleich sind, so muß als m dieser gemeinsame Wert resultieren, also f(a ... a) = a.
- 2. Es muß $f(x_1 \cdots x_n)$ bezüglich jedes einzelnen Wertes x_i eine stetige, monoton wachsende Funktion sein, also

$$f(x_1 \cdots x_k \cdots x_n) < f(x_1 \cdots \overline{x}_k \cdots x_n)$$
, für $x_k < \overline{x}_k$.

Umgekehrt ist das gleichzeitige Bestehen dieser beiden Eigenschaften hinreichend dafür, daß m zwischen x_1 und x_n liegt. Angenommen, es seien nicht alle x_i einander gleich und es sei, bei Bestehen der zwei Eigenschaften, $x_n < m = f(x_1 \cdots x_n)$. Wenn nun alle x_i gleich x_n gesetzt wer-

den, so muß der Funktionswert gemäß der zweiten Eigenschaft wachsen, und es wäre $x_n < f(x_n \cdots x_n)$, was in Widerspruch mit der ersten Eigenschaft steht. Eine Formel $m = f(x_1 \cdots x_n)$, welche nur eine der beiden Eigenschaften erfüllt, kann natürlich u. U. bei bestimmter Wahl der x_i ebenfalls Mittelwerte liefern. Da dies nur innerhalb bestimmter, durch Wahl der x_i bedingter Grenzen zutrifft, könnte man hier von bedingten Mittelwertformeln sprechen. Wir geben zwei einfache Beispiele: Sei $0 < x_1 < x_2 < x_3$, so hat die Formel $m = \frac{x_1 x_2 + x_3}{2}$ nur die zweite, dagegen $m = \frac{x_1^3}{x_2 x_3}$ nur die erste Eigenschaft.

Alle Formeln, $m = f(x_1 \cdots x_n)$, welche die erste Eigenschaft $f(a \dots a)$ = a besitzen, wollen wir – unbesehen ihrer übrigen Eigenschaften – M-Formeln nennen und diesen eine kurze Zwischenbetrachtung widmen. Jede eigentliche Mittelwertformel ist offenbar eine M-Formel, nicht aber umgekehrt. Es ist sehr einfach, M-Formeln zu bilden, indem man sich auf einen Hinweis von Chisini stützt²), welcher allerdings der irrigen Auffassung ist, auf diese Weise stets eigentliche Mittelwertformeln zu erhalten. Sei gegeben eine analytische Funktion von n reellen Variabeln $y = f(x_1 \cdots x_n)$, welche in bezug auf das einzelne x_i stetig ist. Setzt man nun $x_i = a$, und resultiert $f(a \dots a) = a$, so hat man bereits eine M-Formel. Ist dagegen $f(a ... a) \neq a$, so fragt es sich, ob die Umkehrung $\varphi(f)$ von f(a...a) explizit darstellbar ist. Bejahendenfalls setzt man f(a...a) = y, damit ist $\varphi(f(a...a)) = a = \varphi(y)$, und ersetzt man hierin nun y wieder durch die ursprünglich gegebene Funktion, so muß offenbar eine M-Formel resultieren. Zum Beispiel: Es sei für drei Werte $0 < x_1 < x_2 < x_3$ gegeben die Funktion $f(x_1 x_2 x_3) = \frac{x_1}{x_2} + x_3$. Dann ist f(a, a, a) = 1 + a. Setzen wir nun 1 + a = y, so ist a = a $y-1=\frac{x_1}{x_2}+x_3-1$ wie ersichtlich für positive x_i eine M-Formel. Oder es sei für $x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n$ gewählt die Funktion $f(x_1 \ldots x_n) =$ $\sum_{i=1}^{n} c^{\left(x_{i}^{2}-x_{i}\right)}. \quad \text{Dann ist} \quad f(a\ldots a)=n\cdot c^{\left(a^{2}-a\right)}. \quad \text{Setzt man} \quad n\cdot c^{\left(a^{2}-a\right)}=y,$ $a = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{\ln c} (\ln y - \ln n)} = \frac{1}{2} + \left[\frac{1}{4} + \frac{1}{\ln c} (\ln \sum c^{(x_i^2 - x_i)} - \ln n \right]^{\frac{1}{2}}$

eine M-Formel für reelle x_i .

²) O. Chisini, Sul concetto di Medio, Periodico di Matematiche, Seria IV, Vol. IX (1929).

Aus gegebenen M-Formeln kann man durch Verknüpfung mittels der nachstehend erläuterten zwei Operationen neue M-Formeln gewinnen:

Wir definieren als Quotientenaddition, symbolisch mit \oplus bezeichnet, eine Operation, wobei bei zwei Quotienten Zähler zu Zähler und Nenner zu Nenner addiert werden. So z. B. $\frac{a}{b} \oplus \frac{c}{d} = \frac{a+c}{b+d}$, $a \oplus \frac{c}{d} = \frac{a+c}{1+d}$, $a \oplus c = \frac{a+c}{1+d}$. Man sieht, daß die Operation für echte Quotienten nicht eindeutig ist, denn nach der Definition kann $\frac{a}{b} \oplus \frac{c}{d} = \frac{a+c}{b+d}$ oder $\frac{a+c}{1+d}$ oder $\frac{a+c}{b+1}$ oder $\frac{a}{b} + \frac{c}{d}$ sein. Die Quotientenaddition ist also erst eindeutig, wenn festgelegt ist, in welcher Weise ein Ausdruck als Quotient geschrieben sein soll. Für M-Formeln gilt nun der folgende Satz: $M_1^t \oplus M_2^t = M_3^t$, d. h. die Quotientenaddition von in die gleiche Potenz erhobenen M-Formeln führt zu einer in die gleiche Potenz erhobenen neuen M-Formel. Insbesondere gilt natürlich $M_1 \oplus M_2 = M_3$.

Daß durch diese Verknüpfung wieder M-Formeln resultieren, erhellt sofort, wenn man sich die Eigenschaft der M-Formel, nämlich $f(a \dots a) = a$ vor Augen hält. Sei also $M_1 = \frac{Z_1}{N_1}$, $M_2 = \frac{Z_2}{N_2}$, so gilt, wenn $x_i = a$, $M_1 = M_2 = a$, mithin $Z_1 = a N_1$, $Z_2 = a N_2$, und damit $M_1^t \oplus M_2^t = \frac{a^t N_1^t + a^t N_2^t}{N_1^t + N_2^t} = a^t = M_3^t$, also $M_3 = a$. Sind beispielsweise $M_1 = \sqrt[t]{\frac{Z_1}{N_1}}$ und $M_2 = \sqrt[t]{\frac{Z_2}{N_2}}$ M-Formeln, dann sind auch M-Formeln

nach
$$M_1 \oplus M_2 = M_3$$
 z. B. $M_3 = \frac{\sqrt[t_1]{Z_1} + \sqrt[t_2]{Z_2}}{\sqrt[t_1]{N_1} + \sqrt[t_2]{N_2}}$ oder $M_3 = \frac{\sqrt[t_1]{\frac{Z_1}{N_1}} + \sqrt[t_2]{Z_2}}{1 + \sqrt[t_2]{N_2}}$,

$$\text{nach} \ \ \boldsymbol{\mathit{M}}_{1}^{t} \oplus \boldsymbol{\mathit{M}}_{2}^{t} = \boldsymbol{\mathit{M}}_{3}^{t} \ \ \text{z. B.} \ \ \boldsymbol{\mathit{M}}_{3} = \sqrt{\frac{Z_{1} + \sqrt{Z_{2}^{t_{1}}}}{\frac{t_{2}}{N_{1} + \sqrt{N_{2}^{t_{1}}}}}}$$

und wenn insbesondere
$$t_1=t_2\,,\,\,M_3=\sqrt[t]{rac{Z_1+Z_2}{N_1+N_2}}$$
 .

Die Operation \oplus bildet bei festgelegter Quotientenschreibweise eine Gruppe. Das Einheitselement ist $\frac{0}{0}$, und das inverse Element zu $M=\frac{Z}{N}$ ist $\frac{-Z}{-N}$. Wie man sieht, ist jedes Element sein eigenes inverses Ele-

ment, und als weitere Eigentümlichkeit haben wir, daß die Anwendung der Operation auf ein Element mit sich selbst keine Änderung bewirkt, also $M^t \oplus M^t = M^t$. Man könnte die Operation der Quotientenaddition auch so formulieren: Wenn man bei M-Formeln unter gleichem Wurzelexponenten (wobei die erste Wurzel auch mitzählt) Zähler zu Zähler und Nenner zu Nenner addiert (oder subtrahiert), so resultiert wieder eine M-Formel.

Sodann definieren wir als Quotientenmultiplikation, symbolisch mit o bezeichnet, eine Operation, wobei bei zwei Quotienten Zähler mit Zähler und Nenner mit Nenner multipliziert werden. Für M-Formeln gilt dann der Satz: $M_1^{t_1} \circ M_2^{t_2} = M_3^{t_1+t_2}$, insbesondere $M_1 \circ M_2 = M_3^2$. Denn sei $M_1=rac{Z_1}{N_1}$, $M_2=rac{Z_2}{N_2}$, so gilt, wenn $x_i=a$, $M_1=M_2=a$, $\text{mithin} \ \ Z_1 = a \, N_1, \ \ Z_2 = a \, N_2 \quad \text{und damit} \quad M_1^{t_1} \odot M_2^{t_2} = \frac{a^{t_1} \, N_1^{t_1} \, a^{t_2} \, N_2^{t_2}}{N_1^{t_1} \, N_2^{t_2}}$

 $=a^{t_1+t_2}=M_3^{t_1+t_2}, \text{ also } M_3=a. \text{ Sind beispielsweise } M_1=\sqrt[]{\frac{Z_1}{N_1}} \text{ und } M_2=\sqrt[]{\frac{Z_2}{N_2}} \quad \text{M-Formeln, so ist also } M_3=\sqrt[]{\frac{Z_1\cdot Z_2}{N_1\cdot N_2}} \text{ sicher auch eine } M_3=\sqrt[]{\frac{Z_1\cdot Z_2}{N_1\cdot N_2}}$

M-Formel. Man kann die Quotientenmultiplikationen auch so formulieren: Wenn man bei M-Formeln Zähler mit Zähler und Nenner mit Nenner multipliziert, und zugleich die Wurzelexponenten addiert (bzw. Zähler und Nenner kreuzweise multipliziert und bei den Wurzelexponenten die entsprechende Differenz bildet), so resultiert wieder eine M-Formel. Auch die Operation o bildet eine Gruppe. Das Einheitselement

ist $\sqrt[n]{1}$, und das inverse Element zu $\sqrt[n]{\frac{Z}{N}}$ ist $\sqrt[n]{\frac{N}{Z}}$. Jedes Element ist auch hier sein eigenes inverses Element, und als weitere Eigentümlichkeit gilt wieder, daß die Anwendung der Operation auf ein Element mit sich selbst keine Änderung bewirkt, also $M^t \circ M^t = M^t$.

Bei den folgenden Anwendungsbeispielen verifiziert man sofort, daß wenn $x_i = a$ gesetzt wird, das Charakteristikum der M-Formeln, nämlich f(a ... a) = a, erfüllt ist. Seien z. B. gegeben für n positive Werte x_i

$$ext{die beiden M-Formeln} \quad ext{M_1} = \sqrt{rac{1}{\ln c} \ln \Sigma \, c^{x_i \cdot x_k} - \ln inom{n}{2}} \,, \;\; i
eq k \,, \;\; ext{und}$$

die beiden
$$M$$
-Formeln $M_1 = \sqrt{\frac{1}{\ln c} \ln \sum c^{x_i \cdot x_k} - \ln \binom{n}{2}}$, $i \neq k$, und $M_2 = \sqrt{\frac{\binom{n}{2} \sum x_i^4}{n \sum x_i x_k}}$, $i \neq k$. Dann kann man u. a. folgende M -Formeln bilden:

$$ext{nach} \ \ m{M}_1 \oplus m{M}_2 = m{M}_3 \qquad \ \ m{M}_3 = rac{\sqrt{\ln m{\varSigma} \, c^{x_i \, x_k} - \lninom{n}{2}} \pm \sqrt{inom{n}{2} m{\varSigma} \, x_i^4}}{m{V} \ln c \pm m{V} m{n} \, m{\varSigma} x_i \, x_k} \ \ ,$$

$$\text{nach} \ \ M_1^t \oplus M_2^t = M_3^t \qquad \ \ M_3 = \sqrt{\frac{\ln \sum c^{x_i x_k} - \ln \binom{n}{2} \pm \binom{n}{2} \sum x_i^4}{\ln c \pm n \sum x_i x_k}} \ \ \text{usw}.$$

Oder sei, ebenfalls für positive x_i , $M_1 = \sum \frac{x_i}{x_k} + \frac{1}{n} \sum x_i - \left(\frac{n}{2}\right)$, $i \neq k$, und $M_2 = \sqrt{\frac{1}{n} \sum x_i^2}$, dann ist u. a. nach $M_1^{t_1} \odot M_2^{t_2} = M_3^{t_1 + t_2}$:

$$M_3 = \sqrt[3]{rac{1}{n} \left[\sum x_i^2 \left(\sum rac{x_i}{x_k} + rac{1}{n} \sum x_i - \left(rac{n}{2}
ight)
ight)
ight]}$$

oder

$$M_3\!=\!\sqrt{(\sum x_i^2)^{\!-1}\cdot n\left(\sum \frac{x_i}{x_k}+\frac{1}{n}\,\sum x_i-{n\choose 2}\right)}=\frac{\frac{1}{n}\,\sum x_i^2}{\sum \frac{x_i}{x_k}+\sum \frac{x_i}{n}-{n\choose 2}}\ .$$

Wählt man bei der Bildung von M-Formeln speziell Funktionen $f(x_1 \dots x_n)$, welche bezüglich jedes einzelnen x_i stetig und außerdem eigentlich monoton sind, so liefert das Prozedere — sofern durchführbar —, wie man sich leicht überlegt, eigentliche Mittelwertformeln im Cauchyschen Sinne, die also sowohl die erste wie auch die zweite der genannten Eigenschaften besitzen. Einige Beispiele mögen dies noch verdeutlichen. Man habe drei Werte $0 < x_1 < x_2 < x_3$. Als erste Funktion sei gewählt $f(x_1x_2x_3) = x_1x_2 + 2x_3$. Dann ist $f(a,a,a) = a^2 + 2a$. Setzt man $a^2 + 2a = y$, oder $(a+1)^2 = y+1$, so ist $a = \sqrt{y+1} - 1 = \sqrt{x_1 x_2 + 2x_3 + 1} - 1$ eine Mittelwertformel für positive x_i . Oder sei $f(x_1x_2x_3) = x_1^2x_2^2x_3^2 + x_1^2x_2^4 + x_3^6 + x_1x_2x_3 + x_1x_2^2 + x_3^3$. Dann ist $f(a,a,a) = 3(a^6 + a^3)$. Wir setzen $3(a^6 + a^3) = y$ oder $(a^3 + \frac{1}{2})^2 = \frac{1}{3}y + \frac{1}{4}$, woraus folgt $a = \left[\left(\frac{1}{3}y + \frac{1}{4}\right)^{\frac{1}{2}} - \frac{1}{2}\right]^{\frac{1}{3}} =$

$$a = [(\frac{1}{3}y + \frac{1}{4}) - \frac{1}{2}]^{\frac{1}{2}} = [(\frac{1}{3}x^2 + \frac{1}{4}) - \frac{1}{2}]^{\frac{1}{2}} = [(\frac{1}{3}(x_1^2 x_2^2 x_3^2 + x_1^2 x_2^4 + x_3^6 + x_1 x_2 x_3 + x_1 x_2^2 + x_3^3) + \frac{1}{4})^{\frac{1}{2}} - \frac{1}{2}]^{\frac{1}{3}}$$

offensichtlich für positive x_i ebenfalls eine Mittelwertformel. Oder sei schließlich $f(x_1\,x_2\,x_3)=\frac{1}{x_1\,x_2}+\frac{1}{x_3^2}$. Dann ist $f(a\,,a\,,a)=\frac{2}{a^2}$. Setzen

wir
$$\frac{2}{a^2} = y$$
, so folgt $a = \sqrt{\frac{2}{y}}$ oder $a = \sqrt{\frac{2 x_1 x_2 x_3^2}{x_1 x_2 + x_3^2}}$, ebenfalls eine Mittelwertformel.

Als Beispiele wurden hier absichtlich solche gewählt, welche in den x_i nicht symmetrisch sind. Gewohnterweise pflegt man nur mit symmetrischen Mittelwertformeln zu operieren, und es ist klar, daß insbesondere für die statistische Praxis nur symmetrische Mittelwertformeln in Frage kommen, weil deren Resultat gegenüber einer Umordnung der zu mittelnden Werte invariant ist. Erkenntnismäßig ist aber die Feststellung wichtig, daß für die Erfüllung der Fundamentaleigenschaft des Zwischenliegens die Symmetrie ganz irrelevant ist.

Fordern wir nun für eine Mittelwertformel noch als dritte Eigenschaft die Symmetrie in den x_i , so hat der formelmäßige Mittelwert die allgemeine Gestalt

$$m = f(x_1...x_n) = \left[\varphi\left(\frac{\sum F(X_i)g_i}{\sum g_i}\right)\right]^{\frac{1}{T}}.$$

Dabei bedeuten: X_i ein Produkt aus einer Anzahl x_i , wobei alle X_i von gleicher Dimension T sind und das Aggregat ΣX_i symmetrisch in den x_i ist. $F(X_i)$ ist eine in X_i stetige monotone Funktion, φ die Umkehrfunktion von F, und g_i eine positive Funktion.

Man sieht sofort, daß wir zumindest für positive x_i eine Mittelwertformel der gewünschten Art vor uns haben, denn:

1. Wenn $x_i = a$ gesetzt, resultiert

$$m = \left[\varphi\left(\frac{\sum F\left(a^{T}\right)g_{i}}{\sum g_{i}}\right)\right]^{\frac{1}{T}} = \left[\varphi\left(F\left(a^{T}\right)\right)\right]^{\frac{1}{T}} = a,$$

also ist die Eigenschaft f(a...a) = a vorhanden.

- 2. Die Eigenschaft $f(x_1...x_k...x_n) < f(x_1...\overline{x}_k...x_n)$ für $x_k < \overline{x}_k$ ist sicher erfüllt, wenn für T > 1 nur positive x_i zugelassen werden, und F monoton in X_i ist. Denn wenn an Stelle von x_k ein $\overline{x}_k > x_k$ gesetzt wird, so wird mindestens ein X_i größer. Also wird $\frac{\sum F(X_i)g_i}{\sum g_i} = F(m^T)$ größer oder kleiner, je nachdem F eine monoton wachsende oder fallende Funktion ist. In beiden Fällen aber wächst $\varphi(F(m^T)) = m^T$, und damit auch $m = f(x_1...x_n)$.
 - 3. Die Symmetrie schließlich ist laut Voraussetzung vorhanden.

Eine besonders wichtige Stellung innerhalb der Gesamtheit der symmetrischen Mittelwerte mit $T \geqslant 1$ nehmen die sogenannten kombinatorischen Mittelwerte ein. Hier ist $X_i = C(x_i)$, wenn wir mit $C(x_i)$ eine Kombination zur k. Klasse aus den n Werten x_i bezeichnen. Die kombi-

natorischen Mittelwerte haben anderwärts eine ausführliche Behandlung erfahren³), wir erwähnen nur als einfachsten Fall die grundlegenden

algebraischen Mittelwertformeln $m = \sqrt[l]{\frac{s_t}{\binom{n}{t}}}$, wobei s_t die t. elementarsymmetrische Funktion $s_t = \sum C(x_i)$ der n-Werte x_i ist.

Setzt man T=1, so erhalten wir die Unterklasse der einfachen (oder gebräuchlichen) Mittelwertformeln, welche von der allgemeinen Gestalt sind

$$m = f(x_1...x_n) = \varphi\left(\frac{\sum F(x_i)g_i}{\sum g_i}\right)$$
,

wobei F eine in x_i stetige eigentlich monotone Funktion, φ ihre Umkehrfunktion, g_i eine positive Funktion bedeuten. Die Forderung T=1 ist gleichbedeutend mit der Bedingung, daß die Mittelwertformel noch eine vierte Eigenschaft haben soll, wonach eine Anzahl der x_i je durch ihren Teilmittelwert ersetzt werden können, ohne daß sich der Gesamtmittelwert ändert, d. h.

$$f(x \dots x, x_{k+1} \dots x_n) = f(x_1 \dots x_n)$$
, wobei $x = f(x_1 \dots x_k)$.

Kolmogoroff und Nagumo 4) haben darauf hingewiesen, daß jede gebräuchliche Mittelwertformel die vier genannten Eigenschaften hat, und daß umgekehrt jede Funktion, welche die vier Eigenschaften in einem Argumentenintervall besitzt, für das betreffende Intervall eine einfache Mittelwertformel ist und zwingenderweise die vorgenannte Gestalt hat. Wie sich aus dieser Formel je nach Wahl der Funktion F alle bekannten einfachen algebraischen und transzendenten Mittelwertformeln ergeben, haben wir andernorts ausführlich dargelegt 5).

Nach dem Gesagten ergibt sich eine Systematik der Mittelwertformeln in ungezwungener Weise: Ausgehend von der Gesamtheit der M-Formeln, welche die erste Bedingung erfüllen, scheidet man durch Zusatz der zweiten Eigenschaft die Gesamtheit der eigentlichen oder unbedingten Mittelwertformeln aus. In diesen sind als Unterklasse die symmetrischen,

³) C. Gini, Di una Formula comprensiva delle Medie, Metron, Revista internazionale di Statistica, Vol. XIII, 2 (1938).

⁴⁾ A. Kolmogoroff, Sur la notion de la Moyenne, Atti della Reale Academia Nazionale dei Lincei, 6. Ser., Vol. XII (1930).

M. Nagumo, Über eine Klasse der Mittelwerte, Japanese Journal of Mathematics, Vol. VII (1930).

⁵) H. Jecklin, Über mathematische Mittelwerte, Elemente der Mathematik, 1948, Heft 1.

welche noch Eigenschaft drei besitzen, enthalten, und aus den symmetrischen lassen sich durch Auferlegung der vierten Bedingung die einfachen Mittelwertformeln isolieren. In jeder dieser Gesamtheiten kann man nach rein algebraischen, transzendenten und gemischten Mittelwertformeln unterscheiden. Durch weitere Zusatzbedingungen könnte man die Klassifikation noch ergänzen. So hat z. B. Nagumo u. a. gezeigt, daß eine Mittelwertformel, welche außer den vier genannten Eigenschaften noch die folgende Bedingung erfüllt

$$f(k\;x_1,\,k\;x_2\ldots k\;x_n) = k\,f(x_1\;x_2\ldots x_n)$$
 von der Gestalt
$$m = \left(\frac{\sum x_i^t\,g_i}{\sum g_i}\right)^{\frac{1}{t}},$$

also ein Potenzmittel ist. (Dem Exponenten t = 0 entspricht dabei das geometrische Mittel⁶)).

Als interessantes Detail mag noch erwähnt werden, daß wenn man auf Mittelwertformeln die bei den M-Formeln genannten Operationen \oplus und \odot , aber unter Ausschluß der inversen Operationen, anwendet, stets wieder Mittelwertformeln resultieren 7). Seien z. B. für n Werte x_i die drei Mittelwertformeln gegeben

$$m_1 = rc. \sin\left(rac{\sum \sin x_i}{n}
ight)$$
, gültig für Intervall $0 < x_i < \pi$,
$$m_2 = \sqrt[]{rac{\sum x_i^2}{n}} \qquad , \qquad ext{gültig für Intervall} \qquad 0 < x_i < +\infty \ ,$$

$$m_3 = rac{1}{\ln c} \left(\ln \sum c^{x_i} - \ln n \right) \ , \qquad ext{gültig für Intervall} \qquad -\infty < x_i < +\infty \ ,$$

so liefert folgende Formel für das Intervall $0 < x_i < \pi$ sicher auch einen Mittelwert

$$m = rac{rc.\sin\left(rac{\sum\sin x_i}{n}
ight) + \sqrt{\sum x_i^2} + \ln\sum c^{x_i} - \ln n}{1 + \sqrt{n} + \ln c}$$
 .

Man überzeugt sich sofort, daß zumindest die für einen eigentlichen Mittelwert notwendigen und hinreichenden ersten zwei Eigenschaften vorhanden sind. Der Grund liegt nicht tief, denn es handelt sich hier bei

⁶) G. Polya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, S. ⁵⁴ und 210.

⁷⁾ H. Jecklin und M. Eisenring, Die elementaren Mittelwerte, Mitteilungen der Vereinigung schweizer. Versicherungsmathematiker, Bd. 47, 1 (1947).

Anwendung der Operationen \oplus und \odot lediglich darum, daß aus vorhandenen Mittelwerten durch arithmetische und geometrische Mittelbildung neue Mittelwerte gewonnen werden. Im vorgenannten Beispiel ist der neue Mittelwert ein gewogenes arithmetisches Mittel aus m_1 , m_2 und m_3 , wobei die Nenner der drei Werte (also 1, $\sqrt[n]{n}$ und $\ln c$) als Gewichte fungieren.

Abschließend sei noch die Frage geprüft, ob sich der umfassende Mittelwertbegriff nach Cauchyscher Definition nicht wenigstens formal in einfacher Gestalt darstellen läßt. Es ist dies in der Tat leicht möglich. Sei also ein Mittelwert m bezüglich aller oder einzelner Punkte des Intervalles $[x_1 \ x_n]$ ein Wert, für welchen gilt $x_1 < m < x_n$. Mittelungsmethode sei jedes Verfahren genannt, das von allen oder einzelnen x_i des Intervalles $[x_1 \ x_n]$ ausgehend auf irgendeine wohldeterminierte Weise einen Wert m, aber keine andern, liefert. Vorerst sei ein Verfahren, das auf irgendeine Weise allen oder einzelnen x_i genannten Intervalles einfach einen reellen Wert zuordnet, ein Operator genannt und mit $\Theta(x_i)$ bezeichnet. Offenbar sind alle reellen Funktionen der x_i solche Operatoren, es sind aber außerdem Zuordnungsmethoden anderer Art denkbar, die sich u. U. dem Funktionsbegriff gar nicht mehr unterordnen lassen. Wenn wir nun weiter eine Abbildung der ganzen reellen Achse auf die Strecke $\overline{x_1 x_n}$ ins Auge fassen, und diese Abbildungsfunktion auf $\Theta(x_i)$ beziehen, so wird zufolge dieser Abbildung der durch $\Theta(x_i)$ fixierte Wert auf jeden Fall innerhalb der Strecke $\overline{x_1 x_n}$ zu liegen kommen, ist also ein Mittelwert derselben. Von den verschiedenen Möglichkeiten, $\overline{x_1 \, x_n}$ umkehrbar eindeutig auf die reelle Achse abzubilden, wählen wir $y=\ln\frac{x_1-x}{x-x_n}$, bzw. die Umkehrung $x=\frac{x_1+x_n\,e^\Theta}{1+e^\Theta}$. Wenn wir daher setzen

$$\ln\frac{x_1-m}{m-x_n}=\Theta(x_i)$$

oder

$$m = \frac{x_1 + x_n e^{\Theta(x_i)}}{1 + e^{\Theta(x_i)}} = \frac{x_1}{1 + e^{\Theta(x_i)}} + \frac{x_n}{1 + e^{-\Theta(x_i)}} ,$$

so haben wir offenbar eine in eine Formel zusammengefaßte formale Darstellung aller nur denkbaren Mittelungsmethoden. Man kann also formal jeden Mittelwert, gleichgültig nach welcher Methode er bestimmt ist, als normiertes gewogenes arithmetisches Mittel der beiden Extremwerte x_1 und x_n darstellen

$$m = x_1 g + x_n (1-g) ,$$

wobei g ein bestimmter Wert der logistischen Funktion $g = \frac{1}{1 + e^z}$ ist, dadurch festgelegt, daß als Exponent z der für die betreffende Mittelungsmethode charakteristische Operator $\Theta(x_i)$ zu setzen ist.

Für die formelmäßigen Mittelwerte ist die Determinierung des Operators prinzipiell eine einfache Sache. Für das arithmetische Mittel z. B. hat man

$$m=\frac{\sum x_i}{n}=\frac{x_1+x_n\,e^{\Theta}}{1+e^{\Theta}},$$

woraus sofort $\Theta(x_i) = \ln \Sigma(x_i - x_1) - \ln \Sigma(x_n - x_i)$.

Es bleibe hier dahingestellt, inwiefern sich der Operator für andere als formelmäßige Mittelwerte determinieren läßt. Es handelte sich hier nur darum, die Möglichkeit einer alle Mittelungsmethoden umfassenden formalen Darstellung zu skizzieren.

(Eingegangen den 9. Mai 1948.)