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Uber die Existenz von Primzahlen
in arithmetischen Progressionen

Herrn E. Artin zum 50. Geburtstag gewidmet

Von Haxs ZasseNnHAaUus, Hamburg

Nach Verteilung der natiirlichen Zahlen auf die Restklassen nach
einem Modul m>1 bilden die in einer Restklasse gelegenen natiirlichen
Zablen eine arithmetische Progression

a,a +m,a -+ 2m,.

mit der Differenz m und dem kleinsten positiven Rest a als Anfangsglied.
Wenn a mit m einen Teiler d>1 gemeinsam hat, so geht d auch in allen
ibrigen Zahlen der Progression auf und dann kann héchstens a eine
Primzahl sein. Wenn dagegen a und m teilerfremd sind, so bilden die zu
a modulo m kongruenten ganzen Zahlen eine prime Restklasse, die aus
lauter zu m teilerfremden Zahlen besteht. Die Anzahl der primen Rest-
klassen ist

plm) =m- 17 (1= ) .
p/m p
wobei die Produktbildung iiber die Primteiler von m zu erstrecken ist.

Fragen wir uns, ob Primzahlen in primen Restklassen enthalten seien,
so steht dem jedenfalls keine allgemeine Teilbarkeitseigenschaft ent-
gegen. Statistische Untersuchungen fiir die kleinsten Moduln ergeben,
daB sogar die nicht in m aufgehenden Primzahlen sich annihernd gleich
haufig auf die ¢(m) primen Restklassen modulo m verteilen. Da es aber,
wie bereits von Euklid gezeigt worden ist, sicher unbegrenzt viele Prim-
zahlen gibt, so liegt die Vermutung nahe, daB es auch in jeder arithmeti-
schen Progression, die aus den in einer primen Restklasse modulo m ent-
haltenen natiirlichen Zahlen gebildet wird, unbegrenzt viele Primzahlen
gibt.

Diese Vermutung, die von Legendre zuerst ausgesprochen wurde und
von ihm als Hilfsmittel zum Beweise des quadratischen Reziprozitats-
gesetzes verwendet wurde, ist von Dirichlet (2) 1840 mit den Hilfsmitteln
der hoheren Analysis bewiesen worden.

232



Nun ist aber das Problem selbst ein Problem der elementaren Zahlen-
theorie (Zahlentheorie im Bereiche der natiirlichen Zahlen).

Schon se1t langer Zeit ist die Frage gestellt worden?), ob es nicht mog-
lich ist, einen finiten Beweis fiir die Existenz unbegrenzt vieler Prim-
zahlen in arithmetischen Progressionen, deren Differenz teilerfremd zu
ihren Gliedern ist, zu fiihren.

Ich werde zeigen :

Zu beliebig vorgegebener Anzahl & lift sich vermoge endlich vieler Addi-
twonen, Subtraktionen, Multiplikationen und zahlentheoretischer Rekur-
stonen, kurz gesagt, in endlich vielen Schritten eine natiirliche Zahl N so be-
stimmen, daf} in jeder der @(m) primen Restklassen modulo m durch das
bekannte Siebverfahren mindestens & Primzahlen zwischen 1 und N gefunden
werden. Um dies einzusehen, sind nur Abschitzungen notwendig, die sich
auf endlich viele Additionen, Subtraktionen, Multiplikationen, zahlentheore-
tische Rekursionen und Anwendungen der Monotonieregeln im Bereiche der
ganzen rationalen Zahlen stiitzen.

Es wird also weder das Auswahlpostulat der Mengenlehre, noch das
tertium non datur der mathematischen Logik, noch der Reduzibilitats-
satz der Logistik zu der Einsicht, dafl durch das Siebverfahren in jeder
arithmetischen Progression mit gegebener Differenz m>1 und gegebe-
nem zu m teilerfremdem Anfangsgliede @ unbegrenzt viele Primzahlen
gefunden werden, gebraucht.

Der Weg zu dieser Einsicht besteht in der konsequenten Ersetzung
der Grenzwerte der analytischen Zahlentheorie durch ihre Naherungs-
werte. Mit den Naherungswerten werden im wesentlichen die analogen
Operationen ausgefiihrt, wie sie in dem von Dirichlet-Dedekind (1) gefiihr-
ten Beweise, s. a. (3), mit den Grenzwerten selbst ausgefiihrt werden.

Mit den algebraischen Zahlen wird bei der Beweisfiihrung unbedenk-
lich so wie gewohnt gerechnet. Es ist ndmlich in der Dissertation von
Hollkott (4) gezeigt worden, daBl die Anordnung bzw. die Bewertung
durch Absolutbetrag sowie die Ausfithrung der vier Rechenoperationen
im Koérper der reell algebraischen Zahlen bzw. im Koérper der komplexen
algebraischen Zahlen sich finit ausfithren 1468t unter der alleinigen Vor-
aussetzung, daB sich die entsprechenden Prozesse im Bereiche der ganzen
rationalen Zahlen finit ausfithren lassen. Somit bedeutet z. B. das Zeichen

n® (n eine natiirliche Zahl, s = P rational) im Sinne der Arbeit von Holl-
kott das dem Polynome

1) Zum Beispiel von E. Artin in der Vorlesung iiber Zahlentheorie.
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z! — n?
eindeutig zugeordnete positiv reelle Wurzelsymbol usf.

Die finite Ausfithrbarkeit der zahlentheoretischen Prozesse im Bereiche
der ganzen rationalen Zahlen wollen wir als ein dem menschlichen Geiste
innewohnendes Vermogen voraussetzen.

Es moge bemerkt werden, dall sich in der Beantwortung der Frage,
was ein elementarer Beweis eines zahlentheoretischen oder algebraischen
Satzes sei, seit den Zeiten Kronmeckers, Mertens und Schurs bis heute
durch die in die Zwischenzeit fallenden Grundlagenuntersuchungen eine
Wandlung vollzogen hat.

So spricht Mertens (7) in der Einleitung einer seiner Arbeiten iiber die
Primzahlen der arithmetischen Progressionen davon, daf} er das Nicht-
verschwinden der L-Reihen in s = 1 elementar beweisen wiirde und ver-
steht darunter die Beschrankung auf die Sitze der reellen Differential-
und Integralrechnung, wéihrend die Heranziehung funktionentheoreti-
scher Hilfsmittel Mertens offenbar als nicht elementar erscheint.

Vom finiten Standpunkt erscheint die Heranziehung der reellen Diffe-
rential- und Integralrechnung ebenso fragwiirdig wie die Verwendung
der Analysis im Bereiche der komplexen Zahlen.

Kronecker (5), wohl der erste Intuitionist, hat in seinen zahlentheore-
tischen Vorlesungen den Dirichletschen Beweis so abgedndert, dall der
vorhin formulierte scharfe Satz, der ja iiber die unbestimmt formulierte
Existenz unendlich vieler Primzahlen in arithmetischen Progressionen
noch hinausgeht, bewiesen wird. Er verwendet dabei auch analytische
Grenzwerte. Immerhin ist es moglich, dafl Kronecker sich unter den von
ihm verwendeten Grenzwerten nicht die Limeszahlen, sondern Nahe-
rungswerte, welche die Limeszahlen mit einer im Geiste stets mitgegebe-
nen Genauigkeit approximieren, vorgestellt hat.

Den schérferen Anspriichen der Finitisten wird aber erst gentigt, wenn
einmal rechnerisch dargetan wird : Es geht auch in endlich vielen Schrit-
ten.

Sachlich ist zu bemerken, daB3 von mir eine ungleichmdfige Asymptotik
rechts von 1 angewendet wird, mit deren Hilfe der Ausdruck

1)

8
abgeschitzt wird. p<y P

Kronecker dagegen schitzt den Ausdruck

- X (p) log p
p<N p°

zundchst noch mit analytischen Hilfsmitteln ab. Aber im Anschluf3 an
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einen von mir im Mathematischen Seminar Hamburg gehaltenen Vortrag
zeigte E. Witt, dall sich die Kroneckerschen Abschitzungen auch auf
elementarem Wege erhalten lassen. Dieser Weg hat den Vorteil, da3 die
im § 8 dieser Arbeit auftretende Schwicrigkeit, die analytische Fort-
setzung des Logarithmus einer komplexen Funktion lings eines Stiickes
der reellen Achse elementar arithmetisch durchzufiihren, vermeidet. Da-
fiir steckt allerdings in der Formulierung des Ergebnisses selbst noch eine
Reihe von Grenzwerten. Es muf} erst noch log p durch einen geniigend
genauen Naherungswert ersetzt werden.

Zu wiinschen wire die Auffindung einer gleichméBigen Asymptotik
rechts von 1 etwa so, dall die Summation und Restabschéitzung der
Dirichlet-Reihen fiir L(s, y) sowie die Ausmultiplikation und Rest-
abschitzung der Eulerschen Produktentwicklung von L(s, ¥) so aus-
gefiihrt wird, dall gleichméaflige Konvergenz in einem Intervall 1<s
<8p>1 eintritt.

Vielleicht wire es dann moglich, den Schauplatz in s = 1 zu verlegen,
so dal am Schlufl eine Abschitzung fiir

v £
pz’N P
sowie fir
L1 1
pom) X - X
p=am) P p<N P
PN

erhalten wiirde. Mir ist dies auf elementarem Wege nicht gelungen.

SchlieBlich bleibt noch die Frage offen, ob es nicht noch viel ein-
fachere elementar arithmetische Beweise fiir die Existenz von Prim-
zahlen in arithmetischen Progressionen gibt, etwa ein dem Euklidschen
Beweisverfahren fiir die Existenz beliebig vieler Primzahlen verwandtes
Verfahren.

Wenn wir den zu beweisenden Satz fiir einen Modul m gezeigt haben,
so folgt seine Giiltigkeit offensichtlich fiir alle Teiler von m. Wir wollen
und kénnen annehmen, daB m durch 4 teilbar ist. Dann ist ¢(m) eine
grade Zahl.

K sei der m-te Kreiskérper, £ eine in K enthaltene primitive m-te Ein-
heitswurzel.

In dieser Arbeit wird gesetzt :

C, = (4‘?’(m))w(nﬂ
C, =20, — 1 + ¢(m)(3 + m)
Cy = C, +%—q7(m)
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04 — 30s (p(m)(w(m)—z)

Cy = 6C, p(m)
1

Ferner sei k eine natiirliche Zahl, die den Ungleichungen

k >C;

(3 2m) (E+18) + 3 2)+1

k >18-3 " pim P
geniigt, z. B.

k = C5 -+ 18. 3#(m) (£+6)+m
und es sei

1
Slzl—l——];:—.

SchlieBlich sei N eine natiirliche Zahl, die den Ungleichungen

k41 13
S 28
(N +1)

1

|

o

1 g“:

(N + 1)F
L <tom,

(N 4 1)F
k+1
(N +1)
e, 1

TS3
(N +1)%

[NV

1
<
%\904 ’

geniigt, z. B.
N= 9+ 1)C,) .

Mit Hilfe der Zahl N wird berechnet :

L=[ N(sol‘“sl) ]+1> N(sol—sl) >N (s, — 8,)

2((3)™ 1) 2((3)™ —1)

236

(1)

(3)

(3a)

(4)

(5)



M =1 pw(m)(N+4)>N

p<N
N, = Anzahl der Primzahlen<CN, die nicht in m aufgehen
N, = (p(m) — 1)- N,
N, = Anzahl der Primzahlen <N

N; = Anzahl der Primideale aus K, die in Primzahlen << N aufgehen ver-
mehrt um N,.

§ 1. Herleitung einer unteren Schranke fiir die Anzahl der ganzen Ideale
beschrinkter Norm im m-ten Kreiskorper nach Dedekind

t sei eine natiirliche Zahl. Die Anzahl der ganzzahligen Losungen des
Systemes der ¢(m) Ungleichungen

@(m) 3‘P(m) 1 P(m)
T dg(m) Vi< x— Vt\4cp Vit .
1 P(m) 1 P(m)_
~ T Vi< <W Vi .
t=1,2,...,9(m)—1)

ist mindestens gleich o(m)

Vt— ®(m)
[2 @ (m) ] '

Jeder Losung dieser Ungleichungen ordnen wir die ganze Kreiskorperzahl
P(m)—1
&= E(x()yxl;. . 'x¢(m)_1) = E xiC'
0

zu. Die Zuordnung ist umkehrbar eindeutig, da ja die Zahlen 1, {, {2,
{?m-1  eine Basis von K iiber dem Koérper R der rationalen Zahlen bil-
den. Die Norm dieser Kreiskérperzahlen ist hochstens ¢, weil ja

P(m)~1 @(m)—1 P(m)—1

0K Negp(®)= II X a;tvi= II | X %07 I X 2,07
o<y<m O o<y m 0 o<v<m O
(v,m)=1 (v,m)=1 (v,m)=1
@(m)—1 @(m) 1 @ (m) — 1\%m
<( ¥ em < ( )
SCE ™™ <OVEGT o T apm)
<t
ist. Die Zahlen & sind von Null verschieden, weil
?(m)—1 @(m)—1 o(m) 1 @ (m) —1
S=T% w2zl — E 15>V~ o~ e )
P(m)_ )
= %. ]/t >0 ist.
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Zwei von diesen Kreiskorperzahlen, etwa

E = E(x(), xla‘ LI x(p(m)—-l)
und

/ ro /
&' = &(xy, 7y, . ., xq)(m)—l)

sind dann und nur dann dquivalent, wenn sie gleich sind, denn es ist

2 ) Ngr(é— &) | Ngir (&£ — &) |
oO<N — — 1} = o 5
= K/R(E' Ngir(&) | Ng/r (') |
@(m)—1 , ‘ @(m)—1 ,
| 553 (;—ax;) £V A}' |z, — ;|
- 0<{]< m Pimi—1 / ; < 0<Z m A Pim)—1
wm-1 | X ;0" wm=1 |T| — X |z
0 1
@P(m)
1 ?(m)
Vi o 1)
= @ (m) 1
o(m) =L
(% l/t—)""m’
wenn also der Quotient —gf ganz algebraisch ist, so ist die Norm

Ngir (—5,« — 1) ganz rational, wegen der eben hergeleiteten Ungleichung

Null, mithin ist ~§7~ —1=0, &£¢=¢.
So finden wir fiir die Anzahl A (¢f) der ganzen Ideale = 0 von K,
deren Norm nicht grofler als ¢ ist, die Abschétzung

®(m)

Vit e
AW)LWM] ' t
Wenn aber 1<¢t<(4¢(m))*™ ist, dannist A @) >1> ~(»4’;p ‘(};&)ﬁ)—"’.‘;{’a ,
da ja Ngjp(l) =1 ist. Wenn dagegen ¢>4¢(m)?™ ist, dann ist
"’{72_ ‘P(Vm?_
{ fem) { P(m)
At > ] > ( - 1)
()/[2¢(M) “\2¢(m)
?(m) ®(m)

— — @ (m)
(Ve (Ve )
4 ¢ (m) 4 @ (m) (4 @ (m))*™
Also gilt fiir jede natiirliche Zahl ¢ bis N die Ungleichung
t
— 1
40> u
it

mt C, = (4<p(m))°"m) .
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§ 2. Einige elementare Ungleichungen

a) Man hat fir natiirliche Zahlen I, » die Ungleichungen
1 ! 1 1 1
1+ 165 0) =1+ () e

1 l—1 1 1
+i-g) (-1 ) o <t

1 1 1 1
Ty ey T T
- n -+ 1
also mit ]
8:1'*'—7

die Ungleichungen

1

(1+f“1)8"1<1+—i~

n+ 1
14 2111 < _ni_ll)s—l
eSS
* (3%;‘” <n—i 1)8)< s~8— 1 (nsl-l (m +11)8—1) ‘ ®)

Die Ungleichung (8) wird zur Abschétzung von {-Ausschnitten verwendet,
namlich: wenn A4, B ganze Zahlen, die in der Beziechung B>A>0
stehen, sind, so gilt die Abschitzung

B 4 B —(n—1)  —4 B i (L_ 1 )
Agl_"?;hA+1ﬁ o (A41)° + (B+1)° +A§n n® (nt1)°
B 8 B 1 1 ) 9
<@ro et e wrre ©
1 1 )< 1+1
< (B + 1)s-1 + (+ 1)((A + 1)1 (B+1)%1 = (A—l—l)%

b) Nach Cauchy 1aBt sich elementar beweisen, dafl das arithmetische
Mittel nicht negativer Zahlen mindestens so grof3 wie ihr geometrisches
Mittel ist. Also gilt fiir reell algebraische Zahlen a,>—1 (1=1, 2,..., n)
die Ungleichung
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(1 +a) <(1 +i§:a.-)". (10)
1 n

Fiir natiirliche Zahlen n, I gilt die Ungleichung

1\» 1\ 1 1 2\ 1
(+a)=rrre (= 2) a1 -2) (- 5) s+

1\n!
g(l-{-%—) <3

Also gilt fiir natirliche Zahlen p, ¢, n die Ungleichung

] /4
2\ ((14+ 2 )") <30
(o5 = (0 ga)) <

§ 3. Abschitzung des Quotienten zweier (-Partialsummen

(11)

Von nun an moge s irgendeine der L 4 1 rationalen Zahlen

1 2 j Fa— |
31:31+“L“,31+”E;--0381+ T » So
bedeuten. Man setze “ '
Il (s) = II i
PSN 1
7)8
ﬁx(s)—': 11 1

p<N 1__.__1_#0 ’
ple

wobei die Produktbildung jeweils iiber die Primzahlen, die nicht grofier
als N sind, zu erstrecken ist und ferner fiir eine Primzahl p jeweils die

Zerlegung -
= Ppips...P;
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in Primideale von K angesetzt worden ist, so daBl die Normenbeziehung

NK/R (p) = pf

efg=g(m)
besteht. Es handelt sich bei den beiden Produkten offenbar um Partial-
produkte der Eulerschen Produktentwicklung der Riemannschen {-Funk-
tion bzw. der zu K gehorigen {-Funktion der Analysis.

Wir bemerken, daBl das spezielle Zerlegungsgesetz des m-ten Kreis-
korpers lautet

e=f=1 ist mit p = 1(m) gleichwertig,
e #1 ist mit p/m gleichwertig.

und die Zahlbedingung

Die Zahlen e lassen sich fiir die Primteiler von m leicht explicit angeben.
Desgleichen lassen sich die Grade f fiir zu m teilerfremde Primzahlen
allgemein als die Ordnung der zu p gehéorigen primen Restklasse modulo
m in der Gruppe der ¢(m) primen Restklassen modulo m charakteri-
sieren, so daB sich die drei Zahlen e, f, g in jedem Falle leicht berechnen
lassen.

Wir bestimmen fiir jede Primzahl p <{N einen Exponenten »,>5,

fir den
Vp EO((p(m))
und
p’P>N
ist, z. B.

Nun setzen wir

und finden die Abschatzungen

1 1 N1
1> — — Y —>1—-3
F(S) } ]- pszN psvp > pZN p5 = ? n5
1 1 1
>l (2 gttt 5v)
1 1 1 1 1
:1——27(1+§r+721)—2+"'+’(§mﬁ)>1 15
! 1
A T vp—1 1
O Fa) p<N 1__L  p<y % p*° > ( I p')°
P8 Ap<vp
p<N
Mo .
= ¥ wobei M= II p» >N ist.
\21: n®’ p<Np

i
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Ferner ist

1 —-—"‘7;;7 v 1 _.W -
Agy>m | —2 —nk - an
P<N 1 — 1 <N i=1 ] _ ; AT 115
we N (p7)?
1 1
=2 ; >
. N iars
A T 1 S
p<N j=1
)‘p’j<l’p

1 N ¥ o1 1 1 X1
o (w3 wr) ¥

Fiir den Quotienten von ij « (8) mit Jig (8) ergibt sich die Abschétzung

R 3L
fige) _Ax@Fe)  Gam™ T 14 [ fw
Aw  Aere ~ %1 15C, ¥
“1‘”3 “i"n&
L |
14 1__,%IF 1 (1_~ k+1 )
Z 150, 1 |~ 150, T
14 13 1
_ — !
Z 150, (1 28) 20, (vel- (3) )

Andererseits ergibt sich die Abschitzung

fix () T g "
E (8 T ps 1 1 278 1

= IT P <14 - p o
ﬁ(s) p<N (1———}—-)0 ( T N, pgv (g p'e + 1— 2 ps))

ple

p=1(m) Z1myP pim P
P<N p <N

1 1 §N? ’
Ll o 3 Sbetm 3 e X L - %

<(1+ 7 (vm B 2= 3 St 3pm) B S+ pimm ))N

p-l(m)P p<n P° p<N P
p<N
1 N ] 1 1 1 1 1
—_—C —-—-< B ¢ — LI N-—-——-—————:——-— —_ ————d<1
png2\§n2\2 22+4 42+ 2 (2%)2 2+4 "t



Somit folgt die beiderseitige Abschitzung

1 Mz (s

50, STl (s)
1 1 1 N
<(try(rm 5 - = gt 3o+ pmm))

Allgemein folgt aber aus dem Bestehen der Ungleichungen
0<d4 < (1 -+ %)n (n natiirliche Zahl)

entweder B>0 oder B<0 und
1

also folgt in jedem Falle die Ungleichung

| B

1 n
'—‘—‘I > —_— s —
> 7(1+ n)>1+|3| 1—-B,

B>Min(1——-;§~, o) .

Da C,>2 ist, so folgt:

1 1
Sy -y —>1—-2C,— m(3 ——)
w(m)pzzl(p) PO y — @ (m) +ﬁ?np
P
>1—2C,—¢m@B+m)=—0C, . (12)

§ 4. Charaktere modulo m

Zerlege m in das Potenzprodukt verschiedener Primzahlen 2, p,,...p,:

1,V v v
m = 2VTl pit ppr. L)t

mit

2 = p0<p1<p2. .o <p:r 3

vi>0 (7:30,1,2,...,7’).
Suche eine primitive Kongruenzwurzel g; modulo p;* (¢ =1, 2,..., r),
ferner fiir ¢ = 0,1, 2,...,r eine primitive ¢(p;i)-te Einheitswurzel Z,.

Dann ist fiir jede zu m teilerfremde Zahl n das System der Kongruenzen

n=g;"" (P (=1,2,...,7)

n = (_ l)an 5“0,n (2V0+1)
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l6sbar, wobei die Exponenten a@; , modulo ¢(p}?) eindeutig bestimmt

i,n

sind. Wir definieren Charaktere modulo m durch die Festsetzung

Lt o on...pr (n) — (___ 1)“n#c:0,nﬂo C;’l,nl‘l o Cfr,nt“r
0<u<2, 0 <e@)=p " (@ —1)
1 =0,1,2,...r
dagegen soll
Xppopy...nr(®) =0
gesetzt werden, sobald n und m einen gemeinsamen Teiler >1 haben.
Die Anzahl der untereinander verschiedenen Charaktere modulo m ist
2-927) p(p))...(py") = @(m) .
Sie haben die Eigenschaften

1. x(n) = ('), wenn n =n'(m) ,
II. x(nn') = y(n)-x(n') ,
IIL. L) =1.

IV. Mit y ist auch die konjugiert komplexe Funktion y* ein Charak-

ter :
* e
Appopr...pr = Xy, —pos —pas..., —pr 2

wobei die Indizes u; bzw. — u, modulo ¢ (p}?) abgedndert werden diirfen.
Das Produkt eines Charakters mit seinem konjugiert komplexen Werte
ist stets der Hawupicharakter, der durch die Formel

1 wenn (n,m)=1

X1(") = Yoo---0(n) = 0 wenn (n,m) >1

erklirt wird. Wenn y = y* ist, so ist y ein reeller Charakter.
V. Fiir jeden Nichthauptcharakter y ist

‘l‘lx(n)'-——().

Denn eine der m Zahlen 1, 2,...,m hat die Eigenschaft y(n') # 1,0,
so daB n’ zu m teilerfremd sein muB. Andererseits ist

1) X 1) = X 2(0') z(0) = S": p'm) = X )

denn mit n durchliuft auch »’n ein Vertretersystem der Restklassen
modulo m. Da nun in der Gleichung

(z(n') — 1)-2:" 2(n) = 0
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durch den ersten Faktor links dividiert werden darf, so folgt die behaup-
tete Relation.

VI. Das Produkt zweier Charaktere ist wieder ein Charakter:

y ==

V4 T A 4 ' ’ ’
HBoBy B prpopy. .y, BB pot g Bt iys - Br Ry,

wobei rechts die Indizes zu reduzieren sind :

(v + p')Ymod 2, (u; + ui)mod p(plt) (6=0,1,2,...,7) .

VII. Es ist
p(m), wenn n = 1(m)

X 1(n) =
T z(n) 0, wenn n==1(m) .

Vorstehende Relation ist sicher richtig, wenn =» = 1(m) oder wenn
(n,m)>0. Wenn aber nz=:1(m) und (n,m)=1 ist, so finden wir
durch héchstens r 4+ 1 Proben eine Primzahl p,, fir die n = 1(p}?) ist,
also entweder a; , == 0 (p(pi)) oder n = — 1(2”**'), mithin ist wenig-
stens einer der Charakterwerte

X100+ - -ol?) s Xoto---o(®)s-- -5 Xooo- - 01(7)

von 1 verschieden. Sei also fiir einen Charakter y’ die Zahl y'(n) — 1
von Null verschieden, dann ist

(Z'(n) —1) X x(n) = X (1 (n) x(n) — x(n))
X X

=3 g qn)— X xn) =X z(n) — X x(n) =0,
also g * *

EX(”):O’
X

wobei zu beachten ist, daB wegen IV, VI mit y auch y'x die ¢(m)
Charaktere modulo m, nur in anderer Reihenfolge, durchliuft.

§5. L(1,y) #0 elementar arithmetisch

Fiir jeden vom Hauptcharakter verschiedenen Charakter y modulo m
erklire man

1
H(saX):pijN 1 % (p)
ps
A~ Y x(n)
Le.n=x%3
1
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Es handelt sich hierbei um Partialprodukte der Eulerschen Produkt-
entwicklung bzw. um Partialsummen der Dirichletschen Reihenentwick-
lung der L-Reihen der Analysis. Man hat wegen », = 0(p(m))

1>F,(s) :pgyl — o 2 Y- wie in § 3,
pym
- (p) et 2 () )
F sﬁs, :H(l——x(p) )/(lwl—w):ﬂ by = B LA,
1( ) ( x) pgN pl’pl ps p<N ‘6’ p’ls e ‘II"' pkp n8
PN
Ap<vp

1Py T, —Lis, 2]

x| _ & 1 ] k+1 4 ,

T T e | S S e (N+1)1”‘<7"’(m)' (vel-(4)})
p<N
Ap<vp

Um 2 (8, ) nach oben abzuschitzen, wird die summatorische Funktion

S(n, x) = ﬁ; x ()

v=1
eingefithrt. Wegen Eigenschaft V der Charaktere ist
S(m,y) =0
und wegen Eigenschaft I ist

S{m, x) =0

fiir alle natiirlichen Zahlen I; fir I =0 wird S(0, ) = 0 auf defini-
torischem Wege erreicht. Da nun die Summanden x(») in jedem Inter-
val Im+1, Im+2,...,( + 1)m genau ¢(m)-mal den Betrag 1
haben, aber sonst dort verschwinden, so folgt

18(n, 7) |<}op(m) ,

also ist
1L, 0l=> jS(n , %) :;(”“l,x)
- |+ 280,20 (5 — )
mithin < "”(2"“) ((N'*l' 1)° +§N(7z%_@——%—ﬁ’“>) =%to(m) ,

1866, 2)1=1F ) e, 10— Blo. )+ Ll ] - 5 < (F9tm)+ 59tm)) - 33 =t
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Um | ﬁ (s, ) auch nach unten abzuschidtzen, bilden wir

2

/
A,
ps

1
| 1T ﬁ(&,gg’)l2 :pgN X,I?—ZXI
1/Zx
_ H( 1 (1_ x’(p))z, I (1_ rio+ap 1 ))

P<N \x/ reell y 2 X Zx\ p° p*
pxm  X'ZX

<(1+-§%,- >;<_ s 2O o YO0, }_))zm

x'=x'* P X' x* p* xi=x* P

1 i 2 ' 1 \\2M:
<(1+—2—N:—pz (-3 22 ®) 4\ o) = ——))

v*n P° p<N P

1 1 2N,
<(14+ — — — 1. VII.
<(+ml(Zp-rm 3 tyrm)”  ow v
pym Pp<N
1 1 2Ny C. \ 2N
< (1 + (Gt gom)) = (1+ #) (vel. (12)1)
< 326, (vgl. (A1)
. | I 16,7 . )
|11 (s, )| = T (e )] > 55 g (m) D = T, (13)
xXIZx
X'Zx

§ 6. Stetigkeit von L (s, y) elementar arithmetisch

Sei g rational >1, also ¢ =§— mit p>q¢>0, p,q ganz rational,

ferner z rational und 0< |z |<1, sodal —1l<y=(1+ z)?—1<1
und y 5~ 0 ist. Setze

Fln)= (14— (1+§((1+n>q~ 1)) ,
dann ist
F(0)=0 .

Nach Hollkott (4) 148t sich finit eine reell algebraische Zahl 7, konstruie-
ren, fiir die
Fyy F(y) —F(0) P
oo e
y y—0 i

mit 0< -9yi <1 ist. Nun ist
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F'in) =p((1 4+ 9Pt — Q1+ 9))=pd + n*t(1 +nr?—1),
F'(n) n, >0,
F(y)=F ()7 - ;;’L>o .

1
Die Einsetzung von x und p ergibt

1+ x)e>1+ o2 .
Fir 0<z<1 folgt

ex

1 x e
(1--91;)92(“r l—-x)>1+ 1 —z

1
1427

l—=x

Schliellich ergibt sich fir 0<{ax<{1l, ¢>1 die Ungleichung

(1—2a)e<

ox
1—3{—(@—1)&3

Sei nun 1 <s,<8<8'<<8;<<2 und wie bisher s und s’ rational, ferner
setze s

S 14

p 4

<l—(0—ax)2<ox .

mit positiv rationalem ¢. Dann ist

¥ — (14 &>0. (vel. (11)!)
SchlieBlich sei n eine natiirliche Zahl >3. Man setze

_ (n + 1)'+2
b= [n8’+2s(3b —(1 +a))J t1

dann gilt fiir die Zahl

3
n-+1\!
= ()
die Ungleichung
1< <n;{;l ’
ferner
1
¢="T (1t @-ny>1+1g-1,
1 nd’+1 .
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Weiter setze man

1
—=1—x, also 0<x=1——;—<1-
Dann ist
1 o 1
I P
1 1L 11— 1-0—a)#
' 7
sx s’z qg—1
ST Ty leses T <emt,
14+ (s—1)x

ferner fir 0 <A< :

(n qf\)s—i—l - (n qi)s’—f-l = (n qf)s'—}-l (((n qx)s)e — (14 3))

)
>@?Cﬁ?ﬁ(?’“—(1+6)) ;
2 3¢ 1 ——l;‘l § 3¢ 1 A+1 A
(n_{_l)"ﬁ?f( ‘.‘( +€))“‘“7:0m—_*_1);q—1( — —l—s))(nq —ngh)
<l—1 8 s’ A+1 A
o ‘()Y ((nql)s+1 - (nqx)g'+1)(ng —nqt)
_sg—h'd 1 dg—nid
T w S @ @Y
_sg—1) (1 1 ) s’(q——l)( 1 1 )
"_:T(F_(n-kl)s - 12 ns’ (m+ 1)) "
qs qs
8(g—1) (_L__ 1 __( 1 1 )
lui ns (n+l)s ,ns/ (n-{—l)") =
qs
1 / 1
8 " 8(1 _?) 8/(1“?) 1 1
>Wf(3 -(1‘{‘8))“‘q< 1____1_~ o 1 — 1 (ns' — (n+1)3')
9 g8’
8 ¢ n+1 ns’ +1 . 1
>W(3—(1+8))'— o (n+1)8,+28(3—(1+8))ons’__0,
1 1 1 1
n (n+1)° ——(w" - (n+1)8’)>0 )
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. 1
Nunsei 1<s,<<s<8'<<so=1+ R und g # x;. Unter Beachtung der
5
Tatsachen, da x(1) = 1 ist und wegen 2/m ferner x(2) = 0 ist, finden
wir

1L, — L', 9| =

%(17(&?) _ xé:b))l

_ §(s<n,x>——8<n—1,x>)-(*$?“‘ nl){

3

= —8(2,x)(318 31')+S("'”‘)((N41r1)8_ (Nil)")

#2300 (3~ (o))

<P w iy W)

ii(irm%?“(m' 7)) = v (5~ 5)
) )< (5-(-5)

\[T(8,7) — L1 (s, )| <|(L (s, 7)—F1(8) I (3, )| + | Fuls) [T (3, ) — Eis, 7))
+1L6, =L@ |+ L6 0 —Fi0) (e, 7))
+ | F ) [T ) — 118, 7)|

<16l n—F@+ L e 18 -1
(N+1)F G (N+1)F

2 . A ﬁ !
<35 IB621+ 55+ 5 1HE 1< 2 106,01+ DL g6

“A](s,’ Z)l - lﬁ(&x) ’ (H ('S,’ X) li (S,x))l
ﬁ 8,,'

o =3
~

<lﬁ(8,x)l+lﬁ(8 0 —1e, )< -2
(s, 5)| < IH(s 2
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5 1,2 | (14)

§ 7. Der Logarithmus elementar arithmetisch

Fiir komplexe algebraische Zahlen z, die nicht negativ reell oder 0
sind, wird unter den zwei Losungen der Gleichung

2 —2z=0
genau eine durch die Forderung der Positivitdt des Realteiles:
R(t)>0

ausgezeichnet. Wir bezeichnen sie mit }/z . Die Zahl V2 wird durch die
Bedingungen
(V2 =2

R(Vz)>0
eindeutig gekennzeichnet.
Die Funktionalgleichung

Vayzs =V Va (15)

ist allgemein nicht richtig, z. B. nicht fiir 2, =2, = — 1 4 4. Aber sie
gilt unter der zusétzlichen Bedingung

R(z,)>0, R(z,)>0 . (16)
Setzen wir namlich

Vz,=oa;+if;, (=1,2; a,p; reell) ,
so folgt
of — f; = R(z;)>0, a;=|al;>|B1;,

RVz Va) =may— o=l || — o
=|ay | |ag|—|B|-|B:]|>0.
Da aber (V;: 1/7:;2 = 1/21—2 l/:z;z = 2,2, ist, so ergibt sich (15).

Definition :

n—1

" "
P V=
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2‘”
Durch diese Festsetzung ist V2 fiir komplexe algebraische Zahlen z,
die nicht negativ reell oder 0 sind, eindeutig erklirt. Es gilt

Vo =2
var =V= 0 <v<mn)

R(]z/;) >0 fir n>0.

Wenn R(z,)>0, R(z,)>0, so gilt iiberdies die Funktionalgleichung

Zwischenbetrachtung: Sei |z|<1, dann ist
R(1 +2)>0
RV1+2)>0,

setze u = V1 + 2z —1, dann ist
Ru = Rl/l_ti———z—-—— 1>—1
24+ Ru>1
jul-12+u|>ul-RE+w)=]|u| 2+ Ru>— Ru+ Ru)

1—Jul |24 %<1+ Rup?

V1—|u||24+u|<1+ Ru= R+ u)
V1—[z|<RV1 +2) (17)

|u| = 2] < %] = 2] <]z| <1

T 14+ V1+z| R1+VIds 1+R1V1+2)
|124+u| =2 —|ul

1 —Jul-|24+2| <1 —]|ul)?
VI —Ju]-2+w|<1—|u|
lu] <1 —=V1—|ul||2+u]
lul=|V1+z—1|<1-V1—|z]. (18)
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Behauptung :
2 2"
RVi+2=>V1—|z| =n=0,1,2,... (19)

Beweis fiir #n = 0 trivial, fiir » = 1 geht (19) in (17) iiber, sei also n>1
und die Behauptung bis % — 1 einschlieBlich bewiesen. Es ist

gn—1 gn—1 g1

RWV1T2) =ROVTF0 = VI Ta|> |1—0—Viojz] = V=[] .

womit der Beweis auch fiir den Exponenten n erbracht ist. Wie friiher
bewiesen wurde, ist

VI Ta>1— 2]

Also gilt fiir |z|<1 die Ungleichung

R(f/nl+z)>1——';’—. (20)

Wir definieren nun fiir algebraische Zahlen z, die nicht negativ reell oder
Null sind, als arithmetischen Ersatz fiir den Logarithmus :

z):2"(l/2nz——l) (n=20,1,2,...)

Fir n>0, |z|<{ ist unter Verwendung von (20)

l(l42)—2] = [2"(V1Fz—1)—z]

| (2" 1fﬁ‘é—»(zn+z>)(2"12/1 +24 (2" +2)|

o™
2" V1424 2"+2|
n—l 22
|4”‘]/1—}—z———4"——-2"+1z—z2| on+1 ln_1(1+z)—-z—§m-
< 2n— — . 12n R(z)
R V1+242"+2)] PHR(GVI+2)+ 5+ oo
1
(U 2) 2]+ —p 2B 1l (42 — 2] + 2
< 1 1 1 1 - L :
2T A Ty e
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Hieraus folgt insbesondere:

lh(l4+2)—2=0
|22
4+ |2]?
h+a) -zl <t ="
J=2 12 5
1L(1+2) -2 <—— =22,
—

Behauptung: Fir »n=2,3,... gilt

L0+ =21 <3 (1-gr) 120

3

Das ist fiir n = 2 bereits gezeigt. Sei n>2 und bis » — 1 bereits der
Nachweis erbracht. Dann folgt

L0+2 -zl <3 ((1—g=) 120+ 5r) /(1 - )

5 1
g'g'(l_“ 211..1)[2'2 .

Also gilt die Behauptung fiir n ebenfalls. Allgemein gilt :

LA +2—zl<olzlf (=01,2..). (@1

An die Stelle der Funktionalgleichung des Logarithmus treten Unglei-
chungen.

Voraussetzung : R(z,)>0, R(z,2,)>0,..., R(z,25...2,)>0 .

2n-1
b(2) <M <— t=1,2,...0).

Dann ist

Var - Vo, =V,
V2o Vo, =Vazat,.. Vayzg .z - Vo, =V, 2,.. .2,

also - _ B -
l/zl * VZ2. . .Vzl - l/zl 22. . .Zl
o” 2" o
Vo, - l/z—2 X .V;;-:: V2, 2,.. By

Setzen wir noch
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so folgt

I (2125 . %) :2“(1”/”z1z2. Ta—)=20Va V.. Va—1)
:2“((1+u1)(1+u2). ; .(1+u,)—-1)

l l 1
e (2125 . . 2) ””Al-v L (2:)| = |2"((11](1 + u;) — 1) _A?ut)l

l

=2" X > Uy Uy Uy | <2 X = Fowg |- g, |- oo | g, |
r=2 1<iy1<ig...<tp<l r=2, 1<t <s...<ip<K1
!l M" k l" M" I M\2 1 12 M2
~ 3
l l2 M2
11, (2122, . .2) — X 1, ()| < on (22)
1
insbesondere im Falle, daBl z, =27 und n =2
4 M2
1020 + 1, (2) | < —on (23)

§ 8. Die Gleichverteilung der Primzahlen in den primen Restklassen
modulo m

Die nicht in m aufgehenden Primzahlen << N seien p;<p,--- <py,,
wobei 2<p,, py, < N ist. Die Zahlen sy, 8,,...,8; 4, wurden be-
reits durch dquidistante Teilung des Intervalles s;...s, erhalten, wobei
noch der rechte Endpunkt s, des Intervalles auch durch s, , bezeichnet
werden moge.

Setze A
p i+l . (t=0,1,2,...L—1;
Moty = on) y=1,2,...Np) .
pii+2
Dann ist
11 v v
| wix l __ p:i-u p:i+2 _ 1 pzi+2 Si+1
tNot+v | — — X :
x (pv) 8541 1 —
1— 3i+2 pv %
pV

89—8
1+ 0 1

%(1-?(.‘;_};3/3) (1—N(1-N;1) T)
e
<3
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ferner % ()

iN i 1— ¥ i fI (s
1]
H(1+0C,)ZH II - /4 ___n A(85+1’X) (H—laX) :
e (N T R
j+1
- und p
14
| — 1+ H(l + iy | =1 2 Y CiNotiy ¥iNotiz® =+ ¥iNgti; |
j=1 J=11<1) <ty - <15 <V
5 N(s,—s)\”
X > l“iNo+i1H0‘iNo+i2l”- lo‘il\'o+ij|<(1+ T) —1

i=11g 1<‘i2'--<i7'<v
1

Niso—s) (47 \\¥o
<(]"FN(so—sl) ((3) 1)) =3
iNg+v iN, iN, v
=14 I ()| = | =1+ T )+ 0+ o) (— 1+ I (1 )|
i= = j= i=

i
I1(8:11,%)

ﬁ i s v
g’—-l‘}_‘—/\(ﬁi}——x’l + ~ ’I—‘l+'[[(l+0‘ilvo+7‘)l

II(3y, %) 11 (sy, %) 7=1
<p+i-d=1,
iNy+v iNog+v iNg+v

R( 11’ (I+ o) =14 B(—1+ II (It+a)) >1—] =14 I (1+a)|>0.
j= j= )=
Gemil (21) ergibt sich
1 1 1

5
12, (1 + o) |<|l(l+oc5)~—a,l+locjl< | o [+ §<‘3"Z+-‘2—<1a

ln(ﬁ(so’x)>

11(sy, %)

GemifBl (22) folgt fiir natiirliche Zahlen », die der Ungleichung
27-1>1(LNy):>LN,

' geniigen, wie z. B. fir n = (LN,)?, die Abschitzung

lﬂ(ﬂfﬂ:ﬁ>_g°zn( ,)’ (LN _y

ebenso
<l1.

ﬁ(sl’X) j=1 2"
und daraus
LN, LN, A
]Zln(l+0‘j)|< 2lﬂ(1+0‘j)_ln<IZ(so»Z>)1+l (ﬁ(so,X)>‘<l+1:2.
J=1 i=1 II (sy,%) ﬁ(sl,x
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Ferner ist gemdB (21)

also gemil (22)

b (1 ﬁ‘iﬁl) - (ln(l + aimors) +z,,(1——’-‘-‘£”—’-))[ <t

si 8~
pv va-l

> = (p,) 2 (D)

<|Z 3= - (b0 e v (1= EE))
-1 N, 4

+ | Eln(l""‘“z‘No-;-v)lg”z?{ LN,+2<4
1=0 py=1

und schlieBlich

2 e (052 (- B2)
)

|z

i $1 <
PN D

_ 1 (1— x(p) x(p)) x (p
ngN( ( pso )+ pso +p§N pso

< % (p) (1_ x(p)) (ln(l % (p) —l,,(l— z (p) )I
p<N| P Tl ph t pgN ph ) pPo )

. 1__x()) 2 (D)
s ( o)+ B+ =
1

(vgl. (21)))

<§+4+5+i=6. (vel. (6))

Fiir zu m teilerfremde Zahlen a ist die Kongruenz a b = 1 (mod m) 16s-
bar. Dann folgt

§x(b)-2m=2 3 il
X

P<N P p<N
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(p)

- “1\=>:()2"

m T e
#l )Pga Pt <y PO XL p<N P
pym
<x |2l gom). (24)
1224 lp<N P!
§ 9. "Abschitzung der (-Partialsummen und Schlu8
Man hat fiir natiirliche Zahlen k£, » und s; =1 + =
(1 1 )" 1 1 m
kn 1 1 w41
(1+ 7{17) 1 T
1
n T
1 —
<)
S n 8;—1
- ( 1)
+1
1 1 1 < 3
(81~ 1 o) w1 s —1 (n+ 1)81——1 ’
1 1 8, 1 1 s
(n—l“ 1)(7?/81 o (n+ 1)81) > 8y — 1 (nsl—l - (n+ 1)31_1) (20)
¥ o1 Y (n4+1)—n 1 1
}1:’ né ‘_‘? - né =—1+ (n+1)31_1 Av( +1)(n’1 - ’(n+1)81)
1 s, Y[ 1 1
o (N + 1)t + 8 —1 ‘? (n"_1  (n+ 1)"1_1)

1 1 1
] +(N+1)sm+(k+1)(1"“‘“*““_‘1j):"(1“”“““‘1‘)
(N+1)* (N+1)*
k
PR (vgl. (3a)!)
i 1 1 Ny
N T vp a1 1
&<E*“1;*<H pf <fl —<|1+4| = psl
2 1 17 P<N ] _ P<N 1 _ 1 2lopsN ] —
P’ p* P’
1 1 1\\¥: 1 1 s
<1 _____( 42 _-)) <(1 ———( = 2))
\( +Nz pgﬂp"+ p<n PP = +N2 png‘1+
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el [5 L ez

< p<N D ’ 3p<Np 2_16_23 p/m ’
54
1 _ ¢(m) 1
= &4 18 —
Fir die Anzahl A4 (a, N) der Primzahlen
p<N und =a(m) mit (a,m)=
ergibt sich die Abschéitzung:
3 1
A(a,N —6-3
( ) pza psl (m) pgN p&l
pym
3 1 3 1
> 3 —18——° ¥
POm) ;= P » (m) 5,, P
1 1
Sep18f o vy i g3 —=¢,
(p(’”b) p/m p ) Z'm p
womit alles bewiesen ist!
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(Eingegangen den 29. April 1948.)

Bemerkung bei der Korrektur: Wie ich unlingst erfuhr, hat Atle Sel-
berg eine elementare Methode entwickelt, mit der er einen anderen ele-
mentaren Beweis fiir den Satz von Dirichlet fithren kann.

Kopenhagen, September 1948.
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