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Uber die Existenz von Primzahlen
in arithmetischen Progressionen
Herrn E. Artin zum 50. Oeburtstag gewidmet

Von Hans Zassenhaus, Hamburg

Nach Verteilung der natiirlichen Zahlen auf die Restklassen nach
einem Modul m^ 1 bilden die in einer Restklasse gelegenen naturliehen
Zahlen eine arithmetische Progression

a, a + m, a + 2m,.

mit der Difïerenz m und dem kleinsten positiven Rest a als Anfangsglied.
Wenn a mit m einen Teiler d > 1 gemeinsam hat, so geht d auch in allen

tibrigen Zahlen der Progression auf und dann kann hôchstens a eine

Primzahl sein. Wenn dagegen a und m teilerfremd sind, so bilden die zu

a modulo m kongruenten ganzen Zahlen eine prime Restklasse, die aus

lauter zu m teilerfremden Zahlen besteht. Die Anzahl der primen
Restklassen ist / î \

(p (m) m • II 11 J

p(m \ Vf
wobei die Produktbildung ûber die Primteiler von m zu erstrecken ist.

Fragen wir uns, ob Primzahlen in primen Restklassen enthalten seien,

so steht dem jedenfalls keine allgemeine Teilbarkeitseigenschaft ent-

gegen. Statistische Untersuchungen fur die kleinsten Moduln ergeben,
daB sogar die nieht in m aufgehenden Primzahlen sich annâhernd gleich

hâufig auf die cp(m) primen Restklassen modulo m verteilen. Da es aber,

wie bereits von Euhlid gezeigt worden ist, sicher unbegrenzt viele
Primzahlen gibt, so tiegt die Vermutung nahe, da8 es auch in jeder arithmetischen

Progression, die aus den in einer primen Restklasse modulo m ent-

haltenen naturlichen Zahlen gebildet wird, unbegrenzt viele Primzahlen

gibt.
Dièse Vermutung, die von Legendre zuerst ausgesprochen wurde und

von ihm als Hilfsmittel zum Beweise des quadratischen Reziprozitâts-
gesetzes verwendet wurde, ist von Dirichht (2) 1840 mit den Hilfsmitteln
der hôheren Analysis bewiesen worden.
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Nun ist aber das Problem selbst ein Problem der elementaren Zahlen-
theorie (Zahlentheorie im Bereiche der natiirlichen Zahlen).

Schon seit langer Zeit ist die Frage gestellt worden1), ob es nicht môg-
lich ist, einen finiten Beweis fur die Existenz unbegrenzt vieler Prim-
zahlen in arithmetischen Progressionen, deren Differenz teilerfremd zu
ihren Gliedern ist, zu fûhren.

Ich werde zeigen :

Zu beliebig vorgegebener Anzahl £ lafit sich vermôge endlich vieler Addi-
tionen, Subtraktionen, Multiplikationen und zahlentheoretischer Rekur-
sionen, hurz gesagt, in endlich vielen Schritten eine naturliche Zahl N so be-

stimmen, daji in jeder der cp(m) primen Resthlassen modulo m durch das
bekannte Siebverfahren mindestens f Primzahlen zwischen 1 und N gefunden
werden. Um dies einzusehen, sind nur Abschâtzungen notwendig, die sich
auf endlich viele Additionen, Subtraktionen, Multiplikationen, zahlentheore-
tische Rekursionen und Anwendungen der Monotonieregeln im Bereiche der

ganzen rationalen Zahlen stûtzen.

Es wird also weder das Auswahlpostulat der Mengenlehre, noch das
tertium non datur der mathematischen Logik, noch der Reduzibilitâts-
satz der Logistik zu der Einsieht, da6 durch das Siebverfahren in jeder
arithmetischen Progression mit gegebener Differenz m^ 1 und gegebe-
nem zu m teilerfremdem Anfangsgliede a unbegrenzt viele Primzahlen
gefunden werden, gebraucht.

Der Weg zu dieser Einsieht besteht in der konsequenten Ersetzung
der Grenzwerte der analytischen Zahlentheorie durch ihre Nàherungs-
werte. Mit den Nâherungswerten werden im wesentlichen die analogen
Operationen ausgeflihrt, wie sie in dem von Dirichlet-Dedekind (1) gefuhr-
ten Beweise, s. a. (3), mit den Grenzwerten selbst ausgefiihrt werden.

Mit den algebraischen Zahlen wird bei der Beweisfuhrung unbedenk-
lich so wie gewohnt gerechnet. Es ist nàmlich in der Dissertation von
Hollkott (4) gezeigt worden, daB die Anordnung bzw. die Bewertung
durch Absolutbetrag sowie die Ausfuhrung der vier Rechenoperationen
im Kôrper der reell algebraischen Zahlen bzw. im Kôrper der komplexen
algebraischen Zahlen sich finit ausfiihren làBt unter der alleinigen Vor-
aussetzung, daB sich die entsprechenden Prozesse im Bereiche der ganzen
rationalen Zahlen finit ausfiihren lassen. Somit bedeutet z. B. das Zeichen

n8 (n eine naturliche Zahl, s — rational) im Sinne der Arbeit von Hollkott

das dem Polynôme

*) Zum Beispiel von E. Artin in der Vorlesung ûber Zahlentheorie.
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x9 — nP

eindeutig zugeordnete positiv réelle Wurzelsymbol nsf.
Die finite Ausfiihrbarkeit der zahlentheoretischen Prozesse im Bereiche

der ganzen rationalen Zahlen wollen wir als ein dem menschlichen Geiste
innewohnendes Vermôgen voraussetzen.

Es môge bemerkt werden, daB sich in der Béantwortung der Frage,
was ein elementarer Beweis eines zahlentheoretischen oder algebraischen
Satzes sei, seit den Zeiten Kroneckers, Mertens tind Schurs bis heute
durch die in die Zwischenzeit fallenden Grundlagenuntersuchungen eine

Wandlung vollzogen hat.
So spricht Mertens (7) in der Einleitung einer seiner Arbeiten ùber die

Primzahlen der arithmetischen Progressionen davon, daB er das Nicht-
verschwinden der i-Reihen in s — 1 elementar beweisen wiïrde und ver-
steht darunter die Beschrânkung auf die Sâtze der reellen Difïerential-
und Integralrechnung, wahrend die Heranziehung funktionentheoreti-
seher HiHsmittel Mertens offenbar als nicht elementar erscheint.

Vom finiten Standpunkt erscheint die Heranziehung der reellen Diffe-
rential- und Integralrechnung ebenso fragwiirdig wie die Verwendung
der Analysis im Bereiche der komplexen Zahlen.

Kronecker (5), wohl der erste Intuitionist, hat in seinen zahlentheoretischen

Vorlesungen den Dirichletschen Beweis so abgeândert, daB der
vorhin formulierte scharfe Satz, der ja uber die unbestimmt formulierte
Existenz unendlich vieler Primzahlen in arithmetischen Progressionen
noch hinausgeht, bewiesen wird. Er verwendet dabei auch analytische
Grenzwerte. Immerhin ist es môglieh, daB Kronecker sich unter den von
ihm verwendeten Grenzwerten nicht die Limeszahlen, sondern Nâhe-

rungswerte, welche die Limeszahlen mit einer im Geiste stets mitgegebe-
nen Genauigkeit approximieren, vorgestellt hat.

Den schârferen Ansprûchen der Finitisten wird aber erst geniigt, wenn
einmal rechnerisch dargetan wird : Es geht auch in endlich vielen Schrit-
ten.

Sachlich ist zu bemerken, daB von mir eine ungleichmâfiige Asymptotik
rechts von 1 angewendet wird, mit deren Hilfe der Ausdruck

abgeschatzt wird.
Kronecker dagegen schâtzt den Ausdruck

V8

zunàchst noch mit analytiscben Hilfsmitteln ab. Aber im AnschluB an
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einen von mir im Mathematischen Seminar Hamburg gehaltenen Vortrag
zeigte E. Witt, daB sich die Kroneckerschen Abschatzungen auch auf
elementarem Wege erhalten lassen Dieser Weg hat den Vorteil, daB die
im § 8 dieser Arbeit auftretende Schwierigkeit, die analytische Fort-
setzung des Loganthmus einer komplexen Funktion langs eines Stuckes
der reellen Achse elementar arithmetisch durchzufuhren, vermeidet. Da-
fur steckt allerdings in der Formulierung des Ergebnisses selbst noch eine
Reihe von Grenzwerten. Es muB erst noch log p durch einen genugend
genauen Naherungswert ersetzt werden

Zu wunschen ware die Auffindung einer gleichmaBigen Asymptotik
rechts von 1 etwa so, daB die Summation und Restabschatzung der
Dirichlet-Reihen fur L(s, %) sowie die Ausmultiplikation und
Restabschatzung der Eulerschen Produktentwicklung von L(s, %) so aus-
gefuhrt wird, daB gleichmaBige Konvergenz in einem Intervall l^s
^ s0 ^> 1 eintritt

Vielleicht ware es dann moglich, den Schauplatz in s 1 zu verlegen,
so daB am SchluB eine Abschatzung fur

p7
sowie fur

<p(m) E - - E —

P ^À

erhalten wurde Mir ist dies auf elementarem Wege nicht gelungen.
SchlieBlich bleibt noch die Frage offen, ob es nicht noch viel ein-

fachere elementar arithmetische Beweise fur die Existenz von Prim-
zahlen in arithmetischen Progressionen gibt, etwa ein dem Euklidschen
Beweisverfahren fur die Existenz beliebig vieler Primzahlen verwandtes
Verfahren.

Wenn wir den zu beweisenden Satz fur einen Modul m gezeigt haben,
so folgt seine Gultigkeit offensichtlich fur aile Teiler von m. Wir wollen
und konnen annehmen, daB m durch 4 teilbar ist. Dann ist <p(m) eine

grade Zahl.
K sei der ra-te Kreiskorper, £ eine in K enthaltene primitive ra-te Ein-

heitswurzel.
In dieser Arbeit wird gesetzt :
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3e»

Ferner sei k eine naturliche Zahl, die den Ungleichungen

h >C5 (1)

k ^18-3 p/mP (2)

gentigt, z. B.
k C5 + 18-

und es sei

SchlieBlich sei N eine naturliche Zahl, die den Ungleichungen

k+1 13

{N +
1

(N +

k-}

c,

Œ +

1 "

1 ^

- 1

1 "

¦1)*

- 1

D¥

^ 28

^ 1

^ 2 '

4

1

^ 9(74

^ 1
555

3

(3)

(3 a)

(5)

genûgt, z. B.
N

Mit Hilfe der Zahl N wird berechnet :
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m n p*

No Anzahl der Primzahlen<2V\ die nicht in m aufgehen

N2 Anzahl der
Nz Anzahl der Primideale aus K, die in Primzahlen < N aufgehen ver-

mehrt um N2

§ 1. Herleitung einer unteren Schranke fur die Anzahl der ganzen Idéale
beschrânkter Norm im m-ten Kreiskôrper naeh Dedekind

t sei eine naturliche Zahl. Die Anzahl der ganzzahligen Losungen des

Systèmes der q> (m) Ungleichungen

<P(m)

4<p(m)

ist mindestens gleich
l<P(m)

r '[2 <p (m)

Jeder Losung dieser Ungleichungen ordnen wir die ganze Kreiskorperzahl

ç ç \X0 X1 ^V(m)_i) ^^ ^j f
0

zu. Die Zuordnung ist umkehrbar eindeutig, da ja die Zahlen 1, £, £2,...,
£*<m)-i e[ne Basis von Jf uber dem Korper i? der rationalen Zahlen bil-
den. Die Norm dieser Kreiskorperzahlen ist hochstens t, weil ja

n Z x,çvl= n | v af,c»|< zr ^
0<v<m 0 0<v<w O 0<v<m O()l

ist. Die Zahlen f sind von Null verschieden, weil

9(m)

ist.
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Zwei von diesen Kreiskôrperzahlen, etwa

I Ç (#o> xiy • •> x<p(m)—l)
und

sind dann und nur dann àquivalent, wenn sie gleich sind, denn es ist

n —l___ ^ n

Ç>(TO)

wenn also der Quotient -p- ganz algebraisch ist, so ist die Norm

Ne/r l-jr — 11 ganz rational, wegen der eben hergeleiteten Ungleichung

Null, mithin ist —t 1 0, f |;.
So finden wir fur die Anzahl A(t) der ganzen Idéale ^ 0 von K,

deren Norm nicht grôfier als t ist, die Abschâtzung
<P(m)

A (t\ > ^^ I
m

XX \l/1 -j^- I ~~r ~~ I

t
Wenn aber 1 <f< (4a?(m))<p(m) ist, dann ist A (t) > 1 ^ t(4 cp (m))
da ja -^j[//j(l) 1 ist. Wenn dagegen £>4ç>(m)Ç)(m) ist, dann ist

<P(m) <p{m)

r(m) «

I > 7
(m)

•

\499(m) // (4<p( f/
Also gilt fur jede natiirliche Zahl t bis N die Ungleichung

mit
Ol
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§ 2. Einige elementare Ungleichungen

a) Man hat fur naturliche Zahlen l, n die Ungleichungen

1 +

n-\-l
also mit

die Ungleiehungen

- 1 (n +
n

1 s- 1 1

(w + l)s 1 {n + l)8 ns

n{l~s- ^TTf) < T^T (-^T ~ Tn +1!)8-! • (8)

Die Ungleichung (8) wird zur Abschàtzung von C-Ausschnitten verwendet,
nàmlich : wenn A, B ganze Zahlen, die in der Beziehung
stehen, sind, so gilt die Abschàtzung

Y_= v
B

i
ê y( 1 *

(9)
(B + 1)« + s - 1 ^ U8-1 (» + l)8

+ (l + 1] ^^ (B + l)-i + (l + 1]
(A + l)-i

b) Nach Cauchy lâBt sich elementar beweisen, daB das arithmetische
Mittel nicht negativer Zahlen mindestens so groB wie ihr geometrisches
Mittel ist. Also gilt fur reell algebraische Zahlen a^— 1 (i= 1, 2,..., n)
die Ungleichung
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Fur natiirliche Zahlen n, l gilt die Ungleichung

(10)

2 \»

1 \n

Also gilt fur natûrliche Zahlen p, q, n die Ungleichung
i

(11)

§ 3. Âbschâtzung des Quotienten zweier £-Partialsummen

Von nun an môge s irgendeine der L + 1 rationalen Zahlen

1.2 L~1
^1 > ^1 ~f" ~r~ » 51 i F" > • • • j 5l Hr » 51 i F > • • • j 5l H r

bedeuten. Man setze

ps

wobei die Produktbildung jeweils liber die Primzahlen, die nicht grôBer
als N sind, zu erstrecken ist und ferner fur eine Primzahl p jeweils die

Zerlegung
ptVlVe
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in Primideale von K angesetzt worden ist, so daB die Normenbeziehung

und die Zahlbedingung

besteht. Es handelt sich bei den beiden Produkten ofïenbar um Partial-
produkte der Eulerschen Produktentwicklung der Riemannschen f-Funk-
tion bzw. der zu K gehorigen f-Funktion der Analysis.

Wir bernerken, daB das spezielle Zerlegungsgesetz des m-ten Kreis-
korpers lautet

e / 1 ist mit p 1 (m) gleichwertig,

e^l ist mit p/m gleichwertig.

Die Zahlen e lassen sich fur die Primteiler von m leicht explicit angeben.
Desgleichen lassen sich die Grade / fur zu m teilerfremde Primzahlen
allgemein als die Ordnung der zu p gehorigen primen Restklasse modulo
m in der Gruppe der çp{m) primen Restklassen modulo m charakteri-
sieren, so daB sich die drei Zahlen e, /, g in jedem Falle leicht berechnen
lassen.

Wir bestimmen fur jede Primzahl p^N einen Exponenten vp^ 5

fur den
vp =0{<p(m))

und

ist, z. B.

Nun setzen

und finden die Abschatzungen
1

V8Vp

(24\2 + ' • ' + t2i)N-l )>l 15
»

i___JL

\ l£ P y)

: vJL wobei M TI pvv>N ist.

16 Commentarii Mathematici Helvetici



Ferner ist
1

• 1-
n

-S
rj tj *pj\8 oganzes Idéal

™ W
11 ll Vj N(a)<N

XPJ<VP

n)-A{n-l) A(N)
n8 (N + l)8

Fur den Quotienten von IJK (s) mit II(s) ergibt sich die Abschâtzung

1 £ 1 14 / ^,1

fi (s)
~ Û(s)F(s)

U / 13 \ 1

Andererseits ergibt sich die Abschâtzung

^

^3

r3
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Somit folgt die beiderseitige Abschatzung

Allgemein folgt aber aus dem Bestehen der Ungleichungen

1 + — I (n naturliche Zahl)

entweder B>0 oder jB<0 und

also folgt in jedem Falle die Ungleichung

B > Min 1 — JL o

Da 0^2 ist, so folgt:

V(m) S -\ - S ^ > 1 - 2 G! - V{m) U + S ^
P=l(m) PS p<^ P8 \ P/m P

> 1 - 2 Ci - <p (m) (3 + m) — C2 (12)

§ 4. Charaktere modulo m

Zerlege m in das Potenzprodukt verschiedener Primzahlen 2, pl9.. ,pr :

mit
2

n (< 0, l,2,...,r).
Suche eine primitive Kongruenzwurzel grt modulo pj* (i 1, 2,..., r),
ferner fur t 0,l,2,...,r eine primitive ç>(pj%)-te Einheitswurzel ft.
Dann ist fur jede zu m teilerfremde Zahl n das System der Kongruenzen
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lôsbar, wobei die Exponenten ain modulo <p(pl{) eindeutig bestimmt
sind. Wir definieren Charaktere modulo m durch die Festsetzung

2 0 <^<y (pj<) - y?*"1 (p, - 1)

i -0, l,2,...r
dagegen soll

gesetzt werden, sobald w und m einen gemeinsamen Teiler > 1 haben.
Die Anzahl der untereinander verschiedenen Charaktere modulo m ist

Sie haben die Eigenschaften

I. %(n) %{nr), wenn n 7^'(m)

IL ïK) zW7(O >

III. Z(l) 1

IV. Mit % ist auch die konjugiert komplexe Funktion #* ein Charak-
ter :

wobei die Indizes ^t- bzw. — /^ modulo ç?(p^) abgeândert werden durfen.
Das Produkt eines Charakters mit seinem konjugiert komplexen Werte

ist stets der Hauptcharakter, der durch die Formel

Zoo- -oW -
erklàrt wird. Wenn % %* ist, so ist y, ein reeller Charalcter.

V. Fur jeden Nichthauptcharakter % ist

Denn eine der m Zahlen 1, 2,..., m hat die Eigenschaft %(nr) ^ 1,0,
so daB nf zu m teilerfremd sein muB. Andererseits ist

denn mit n durchlâuft auch nr n ein Vertretersystem der Restklassen
modulo m. Da nun in der Gleichung
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durch den ersten Faktor links dividiert werden darf, so folgt die behaup-
tete Relation.

VI. Das Produkt zweier Charaktere ist wieder ein Charakter:

wobei rechts die Indizes zu reduzieren sind :

(^ + /)mod2, (pt +p'jmod <p{pv%*) (t 0, 1, 2,. r)

VII. Es ist

V 9^ ' wenn

Ç (0, wenn »

Vorstehende Relation ist sicher richtig, wenn n 1 (m) oder wenn
(n, m)>0. Wenn aber n^ l(m) und (?i, m) 1 ist, so finden wir
durch hochstens r -f 1 Proben eine Primzahl pt, fur die n 1 (^*) ist,
also entweder alfH^ 0 (^(p£*)) oder n — 1 (2V°+1), mithin ist wenig-
stens einer der Charakterwerte

-o(n) » Zoio- • -o(w)>- • •' Zooo-

von 1 verschieden Sei also fur einen Charakter %' die Zahl ^(w) — 1

von Null verschieden, dann ist

also

X

wobei zu beachten ist, daB wegen IV, VI mit % auch %' % die q>(m)

Charaktere modulo m, nur in anderer Reihenfolge, durchlauft.

§ 5. L (1, ^) zjL 0 elementar arithmetisch

Fur jeden vom Hauptcharakter verschiedenen Charakter % modulo m
erklare man
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Es handelt sich hierbei um Partialprodukte der Eulerschen Produkt-
entwicklung bzw. um Partialsummen der Dirichletschen Reihenentwiek-
lung der L-Reihen der Analysis. Man hat wegen vp 0(99(m))

p/m
V V

x(p)
15

wie in § 3,

\ x(p)\ n %x x(p)* v

\F1(s)n(siX)~L(sfX)\

s
n= n

M £ 1 k+l

Um %) nach oben abzuschâtzen, wird die summatorische Funktion

S(n, X) 1 %i?)

eiîigefiihrt. Wegen Eigenschaft V der Charaktere ist

8{m,X) =0
und wegen Eigenschaft I ist

8(1 m, X) 0

fur aile natiirlichen Zahlen l ; fur l 0 wird #(0, x) ^ au^ defini-
torisehem Wege erreicht. Da nun die Summanden %(v) in jedem Inter-
vall Im + 1, îm + 2,...,(/ + 1)^ genau 9p(m)-mal den Betrag 1

haben, aber sonst dort verschwinden, so folgt

also ist

* 8(n,x)-S(n-l,x)
T »8

mithin

>x)\ \F1(s)Û(s,x)-£(8,x)+L(8,x)\ • ^
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Um | h {s, %) auch nach unten abzuschâtzen, bilden wir

1

n /7(*,*')l2

- n n

n n

v8

<

< /
i P

77

4v28

1 \\2Jvri

P/J

(vgl. VII.)

(vgl.(12)!)

(vgl. (11)!)

§6. Stetigkeit von L(s9^) elementar arithmetisch

Sei ^ rational >1, also q ~ mit p>q>0, p,q ganz rational,

ferner x rational und 0 < | x \ < 1, so da6 —

und y ^z 0 ist. Setze

dann ist
| ((1

F{0) 0

Nach Hollkott (4) lâfit sich finit eine reell algebraische Zahl rj1 konstruie-
ren, fur die

mit 0 <^< 1 ist. Nun ist
y

^
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F'{

(Vl)Vl
71

Die Einsetzung von x und q ergibt

(1 + #)e>l + qx
Fur 0<a;<l folgt

V1 x)

SchlieBlich ergibt sich fur O^x^l, g^l die Ungleichung

Qx ^ ^ r* x« ^^ <^" i n Xi® <^Z n x

Sei nun 1 <51^5<5/<«0<2 und wie bisher s und sr rational, ferner
setze

s

mit positiv rationalem e. Dann ist

3e - (1 + e)>0 (vgl. (11)!)

SchlieBlich sei n eine natûrliche Zahl >3. Man setze

dann gilt fur die Zahl

die Ungleichung

ferner
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Weiter setze man

— 1 — x also 0 < # 1 <1
q q

Dann ist

SX

(1—X)8f

sx sr x q — 1
— j— (s- 1)x^x ^

s'xs'x

ferner fur 0 < X < 1 :

(nqx)8

»(g-i) (± _ i _ /J_ _ i A >
X__L \^s (w+l)s \ws/ (n+iy'JJ^

«•'

A L__/J___J_W0
w8 (» + l)s \ n«' (» + l)8' / ^
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Nunsei 1 <¦

Tatsaehen, da6
wir

1 + -~- und % ^ %x. Unter Beachtung der

1 ist und wegen 2/m ferner ^(2) 0 ist, jfinden

l*<..a-£*.*>l-||(^~^)

{n'X)W~lïT
{

2 \3* 3*' i L\+ 1)" (tf+1)*'/

\F1{s)fi(sr,x)-fiis',x)\

15 15

fï{8,x))\

15
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§ 7. Der Logarithmus elementar arithmetisch

Fur komplexe algebraische Zahlen z, die nicht negativ reell oder 0
sind, wird unter den zwei Losungen der Gleichung

t2 - z 0

genau eine durch die Forderung der Positivitat des Realteiles:

R(t)>0

ausgezeichnet. Wir bezeichnen sie mit Vz Die Zahl Vz wird durch die
Bedingungen

(Vzf - z

R(Vz)>0
eindeutig gekennzeichnet.

Die Funktionalgleichung

Vzïzi Vzx-Vz% (15)

ist allgemein nicht richtig, z. B. nicht fur zx z2 — 1 + i. Aber sie

gilt unter der zusatzlichen Bedingung

R(z1)>0, R(z2)>0 (16)
Setzen wir namlich

Vz, - oc, + i 0, (j 1, 2 «„ fi, reell)

so folgt

• Vz2)

Da aber (Vz, • V^)2 V"^2- Vz2 2?!^ ist, so ergibt sich (15).

Définition :
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Durch dièse Festsetzung ist y z fur komplexe algebraische Zahlen z,
die nicht negativ reell oder 0 sind, eindeutig erklârt. Es gilt

R{yz) >0 fur n>0

Wenn R(z1)>0, R(z2)>Q, so gilt iiberdies die Funktionalgleichung

2n 2n 2n

Zwischenbetrachtung: Sei | z \ < 1, dann ist

R(l + z)>0

JR(v/r+T)>o,

setze u — i/l + z — 1, dann ist

Ru R Vl + z - 1>-1
2 + i^>l
| ^ | • | 2 + ^ | > | ^ | • R(2 + m) | u | • (2 + R u)^ - iî w(2 + R u)

1 — | u | • | 2 + % |<(1 + Ru)2

^Y^TTY+V]<1 + Ru==

(17)

u

— | u

2

2

j/l — M • | 2 +

| u

u I

u

'\ + ^ -
u\-\2
z (18)
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Behauptung :

«*!¦

B(Vl +z)>Vl-\z\ n 0,1,2,... (19)

Beweis fur n 0 trivial, fur n 1 geht (19) in (17) uber, seialso n>l
und die Behauptung bis w — 1 einschlieBlich bewiesen. Es ist

womit der Beweis auch fur den Exponenten n erbracht ist. Wie fruher
bewiesen wurde, ist

Also gilt fur | z | < 1 die Ungleichung

2" ' (20)

Wir definieren nun fur algebraische Zahlen 2, die nicht negativ reell oder
Null sind, als arithmetischen Ersatz fur den Logarithmus :

ln(z) 2»(Pz - 1) (n 0, 1, 2,...)

Fur n>0, | 2 | < J ist unter Verwendung von (20)

z — 4W — 2W+12 — Zw^ (1 + z) - z - 2n+l

+l
1_ + i--î-+ 1 2 2n+1
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Hieraus folgt insbesondere :

l0 (1 + 2) - Z 0

(1 + z) - z | T \z\*

i 2

i
i L1

2»

Behauptung: Fur n 2,3,. gilt

Das ist fur n 2 bereits gezeigt. Sei n>2 und bis n — 1 bereits der
Nachweis erbracht. Dann folgt

-= 4 (" --B^r) I " I* •

Also gilt die Behauptung fur n ebenfalls. AUgemein gilt :

| ln(l + z) - z | < 11 z |2 (n 0, 1, 2,...) (21)

An die Stelle der Funktionalgleichung des Logarithmus treten Unglei-
chungen.

Voraussetzung : B(z1)>0, B(z1z2)>0,..., B(z1 z2.. .zx)

^ (i l,2,.. J)

Dann ist

Vz1z2-Vzs Vzlz2zZi...Vz1z2...zl_1- Vzx V/z1za...z,

also

.z,

Setzen wir noch
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80 folgt

^ln (2l z2. z,) 2- (y^,,
-= 2« ((1 + Ul) (1 + «,).

2" (V^ • VV • • fa
(1 + «,) - 1)

r=2,

2 2W 2n

\ln{Z1Z2. .2{)-V|n(2t)|^
1 "

insbesondere im Falle, da8 z2 z^1 und n 2

T

(22)

(23)

§ 8. Die Gleichverteihmg der Primzahlen in den primen Ilestklassen
modulo m

Die nicht in m aufgehenden Primzahlen ^ N seien Pi<p%- • • < pN
wobei 2<ply pNo < N ist. Die Zahlen 51? s2,..., 5X_X, ^x wurden be-
reits durch aquidistante Teilung des Intervalles s1.. .s0 erhalten, wobei
noch der rechte Endpunkt s0 des Intervalles auch durch sL+1 bezeichnet
werden moge.
Setze

1 x (Py)

Dann ist
1 1

1
X(Pv)

p*»+ 2

1 —
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ferner

und

1 —
x(p)

-A n
77 («

0CÎNq+v) |

¦tf(«o-«i)\*

-1+

t l

77

GemâB (21) ergibt sich

ebenso

+

— 1

fi(si+1,x)
/?<*„*)

+lNn\i +

V
\ 1 _1_ 77" (1 _1_

2 ^ 3 4 ' 2

fi(*:X) <i

GemâB (22) folgt fur natiirliche Zahlen n, die der Ungleichung

geniigen, wie z. B. fur n

und daraus

die Abschâtzung

2" <1

fi(*o,X)
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Ferner ist gemàB (21)

also gemâB (22)

also

<1

_4_
~2«

<
L-l *„ I
Z IIl=Ot=l\

Xi.Pv

p9

1=0 v

und schlieBlich

% iM.

\ xip)

-Ll-
+ E _ x(p)\ ^(y)

JV

i
(vgl. (21)!)

(iV + 1)

Fur zu m teilerfremde Zahlen a ist die Kongruenz a b 1 (mod m) lôs-
bar. Dann folgt

17 Commentarli Mathematici Helvetici 257



*(&)
y»

î>/ro

X(P)
(24)

§ 9. Âbschâtzung der ^-Partialsummen und SchluB

Man hat fur natiirliche Zahlen k, n und s1 1 + -=-
le

n

n+l
1"1

i — 1

L<1 «! — 1 (n+

(25)

i _

i s (» + D»»-1

(N-

(vgl.(3a)!)

2-t < n x
p*1

258



*'* J lP<N PO1} k ° vlm V

9 ^~5Ï^S

Vlm F

Fur die Anzahl A (a, N) der Primzahlen

p^N und p a (m) mit

ergibt sich die Abschâtzung :

J 18

| _L 18 _1_ V — 18
9 (™) S?

womit ailes bewiesen ist
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Bemerkung bei der Korrektur: Wie ich unlàngst erfuhr, hat Atle Sel-
berg eine elementare Méthode entwickelt, mit der er einen anderen ele-
mentaren Beweis fur den Satz von Dirichlet fuhren kann.

Kopenhagen, September 1948.
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