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Homogène Râume mit invarianter Metrik
Von Walter Nef, Fribourg

Einleitung
Die Transformationsgruppe T, welche aus allen analytischen Abbil-

dungen des Einheitskreises auf sich selber besteht, besitzt eine invariante
Metrik, d.h. eine Metrik mit der Eigenschaft, daB die Lange irgend-
einer im Einheitskreis gelegenen Kurve gegenuber allen Abbildungen
von T invariant ist. Es ist dies die hyperbolische Metrik, deren geodati-
sche Linien die zum Einheitskreis orthogonalen Kreise sind, wahrend die
Lange eines geodatischen Kurvenbogens gleich dem Logarithmus des

Doppelverhaltnisses zwischen den Endpunkten des Bogens einerseits und
den Schnittpunkten der zugehorigen geodatischen Linie mit dem
Einheitskreis anderseits ist. Die Invarianz dieser Metrik folgt ja unmittelbar
aus der Linearitat der zugehorigen komplexen Abbildungsgleichungen1).

Naturlich ist dièse Metrik die einzige gegenuber T invariante. Denn
sind im Einheitskreis zwei beliebige Punkte mit je einer Richtung ge-
geben, so gibt es in T stets eine Transformation, die sowohl die Punkte
als auch die Riehtungen ineinander uberfuhrt.

Pick hat gezeigt, daB bei einer regularen analytischen Abbildung des
Einheitskreises in sich selber jede Kurve auf eine solche von kleinerer oder
hochstens gleicher invarianter Lange abgebildet wird, wobei der letztere
Pall nur bei den zu T gehorigen Abbildungen auftreten kann2). Beachtet
man, daB in der invarianten Metrik die durch den Kreismittelpunkt
gehenden geodatischen Linien die Geraden sind, und daB auBerdem die
invariante Metrik gegenuber den Drehungen um den Mittelpunkt sym-
metrisch ist, so erkennt man, daB der Picksche Satz das Schwarzsche
Lemma in sich enthalt. Da die Winkelmessung in der invarianten Metrik
mit derjenigen in der euklidischen Metrik ubereinstimmt, sind
Abbildungen, die bezuglich der einen Metrik konform sind, auch konform be-

zuglich der andern. Das Schwarzsche Lemma ist also in folgendem all-
gemeineren Satz enthalten :

1) H. Pomcaré, Théorie des groupes fuchsiens, Acta Math. I (1882), p. 1.

2) G. Pick, tJber eine Eigenschaft der konformen Abbildung kreisformiger
Bereiche, Math. Ann 27 (1916), p 1.
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Jede bezûglich der invarianten Metrik der Transformationsgruppe T
konforme Abbildung des Einheitskreises in sich selber bildet jede Kurve
auf eine solche von kleinerer oder hôchstens gleicher invarianter Lange
ab. Wird die Lange einer einzigen Kurve nicht verândert, so gilt dies fur
jede Kurve und die Abbildung ist in T enthalten.

S. Bergmann hat den Pickschen Satz auf eine neue Grundlage gestellt,
indem er zeigte, da6 die invariante Metrik eine ganz bestimmte Minimal-
eigenschaft hat, aus welcher unmittelbar der Picksche Satz folgt3).
Bergmann hat auf Grund desselben Extremalprinzips eine gegeniiber pseudo-
konformen Abbildungen eines 4-dimensionalen Gebietes auf sich selber
invariante Metrik konstruiert (pseudokonforme Abbildung Abbildung,
die durch ein Paar analytischer Funktionen von zwei komplexen Va-
riabeln vermittelt wird)4).

In der vorliegenden Arbeit gehen wir von einem homogenen Raum Q

aus, d. h. von einem Raum, auf dem eine transitive Transformationsgruppe

T gegeben ist. Von Q setzen wir auBerdem voraus, daB er lokal-
euklidisch ist. Von der Gruppe T setzen wir voraus, daB sie differenzierbar
und einfach transitiv5) ist. AuBerdem soll T entweder kompakt sein oder
dann eine solche lokalkompakte Gruppe, die einen diskreten Normalteiler
D enthâlt, der so beschaffen ist, daB die Faktorgruppe TjD kompakt ist.
Damit sind z. B. die kommutativen lokalkompakten Gruppen eingeschlos-
sen, ebenso die Bewegungsgruppen der euklidischen Râume usw.6). Fur
den Fall, daB die Transformationen von T sich (in gewissen Koordinaten)
durch stetig differenzierbare Funktionen ausdriicken, ist gezeigt worden,
daB auf Q eine gegeniiber T invariante Riemannsche Metrik existiert7).

In dieser Arbeit werden wir die Existenz einer solchen Metrik auf
eine neue Art beweisen, indem wir ein Variationsprinzip verwenden,
das dem von Bergmann verwendeten âhnlich ist, wenn es sich auch
nicht wie bei Bergmann auf die Abbildungsfunktionen bezieht, sondern
auf irgendein invariantes Linearsystem von auf Q definierten Funktionen.

8) S. Bergmann, Partial differential équations, advances topics (hektogra-
phiert), Brown University, Providence (USA.) 1941.

4) S. Bergmann, Sur les fonctions orthogonales de plusieurs variables
complexes. New York 1941, p. 51 ff.

6) das soll hier heifien: es existieren zwei Punktepaare in SI, die durch keine
Transformation aus T ineinander ûbergefûhrt werden.

e) L. Pontrjagin, Topological groups, Princeton 1946, p. 153, Lemma 1.

7) Vgl. E. Carton, La théorie des groupes finis et continus..., Mém. des Se. fasc.

42, Paris 1930, p. 30 ff.
W. V. D. Hodge, The theory and application of harmonie intégrais,

Cambridge 1941, p. 226 ff,
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Wir werden sehlieBlich zeigen, daB sich aus dem erwâhnten Extremal-
prinzip ein dem Pickschen Satz analoger ableiten làBt, falls auf Q ein
invariantes Linearsystem existiert, das eine bestimmte noch zu formu-
lierende Eigenschaft hat (4). Dies ist der Fall, wenn Q die Dimension 2
hat. Die Frage, ob ein solcher Satz auch fiir n>2 gilt, miïssen wir un-
abgeklârt lassen.

I.
Wir werden jetzt zuerst zeigen, daB auf Q ein gegenùber T invariantes

Maji existiert, das im Gebiete der ofïenen Mengen auf Q definiert ist.
Dazu gehen wir von der Tatsache aus, dafî ein solches MaB auf kompak-
ten Gruppen existiert8).

Wir haben von T vorausgesetzt, daB sie einen diskreten Normalteiler D
von der Art enthâlt, daB die Faktorgruppe TjD kompakt ist. Wir zer-
legen nun Q in Diskontinuitâtsbereiche des Normalteilers D. Ûo sei ein
solcher. Dann ist also

wo d{ aile Elemente von D durchlâuft. Je zwei der Mengen d{ QQ haben
keine gemeinsamen Punkte.

Auf Qo definieren wir jetzt eine kompakte Transformationsgruppe To,
die zur Faktorgruppe TjD isomorph ist. Sei nàmlich tr eine der Neben-

gruppen von D, aus welchen TjD besteht, und sei t irgendeine
Transformation von T, die in tr enthalten ist. Ist nun P irgendein Punkt von
QQi so setzen wir

tr(P)=dt(P)

wo d dasjenige Elément von D bedeutet, fur welches dt(P)czQ0 ist.
Da To kompakt ist, existiert darauf ein invariantes MaB9), das wir im

folgenden mit fi bezeichnen. Wir iibertragen dièses MaB auf folgende Art
auf den Diskontinuitâtsbereich Qo : Es sei Po ein tester Punkt in QQ

und œ0 eine offene Menge in Qo. t sei die Menge aller Transformationen
aus To, die Po in irgendeinen Punkt von a)Q iiberfuhren : o)q r PQ.

Wir setzen dann
m((o0) ju(r)

Die in Qo definierte Mengenfunktion m hat dann die folgenden Eigen-
schaften :

8) L, Pontrjagin, a. a. O., § 25.

•) Siehe Fuûnote 8.
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1) Sie ist vom Punkte Po unabhàngig.
Dies folgt unmittelbar aus der Transitivitàt von TQ und der Invarianz
des MaBes fx atif ihr.

2) Sie ist additiv.
3) Sie ist invariant gegenuber To.

Denn ist oy1 tr co2, tr c t0 a>t c Qo, und ist ferner co2 t Po,
so ist co1 tr t Po, also m^^ /i(£r t) ^(t) m(a>2)-

m ist also ein gegenuber To invariantes MaB auf Qo. Wir ubertragen
jetzt dièses MaB wie folgt auf Q Ist w da)Oi co0 c Qo, rfcD, so

setzen wir M (m) m(co0). Enthalt hingegen co Punkte aus verschiede-
nen Diskontinuitatsbereichen, so zerlegen wir es in Teile, die einem einzi-

gen solchen angehoren und setzen M(co) gleich der Summe der Werte
von M fur die einzelnen Teile.

Dièse Funktion M ist wiederum, wie man leicht einsieht, additiv und
invariant gegenuber der Transformationsgruppe T. Wir durfen voraus-
setzen, daB M(Q0) 1 ist10), was wir im folgenden stets annehmen
wollen. Das MaB des ganzen Raumes Q ist unendlieh groB, wenn nicht T
selber schon kompakt ist.

Mit Hilfe des invarianten MaBes konnen wir nun in Q eine Intégration
definieren, die wir invariante Intégration nennen. Jeder in einem Gebiet
G c Q definierten stetigen Funktion f(x) wird dadurch das invariante
Intégral

zugeordnet, wo der rechtsstehende Grenzwert in der ublichen Weise sich

auf eine Folge von immer feiner werdenden Unterteilungen des Gebietes
G bezieht.

IL
Auf dem Diskontinuitatsbereich Qo sei nun eine nicht konstante stetige

beschrankte Funktion k{x,y) gegeben, deren beide Argumente aile
Punkte von Qo durehlaufen. Wir setzen ferner voraus, daB k(x, y) in
den beiden Argumenten entweder reell und symmetrisch oder aber her-

mitesch ist. AuBerdem soll

Jc{trx,try) k(x, y)

sein fur beliebige x, y und tr<zT0. Wegen der Voraussetzung, daB T

nur einfaeh transitiv sein soll, existieren tatsachlich Funktionen, welche

10) L. Pontrjagin, a. a. O., p. 91, Définition 31/5.
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dièse Forderungen erfiillen. Wir betrachten nun die Integralgleichung

i{x) XJjk(x,y)t(y)dy (1)

Nach bekannten Sàtzen hat dièse Gleichung mindestens einen reellen
Eigenwert Âon).

Die zugehôrigen Lôsungen bilden ein Linearsystem Lo, welches eine
endliche Basis hat12). Dièses Linearsystem ist invariant gegenûber der
Gruppe To; d. h. wenn wir irgendeine Funktion des Systems durch eine
Transformation aus To transformieren, so entsteht wieder eine Funktion
aus dem System. Sei in der Tat f(x) eine Funktion des Systems, so gilt :

f{trx) K0$k(trx,y)f(y)dy

Ao $k(tr x, tr y) f(tr y)dy ko$k{x, y) f(tr y) dy(tr c TQ)

Das zweite Gleiehheitszeicheii erhalten wir hier durch eine
Transformation der Variabeln unter Verwendung der Invarianz der Intégration,

das dritte Gleichheitszeichen folgt unmittelbar aus den an k(x, y)
gestellten Forderungen. Dièse Gleichung sagt aber aus, da8 f(tr x) eben-
falls eine zum Eigenwert Ao gehorige Lôsung der Integralgleichung ist
und somit zum Linearsystem Lo gehôrt.

Wir wollen jetzt die Funktionen dièses Linearsystems von Qo aus auf
den ganzen Raum Q ausbreiten. Sei /cL0 und xaQ, dxczQOi
de D, so setzen wir g(x) f(dx). Die auf dièse Weise auf Q definier-
ten Funktionen bilden ein Linearsystem L. Dièses ist gegeniiber den
Transformationen von T invariant. Sei nàmlich g(x) c L und ta T.
Dann ist g(tx) f(t drx) (f<zL0, tdfxczQ0, dr c D (D ist Normal-
teiler!)). Der Punkt t dfx geht aber durch Transformation mittels der
Nebengruppe von D, welche t enthâlt, in d/fxcz QQ{d"c D) ûber. Also
ist g(tx) f{td'x) f{dnx) g'(x)c:L.

Damit ist gezeigt, da/3 auf Q Linearsysteme von stetigen Funktionen
existieren, die gegentiber T invariant sind. Nehmen wir den Kern k(xfy)
als stetig differenzierbar an, so gilt dasselbe fur die Funktionen des

Linearsystems. Dièse Voraussetzung wollen wir im folgenden machen.
Wir wollen jetzt zeigen, da6 wir auBerdem stets das invariante Linearsystem

so konstruieren kônnen, da8 zu jedem mit einer Richtung
versehenen Punkt auf Q eine Funktion im Linearsystem

u) Vgl. A. Lichnerowicz, Algèbre et analyse linéaires, Paris 1947, p. 267, p. 301.
12) Vgl. A. Lichnerowicz, a. a. O., p. 271 f.
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enthalten ist, deren Ableitung in dem betreffenden Punkte
in der gegebenen Richtung nicht verschwindet.

Um die Existenz solcher Système zu beweisen, gehen wir in folgenden
drei Schritten vor :

1) Sei x0 ein beliebiger Punkt in Q tind RQ eine beliebige Richtung in
x0. Wir zeigen, dafi stets ein Linearsystem existiert, dessen Funktionen im
Punkte x0 in der Richtung Ro nicht aile die Ableitung 0 haben. Fragen wir
uns, was passiert, wenn von einem Linearsystem aile Funktionen in x0
in der Richtung Ro die Ableitung 0 haben Durch Transformation von
(x0, Ro) mittels aller Transformationen von T erhàlt man eine stetige
Schar von Richtungselementen auf Q, und zwar mindestens ein Elément
in jedem Punkt von Q. Wegen der Invarianz des Linearsystems haben
in jedem Punkte in allen Richtungen dieser Schar die sâmtlichen
Funktionen des Systems die Ableitung 0. Wir kônnen Q mit einer Schar S

von Kurven iiberdecken, die in jedem ihrer Punkte die Richtung von
einem dieser Richtungselemente haben. Làngs jeder Kurve dieser Schar
sind die sâmtlichen Funktionen des Linearsystems konstant. Um ein
invariantes Linearsystem zu konstruieren, dessen Funktionen im Punkt
xQ in der Richtung Ro nicht aile die Ableitung 0 haben, genugt es also,
ein solches zu konstruieren, dessen Funktionen nicht aile làngs den Kurven

der Schar S konstant sind. Um aber ein solches zu erhalten, mussen
wir nur vom Kern k(x,y) der Integralgleichung (1) auBer den schon an
ihn gestellten Bedingungen noch folgendes verlangen : k(x,y) ist, als

Funktion von x, nicht fur jeden Punkt y lângs allen Kurven von S

konstant. Betrachten wir nàmlich die Funktionen g{x), welche in der
folgenden Gestalt dargestellt werden kônnen :

g(x)=jk{x,y)h(y)dy (2)

(h(x) irgendeine stetige Funktion). Falls k(x,y) die eben formulierte
Bedingung erfullt, sind dièse Funktionen nicht aile lângs der Kurven
von S konstant. Nun sind es aber nach dem Satze von Hilbert-Schmidt13)
gerade die in der Form (2) darstellbaren Funktionen, welche durch die

Eigenfunktionen des Kernes k(x,y) beliebig approximiert werden kônnen.

Also kônnen auch die Eigenfunktionen des Kernes k(x,y) nicht
aile lângs der Kurven von S konstant sein. Sei f(x) eine Eigenfunktion,
die lângs S nicht konstant ist. Sie gehôrt zu einem Eigenwert A. Die
Gesamtheit der zu diesem Eigenwert gehôrigen Eigenfunktionen hat die

18 Vgl. A. IAchnerowicz, a. a. O., p. 309.
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Eigenschaft, Funktionen zu enthalten, die im Punkte x0 in der Riehtung
jR0 nicht die Ableitung 0 haben. AuBerdem ist sie nach dem fruher Ge-

zeigten ein invariantes Linearsystem.

2) Jetzt wollen wir die Existenz eines invarianten Linearsystems be-
weisen, welches die Eigenschaft hat, daji im Punkte xQ in keiner Richtung
aile Funktionen des Systems die Ableitung 0 haben.

Wir haben soeben ein solches konstruiert, dessen Funktionen im Punkte
x0 in der Richtung Ro nicht aile die Ableitung 0 haben. Nennen wir es LQ.
Die Richtungen im Punkte x0, in denen die Ableitungen der samtlichen
Funktionen von Lo verschwinden, bilden eine hochstens (n — l)-dimen-
sionale Mannigfaltigkeit {n Dimension von Q). Greifen wir irgendeine
solche Richtung, Rx, heraus. Nach l) existiert ein invariantes
Linearsystem, dessen Funktionen nicht aile in der Richtung R± die Ableitung 0
haben. Das von diesem System und von LQ erzeugte Linearsystem ist
invariant und die Richtungen, in denen die Ableitungen seiner samtlichen
Funktionen verschwinden, bilden eine hochstens (n — 2)-dimensionale
Schar. Indem wir so fortfahren, erreichen wir das Ziel.

3) Sei L ein invariantes Linearsystem, welches zu jeder Richtung im
Punkte x0 eine Funktion enthalt, deren Ableitung in dieser Richtung
nicht verschwindet. L hat dann tvegen seiner Invarianz dièse Eigenschaft
in jedem Punkte von Q.

Das Résultat des Teiles II fassen wir zusammen in

Satz 1. Auf Q existiert ein invariantes Linearsystem von einmal stetig
differenzierbaren Funktionen, dessen Dimension endlich ist und welches dit
Eigenschaft hat, dafi in keinem Punkte von Q und in keiner Richtung die

Ableitung einer jeden Funktion des Systems verschwindet.

III.
In diesem Abschnitt legen wir ein invariantes Linearsystem von der

in Satz 1 beschriebenen Art zugrunde. Hingegen setzen wir nicht vor-
aus, daB die Funktionen des Systems, wie die speziellen, in Teil II
konstruierten, bezuglich des Normalteilers D automorph sind. In bezug
auf dièses Linearsystem, das wir mit L bezeichnen, wollen wir das fol-
gende Variationsproblem losen :

Sei n die Dimension von Q und die a1 (i 1,..., n) beliebige réelle
Konstanten. x0 sei ein beliebiger Punkt und xl (i 1,..., n) seine
Koordinaten. Unter den Funktionen f(x) aus L, welche die Bedingung
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erfûllen, suchen wir diejenige, fur welche das Intégral

j\f(x)\*dx
seinen minimalen Wert annimmt. AuBerdem bestimmen wir den Wert
des Minimums.

Lôsung : Wir beweisen zuerst, da8 in L stets Funktionen existieren,
fur welche die Nebenbedingung erfûllt ist. Sei nâmlich R eine Richtung
im Punkte x0, fur welche gilt :

(t ein Parameter). Wâre nun fur jedes f(x)czL

so wiirde das heiBen

^ df(x0) dxi df(Xo)
dxi dx dx

und in der Richtung R hâtten aile Funktionen aus L die Ableitung 0.
Nun sollen die Funktionen <pk(x) (k=l,...,r) eine vollstândige

orthonormale Basis von L bilden ; d. h. jede Funktion f(x)<zL soll in
der Form r

darstellbar sein und auBerdem ist

f <pk(x) <pt(x) dx ôkl (k, l 1,. .,r)

Es ist dann

und

|/(*)|««te i|cfc|«,

und das Variationsproblem ist auf das folgende Extremalproblem zurûck-

gefuhrt :

Die Konstanten ck (k 1,..., r) sind so zu bestimmen, daB erstens
die Bedingung
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erfiillt ist und daB zweitens unter dieser Nebenbedingung der Ausdruck
E\ ck |2 seinen minimalen Wert annimmt. Die elementare Ausrechnung
k

ergibt folgendes Résultat :

4=1,. -,r; A=oonst.).

Damit ist die Funktion, fur welche das Minimum angenommen wird, be-
stimmt. Dièses selber hat den Wert :

IV.
Wir definieren jetzt auf Q eine Riemannsehe Metrik, von der wir zeigen

werden, daB sie der Transformationsgruppe T gegenùber invariant ist.
Die Bezeichnungen ûbernehmen wir aus Teil III.

Die GrôBen

tl

sind die Komponenten eines kovarianten Tensors zweiter Stufe. Die zu~

gehôrige Form

F(al9...,an)= v ^ tt3(x)aza,
t l ;=1

ist (fur réelle at) positiv définit. Denn ihr Wert ist der reziproke Wert
des Minimums aus Teil III, welches seiner Natur gemàB > 0 ist, falls
nieht aile at verschwinden.

Nun betrachten wir in Q ein Linienelement an einer Stelle x, dessen

Komponenten dx1 (i 1,..., n) seien. Beachten wir, daB wir die Form
F mit reellen Koeffizienten

9m \ &, + K)
in der Gestalt

schreiben kônnen, so sehen wir, daB dureh

ds2 v X ÇtJ dx' dtf
t=i ?=i

auf Q eine Riemannsche Metrik definiert ist. Dièse Metrik ist gegenùber T
invariant.
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Seien nâmlich ds und dsr zwei Linienelemente auf Q, die durch eine
Transformation t aus T auseinander hervorgehen : dsf tds. Nach der
Définition der Metrik gilt :

ds~* Min f | f(x) |2 dx (dfds 1, f(x) c L)

\

(Die nicht sehr strenge Bezeichnung rechtfertigt sich durch Einfachheit.)
Dabei bedeutet dfds die Ânderung von f(x) lângs ds. Wenn nun fur
irgendeine Funktion f(x) aus L gilt:

df(x)ds= 1

so gilt auch df (t~x x)d8, 1.

Wegen der Invarianz von L liegt mit f(x) auch f{t~~xx) inZ/.Wegen
der Invarianz der Intégration auf Q und weil die Funktionen von L be-

ziiglich D automorph sind, ist ferner :

\*dxi\f(x) \*dx J| f(trix) \*d(t-*x) =jj\f~1x) \*dx J| f(t-

Also gehôrt zu jeder Funktion, welche die Nebenbedingungen des zti
ds gehôrigen Variationsproblems erfiillt, eine solche, welche die zu dsf

gehôrigen Bedingungen erfiillt und auBerdem dem zu einem Minimum zu
machenden Intégral denselben Wert erteilt. Also ist ds^dsf. Da wir
das Umgekehrte ebensogut beweisen kônnen, folgt ds dsf. Damit ist
die Invarianz der Metrik bewiesen. Das Résultat ist

Satz 2. Q sei eine lokaleuklidische Mannigfaltigkeit, auf welcher Koordi-
naten eingefûhrt sind und auf welcher eine differenzierbare einfach transitive
Transformationsgruppe Tdefiniert ist. T sei lokalkompakt und enthalte einen
solchen diskreten Normalteiler D, dafi die Faktorgruppe TjD kompakt ist.

Dann existiert auf Q mindestens eine gegenûber T invariante Riemannsche

Metrik.

Zum Existenzbeweis fur die invariante Metrik haben wir nun noch

zwei Bemerkungen zu machen :

1) Wir haben den Beweis auf ein invariantes Linearsystem von end-

licher Basis gestiitzt, und zwar deshalb, weil mit der Endlichkeit der

Dimension die Existenz des Minimums im Variationsproblem zum vorn-
herein sichergestellt ist. Nun gibt es aber natûrlich auch invariante
Linearsysteme, deren Dimension unendlich ist. Auch auf Grund eines

solchen kônnen wir eine invariante Metrik konstruieren, sofern es die in
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Satz 1 ausgesprochene Eigenschaft hat und sofern das Variationsproblem
eine Lôsung besitzt. Der einzige Unterschied ist der, daB die Reihen (3),
durch welche die ttJ definiert sind, unendlich sind. Die Konvergenz dieser
Reihen ist eine mit der Existenz des Minimums àquivalente Bedingung.
Falls also die Reihe

fur beliebiges x und fur aile moglichen Werte von i und j konvergiert,
kônnen wir auch auf Grund eines invarianten Linearsystems mit unend-
licher Dimension eine invariante Metrik konstruieren.

2) Zur Konstruktion der invarianten Metrik haben wir ein Linear-
system verwendet, dessen Funktionen aile bezuglich des Normalteilers D
automorph sind. Wir taten dies, weil wir einzig die Existenz von solchen
invarianten Linearsystemen bewiesen haben. Im allgemeinen existieren
aber naturlich auch solche Linearsysterne, die nicht dièse Eigenschaft
haben. Falls eines existiert, dessen Funktionen uber Q quadratisch inte-
grierbar sind (das invariante Volumen von Q ist i. a. unendlich!), so
konnen wir auch auf Grund eines solchen Linearsystems eine invariante
Metrik definieren, indem wir uberall die uber Qo erstreckten Intégrale
durch die entsprechenden uber ganz Q erstreckten ersetzen. Dies wird fur
die Ausdehnung des Pickschen Satzes von Wichtigkeit sein.

Ferner schliefien wir noch folgenden Hinweis an : Im allgemeinen werden
wir auf Grund verschiedener invarianter Linearsysteme auch verschiedene
invariante Metriken erhalten. In einem Falle jedoch konnen wir zum vorn-
herein sagen, daB nur eine solche existiert : Wenn T richtungstransitiv
ist. In diesem Falle ist die Metrik, bis auf einen konstanten Faktor, vom
verwendeten Linearsystem unabhangig.

V.
In diesem Abschnitt wollen wir die in der Einleitung angekundigte

Verallgemeinerung des Pickschen Satzes und damit des Schwarzschen
Lemmas beweisen.

Wir setzen vom Linearsystem L, welches wir der invarianten Metrik
zugrundelegen, voraus, daB es die in Satz 1 formulierten und auBerdem
die folgenden beiden Eigenschaften hat :

1) Fur jede bezuglich der invarianten Metrik konforme Abbildung xr
sx von Q auf oder in sich selber gilt : Falls f(x)aL ist, so existiert eine
Funktion cp(x)czL, fur die
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ist. Dabei bedeutet d(sx)fdx die Derivierte des invarianten MaBes eines
Bildvolumenelementes sa) nach dem invarianten MaB seines an der
Stelle x gelegenen Ursprungselementes co.

2) Fur aile f(x)<zL existiert f | f(x) |2 dx.

Auf die Erfiillbarkeit dieser Forderungen werden wir spâter zu sprechen
kommen.

Da auf Grund von Eigenschaft 1) es nicht in Frage kommt, dafi die
Funktionen von L beziiglich D automorph sind, betrachten wir (gemaB
der Eemerkung 2) auf S. 225 die Metrik, die aus L vermittelst des Varia-
tionsproblems fur das Intégral J| f(x) |2 dx hervorgeht.

Sei nun s eine bezuglich der zu L gehôrigen invarianten Metrik kon-
forme Abbildung von Q auf oder in sich selber : s Q £?* c Q. Wir
werden beweisen, daB durch s die invariante Lange einer jeden Kurve
aus Q gleich gelassen oder verkleinert wird.

Beweis : Wir ordnen dem Bereich £?* ein Linearsystem L* auf die

folgende Weise zu : Es ist g{x)<~L* dann und nur dann, wenn ein

f{x)dL existiert, so daB f(x) g(x) ist fur xczQ*.

In JÛ* defmieren wir sodann eine Metrik durch die folgende Gleichung :

Min J| g(x) |2 dx (g(x) c L*, dg(x)d8 1) (6)

zu verstehen. Dièse Metrik braucht natûrlich keineswegs invariant zu
sein gegenuber irgendeiner Transformationsgruppe.

Sei nun ds irgendein Linienelement aus Q. Seine invariante Lange be-

zeichnen wir mit ds2, im Unterschied zu der soeben definierten Lange
d8Q*. Neben der obigen Gleichung (5) haben wir also die folgende :

(<frfl)-8 Min $\f(x)\*dx(f(x)czL, df(x)d8=l)
Q

Ferner setzen wir s(ds) =ds* und seine bezuglichen Làngen mit dsQ

bzw. ds**.
Wir haben zu beweisen :

Dies tun wir in zwei Schritten :

1) Sei g(x)aL* und dg(x)d8* l. Dann erfullt g(x) die Neben-

bedingungen fur die Berechnung von ds** und ferner ist :
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-I g(sx) d(sx)
dx

dx

Nach den liber L und L* gemachten Voraussetzungen ist

h(x) =g(sx) 1/
K ; el*ci

(o:o Ort von dé)

AuBerdem ist

Also fur

Dièse Funktion f(x) erfullt demnach bis auf einen Faktor vom absoluten

Betrage 1 die Nebenbedingungen fur die Berechnung von dsQ. Zu jeder

Funktion g(x), welche die Bedingungen fur dsQ* erfiillt, gehôrt also

eine Funktion f(x), welche die Bedingungen fur dsQ erfiillt, und fur die

dx

Somit ist
(x) c L df(x)ds

dxn

d(sx0
in $\g(x)\*dx dg(x)d9*

d. h. aber
?«

(6)

2) Sei /(ai)cl,
so ist

Natiirlich ist

Setzen wir fur z c i3* : g(x) f(x),

g(x)aL*

d. h.

Also :

M.in$\g(x)\*dx(g(x)c:L*

;Min Uf(x)\2dx(f(x)czL

(7)
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Nimmt man die beiden Ungleichungen (6) und (7) zusammen, so erhâlt
man :

Fur eine konforme Abbildung s ist nun aber :

d(sx0)
dx0

(Dies folgt ans der eindeutigen Bestimmtheit des invarianten MaBes.)
Setzt man dies in der letzten Ungleichung ein, so folgt :

ds^ds* (8)

und die Behauptung ist bewiesen.
Formulieren wir der Einfachheit halber das Résultat nur fur einen

Raum mit richtungstransitiver Gruppe, auf dem also die invariante
Metrik eindeutig bestimmt ist, so erhalten wir

Satz 3. Sei Q ein homogener Raum mit richtungstransitiver Gruppe
und einer invarianten Metrik. Auf Q existiere ein invariantes LinearSystem
L mit folgenden Eigenschaften
1 fur f(x)czL existiert J | / (x) |2 dx.

a
2) Zu jedem f(x)czL und jeder Jconformen Abbildung s von Q in sich

selber existiert ein cp(x) c L mit

Dann wird durch jede konforme Abbildung von Q in sich selber die
invariante Lange einer jeden Kurve aus Q gleich gelassen oder verkleinert.

Ûber die Tragweite des eben bewiesenen Satzes 3 kônnen wir uns aller-

dings keine Rechenschaft ablegen, so lange wir nicht wissen, in welchen
Fâllen ein invariantes Linearsystem existiert, welches die verlangten Be-

dingungen erfullt. Wir sind nicht imstande, dièse Frage allgemein zu be-

antworten und beschrânken uns auf den Fall der 2-dimensionalen homo-

genen Râume. Der Einfachheit der Formulierung wegen setzen wir ferner

voraus, dafl T richtungstransitiv ist. AuBerdem machen wir die Voraus-

setzung, daB konforme Abbildungen von Q in einen Teilbereich von end-

lichem invariantem MaB existieren. Unter dieser Voraussetzung kon-
struieren wir im folgenden ein invariantes Linearsystem, das die in Satz 3

verlangten Eigenschaften hat :

Wir kônnen Q so in Teilbereiche einteilen, daB in jedem derselben ein

singularitâtenfreies, bezuglich der invarianten Metrik isothermes Koor-

228



dinatensystem existiert14). Wir wollen dièse Bereiche sogar so wâhlen,
da8 die zu zwei benachbarten gehôrigen Système sich ein Stûck weit in
den andern Bereich fortsetzen lassen. Jedem Linienelement aus Q, das
durch die Koordinatendifferenzen dx, dy charakterisiert ist, ordnen wir
dann die komplexe Zahl dz dx + i dy zu. Sei g eine konforme Ab-
bildung von Q auf einen Teilbereich von endlichem MaB. Fur ein
Linienelement dz sei dw a(dz). Setzen wir

(p(x) dwjdz (x Ort von dz).

Dièse Funktion ist gebietsweise analytisch und regulàr. Demi konforme
Abbildungen drucken sich in isothermen Koordinaten durch analytische
Funktionen aus15). Seien nun Gx und G2 zwei benachbarte von den Ge-

bieten, in denen g?(x) analytisch ist. Wie hângen die zu Gx und (?2

gehôrigen analytischen ,,Teile" von cp(x) zusammen? In dem gemein-
samen Gebiet, in das wir nach Voraussetzung dièse ,,Teile" fortsetzen
kônnen, handelt es sich offenbar um zwei analytische Funktionen mit
identischem absolutem Betrag. Also unterscheiden sie sich nur um einen
konstanten Faktor vom absoluten Betrag 1. Gehen wir also von Gx aus
und setzen wir <p (x) auf Q analytisch fort, so erhalten wir eine auf Q
iiberall regulàre analytische Funktion ip(x), fur die gilt | y)(x) \

\<p(x) |.
Die endlichen linearen Kombinationen aller auf dièse Weise erhaltenen

Funktionen ip(x) (fur aile konformen Abbildungen von Q auf einen
endlichen Teilbereich) bilden ein invariantes Linearsystem, das wir mit L
bezeichnen wollen. Da bei einer konformen Abbildung von Û auf einen
endlichen Teilbereich, falls M(Q) =00 ist, nicht aile Lângen mit einem
konstanten Faktor reduziert werden, enthàlt L nichtkonstante
Funktionen16). Ferner hat i die folgenden Eigenschaften :

1) In keinem Punkte von Q verschwinden in allen Richtungen die Ab-
leitungen aller Funktionen von L. Denn die Funktionen sind analytisch.

2) Fur aile Funktionen f(x) aus L existiert

f(x)\*dx

14) Vgl. L. P. Eisenhart, An introduction to differential geometry, Princeton
1940, p. 161 ff.

16) Vgl. L. P. Eisenhart, a. a. O., p. 201 ff.
16) Falls M (SI) endlich ist und nur solche konformen Abbildungen von SI in sich

existieren, bei denen aile Lângen mit einem konstanten Faktor multipliziert werden, ist
ja Satz 4 trivialerweise richtig.
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Denn ist f(x)aL, so ist

dz

¦wo die at konforme Abbildungen von Q auf einen endlichen Teil-
bereich sind. Es ist

also nach Voraussetzung endlich.

3) L kann verwendet werden, um die invariante Metrik von Q zu er

zeugen.
Denn das Variationsproblem, bezogen auf das Intégral uber Q, hat

fur L stets eine Losung. Da namlich die Funktionen aus L analytisch
sind, kann das Intégral des absoluten Quadrates einer solchen Funk
tion nient imter eine bestimmte Grenze sinken, wenn die Funktion
an einer bestimmten Stelle die Ableitung 1 hat.

4) L hat die Eigenschaft (4).
d (at z)

Sei wiederum f(x)aL, f (x) ]£ at dz
cr, eine konforme Ab-

bildung von Q auf einen endlichen Teilbereieh. Sei s irgendeine
konforme Abbildung von Q in sich. Dann ist

/(«*))/¦d(sx)
dx

d(atsz) 1d(sx)
d(sz) f dx

d (at z) d (s z)
1 d(sz) dz

d (at s z)

Da aber nach unseren Voraussetzungen atsz wieder eine konforme
Abbildung von Q auf einen endlichen Teilbereieh ist, ist dies in L
enthalten.

Damit hat L aile Eigenschaften, die in Satz 3 vorausgesetzt wurden,
und wir haben :

Satz 4. Sei Q ein 2-dimensionaler homogener Raum mit richtungs-
transitiver Oruppe und einer invarianten Metrik, welcher konforme
Abbildungen auf einen Teilbereieh von endlichem invariantem Mafi zulàjit. Dann
wird durch jede konforme Abbildung von Q in sich selber die Lange einer

jeden Kurve gleich gelassen oder verkleinert.

17) Vgl. S. 226 wegen der Bedeutung von d(sx) /dx.
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Der Satz gilt natïirlieh aueh, falls die Gruppe nicht richtungstransitiv
ist ; seine Aussage bezieht sich jedoch dann lediglich auf die durch das
oben konstruierte Linearsystem erzeugte Metrik.

SchlieBlich wollen wir noch untersuchen, was passiert, wenn ein
Kurvenbogen durch eine konforme Abbildung von Q in sich selber nicht
verkleinert wird. Wir behaupten, daB dies dann fur aile Kurven der
Fall ist.

Beweis. Das Gleichheitszeichen kann fur irgend ein ds in Unglei-
chung (8) nur dann richtig sein, wenn es in den beiden Ungleichungen
(6) und (7) richtig ist. Ist aber in (7) fur ein einziges Linienelement das
Gleichheitszeichen richtig, so folgt Q Q*. Denn eine analytische Funk-
tion, die an einer gewissen Stelle die Ableitung 1 hat, kann nicht in einem
Gebiet identisch verschwinden. Wenn aber Q Q* ist, so ist auch
L L* und die Metrik des Bildbereiches Q* ist mit der invarianten
Metrik von Q identisch. Statt (6) erhalten wir also :

rip^ dsf ^
- also dsQ > dsZ • (9)

ûXq dsQ

Dies gilt unter der einzigen Voraussetzung, daB ds* durch eine konforme

Abbildung von Q auf sich selber aus ds hervorgeht. Falls dies der Fall ist,
geht aber ds aus ds* durch die inverse Abbildung hervor, die ebenfalls
eine konforme von Q auf sich ist. Neben Gleichung (9) gilt also auch die-

jenige, die aus ihr durch Vertauschung von ds und ds* hervorgeht. Dar-
aus folgt fur jedes ds :

dsQ ds*
und damit

Satz 5. Sei Q ein 2-dimensionaler homogener Bawn mit richtwngs-

transitiver Gruppe und einer invarianten Metrik, welcher konforme Ab-

bildungen auf einen Teilbereich von endlichem invariantem Mafi zulàjït.
Wird durch eine konforme Abbildung von Q in sich selber die invariante
Lange eines einzigen Kurvenbogens gleich gelassen, so ist dies fur jeden

Kurvenbogen der Fall und die Abbildung ist eine starre Transformation
von Q.

(Eingegangen den 28. April 1948.)
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