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Homogene Rdume mit invarianter Metrik

Von WALTER NEF, Fribourg

Einleitung

Die Transformationsgruppe 7, welche aus allen analytischen Abbil-
dungen des Einheitskreises auf sich selber besteht, besitzt eine invariante
Metrik ; d. h. eine Metrik mit der Eigenschaft, daB die Linge irgend-
einer im Kinheitskreis gelegenen Kurve gegeniiber allen Abbildungen
von 7' invariant ist. Es ist dies die hyperbolische Metrik, deren geodati-
sche Linien die zum Einheitskreis orthogonalen Kreise sind, wihrend die
Linge eines geoditischen Kurvenbogens gleich dem Logarithmus des
Doppelverhiltnisses zwischen den Endpunkten des Bogens einerseits und
den Schnittpunkten der zugehérigen geoditischen Linie mit dem Ein-
heitskreis anderseits ist. Die Invarianz dieser Metrik folgt ja unmittelbar
aus der Linearitit der zugehorigen komplexen Abbildungsgleichungen?).

Natiirlich ist diese Metrik die einzige gegeniiber 7' invariante. Denn
sind im Einheitskreis zwei beliebige Punkte mit je einer Richtung ge-
geben, so gibt es in 7' stets eine Transformation, die sowohl die Punkte
als auch die Richtungen ineinander iiberfiihrt.

Pick hat gezeigt, dafl bei einer reguliren analytischen Abbildung des
Einheitskreises ¢n sich selber jede Kurve auf eine solche von kleinerer oder
hochstens gleicher invarianter Linge abgebildet wird, wobei der letztere
Fall nur bei den zu 7' gehorigen Abbildungen auftreten kann?). Beachtet
man, dafl in der invarianten Metrik die durch den Kreismittelpunkt
gehenden geoditischen Linien die Geraden sind, und daB auflerdem die
invariante Metrik gegeniiber den Drehungen um den Mittelpunkt sym-
metrisch ist, so erkennt man, dafl der Picksche Satz das Schwarzsche
Lemma in sich enthilt. Da die Winkelmessung in der invarianten Metrik
mit derjenigen in der euklidischen Metrik iibereinstimmt, sind Abbil-
dungen, die beziiglich der einen Metrik konform sind, auch konform be-
ziiglich der andern. Das Schwarzsche Lemma ist also in folgendem all-
gemeineren Satz enthalten :

1) H. Poincaré, Théorie des groupes fuchsiens, Acta Math. I (1882), p. 1.

) @. Pick, Uber eine Eigenschaft der konformen Abbildung kreisférmiger
Bereiche, Math. Ann. 27 (1916), p. 1.
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Jede beziiglich der invarianten Metrik der Transformationsgruppe 7'
konforme Abbildung des Einheitskreises in sich selber bildet jede Kurve
auf eine solche von kleinerer oder hichstens gleicher invarianter Linge
ab. Wird die Lange einer einzigen Kurve nicht verindert, so gilt dies fiir
jede Kurve und die Abbildung ist in 7' enthalten.

S. Bergmann hat den Pickschen Satz auf eine neue Grundlage gestellt,
indem er zeigte, dal} die invariante Metrik eine ganz bestimmte Minimal-
eigenschaft hat, aus welcher unmittelbar der Picksche Satz folgt?). Berg-
mann hat auf Grund desselben Extremalprinzips eine gegeniiber pseudo-
konformen Abbildungen eines 4-dimensionalen Gebietes auf sich selber
invariante Metrik konstruiert (pseudokonforme Abbildung = Abbildung,
die durch ein Paar analytischer Funktionen von zwei komplexen Va-
riabeln vermittelt wird)4).

In der vorliegenden Arbeit gehen wir von einem homogenen Raum 2
aus, d. h. von einem Raum, auf dem eine transitive Transformations-
gruppe 7' gegeben ist. Von £ setzen wir aullerdem voraus, dafl er lokal-
euklidisch ist. Von der Gruppe 7' setzen wir voraus, daf sie differenzierbar
und einfach transitiv ®) ist. AuBBerdem soll 7' entweder kompakt sein oder
dann eine solche lokalkompakte Gruppe, die einen diskreten Normalteiler
D enthilt, der so beschaffen ist, da die Faktorgruppe 7'/D kompakt ist.
Damit sind z. B. die kommutativen lokalkompakten Gruppen eingeschlos-
sen, ebenso die Bewegungsgruppen der euklidischen Riaume usw. ¢). Fir
den Fall, daf} die Transformationen von 7' sich (in gewissen Koordinaten)
durch stetig differenzierbare Funktionen ausdriicken, ist gezeigt worden,
dal auf 2 eine gegeniiber T' invariante Riemannsche Metrik existiert?).

In dieser Arbeit werden wir die Existenz einer solchen Metrik auf
eine neue Art beweisen, indem wir ein Variationsprinzip verwenden,
das dem von Bergmann verwendeten &ahnlich ist, wenn es sich auch
nicht wie bei Bergmann auf die Abbildungsfunktionen bezieht, sondern
auf irgendein invariantes Linearsystem von auf {2 definierten Funktionen.

3) S. Bergmann, Partial differential equations, advances topics (hektogra-
phiert), Brown University, Providence (USA.) 1941.

4) S. Bergmann, Sur les fonctions orthogonales de plusieurs variablescom-
plexes..., New York 1941, p. 51 ff.

5) das soll hier heiflen: es existieren zwei Punktepaare in £, die durch keine Trans-
formation aus 7' ineinander iibergefiithrt werden.

8) L. Pontrjagin, Topological groups, Princeton 1946, p. 153, Lemma 1.

7) Vgl. E. Cartan, La théorie des groupes finis et continus. .., Mém. des Sc. fasc.

42, Paris 1930, p. 30 ff.
W.V.D. Hodge, The theory and application of harmonic integrals, Cam-

bridge 1941, p. 226 ff,
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Wir werden schlieBlich zeigen, daB sich aus dem erwihnten Extremal-
prinzip ein dem Pickschen Satz analoger ableiten li8t, falls auf Q ein
invariantes Linearsystem existiert, das eine bestimmte noch zu formu-
lierende Eigenschaft hat (4). Dies ist der Fall, wenn 2 die Dimension 2
hat. Die Frage, ob ein solcher Satz auch fiir n>2 gilt, miissen wir un-
abgeklirt lassen.

L

Wir werden jetzt zuerst zeigen, dafl auf Q ein gegeniiber 7' invariantes
Maf existiert, das im Gebiete der offenen Mengen auf 2 definiert ist.
Dazu gehen wir von der Tatsache aus, dal ein solches Mafl auf kompak-
ten Gruppen existiert ?).

Wir haben von T vorausgesetzt, daf sie einen diskreten Normalteiler D
von der Art enthilt, dafl die Faktorgruppe 7'/D kompakt ist. Wir zer-
legen nun 2 in Diskontinuitétsbereiche des Normalteilers D. Q, sei ein
solcher. Dann ist also

R=Xd;Q,
wo d; alle Elemente von D durchliuft. Je zwei der Mengen d; 2, haben
keine gemeinsamen Punkte.

Auf Q, definieren wir jetzt eine kompakte Transformationsgruppe 7',
die zur Faktorgruppe 7'/D isomorph ist. Sei ndmlich ¢, eine der Neben-
gruppen von D, aus welchen 7'/D besteht, und sei ¢ irgendeine Trans-
formation von 7', die in ¢, enthalten ist. Ist nun P irgendein Punkt von
Q,, so setzen wir

ty(P) = di(P) ,

wo d dasjenige Element von D bedeutet, fiir welches di(P)c 2, ist.

Da T, kompakt ist, existiert darauf ein invariantes MaB ?), das wir im
folgenden mit u bezeichnen. Wir iibertragen dieses Mafl auf folgende Art
auf den Diskontinuititsbereich 2,: Es sei P, ein fester Punkt in £,
und w, eine offene Menge in £2,. 7 sei die Menge aller Transformationen
aus T, die P, in irgendeinen Punkt von w, liberfilhren: w,= 7 P,.
Wir setzen dann

m(w) = pu(7) .

Die in Q, definierte Mengenfunktion m hat dann die folgenden Eigen-
schaften :

————

8) L. Pontrjagin, a.a.O., § 25.
%) Siehe FuBnote 8.
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1) Sie ist vom Punkte P, unabhingig.
Dies folgt unmittelbar aus der Transitivitat von 7'y und der Invarianz
des Mafles u auf ihr.

2) Sie ist additiv.
3) Sie ist invariant gegeniiber 7',.

Denn ist w; =1, w,, {,C 1y, w;C 8y, und ist ferner w, = 7 P,,
so ist w, =1t, 7t Py, also m(w,) = u(t, 1) = u(r) = m(w,).

m ist also ein gegeniiber T, invariantes Mall auf Q,. Wir iibertragen
jetzt dieses Mall wie folgt auf Q: Ist o =dw,, w,cQ,, dc D, so
setzen wir M (w) = m(w,). Enthilt hingegen w Punkte aus verschiede-
nen Diskontinuitétsbereichen, so zerlegen wir es in Teile, die einem einzi-
gen solchen angehéren und setzen M (w) gleich der Summe der Werte
von M fir die einzelnen Teile.

Diese Funktion M ist wiederum, wie man leicht einsieht, additiv und
invariant gegeniiber der Transformationsgruppe 7'. Wir diirfen voraus-
setzen, dal M (£2,) = 1 ist'?), was wir im folgenden stets annehmen
wollen. Das Mal} des ganzen Raumes £ ist unendlich grof}, wenn nicht 7'
selber schon kompakt ist.

Mit Hilfe des invarianten Mafles konnen wir nun in £ eine Integration
definieren, die wir invariante Integration nennen. Jeder in einem Gebiet
G c Q definierten stetigen Funktion f(x) wird dadurch das invariante
Integral

é"f(x) dx = limz f(z;) M(G,)

zugeordnet, wo der rechtsstehende Grenzwert in der iiblichen Weise sich
auf eine Folge von immer feiner werdenden Unterteilungen des Gebietes
G bezieht.

II.

Auf dem Diskontinuitédtsbereich 2, sei nun eine nicht konstante stetige
beschrinkte Funktion k(x,y) gegeben, deren beide Argumente alle
Punkte von Q, durchlaufen. Wir setzen ferner voraus, daB k(x,y) in
den beiden Argumenten entweder reell und symmetrisch oder aber her-
mitesch ist. Aullerdem soll

kit,z,t, y) = k(x, y)

sein fiir beliebige z, y und t,c T,. Wegen der Voraussetzung, daf 7
nur einfach transitiv sein soll, existieren tatsichlich Funktionen, welche

10) L. Pontrjagin, a. a. O., p. 91, Definition 31/5.

218



diese Forderungen erfiillen. Wir betrachten nun die Integralgleichung

Hz) = lgfk(w, y) 1(y) dy . (1)

Nach bekannten Sitzen hat diese Gleichung mindestens einen reellen
Eigenwert 1,11).

Die zugehorigen Loésungen bilden ein Linearsystem L,, welches eine
endliche Basis hat!?). Dieses Linearsystem ist invariant gegeniiber der
Gruppe Ty; d.h. wenn wir irgendeine Funktion des Systems durch eine
Transformation aus 7'y transformieren, so entsteht wieder eine Funktion
aus dem System. Sei in der Tat f(x) eine Funktion des Systems, so gilt :

1, x) = Aogjk(tr x,Yy) f(y) dy -
Ao Skt 2, t,y) [t y)dy = A [k(x, y) [t y) dy(t,c T,) .

A

Das zweite Gleichheitszeichen erhalten wir hier durch eine Trans-
formation der Variabeln unter Verwendung der Invarianz der Integra-
tion, das dritte Gleichheitszeichen folgt unmittelbar aus den an k(z, y)
gestellten Forderungen. Diese Gleichung sagt aber aus, daB f(¢, x) eben-
falls eine zum Eigenwert 4, gehorige Losung der Integralgleichung ist
und somit zum Linearsystem L, gehort.

Wir wollen jetzt die Funktionen dieses Linearsystems von £, aus auf
den ganzen Raum £ ausbreiten. Sei fc L, und zc 2, dxc Q,,
dc D, so setzen wir g(x) = f(dx). Die auf diese Weise auf Q definier-
ten Funktionen bilden ein Linearsystem L. Dieses ist gegeniiber den
Transformationen von 7' invariant. Sei namlich g(zx)c L und {c T.
Dann ist gt z) =f(td'z) (fc Ly, tdzc,, d cD (D ist Normal-
teiler!)). Der Punkt ¢d’z geht aber durch Transformation mittels der
Nebengruppe von D, welche ¢ enthilt, in d’z c 2,(d” c D) iiber. Also
ist g(tz) =f(tdx)=f(d"x) =¢'(x)c L.

Damit ist gezeigt, daf3 auf Q Linearsysteme von stetigen Funktionen
existieren, die gegeniiber T invariant sind. Nehmen wir den Kern k(x,y)
als stetig differenzierbar an, so gilt dasselbe fiir die Funktionen des
Linearsystems. Diese Voraussetzung wollen wir im folgenden machen.

Wir wollen jetzt zeigen, da wir auBlerdem stets das invariante Linear-
system so konstruieren kénnen, dal zu jedem mit einer Richtung
versehenen Punkt auf £ eine Funktion im Linearsystem

1) Vgl. A. Lichnerowicz, Algdbre et analyse linéaires, Paris 1947, p. 267, p. 301.
12) Vgl. A. Lichnerowicz, a. a. 0., p. 271 f.
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enthalten ist, deren Ableitung in dem betreffenden Punkte
in der gegebenen Richtung nicht verschwindet.

Um die Existenz solcher Systeme zu beweisen, gehen wir in folgenden
drev Schritten vor :

1) Sei z, ein beliebiger Punkt in 2 und R, eine beliebige Richtung in
xo. Wir zeigen, daf stets ein Linearsystem existiert, dessen Funktionen tm
Punkte xy in der Richtung R, nicht alle die Ableitung 0 haben. Fragen wir
uns, was passiert, wenn von einem Linearsystem alle Funktionen in z,
in der Richtung R, die Ableitung 0 haben! Durch Transformation von
(2o, Ry) mittels aller Transformationen von 7' erhalt man eine stetige
Schar von Richtungselementen auf £, und zwar mindestens ein Element
in jedem Punkt von £. Wegen der Invarianz des Linearsystems haben
in jedem Punkte in allen Richtungen dieser Schar die simtlichen Funk-
tionen des Systems die Ableitung 0. Wir kénnen (2 mit einer Schar S
von Kurven iiberdecken, die in jedem ihrer Punkte die Richtung von
einem dieser Richtungselemente haben. Lings jeder Kurve dieser Schar
sind die sdmtlichen Funktionen des Linearsystems konstant. Um ein
invariantes Linearsystem zu konstruieren, dessen Funktionen im Punkt
Zy in der Richtung R, nicht alle die Ableitung 0 haben, geniigt es also,
ein solches zu konstruieren, dessen Funktionen nicht alle lings den Kur-
ven der Schar S konstant sind. Um aber ein solches zu erhalten, miissen
wir nur vom Kern k(xz,y) der Integralgleichung (1) aufler den schon an
ihn gestellten Bedingungen noch folgendes verlangen: k(x,y) ist, als
Funktion von z, nicht fiir jeden Punkt y lings allen Kurven von 8§
konstant. Betrachten wir ndmlich die Funktionen ¢(x), welche in der
folgenden Gestalt dargestellt werden konnen :

g () =ij(w,y) h(y) dy (2)

(k(x) irgendeine stetige Funktion). Falls k(x,y) die eben formulierte
Bedingung erfiillt, sind diese Funktionen nicht alle lings der Kurven
von S konstant. Nun sind es aber nach dem Satze von Hilbert-Schmidt 13)
gerade die in der Form (2) darstellbaren Funktionen, welche durch die
Eigenfunktionen des Kernes k(z,y) beliebig approximiert werden kén-
nen. Also konnen auch die Eigenfunktionen des Kernes k(z,y) nicht
alle lings der Kurven von § konstant sein. Sei f(z) eine Eigenfunktion,
die lings S nicht konstant ist. Sie gehért zu einem Eigenwert A. Die
Gesamtheit der zu diesem Eigenwert gehorigen Eigenfunktionen hat die

13 Vgl. A. Lichnerowicz, a. a. 0., p. 309.
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Eigenschaft, Funktionen zu enthalten, die im Punkte z, in der Richtung
R, nicht die Ableitung 0 haben. Auflerdem ist sie nach dem frither Ge-
zeigten ein invariantes Linearsystem.

2) Jetzt wollen wir die Existenz eines invarianten Linearsystems be-
weisen, welches die Eigenschaft hat, daff im Punkie x, in keiner Richtung
alle Funktionen des Systems die Ableitung 0 haben.

Wir haben soeben ein solches konstruiert, dessen Funktionen im Punkte
xo in der Richtung R, nicht alle die Ableitung 0 haben. Nennen wir es L,.
Die Richtungen im Punkte z,, in denen die Ableitungen der siamtlichen
Funktionen von L, verschwinden, bilden eine hochstens (n — 1)-dimen-
sionale Mannigfaltigkeit (n = Dimension von £2). Greifen wir irgendeine
solche Richtung, R,;, heraus. Nach 1) existiert ein invariantes Linear-
system, dessen Funktionen nicht alle in der Richtung R, die Ableitung 0
haben. Das von diesem System und von L, erzeugte Linearsystem ist
invariant und die Richtungen, in denen die Ableitungen seiner simtlichen
Funktionen verschwinden, bilden eine hochstens (» — 2)-dimensionale
Schar. Indem wir so fortfahren, erreichen wir das Ziel.

3) Sei L ein invariantes Linearsystem, welches zu jeder Richtung im
Punkte z, eine Funktion enthilt, deren Ableitung in dieser Richtung
nicht verschwindet. L hat dann wegen seiner Invarianz diese Eigenschaft
wn jedem Punkte von £.

Das Resultat des Teiles II fassen wir zusammen in

Satz 1. Auf Q existiert ein invariantes Linearsystem von einmal stetig
differenzierbaren Funktionen, dessen Dimension endlich ist und welches die
Eigenschaft hat, daf in keinem Punkte von 2 und in keiner Richtung die
Ableitung einer jeden Funktion des Systems verschwindet.

I11.

In diesem Abschnitt legen wir ein invariantes Linearsystem von der
in Satz 1 beschriebenen Art zugrunde. Hingegen setzen wir nicht vor-
aus, dafl die Funktionen des Systems, wie die speziellen, in Teil IT
konstruierten, beziiglich des Normalteilers D automorph sind. In bezug
auf dieses Linearsystem, das wir mit L bezeichnen, wollen wir das fol-
gende Variationsproblem losen :

Sei n die Dimension von 2 und die a* (z = 1,..., n) beliebige reelle
Konstanten. x, sei ein beliebiger Punkt und 2’ (s =1,...,7n) seine
Koordinaten. Unter den Funktionen f(x) aus L, welche die Bedingung
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erfiillen, suchen wir diejenige, fiir welche das Integral

éfl () |* d

seinen minimalen Wert annimmt. Auflerdem bestimmen wir den Wert
des Minimums.

Loésung : Wir beweisen zuerst, daB in L stets Funktionen existieren,
fiir welche die Nebenbedingung erfiillt ist. Sei namlich R eine Richtung
im Punkte z,, fir welche gilt :

7. — dx® )
T dr (s

(r ein Parameter). Ware nun fiir jedes f(x)c L

El(xo) —0

ey i ')
P ox

so wiirde das heillen
of (x,) da _ df (x,) _
> oxt* dr = dr =0,

1

und in der Richtung R hitten alle Funktionen aus L die Ableitung 0.

Nun sollen die Funktionen ¢,(x) (k= 1,...,r) eine vollstindige
orthonormale Basis von L bilden ; d. h. jede Funktion f(z)c L soll in
der Form

() =X ¢ pp()
k=1
darstellbar sein und auBerdem ist
qu)k(x) g (x)dx = b,;, (k,l=1,...,7).

Es ist dann

und

Jlf(xnzdmélcklz,
0 k=1

und das Variationsproblem ist auf das folgende Extremalproblem zuriick-

gefiihrt :
Die Konstanten ¢, (k = 1,...,r) sind so zu bestimmen, da3 erstens
die Bedingung 3s (2)
@i (x
X Xac, gxio =1

i k
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erfiillt ist und daf} zweitens unter dieser Nebenbedingung der Ausdruck
2’| ¢i |* seinen minimalen Wert annimmt. Die elementare Ausrechnung
k
ergibt folgendes Resultat :
" 9
c=4ANa,;- (pg(f") k=1, r; A = const.).
i=1

Damit ist die Funktion, fiir welche das Minimum angenommen wird, be-
stimmt. Dieses selber hat den Wert :

Min:[ﬁ S a0, (3 00 awo)]"’

s’ 1) 1
i=1j=1 k-1 0% 0’

IV.
Wir definieren jetzt auf 2 eine Riemannsche Metrik, von der wir zeigen

werden, daf} sie der Transformationsgruppe 7' gegeniiber tnvariant ist.

Die Bezeichnungen iibernehmen wir aus Teil III.
Die GroBen

aq’k (%) Oy (2)
iy 0xt ox’

b (%) = (¢,j=1,...,n) (3)
sind die Komponenten eines kovarianten Tensors zweiter Stufe. Die zu-
gehorige Form -

Flay,...,a,) =E E (%) a; a;

ist (fiir reelle a,) positiv definit. Denn 1hr Wert ist der reziproke Wert
des Minimums aus Teil ITI, welches seiner Natur geméal >0 ist, falls
nicht alle a; verschwinden.

Nun betrachten wir in Q ein Linienelement an einer Stelle x, dessen
Komponenten dz* (¢+ = 1,..., n) seien. Beachten wir, dafl wir die Form
F mit reellen Koeffizienten

gi; = %(tii + &;5)
in der Gestalt

t43

F— §

=1 j=
schreiben konnen, so sehen wir, daB durch
n n .
i=1j=1

auf Q eine Riemannsche Metrik definiert ist. Diese Metrik ist gegenitber T
invariant.
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Seien namlich ds und ds’ zwei Linienelemente auf 2, die durch eine
Transformation ¢ aus 7" auseinander hervorgehen : ds’ = tds. Nach der
Definition der Metrik gilt :

ds—2 =Min5!lf(x)l2dx (@fas =1,f(x)c L),
ds’—2 =Mingf}]‘(x) |2dx  (df,,, =1,f(x)c L) .

(Die nicht sehr strenge Bezeichnung rechtfertigt sich durch Einfachheit.)
Dabei bedeutet df,, die Anderung von f(x) lings ds. Wenn nun fiir
irgendeine Funktion f(x) aus L gilt:

df (x)g, =1,
so gilt auch df(t'z),. = 1.
Wegen der Invarianz von L liegt mit f(x) auch f({-!x) in L. Wegen
der Invarianz der Integration auf £ und weil die Funktionen von L be-
ziiglich D automorph sind, ist ferner:

Qfol f(z) |* dz ngo! fEta) P d (7 x) zu}fol [a) |*dx =QJ;1 J(t 1) [P dx

Also gehort zu jeder Funktion, welche die Nebenbedingungen des zu
ds gehorigen Variationsproblems erfiillt, eine solche, welche die zu ds’
gehorigen Bedingungen erfiillt und auflerdem dem zu einem Minimum zu
machenden Integral denselben Wert erteilt. Also ist ds<{ds’. Da wir
das Umgekehrte ebensogut beweisen konnen, folgt ds = ds’. Damit ist
die Invarianz der Metrik bewiesen. Das Resultat ist

Satz 2. Q sei eine lokaleuklidische Mannigfaltigkeit, auf welcher Koordi-
naten eingefithrt sind und auf welcher etne differenzierbare einfach transitive
Transformationsgruppe T definiert ist. T sei lokalkompakt und enthalte einen
solchen diskreten Normalteiler D, daf3 die Faktorgruppe T|D kompakt ust.
Dann existiert auf Q mindestens eine gegeniiber T invariante Riemannsche
Metrik.

Zum Existenzbeweis fiir die invariante Metrik haben wir nun noch
zwei Bemerkungen zu machen :

1) Wir haben den Beweis auf ein invariantes Linearsystem von end-
licher Basis gestiitzt, und zwar deshalb, weil mit der Endlichkeit der
Dimension die Existenz des Minimums im Variationsproblem zum vorn-
herein sichergestellt ist. Nun gibt es aber natiirlich auch invariante
Linearsysteme, deren Dimension unendlich ist. Auch auf Grund eines
solchen kénnen wir eine invariante Metrik konstruieren, sofern es die in
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Satz 1 ausgesprochene Eigenschaft hat und sofern das Variationsproblem
eine Losung besitzt. Der einzige Unterschied ist der, daB die Reihen (3),
durch welche die ¢;; definiert sind, unendlich sind. Die Konvergenz dieser
Reihen ist eine mit der Existenz des Minimums dquivalente Bedingung.
Falls also die Reihe .

t; () = § 0@, (¥) Oy (%)

fir beliebiges x und fiir alle moglichen Werte von 2 und j konvergiert,
koénnen wir auch auf Grund eines invarianten Linearsystems mit unend-
licher Dimension eine invariante Metrik konstruieren.

2) Zur Konstruktion der invarianten Metrik haben wir ein Linear-
system verwendet, dessen Funktionen alle beziiglich des Normalteilers D
automorph sind. Wir taten dies, weil wir einzig die Existenz von solchen
invarianten Linearsystemen bewiesen haben. Im allgemeinen existieren
aber natiirlich auch solche Linearsysteme, die nicht diese Eigenschaft
haben. Falls eines existiert, dessen Funktionen iiber 2 quadratisch inte-
grierbar sind (das invariante Volumen von £ ist i. a. unendlich!), so
konnen wir auch auf Grund eines solchen Linearsystems eine invariante
Metrik definieren, indem wir iiberall die iiber £, erstreckten Integrale
durch die entsprechenden iiber ganz £2 erstreckten ersetzen. Dies wird fiir
die Ausdehnung des Pickschen Satzes von Wichtigkeit sein.

Ferner schlieen wir noch folgenden Hinweis an : Im allgemeinen werden
wir auf Grund verschiedener invarianter Linearsysteme auch verschiedene
invariante Metriken erhalten. In einem Falle jedoch kénnen wir zum vorn-
herein sagen, dal nur eine solche existiert : Wenn 7' richtungstransitiv
ist. In diesem Falle ist die Metrik, bis auf einen konstanten Faktor, vom
verwendeten Linearsystem unabhéingig.

V.

In diesem Abschnitt wollen wir die in der Einleitung angekiindigte
Verallgemeinerung des Pickschen Satzes und damit des Schwarzschen
Lemmas beweisen.

Wir setzen vom Linearsystem L, welches wir der invarianten Metrik
zugrundelegen, voraus, daf es die in Satz 1 formulierten und aulerdem
die folgenden beiden Eigenschaften hat :

1) Fiir jede beziiglich der invarianten Metrik konforme Abbildung " =
sz von Q auf oder in sich selber gilt : Falls f(x) c L ist, so existiert eine
Funktion ¢(2)c L, fir die

d
lp@ I =lj@a)] Lo (@
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ist. Dabei bedeutet d(sz)/dxz die Derivierte des invarianten MaBes eines
Bildvolumenelementes sw nach dem invarianten MaB seines an der
Stelle = gelegenen Ursprungselementes w.

2) Fiir alle f(z)c L existiert J] f(x) |2 da.

Auf die Erfiillbarkeit dieser Forderungen werden wir spéter zu sprechen

kommen.

Da auf Grund von Eigenschaft 1) es nicht in Frage kommt, dal die
Funktionen von L beziiglich D automorph sind, betrachten wir (geméif
der Bemerkung 2) auf S. 225 die Metrik, die aus L vermittelst des Varia-
tionsproblems fiir das Integral f | f(x) |>dx hervorgeht.

b

Sei nun s eine beziiglich der zu L gehoérigen invarianten Metrik kon-
forme Abbildung von 2 auf oder in sich selber: sQ = Q*c Q. Wir
werden beweisen, dafl durch s die invariante Linge einer jeden Kurve
aus 2 gleich gelassen oder verkleinert wird.

Beweis: Wir ordnen dem Bereich Q* ein Linearsystem L* auf die
folgende Weise zu: KEs ist g¢g(z)c L* dann und nur dann, wenn ein
f(z) c L existiert, so daBl f(x) = g(x) ist fir xc Q*.

In Q% definieren wir sodann eine Metrik durch die folgende Gleichung :
(dsgs)~® = Min [| g(2) |2dx (9(2) c L*, dg(z),, = 1) (5)
o

zu verstehen. Diese Metrik braucht natiirlich keineswegs invariant zu
sein gegeniiber irgendeiner Transformationsgruppe.

Sei nun ds irgendein Linienelement aus 2. Seine invariante Lénge be-
zeichnen wir mit ds,, im Unterschied zu der soeben definierten Lange
dso«. Neben der obigen Gleichung (5) haben wir also die folgende :

(dsg)~® = Mingl f(z)|2dz (f(x) c L, df () = 1) .

Ferner setzen wir s(ds) = ds* und seine beziiglichen Langen mit ds’h
bzw. ds}..

Wir haben zu beweisen :
*
d89>d89 .
Dies tun wir in zwei Schritten :

1) Sei g(x)c L* und dg(x)z« = 1. Dann erfiillt g(x) die Neben-
bedingungen fiir die Berechnung von ds§, und ferner ist:
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Jlo@Pde= g6 rdem= §|gs)p2 x)d

[}

Nach den iiber L und L* gemachten Voraussetzungen ist

2

h(x) =g (sx) Vfi—g—;)— et ¢ L .
Aullerdem ist

| dh (2)gs| = ‘/ d((zsxxo)* (zy = Ort von ds) .
d
f<x>-——|/ d(fgo) h@) cL:|df(@)a]=1.

Also fiir

Diese Funktion f(z) erfiillt demnach bis auf einen Faktor vom absoluten
Betrage 1 die Nebenbedingungen fiir die Berechnung von dsg. Zu jeder

Funktion ¢(«x), welche die Bedingungen fiir dsz* erfiillt, gehort also
eine Funktion f(z), welche die Bedingungen fiir ds, erfiillt, und fiir die

gilt :
dx
2 — 0 2
(11 (@) Pdz= gt [19(@) e
Somit ist
Minjlf(x) > dz (fx)c L, df(x),=1)
dx,
<JGa )Mmsj"lg(x ) Pde (9@ cL*, dg(@)a=1) ,
2%
d. h. aber
d(sx 2
ds? > flwo“) dson

2) Sei f(x)c L, df(x)sx=1. Setzen wir fir xc Q*: g(z)=
so ist
g(x) c L*, dg (€)gex =1 .
Natiirlich ist

Jlo@ pdas [ f(@)2da
d. h.
Min [ 9(2) [*da (9(2) € ¥, dg(a)an = 1)

< Min [|/(e) Pz (@ L & (@ =1) -
Also :
dske > dsd’

(6)
f (=),
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Nimmt man die beiden Ungleichungen (6) und (7) zusammen, so erhilt

marn : d(sx

dx,

dsty > 2B %) gour

Fir eine konforme Abbildung s ist nun aber :

o) _ (orF)"
dr,  \dsg] ’

(Dies folgt aus der eindeutigen Bestimmtheit des invarianten Mafes.)
Setzt man dies in der letzten Ungleichung ein, so folgt :

ds>ds* (8)

und die Behauptung ist bewiesen.

Formulieren wir der Einfachheit halber das Resultat nur fiir einen
Raum mit richtungstransitiver Gruppe, auf dem also die invariante
Metrik eindeutig bestimmt ist, so erhalten wir

Satz 3. Sei Q ein homogener Raum mit richtungstransitiver Gruppe
und einer invarianten Metrik. Auf Q existiere ein invariantes Linearsystem
L mat folgenden Eigenschaften

1) fir f(x)c L existiert {|f(x)[?dw.
2

2) Zu jedem f(x)c L wund jeder konformen Abbildung s von £ in sich
selber existiert ein @ (x) < L mat

. d(sx)

@ = e |[LED

Dann wird durch jede konforme Abbildung von Q2 in sich selber die in-
variante Linge einer jeden Kurve aus £2 gleich gelassen oder verkleinert.

Uber die Tragweite des eben bewiesenen Satzes 3 kénnen wir uns aller-
dings keine Rechenschaft ablegen, so lange wir nicht wissen, in welchen
Fillen ein invariantes Linearsystem existiert, welches die verlangten Be-
dingungen erfiillt. Wir sind nicht imstande, diese Frage allgemein zu be-
antworten und beschrinken uns auf den Fall der 2-dimensionalen homo-
genen Raume. Der Einfachheit der Formulierung wegen setzen wir ferner
voraus, dal T richtungstransitiv ist. Aulerdem machen wir die Voraus-
setzung, daB konforme Abbildungen von £ in einen Teilbereich von end-
lichem invariantem MaB existieren. Unter dieser Voraussetzung kon-
struieren wir im folgenden ein invariantes Linearsystem, das die in Satz 3
verlangten Eigenschaften hat :

Wir kénnen Q2 so in Teilbereiche einteilen, daB in jedem derselben ein
singularitdtenfreies, beziiglich der invarianten Metrik isothermes Koor-
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dinatensystem existiert!*). Wir wollen diese Bereiche sogar so wéhlen,
dafl die zu zwei benachbarten gehorigen Systeme sich ein Stiick weit in
den andern Bereich fortsetzen lassen. Jedem Linienelement aus 2, das
durch die Koordinatendifferenzen dx, dy charakterisiert ist, ordnen wir
dann die komplexe Zahl dz = dx 4 idy zu. Sei ¢ eine konforme Ab-
bildung von £ auf einen Teilbereich von endlichem MaB. Fiir ein Linien-
element dz sei dw = o(dz). Setzen wir

@ (x) = dw/dz (z = Ort von dz).

Diese Funktion ist gebietsweise analytisch und reguliar. Denn konforme
Abbildungen driicken sich in isothermen Koordinaten durch analytische
Funktionen aus®). Seien nun G, und @, zwei benachbarte von den Ge-
bieten, in denen ¢(x) analytisch ist. Wie hingen die zu G, und G, ge-
horigen analytischen ,,Teile“ von ¢@(z) zusammen? In dem gemein-
samen Gebiet, in das wir nach Voraussetzung diese ,,Teile” fortsetzen
kénnen, handelt es sich offenbar um zwei analytische Funktionen mit
identischem absolutem Betrag. Also unterscheiden sie sich nur um einen
konstanten Faktor vom absoluten Betrag 1. Gehen wir also von G, aus
und setzen wir ¢(x) auf 2 analytisch fort, so erhalten wir eine auf 2
iiberall reguldre analytische Funktion wy(x), fir die gilt |y(x)| =
| () |.

Die endlichen linearen Kombinationen aller auf diese Weise erhaltenen
Funktionen y(x) (fur alle konformen Abbildungen von 2 auf einen end-
lichen Teilbereich) bilden ein invariantes Linearsystem, das wir mit L
bezeichnen wollen. Da bei einer konformen Abbildung von £ auf einen
endlichen Teilbereich, falls M (2) =oo ist, nicht alle Lingen mit einem
konstanten Faktor reduziert werden, enthilt L nichtkonstante Funk-
tionen1¢). Ferner hat L die folgenden Eigenschaften :

1) In keinem Punkte von 2 verschwinden in allen Richtungen die Ab-

leitungen aller Funktionen von L. Denn die Funktionen sind analy-
tisch.

2) Fir alle Funktionen f(z) aus L existiert
{1 /() 2dz .
Q

Y) Vgl. L. P. Eisenhart, An introduction to differential geometry, Princeton
1940, p. 161 ff.

18) Vgl. L. P. Eisenhart, a.a. O., p. 201 ff.

16) Falls M(£2) endlich ist und nur solche konformen Abbildungen von {2 in sich
existieren, bei denen alle Langen mit einem konstanten Faktor multipliziert werden, ist
Ja Satz 4 trivialerweise richtig.
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Denn ist f(z)c L, so ist

3)

)

d 0; (2)
za Cdz

i

| ()| =

y

wo die o; konforme Abbildungen von £ auf einen endlichen Teil-
bereich sind. Es ist

d(o;2) |*
/

e -‘ dx—-—-Jd(a,-x) =M (0, 0Q) ,
also nach Voraussetzung endlich.

L kann verwendet werden, um die invariante Metrik von Q2 zu er-
zeugen.

Denn das Variationsproblem, bezogen auf das Integral tiber £, hat
fiir L stets eine Losung. Da namlich die Funktionen aus L analytisch
sind, kann das Integral des absoluten Quadrates einer solchen Funk-
tion nicht unter eine bestimmte Grenze sinken, wenn die Funktion
an einer bestimmten Stelle die Ableitung 1 hat.

L hat die Eigenschaft (4).

Sei wiederum f(x)c L, f(z)= X a, i%_z_)_
bildung von £ auf einen endlichen Teilbereich. Sei s irgendeine kon-
forme Abbildung von £ in sich. Dann ist

) e

d(0;2) d(s2)
=% g2 dz

, 0; eine konforme Ab-

d(azsz) | 17)
SlEm e |

[

Da aber nach unseren Voraussetzungen o,sz wieder eine konforme
Abbildung von 2 auf einen endlichen Teilbereich ist, ist dies in L
enthalten.

Damit hat L alle Eigenschaften, die in Satz 3 vorausgesetzt wurden,

und wir haben :

Satz 4. Ser Q ein 2-dimensionaler homogener Raum mit richtungs-

transitiver Gruppe und einer invarianten Metrik, welcher konforme Abbil-
dungen auf einen Teilbereich von endlichem invariantem Maf zuldft. Dann
wird durch jede konforme Abbildung von Q in sich selber die Liinge einer
jeden Kurve gleich gelassen oder verkleinert.

17) Vgl. 8. 226 wegen der Bedeutung von d(sz)/dz.
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Der Satz gilt natiirlich auch, falls die Gruppe nicht richtungstransitiv
ist ; seine Aussage bezieht sich jedoch dann lediglich auf die durch das
oben konstruierte Linearsystem erzeugte Metrik.

SchlieBlich wollen wir noch untersuchen, was passiert, wenn ein
Kurvenbogen durch eine konforme Abbildung von £ in sich selber nicht
verkleinert wird. Wir behaupten, dall dies dann fiir alle Kurven der
Fall ist.

Beweis. Das Gleichheitszeichen kann fiir irgend ein ds in Unglei-
chung (8) nur dann richtig sein, wenn es in den beiden Ungleichungen
(6) und (7) richtig ist. Ist aber in (7) fiir ein einziges Linienelement das
Gleichheitszeichen richtig, so folgt Q2 = Q2*. Denn eine analytische Funk-
tion, die an einer gewissen Stelle die Ableitung 1 hat, kann nicht in einem
Gebiet identisch verschwinden. Wenn aber Q2 = £%* ist, so ist auch
L = L* und die Metrik des Bildbereiches 0% ist mit der invarianten
Metrik von 2 identisch. Statt (6) erhalten wir also:

dst, > i%Q ds}® = B also dsp, >ds} . (9)
0

Dies gilt unter der einzigen Voraussetzung, dafl ds* durch eine konforme
Abbildung von 2 auf sich selber aus ds hervorgeht. Falls dies der Fall ist,
geht aber ds aus ds* durch die inverse Abbildung hervor, die ebenfalls
eine konforme von 2 auf sich ist. Neben Gleichung (9) gilt also auch die-
jenige, die aus ihr durch Vertauschung von ds und ds* hervorgeht. Dar-
aus folgt fiir jedes ds:
dsg = dsg
und damit

Satz 5. Sei Q ein 2-dimensionaler homogener Raum mait richtungs-
transitiver Gruppe und einer invarianten Metrik, welcher konforme Ab-
bildungen auf einen Teilbereich von endlichem invariantem Maf} zuldfe.
Wird durch eine konforme Abbildung von 2 in sich selber die invariante
Liinge eines einzigen Kurvenbogens gleich gelassen, so ist dies fur jeden
Kurvenbogen der Fall und die Abbildung ist eine starre Transformation
von Q.

(Eingegangen den 28. April 1948.)
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