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Die Operatorenmethode von L Fantappiè
und die Laplace-Transformation
von Eduard Batschelet, Basel

Einleitung. Wâhrend eines Studienaufenthaltes in Rom kam ich mit
der von Herrn L. Fantappiè geschafïenen Théorie der analytischen Funk-
tionale in Beriihrung. Eines der Ziele dieser Théorie ist die Schaffung von
Integrationsmethoden fur Differential- und Integralgleichungen und ins-
besondere eines Operatorenkalkiils, der die formale Einfachheit anderer

derartiger Verfahren wie etwa des Heaviside-Kalkûls besitzt, jedoch
mathematisch einwandfrei begriindet und ûberdies bedeutend leistungs-
fôhiger ist.

Es schien mir angezeigt, die Méthode von L. Fantappiè mit dem viel
verwendeten Verfahren der Laplace-Transformation zu vergleichen, das

bekanntlich den Heaviside-Kalkiil als Spezialfall enthàlt. Wir werden uns
im folgenden nur auf die einseitig unendliche Laplace-Transformation be-

ziehen, welche durch <»

£/(*)= Je-'/(*)* (1)
definiert wird. °

Das Verfahren der Laplace-Transformation zur Intégration von linea-
ren Differentialgleichungen leidet darunter, da8 das Integrationsinter-
vall unendlich ist, und daB daher auch solche Werte der bekannten und
unbekannten Funktionen in den TransformationsprozeB einbezogen werden

mûssen, welche zumeist gar nicht von Interesse sind. Dies fûhrt zu

allerlei einschrânkenden und oft ganz unkontrollierbaren Annahmen. Dazu
kommen weitere Schwierigkeiten bei der Ausfiihrung der inversen
Transformation. Bei partiellen Differentialgleichungen geben erst die hypothe-
tisch gewonnenen Lôsungen darûber AufsehluB, ob das Verfahren zu-
lâssig war oder nicht, so daB die Lôsungen von Fall zu Fall verifiziert
werden mûssen. Aus diesem Grunde bleibt das Verfahren mehr oder

weniger heuristisch (siehe § 4).

Demgegeniiber hat L. Fantappiè verschiedene Operatoren eingefûhrt,
deren Verwendung bessere Resultate liefert als die Laplace-Transformation.

Schon der einfachste dieser Operatoren, namlich der durch

3/(0 =]/(«) * (2)
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definierte Operator 3, gestattet die Intégration fast aller derjenigen
Differentialgleichungen, welche auch der Laplace-Transformation zu-
ganglich sind. Es bleiben gewisse ,?singulare" Falle ubrig, auf welche
andere Operatoren angewandt werden mussen (siehe § 4). Dafur fallen
aile die oben genannten Schwierigkeiten weg, welche der Laplace-Transformation

anhaften. Das Integrationsmtervall in (2) ist endlich, und es
werden nur solche Funktionswerte in den Transformationsprozeji einbe-

zogen, welche in einem gegebenen Problem von Bedeutung sind1).
AuBer 3 erweisen sich gewisse Operatoren 33

s als besonders erfolgreich.
Sie verknupfen Intégration und Differentiation in folgender Weise :

*°

®«/(«0>«l>- • ->#n) ^-faT I /(£ >*1>- ' -yXfùdS, S= 1,. .,n (3)
0

Mit ihnen gelang es L. Fantappiè, das Problem von Cauchy fur aile
Système linearer, partieller Differentialgleichungen mit konstanten Koeffi-
zienten zu lôsen. Hervorzuheben ist, dafi die Anfangswerte fur die unbe-
kannten Funktionen und ihre Ableitungen auf einer beliebigen Hyperflache
gegeben sein durfen2).

Durch Anwendung der gleichen Théorie gluckte es neuerdings M.
Carafa, fast aile linearen Funktionalgleichungen durch endlich viele Integra-
tionen zu losen. Darin sind samtliche Integralgleichungen vom Fredholm-
schen und vom Volterraschen Typus mit beliebig vielen Variabeln inbe-
griffen. Dies hat u. a. zur Folge, daB die Losungen samtlicher linearen oder
nicht linearen, gewohnlichen Differentialgleichungen durch endlich viele
Intégrale dargestellt werden konnen3).

In der vorliegenden Mitteilung richten wir uns auch an diejenigen
Léser, welche mit der Fantappièschen Théorie nicht vertraut sind, und
vermeiden es deshalb, die der Théorie eigene Terminologie zu gebrauchen.
AuBerdem beschranken wir unsere Betrachtungen auf den durch (2) fest-

1) Formel (2) darf nicht mit der sog. Laplace-Transformation mit endhchem
Integrationsmtervall verwechselt werden. Mit dieser Art Laplace Ti ansformation smd zwar
neuerdmgs bei Problemen, welche mit Hilfe von 1 nicht gelost werden konnen, betracht-
liche Erfolge errungen worden. Doch geht dies auf Kosten der formalen Emfachheit.
Von einer Operatorenrechnung kann raan kaum mehr sprechen

2) Fantappiè (7), (9). Dièse Verallgemeinerung, wonach die Anfangswerte auf einer
beliebigen Hyperflache gegeben sein durfen, ist deshalb besonders intéressant, weil sie den
Ûbergang vom Cauchyschen zum Dinchletschen Problem gestattet, vgl. Fantappiè (8).

3) Carafa (1), (2), (3). Weitere Arbeiten îm Druck Das Ergebms, welches sich auf ge-
wohnhche Differentialgleichungen bezieht, steht mcht îm Widerspruch zu einem bekann-
ten Satz von Liouville, wonach sich die Riccatische Grleichung nicht durch endlich viele
Quadraturen losen lasse. Denn mit Quadraturen sind nur Intégrale mit variabler obérer
Grenze gemeint, wahrend die Losung von M. Carafa auch Intégrale mit festen Grenzen,
namhch Residuenmtegrale, enthâlt. Vgl. die Emleitung von Haefeh-Pellegnno (1).
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gelegten Operator 3- Wir prufen seine Wirksamkeit im Vergleieh zur
Laplace-Transformation. Unser Vergleich wird sich auch auf die formale
Seite erstreeken, um darzulegen, daB der Kalkxil mit dem Operator 3
ebenso einfach wie die Méthode der Laplace-Transformation zu hand-
haben ist (siehe § 5).

Wir versuchen ferner, die allgemeinen Erwâgungen durch ein typisches
Beispiel besser verstandlich zu machen. Hiezu wâhlen wir einen Spezial-
fall der Riemannschen hyperbolischen Differentialgleichung, deren Intégration

ohnehin von Interesse sein diirfte (§2 und § 3).

§ 1. Analytisehe Funktionen des Operators 3
Um mit dem dureh (2) definierten Operator Differentialgleichungen

auflôsen zu kônnen, mu8 man zunâchst einmal zeigen, daB man mit 3
symbolisch rechnen kann. Man muB dazu versuchen, aus 3 weitere Ope-
ratoren zu bilden, nâmlich geeignete ,,Funktionen" g(%) und von ihnen
nachweisen, daB sie sinnvoll sind.

Wir begnugen uns hier damit, einige Ergebnisse von L. Fantappie
wiederzugeben, von denen wir im folgenden Gebrauch machen werden 4) :

Sei g(X) eine analytische und fur X 0 regulâre Funktion von X.

Dann ist <?(3) ein eindeutig bestimmter Operator, und es gilt

F(t) gQ)f(t) =g(O)f(t) + JU J^Je~^'g(X)f(r)dr (4)

Hierin bedeutet Go einen hinreichend kleinen, den Nullpunkt der X-Ebene

umschliefienden Integrationsweg. Ûber die Funktion f(t) braucht man nur
vorauszusetzen, daB sie in dem fui die Variable t vorgesehenen Intervali
integrierbar ist. f(t) ist also nicht notwendig stetig.

Wie Gleichung (4) zeigt, erfordert die Berechnung von F(t) eine
Intégration nach der Variablen r und die Ausfuhrung einer Residuenrech-

nung. Langs des Integrationsweges Go ist der Integrand eine regulâre
Funktion von A5). Ist f(t) reell, so gilt dasselbe von F(t).

Die Auflôsung einer Differentialgleichung mittels 3 fûhrt nicht immer
zu einem Ausdruck der einfachen Gestalt g{^)f{t), sondern oft zu einer

,,impliziten Funktion" g(3» t). Als Illustration diene das Beispiel in § 2,

4) Fantappiè (2), p. 18 ff. Eine mit (4) verwandte Formel wird auch beim Heaviside-
Kalkùl benutzt, vgl. Courant-HUbert, Methoden der mathematischen Physik, Bd. 2, p. 194.

Im Unterschied zu (4) wird aber dort ein Integrationsweg gewâhlt, auf dem der Integrand
eine Singularitât besitzt.

5) Damit fallen zahlreiche Schwierigkeiten weg, welehe der inversen Laplace-Transformation

anhaften, vgl. § 4.
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Formel (14), wo y an Stelle von t geschriebenist. Wann <7(3,2) einen Sinn
hat, und wie dieser Ausdruck zu berechnen ist, dariiber gibt das folgende
Ergebnis Auskunft :

Sei g(X, t) eine analytische undfïïr X 0 regulâreFunktion von A, die
zugleich liber das Intervall (tOi t) nach t integrierbar ist. Dann stellt gfâ,t)
eine eindeutig bestimmte Funktion von t dar, welche sich mit Hilfe der
Formel

i r <n
' *~T

J j x g{X,r)dr (5)

berechnen lafit. ° °

(70 bedeutet wiederum einen kleinen, den Nullpunkt der A-Ebene um-
schlieBenden Intégrationsweg. Offenbar ist (4) ein Spezialfall von (5).

Die Formel (5) làBt sich noch in einer anderen, fur die Anwendungen
oft geeigneteren Gestalt schreiben :

(6)

§ 2. Anwendung von 3 auf die Riemannsche Gleichung

Um ein typisches Beispiel zu haben, das sich in gleicher Weise fur die
Anwendung des Operators 3 un(i der Laplace-Transformation eignet,
wâhlen wir die Riemannsche Méthode zur Auflôsung der hyperbolischen
Differentialgleichung

d2u du L/ du t £l+ ()+b() + c()f()dxdy
(7)

in welcher die Koeffizienten a, 6, c als stetige Funktionen der Variablen #

vorausgesetzt sind. Im allgemeinen Fall, wo die Koeffizienten Funktionen
beider Variablen x und y sind, lassen sich weder die Laplace-Transformation

noch der Operator 3 verwenden.
Ferner werde vorausgesetzt, da8 die Werte der unbekanriten Funktion

u(x,y) sowie ihrer ersten Ableitungen -^—, ^— langs eines Kurven-

bogens K gegeben sind, welcher von keiner Parallelen x Ç zurF-Achse
und von keiner Parallelen y r\ zur X-Achse mehr als einmal geschnit-
ten wird.

Riemann hat bekanntlich gezeigt, da8 sich dièse Aufgabe auf das

folgende, einfachere Problem zurûckfûhren lafit6) :

6) Riemann (1), p. 161. Vgl. Hom (1), p. 22 ff.
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Durch einen festen Punkt A(^r\) seien die Geraden x f und
y rj gezogen. Sie môgen den Kurvenbogen K in den Punkten Ax resp.
A2 schneiden. Daim ist eine Funktion v(x,y;Ç,rj) zu finden, welche die
folgenden vier Bedingungen erfiïllt :

1. Die Funktion v(x,y;Ç,rj) geniigt der zu (7) adjungierten Glei-
chung (Riemaïuische Gleichung)

dx dy
d(av) _ d(bv)

dx dy
cv

(8)

2. Im Punkte A gilt v{Ç, y; S, y) 1.

3. Lângs der Geraden x | gilt
3*

v
fady

dy
d.h. v

4. Lângs der Geraden y — rj gilt

-^ — 6v 0, d. h.
fb(x)dx

(10)

Dièses reduzierte Problem lôsen wir nun mit Hilfe des Operators 3'
wobei wir in (2) t mit y und tQ mit rj identifizieren. 3 sei also definiert durch

Die Anwendung von 3 auf (8) ergibt

dx "
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Wegen (10) vereinfaeht sich dies zu der Integro-Differentialgleichung

(12)

Das weitere Vorgehen stellen wir nur formai dar und verweisen auf die
von L. Fantappiè gegebene Rechtfertigung7) :

Der Operator 3 wird durch eine gewôhnliche Zahlenvariable A, v{x,y)
durch eine noch von A abhângige Funktion ~v ersetzt. Damit wird der
Gleichung (12) die gewôhnliche Differentialgleichung

ou(l-al)~-(b-(c-a')X)v Q

zugeordnet. Unler Berûcksichtigung von (9) lautet ihre Lôsung

(13)

v hângt natiirlich auch von x, £ und r\ ab. Dièse GrôBen spielen aber
fur den nâchsten Schritt nur die Rolle von Parametern.

Der inverse Vorgang, d. h. die Ersetzung von A durch den Operator 3
und die Berechnung von v(x,y ; £, rj) wird durch die in § 1 angegebene
Formel (6) ermoglicht. Denn ^(A, ?/) ist eine in der Umgebung von A 0

regulâre analytische Funktion von A. Ersetzen wir in (6) t durch y und t0

durch rj, so erhalten wir

2 ni J A dy\ J

v-v
X

t~ ¦ - - dxb—(c—a')X

— a{Ç)e° '""^ e^ dA

(14)

Der zweite Summand in der Klammer bildet zusammen mit den Fak-
toren vor und hinter der Klammer eine in A 0 regulâre Funktion von A.

7) Fantappiè (2), p. 23 ff., p. 35. Hier wird auch die Verwendung des Operators 3 zur
Auflosung der Kiemannschen Gleichung angedeutet.
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Das Residuum im. Nullpunkt ist daher Null. Somit lautet sehlieBlieh das
Résultat : x

£ _ _ _* I Jî

In Spezialfàllen fiïhren die beiden Integrationen auf bekannte Funk-
tionen. Sind z. B. die Koeffizienten a, 6, c als konstant vorausgesetzt,
so ergibt sich mit Hilfe der Residuenformel fiir die Bessélsche Funktion
erster Art J0{z)

nach kurzer Reehnung die bekannte Lôsung8)

-rJ)] (16)

Ohne zusâtzliche Sehwierigkeiten làBt sich auch der Fall, wo a zwar
eine Konstante, b und c aber beliebige stetige Funktionen von x sind,
auf die Bessélsche Funktion J0{z) zuriiekfûhren. Dies liegt daran, daB
sich der Exponent der e-Funktion in Formel (15) als lineare Funktion
von X darstellen làBt.

§ 3. Lôsung mit Hilfe der Laplace-Transformation.

Um die Fantappièsche Integrationsmethode nachher besser mit dem
Verfahren der Laplace-Transformation vergleichen zu kônnen, gehen wir
von neuem von der Differentialgleichung (8) aus :

Die Laplace-Transformation hat sich auf die Variable y zu beziehen.
Da nun das Laplace-Integral (1) die untere Grenze 0 hat, v(x,y) aber fur
y rj gegeben ist9), so haben wir die vorbereitende Transformation

(17)

auszufûhren. Mit der neuen Variablen lautet (8)

0 (18)

Die Randbedingungen (9) und (10) gehen ûber in

r® (19)

8) Riemann (1), p. 174.

•) Von hier an schreiben wir statt v(x,y; Ç,rj) der Einfachheit halber nur v(x,y)-
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Die Laplace-Transformation werde nunmehr festgelegt durch

2.V{x, Y) je~sY V(x, Y) dY <p{x, s) (20)
0

Allerdings mussen wir an dieser Stelle die zunachst unkontrollierbare
Voraussetzung machen, daB die unbekannte Funktion V(x, Y) sowie

~^y £-transformierbar seien, d. h. daB das in (20) auftretende uneigent-

liche Intégral fur hinreichend groBes s konvergiere. Auf dièse Schwierig-
keit werden wir in § 4 zuruckkommen.

Benutzen wir jetzt das Grundgesetz der Laplace-Transformation fur
die Ableitung emer Funktion10), namlich

so wird die gegebene Differentialgleichung (18) wegen (19) in die gewôhn-
liche Differentialgleichung

(s - a) -||- - (6 s - (c - a')) 9 ° (21)

transformiert, wobei als Randbedingung aus (19) uberdies

r=a_1o(g) (22)

folgt. Die Losung von (21) lautet mit Rucksicht auf (22)
X

Es bleibt noch ubrig, die inverse Transformation £-1 auszufuhren, um
aus (p (x, s) die gesuchte Funktion V(x, Y) zu gewinnen. Dièse inverse
Transformation wird hier durch einen glucklichen Umstand wesentlich
erleichtert. Denn (p(x, s) gehort offenbar zu derjenigen Klasse von ana-
l^ischen Funktionen von s, deren absoluter Betrag sich durch einen
Bruch j[ A ,a konst.

\s~a\
fur s -> oo nach oben abschâtzen laBt. Bezeichnet tp(s) eine beliebige
Funttion dieser Klasse, so gilt nach einem Ergebnis von 8. Pincherle11)

10) siehe z. B. Doetsch (1), p. 152.
11 Pincherle (1), p. 128 ff., Doetsch (1), p. 64, Satz 2. Die oben un Text gegebene For-

mulierung ist mcht die ubliche. Man pflegt sich vielmehr auf die Funktion F(t) £~1^(«)
zu beziehen und von îhr zu fordern, daB sie vom Exponent%altypus sei.
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s (24)

L

wo L ein endlicher, geschlossener Integrationsweg der s-Ebene ist, der
aile Singularitàten von y) (s) einschlieBt.

Wenden wir (24) fur t Y aui (23) an und ersetzen Y wieder durch

y — tj so folgt endlich
rbi-(e-a') dx

ds, (25)

wo L aile Singularitàten von 99(^,5) in bezug auf s einschlieBt. Um ein-
zusehen, daB dièses Résultat mit (15) ubereinstimmt, hat man bloB die

neue Variable A — einzufuhren und zu beachten, daB L naeh einem
s

Zeichenweehsel in einen den Nullpunkt X 0 im positiven Sinn um-
schlieBenden Integrationsweg Co iibergeht, der die Singularitàten von

^ (x ' T

§ 4. Diskussion der Yoraussetzungen, unter denen die Laplace-Trans-
formation und der Operator 3 zur Intégration fûhren

Das in § 2 und § 3 betrachtete Beispiel erleichtert uns die Aufgabe, die
beiden Integrationsverfahren auf ihre Anwendbarkeit und Wirksamkeit
hin zu prufen.

Beide Verfahren sind nur auf lineare Differentialgleichungen anwend-
bar, deren Koeffizienten von derjenigen Variabeln unabhàngig sind, auf
welche sich der Operator bezieht. Gemein ist ihnen ferner, daB sie sich

vor allem fur Anfangswertprobleme eignen. Auf ganz erhebliche Unter-
schiede stoBen wir jedoch, wenn wir bei beiden Verfahren die Bedingun-
gen prûfen, unter denen die erforderlichen Integrationen ausgefiihrt
werden kônnen.

Beginnen wir mit der Laplace-Transformation : Das durch (1) definierte

Laplace-Intégral erstreckt sich iiber ein unendliches Intervall. Von den

zu transformierenden Funktionen muB daher verlangt werden, daB sie

im Intervall (0, 00) uberhaupt definiert seien, und daB ûberdies das un-
eigentliche Intégral (1) konvergiere. Beide Forderungen brauchen bei

einer gegebenen DifEerentialgleichung keineswegs erfullt zu sein. Betrach-
ten wir z. B. eine unhomogene Differentialgleichung

L(u)=f(x,y)

208



wo L einen gegebenen linearen Differentialausdruck bezeichnet. Das
,,Stôrglied" f(x,y) ist oft nur stiickweise und nur fur endliche Gebiete
der X, F-Ebene definiert. In einem solchen Fall ist die Anwendung des

Laplace-Operators auf f(x,y) beziiglich der Variabeln x oder y aus-
geschlossen oder kann hôchstens unter zusâtzlichen Voraussetzungen er-
môglicht werden, welche dem gegebenen Problem vôllig fremd sind. Aber
selbst wenn sich der Definitionsbereich von f(x,y) ins Unendliche er-
strecken sollte, so ist noch keineswegs gesagt, da8 das Laplaee-Integral
konvergiert.

Noch schwerer wiegen dièse Einwânde, wenn man statt der bekannten
Funktionen, wie es in der obigen Gleichung f(x,y) ist, die unbekannten
Funktionen betrachtet. Meistens wei8 man a priori nichts liber das Ver-
halten solcher Funktionen im Unendlichen. Lôst man das betreffende
Problem gleichwohl mit Hilfe der Laplace-Transformation, so hat man
stillschweigend Annahmen gemacht, welche hinterher, wenn die vermut-
liche Lôsung vorliegt, verifiziert werden miissen. Die Anwendbarkeit der
Laplace-Transformation lâBt sich also erst a posteriori rechtfertigen.

Hiezu gesellen sich noch andere Nachteile : Die inverse Laplace-Transformation,

die man bei jeder Aufgabe am Ende durchzufiihren hat, ist an
weitere Voraussetzungen gebunden, die sich zwar zumeist nicht als ein-
schneidend erweisen, die aber schwer zu tiberblicken sind12). Wenn die
bekannten Funktionen einer Differentialgleichung (Koeffizienten, Stôr-
glieder) fest gegeben sind, so bedient man sich praktisch ausfùhrlicher
Tabellen fur die direkte und die inverse Laplace-Transformation. Bleiben
aber die bekannten Funktionen ,,variabel", sieht man also von ganz
speziellen Beispielen ab, so existiert keine allgemein giiltige Formel fur die
inverse Laplace-Transformation. Dies gilt insbesondere fur die komplexe
Umkehrformel

^ j' e"q>{8)ds (26)

(x>0 hinreichend groB). Sie kann, blindlings angewandt, zu ganz falschen
Ergebnissen fûhren13). Formel (26) bietet nicht unbetràchtliche analyti-
sche Schwierigkeiten, die sich zweifellos aus der ungluckliehen Lage des

Integrationsweges erklâren. Denn dieser flihrt gerade durch die Singulari-
tât der e-Funktion und mithin des Integranden hindurch. Nur unter
giinstigen Umstânden, wie ein solcher zufàllig im Beispiel von § 3 vorlag,

12) Doetsch (1), p. 125 ff. Vgl. ferner das Beispiel in Doetsch (2), p. 52—55.
13) s. das Beispiel in Doetsch (1), p. 89.

14 Commentai*!! Mathematici Helvetici 209



kann der Integrationsweg so gelegt werden, daB der Integrand in allen
seinen Punkten regulâr ist.

In seinem Lehrbueh iiber die Laplaee-Transformation sagt G. Doetsch
ûber aile dièse Mângel14) : die Hauptschwierigkeit bei unserer
Méthode besteht darin, von der auf Grund einer groBeren Zahl von
Voraussetzungen erhaltenen Funktion nachzuweisen, daB sie wirklich eine

Lôsung ist, und unter welchen weitesten Bedingungen sie dièse Eigen-
schaft hat. Dièse Aufgabe ist deshalb so schwierig, weil die Lôsung in
einem reichlich komplizierten Ausdruck besteht, nâmlich durchweg
durch ,singulâre' Intégrale dargestellt wird.*'

Ganz anders verhâlt es sich mit der Fantappièschen Méthode. Zunâchst
einmal kann der Operator 3 bei den fur Differentialgleichungen iiblichen
Voraussetzungen auf bekannte und auf unbekannte Funktionen ohne
weiteres angewandt werden, da eben das Intégrâtionsintervall in (2) end-
lich ist und, wenn nôtig, hinreichend klein gewâhlt werden kann. Wesent-
lich ist, daB fur die Integrationen nur solche Funktionswerte heran-

gezogen werden, welche dem gegebenen Problem eigen sind. Der Operator
3 trâgt insbesondere der Tatsache Rechnung, daB fur gewisse Anfangs-
wertprobleme nur ,,lokale" Lôsungen sinnvoll sind.

Auch im weiteren Verlauf der Rechnung sind keine umstândlichen
oder gar unkontrollierbaren Voraussetzungen zu machen. Es muB nur
gefordert werden, daB die formai durch Operatorenkalkiil erhaltene Funktion

g(X, t) eine gewisse funktionentheoretische Eigenschaft besitze. Da-
mit nâmlich Formel (5) oder (6) anwendbar sind, muB g(X,t) als eine in
der Umgebung von X 0 regulâre analytische Funktion von X voraus-
gesetzt werden (siehe § 1).

Bei gewôhnlichen Differentialgleichungen ist dièse Voraussetzung
stets erfullt, wie man aus § 5 sofort entnehmen kann. Bei partiellen
Differentialgleichungen dagegen kônnen ,,singulâre Fâlle" auftreten, die zwar
dem Verfahren der Laplace Transformation zugânglich sind, in denen
aber die Méthode des Operators 3 versagt, weil nâmlich g(X,t) fur
X 0 singulâr ist. Ein Beispiel dafur ist die parabolische Differential-
gleichung

d2u du
__

sofern man mit Riicksicht auf gewisse, fur die Anwendungen wichtige
Randbedingungen den Operator 3 nur in bezug auf t und nicht in bezug

u) Doetsch (1), p. 385. Vgl. ferner Doetsch (2), p. 57.
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auf x anwenden kann. In diesem Falle wird g (À, t) eine Punktion von
V'X und besitzt in A 0 einen Verzweigungspunkt15).

Man beachte wohl, da8 g{X,t) in der Variabeln t nicht als analytiseh
vorausgesetzt werden muB. Ja sogar Unstetigkeiten sind zugelassen, so-
fern nur das auf die Variable r bezugliche Intégral in (5) oder (6) einen
Sinn hat. Dies hat zur Folge, daB Storglieder in unhomogenen Differen-
tialgleichungen Sprungstellen aufweisen durfen. Als Beispiel seien die in
der mathematischen Physik und der Elektrotechnik auftretenden ira-
pulsiven Funktionen {fonctions de Dirac) erwahnt Sie setzen der Fan-
tappièschen Méthode ebensowenig Schwierigkeiten entgegen wie der
Laplace-Transformation.

§ 5. Vergleich des formalen Yorgehens

In § 4 haben wir dargelegt, welche Unzulanglichkeiten der direkten
und der inversen Laplace-Transformation anhaften, wenn man sie zur
Intégration von Differentialgleichungen benutzen will. Ferner haben wir
gesehen, wieviel einfacher und klarer die Voraussetzungen sind, unter
denen die Méthode des Operators 3 anwendbar ist

Man konnte nun versucht sein, zu vermuten, die Méthode der Laplace-
Transformation gleiche ihre Nachteile durch ein formai einfacheres Vor-
gehen aus, so daB sie sich fur praktische Zweeke, etwa fur die Arbeit des

Ingénieurs besser eigne als die Fantappièsche Opérâtorenmethode. Dies
ist jedoch keineswegs der Fall. Es lassen sich zwar Beispiele fînden, wo
bald das eine und bald das andere Verfahren formai ein wenig rascher
zum Ziele fuhrt. Aber im allgemeinen ist die ,.RechenarbehVc dieselbe.

Um dies zu erlautern und zugleich die enge formale Verwandtschaft
der beiden Verfahren darlegen zu konnen, betrachten wir eine gewohn-
liche, lineare Differentialgleichung mit konstanten Koeffizienten

yin)(t) + aiy^-v(t)+- -+any(t) f(t) (27)

und setzen der Einfachheit halber verschwindende Anfangswerte voraus :

y(0) 0 ^(0) 0, ^"""(O) - 0 (28)

Setzen wir
2 y(t) - t)(a) fl/(Q y (s)

15 Gestatten es die Anfangsbedingungen, daB 3 m t>ez^g aiif die Variable x angewandt
werden kann, so lassen sich parabohsche Gleichungen auch mit Hilfe von 3 losen, s. Fan-
tappiè (4), (5), (6). Im ubrigen stehen noch andere von L. Fantappiè betrachtete Opera-
toren zur Verfugung, mit deren Hilfe auch die fur 3 ,,singularen" Falle gelost werden
konnen, s. Fantappiè (7), (9).
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so fûhrt die Laplace-Transformation (1) die Differentialgleichung (27)
unmittelbar in die algebraische Gleichung

{a* + at s"'1 + •>• + an).ri{8) <p(s) (29)

uber. Durch Residuenkalkul oder mit Hilfe von Tabellen fur die Laplace-
Transformation verschafft man sich

und erhàlt dann bekanntlich die Lôsung der Aufgabe mit Hilfe des

Faltungssatzes in der Gestalt16)

y(t)=jq(t-r)f(r)dr (30)
0

Dieselbe Aufgabe lôsen wir auch mit Hilfe des durch (2) definierten
Operators 3- Wir setzen in (2) t0 0 und wenden 3 w-mal auf (27) an.
Mit Riicksicht auf (28) ergibt sich dann die Integralgleichung

(1 + Ol 3 + a2 3« + + aw 3") Vit) y fi*) - (31)

Dividieren wir formai durch die Klammer auf der linken Seite und be-

nutzen die Formel (4), so folgt

(32)

Wir vergleichen dièses Ergebnis formai mit (30). Dem in der Klammer
von (32) stehenden Residuenintegral entspricht in (30) offenbar die Funk-
tion q(t — r). Die praktische Auswertung dièses Residuenintegrals kann

analog wie fur die Laplace-Transformation durch eine passende Tabelle

von Residuen erleichtert werden.

16) Doetsch (1), p. 161.
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Das andere Intégral in (32), welches sich auf die Variable t bezieht, ist,
wie (30) zeigt, nichts anderes als das in der Théorie der Laplace-Trans-
formation bekannte Faltungsintegral.

Dièse enge formale Analogie kônnte leicht daruber hinwegtàuschen,
daB zwischen den beiden Verfahren inhaltlich wesentliche Unterschiede
bestehen. Auf Grund des in § 4 Gesagten ist es in der Tat ausgeschlossen,
das eine Verfahren auf das andere reduzieren zu kônnen.

(Eingegangen den 2. April 1948.)
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