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Die Operatorenmethode von L. Fantappieé
und die Laplace-Transformation

von EDUARD BATscHELET, Basel

Einleitung. Waihrend eines Studienaufenthaltes in Rom kam ich mit
der von Herrn L. Fantappié geschaffenen Theorie der analytischen Funk-
tionale in Beriihrung. Eines der Ziele dieser Theorie ist die Schaffung von
Integrationsmethoden fiir Differential- und Integralgleichungen und ins-
besondere eines Operatorenkalkiils, der die formale Einfachheit anderer
derartiger Verfahren wie etwa des Heaviside-Kalkiils besitzt, jedoch
mathematisch einwandfrei begriindet und iiberdies bedeutend leistungs-
fahiger ist.

Es schien mir angezeigt, die Methode von L. Fantappié mit dem viel
verwendeten Verfahren der Laplace-Transformation zu vergleichen, das
bekanntlich den Heaviside-Kalkiil als Spezialfall enthilt. Wir werden uns
im folgenden nur auf die einseitig unendliche Laplace-Transformation be-

ziehen, welche durch o0
Lf(t) = fe=tf(t)dt (1)

definiert wird. 0

Das Verfahren der Laplace-Transformation zur Integration von linea-
ren Differentialgleichungen leidet darunter, daBl das Integrationsinter-
vall unendlich ist, und daB3 daher auch solche Werte der bekannten und
unbekannten Funktionen in den Transformationsprozel3 einbezogen wer-
den miissen, welche zumeist gar nicht von Interesse sind. Dies fithrt zu
allerlei einschrinkenden und oft ganz unkontrollierbaren Annahmen. Dazu
kommen weitere Schwierigkeiten bei der Ausfithrung der inversen Trans-
formation. Bei partiellen Differentialgleichungen geben erst die hypothe-
tisch gewonnenen Lésungen dariiber Aufschluf3, ob das Verfahren zu-
lassig war oder nicht, so dafl die Losungen von Fall zu Fall verifiziert
werden miissen. Aus diesem Grunde bleibt das Verfahren mehr oder
weniger heuristisch (siehe § 4).

Demgegeniiber hat L. Fantappié verschiedene Operatoren eingefiihrt,
deren Verwendung bessere Resultate liefert als die Laplace-Transforma-
tion. Schon der einfachste dieser Operatoren, nidmlich der durch

¢
Jf() =t§f(t) dt (2)
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definierte Operator J, gestattet die Integration fast aller derjenigen
Differentialgleichungen, welche auch der Laplace-Transformation zu-
géinglich sind. Es bleiben gewisse ,,singulire® Fille iibrig, auf welche
andere Operatoren angewandt werden miissen (siehe § 4). Dafiir fallen
alle die oben genannten Schwierigkeiten weg, welche der Laplace-Trans-
formation anhaften. Das Integrationsintervall in (2) ist endlich, und es
werden nur solche Funktionswerte in den Transformationsprozef einbe-
zogen, welche in einem gegebenen Problem von Bedeutung sind?).
Auller J erweisen sich gewisse Operatoren B, als besonders erfolgreich.
Sie verkniipfen Integration und Differentiation in folgender Weise :

B, [, ®y50 ¢ 40 5,) = ff(f,xl,...,xn)df, s=1,...,n. (3)

ox, ,
0
Mit ihnen gelang es L. Fantappié, das Problem von Cauchy fir alle
Systeme linearer, partieller Differentialgleichungen mit konstanten Koeffi-
zienten zu losen. Hervorzuheben ist, dafl die Anfangswerte fir die unbe-
kannten Funktionen und thre Ableitungen auf einer beliebigen H yperfliche
gegeben sein diirfen?)

Durch Anwendung der gleichen Theorie gliickte es neuerdings M.Ca-
rafa, fast alle linearen Funktionalgleichungen durch endlich viele Integra-
tionen zu losen. Darin sind simtliche Integralgleichungen vom Fredholm-
schen und vom Volterraschen Typus mit beliebig vielen Variabeln inbe-
griffen. Dies hat u. a. zur Folge, dal} die Losungen simtlicher linearen oder
nicht linearen, gewohnlichen Differentialgleichungen durch endlich viele In-
tegrale dargestellt werden kinnen3).

In der vorliegenden Mitteilung richten wir uns auch an diejenigen
Leser, welche mit der Fantappiéschen Theorie nicht vertraut sind, und
vermeiden es deshalb, die der Theorie eigene Terminologie zu gebrauchen.
Auflerdem beschrinken wir unsere Betrachtungen auf den durch (2) fest-

1) Formel (2) darf nicht mit der sog. Laplace-Transformation mit endlichem Integra-
tionsintervall verwechselt werden. Mit dieser Art Laplace-Transformation sind zwar
neuerdings bei Problemen, welche mit Hilfe von (1) nicht gelést werden kénnen, betracht-
liche Erfolge errungen worden. Doch geht dies auf Kosten der formalen Einfachheit.
Von einer Operatorenrechnung kann man kaum mehr sprechen.

%) Fantappié (7), (9). Diese Verallgemeinerung, wonach die Anfangswerte auf einer
beliebigen Hyperflache gegeben sein diirfen, ist deshalb besonders interessant, weil sie den
Ubergang vom Cauchyschen zum Dirichletschen Problem gestattet, vgl. Fantappié (8).

8) Carafa (1), (2), (3). Weitere Arbeiten im Druck. Das Ergebnis, welches sich auf ge-
wohnliche Differentialgleichungen bezieht, steht nicht im Widerspruch zu einem bekann-
ten Satz von Liouville, wonach sich die Riccatische Gleichung nicht durch endlich viele
Quadraturen losen lasse. Denn mit Quadraturen sind nur Integrale mit variabler oberer
Grenze gemeint, wiahrend die Losung von M. Carafa auch Integrale mit festen Grenzen,
némlich Residuenintegrale, enthalt. Vgl. die Einleitung von Haefeli- Pellegrino (1).
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gelegten Operator . Wir priifen seine Wirksamkeit im Vergleich zur
Laplace-Transformation. Unser Vergleich wird sich auch auf die formale
Seite erstrecken, um darzulegen, dafl der Kalkiil mit dem Operator J
ebenso einfach wie die Methode der Laplace-Transformation zu hand-
haben ist (siehe § 5).

Wir versuchen ferner, die allgemeinen Erwidgungen durch ein typisches
Beispiel besser verstandlich zu machen. Hiezu wihlen wir einen Spezial-
fall der Riemannschen hyperbolischen Differentialgleichung, deren Integra-
tion ohnehin von Interesse sein diirfte (§ 2 und § 3).

§ 1. Analytische Funktionen des Operators 3

Um mit dem durch (2) definierten Operator Differentialgleichungen
auflésen zu kénnen, muBl man zunichst einmal zeigen, dal man mit J
symbolisch rechnen kann. Man mufl dazu versuchen, aus J weitere Ope-
ratoren zu bilden, namlich geeignete ,,Funktionen“ ¢(J) und von ihnen
nachweisen, daf# sie sinnvoll sind.

Wir begniigen uns hier damit, einige Ergebnisse von L. Faniappré
wiederzugeben, von denen wir im folgenden Gebrauch machen werden*):

Set g(A) eine analytische und fir A = 0 regulire Funktion von A.
Dann ist g(J) ein eindeutiq bestimmier Operator, und es gilt

t

FO=g@I0=90f0+5; [ [¢ s@f@dr. @

Co Lo

Hierin bedeutet C, einen hinreichend kleinen, den Nullpunkt der A-Ebene
umschliefenden Integrationsweg. Uber die Funktion f(¢) braucht man nur
vorauszusetzen, daf sie in dem fiir die Variable ¢ vorgesehenen Intervall
integrierbar ist. f(¢) ist also nicht notwendig stetig.

Wie Gleichung (4) zeigt, erfordert die Berechnung von F(¢) eine Inte-
gration nach der Variablen v und die Ausfiihrung einer Residuenrech-
nung. Lings des Integrationsweges C, ist der Integrand eine regulire
Funktion von A5). Ist f(t) reell, so gilt dasselbe von F'(¢).

Die Auflosung einer Differentialgleichung mittels J fithrt nicht immer
zu einem Ausdruck der einfachen Gestalt ¢(J) f(f), sondern oft zu einer
,,impliziten Funktion“ ¢(J, t). Als Illustration diene das Beispiel in § 2,

t—1

4) Fantappié (2), p. 18 ff. Eine mit (4) verwandte Formel wird auch beim Heaviside-
Kalkiil benutzt, vgl. Courant-Hilbert, Methoden der mathematischen Physik, Bd. 2, p. 194.
Im Unterschied zu (4) wird aber dort ein Integrationsweg gewihlt, auf dem der Integrand
eine Singularitét besitzt.

5) Damit fallen zahlreiche Schwierigkeiten weg, welche der inversen Laplace-Trans-
formation anhaften, vgl. § 4.
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Formel (14), wo y an Stelle von ¢ geschrieben ist. Wann ¢(J,¢) einen Sinn
hat, und wie dieser Ausdruck zu berechnen ist, dariiber gibt das folgende
Ergebnis Auskunft :

Ser g(A,t) eine analytische und fir A = 0 regulire Funktion von A, die
zugleich uber das Intervall (t,,t) nach t integrierbar ist. Dann stellt g(, t)
eine eindeutiq bestimmie Funktion von t dar, welche sich mit Hilfe der

Formel :

oY

m&n=gww+aitj§ije‘gunmf ®)
berechnen lipt. Ce e
C, bedeutet wiederum einen kleinen, den Nullpunkt der A-Ebene um-
schlieBenden Integrationsweg. Offenbar ist (4) ein Spezialfall von (5).
Die Formel (5) 148t sich noch in einer anderen, fiir die Anwendungen
oft geeigneteren Gestalt schreiben :

di
Cyers f J g, 7)dr

§ 2. Anwendung von J auf die Riemannsche Gleichung

i

9(3,8) = —- (6)

Um ein typisches Beispiel zu haben, das sich in gleicher Weise fiir die
Anwendung des Operators § und der Laplace-Transformation eignet,
wihlen wir die Riemannsche Methode zur Auflosung der hyperbolischen
Differentialgleichung

e T8 G+ b @ g @ u =L@, )

in welcher die Koeffizienten a, b, ¢ als stetige Funktionen der Variablen «
vorausgesetzt sind. Im allgemeinen Fall, wo die Koeffizienten Funktionen
beider Variablen x und y sind, lassen sich weder die Laplace-Transforma-
tion noch der Operator J verwenden.

Ferner werde vorausgesetzt, daB die Werte der unbekannten Funktion

u  ou

0z oy
bogens K gegeben sind, welcher von keiner Parallelen x = & zurY-Achse
und von keiner Parallelen y = 7 zur X-Achse mehr als einmal geschnit-
ten wird.

Riemann hat bekanntlich gezeigt, dafl sich diese Aulgabe auf das
folgende, einfachere Problem zuriickfiihren a8t ¢):

u(x,y) sowie ihrer ersten Ableitungen lings eines Kurven-

) Riemann (1), p. 161. Vgl. Horn (1), p. 22 ff.
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Durch einen festen Punkt A (£, %) seien die Geraden z = ¢ und
y = n gezogen. Sie mogen den Kurvenbogen K in den Punkten 4, resp.
A, schneiden. Dann ist eine Funktion v(x,y; &, ) zu finden, welche die
folgenden vier Bedingungen erfiillt :

Y 4

s e e e e i i e o e s W~ —— - ————

»
r=¢ z

1. Die Funktion »(z,y; ¢, 7n) geniigt der zu (7) adjungierten Glei-
chung (Riemannsche Gleichung)

0%v dav) b

oy ox oy U=
0%v ov ov
=gy — W —b@ G @ —d@o=0. @

2. Im Punkte 4 gilt v(&,n;&,7n) = 1.
3. Léngs der Geraden z = ¢ gilt

ov Fady
@—0020 , d.h. wv=e" =VM*O (9)
4. Lings der Geraden y = 7 gilt .
o Jbo(z)dx
s —bv=0, dh ov=e¢ : (10)

Dieses reduzierte Problem lésen wir nun mit Hilfe des Operators J,
wobei wir in (2) ¢ mit ¥ und ¢, mit z identifizieren. J sei also definiert durch

Sf) = | fy) dy . (1)
n
Die Anwendung von J auf (8) ergibt
3 —(5),. — @35 —b@V+b@ vy o) — 0 @) T =0
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Wegen (10) vereinfacht sich dies zu der Integro-Differentialgleichung

ov ov Iy O . — o ov !
—a;——aS—a—x———bv—}- (c—a )\51’:(1““\5)'5;*‘(5“ c—a)J)v=0 .
(12)

Das weitere Vorgehen stellen wir nur formal dar und verweisen auf die
von L. Fantappié gegebene Rechtfertigung 7):

Der Operator J wird durch eine gew6hnliche Zahlenvariable 4, v(x,y)
durch eine noch von 4 abhingige Funktion » ersetzt. Damit wird der
Gleichung (12) die gewodhnliche Differentialgleichung

ov £y % =
(1——a71)~a—:-v———(b——(c——a)l)v—0
zugeordnet. Unter Beriicksichtigung von (9) lautet ihre Losung

b—(c—a’) A

1—ax dz

X
(y—:,>a<§)+f
&

v(A,y)=e (13)

v hingt natiirlich auch von z, & und 7 ab. Diese GroBen spielen aber
fir den néchsten Schritt nur die Rolle von Parametern.

Der inverse Vorgang, d. h. die Ersetzung von A durch den Operator J
und die Berechnung von v (z,y; &, n) wird durch die in § 1 angegebene
Formel (6) ermoglicht. Denn v (4,y) ist eine in der Umgebung von 4 = 0
reguldre analytische Funktion von 4. Ersetzen wir in (6) ¢ durch y und ¢,
durch 7, so erhalten wir

U R—
— d (1 (di[ 5=
v,y f,r/)=v(3,y)=—@§2m T’el v(a,r)drzz
G %
v yer [oztemam
1 (1 d (3 tene ¢ 1ed
= 3 dt e’ dA =
2 ’jl ¢
n’bco y%n s
(5 | [omt=am
1 1 e Cvace 1—an
- 27”'[1—“(5)( —— a8’ ‘”;eg da .
Co

(14)

Der zweite Summand in der Klammer bildet zusammen mit den Fak-
toren vor und hinter der Klammer einein 4= 0 regulidre Funktion von 4.

?) Fantappié (2), p. 23 ff., p. 35. Hier wird auch die Verwendung des Operators J zur
Auflosung der Riemannschen Gleichung angedeutet.
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Das Residuum im Nullpunkt ist daher Null. Somit lautet schlieBlich das

Resultat : .
y—7] c—a
+ f 1—a i

1 0 1
viz,y; &,m) = f 104 ®) dl . (15)

2m1
Co
In Spezialfillen fiihren die beiden Integrationen auf bekannte Funk-
tionen. Sind z. B. die Koeffizienten a, b, ¢ als konstant vorausgesetzt,
so ergibt sich mit Hilfe der Residuenformel fiir die Besselsche Funktion
erster Art J,(z)

—7\r—{~—§T

2mi ) 4°
Co
nach kurzer Rechnung die bekannte Losung®)

vz, y; &) =N 2V (c—ab)c— & y—n)] . (16)

Ohne zusitzliche Schwierigkeiten 148t sich auch der Fall, wo a zwar
eine Konstante, b und ¢ aber beliebige stetige Funktionen von z sind,
auf die Besselsche Funktion J,(z) zuriickfiihren. Dies liegt daran, daB
sich der Exponent der e-Funktion in Formel (15) als lineare Funktion
von A darstellen 1a8t.

§ 3. Losung mit Hilfe der Laplace-Transformation.

Um die Fantappiésche Integrationsmethode nachher besser mit dem
Verfahren der Laplace-Transformation vergleichen zu kénnen, gehen wir
von neuem von der Differentialgleichung (8) aus:

Die Laplace-Transformation hat sich auf die Variable y zu beziehen.
Da nun das Laplace-Integral (1) die untere Grenze 0 hat, v(x,y) aber fiir
y = n gegeben ist®), so haben wir die vorbereitende Transformation

Y=y—n, Viz,Y)=v(x,y) (17)
auszufithren. Mit der neuen Variablen lautet (8)
a2V oV oV , .
Die Randbedingungen (9) und (10) gehen iiber in
(ﬂ_bv) =0, V{EY) =", (19)
oz Y=0

8) Riemann (1), p. 174.
.9) Von hier an schreiben wir statt v(z,y; &,7) der Einfachheit halber nur v(z,y)-
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Die Laplace-Transformation werde nunmehr festgelegt durch
LV (x, Y) :fe‘sy Viz,Y)dY = ¢(x,s) . (20)
0
Allerdings miissen wir an dieser Stelle die zunichst unkontrollierbare
Voraussetzung machen, da die unbekannte Funktion V(z, Y) sowie

—g-; L-transformierbar seien, d. h. dal das in (20) auftretende uneigent-

liche Integral fiir hinreichend groBes s konvergiere. Auf diese Schwierig-
keit werden wir in § 4 zuriickkommen.

Beniitzen wir jetzt das Grundgesetz der Laplace-Transformation fiir
die Ableitung einer Funktion?), nimlich

oV
Q-a—YZS(p(.’I),S)——- V(x,O) s

so wird die gegebene Differentialgleichung (18) wegen (19) in die gewohn-
liche Differentialgleichung
(8——a)%ii—(b8—~(c——a’))99=0 (21)

transformiert, wobei als Randbedingung aus (19) iiberdies

oo

, 1
— — —sY +a(§)Y -

Pz 9y =2V ET) = [ o W=—y 22

folgt. Die Losung von (21) lautet mit Riicksicht auf (22)

fbs—-(c—a’) dz
l 5 8—a
_ _ ) 2

¢ = (23)

Es bleibt noch iibrig, die inverse Transformation -1 auszufiihren, um
aus ¢@(x, s) die gesuchte Funktion V(x, Y) zu gewinnen. Diese inverse
Transformation wird hier durch einen gliicklichen Umstand wesentlich
erleichtert. Denn ¢(z, s) gehért offenbar zu derjenigen Klasse von ana-
lytischen Funktionen von s, deren absoluter Betrag sich durch einen
Bruch A
— A ,a = konst.

s—a]
fir s — co nach oben abschitzen 148t. Bezeichnet y(s) eine beliebige
Funktion dieser Klasse, so gilt nach einem Ergebnis von 8. Pincherle!)

19) siehe z. B. Doetsch (1), p. 152.

1) Pincherle (1), p. 128 ff., Doetsch (1), p. 64, Satz 2. Die oben im Text gegebene For-
mulierung ist nicht die tibliche. Man pflegt sich vielmehr auf die Funktion F(t) = £-1y(s)
zu beziehen und von ihr zu fordern, da sie vom Exponentialtypus sei.
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L1y (s) = —5-};; f ety (s)ds , (24)
L

wo L ein endlicher, geschlossener Integrationsweg der s-Ebene ist, der
alle Singularititen von y(s) einschlieBt.
Wenden wir (24) fir ¢t = Y aut (23) an und ersetzen Y wieder durch

y —n, so folgt endlich

(ﬂ 1)8+J‘M

v, ) = 0@ = 5 [ e

ds , (25)
wo L alle Singularitdten von ¢(x, s) in bezug auf s einschliefit. Um ein-
zusehen, daB dieses Resultat mit (15) tibereinstimmt, hat man bloB die

. 1 . . )
neue Variable A = < einzufithren und zu beachten, daf8 L nach einem

Zeichenwechsel in einen den Nullpunkt 4 = 0 im positiven Sinn um-
schliefenden Integrationsweg C, iibergeht, der die Singularititen von

@ (x , _}) ausschlieBt.

§ 4. Diskussion der Voraussetzungen, unter denen die Laplace-Trans-
formation und der Operator § zur Integration fiihren

Das in § 2 und § 3 betrachtete Beispiel erleichtert uns die Aufgabe, die
beiden Integrationsverfahren auf ihre Anwendbarkeit und Wirksamkeit
hin zu priifen.

Beide Verfahren sind nur auf lineare Differentialgleichungen anwend-
bar, deren Koeffizienten von derjenigen Variabeln unabhingig sind, auf
welche sich der Operator bezieht. Gemein ist ihnen ferner, dafl sie sich
vor allem fiir Anfangswertprobleme eignen. Auf ganz erhebliche Unter-
schiede stoflen wir jedoch, wenn wir bei beiden Verfahren die Bedingun-
gen priifen, unter denen die erforderlichen Integrationen ausgefiihrt
werden konnen.

Beginnen wir mit der Laplace-Transformation : Das durch (1) definierte
Laplace-Integral erstreckt sich iiber ein unendliches Intervall. Von den
zu transformierenden Funktionen muf daher verlangt werden, daf sie
im Intervall (0, oo) iiberhaupt definiert seien, und daf iberdies das un-
eigentliche Integral (1) konvergiere. Beide Forderungen brauchen bei
einer gegebenen Differentialgleichung keineswegs erfiillt zu sein. Betrach-
ten wir z. B. eine unhomogene Differentialgleichung

L(u) = f(=,9) ,
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wo L einen gegebenen linearen Differentialausdruck bezeichnet. Das
,,Storglied” f(x,y) ist oft nur stiickweise und nur fiir endliche Gebiete
der X, Y-Ebene definiert. In einem solchen Fall ist die Anwendung des
Laplace-Operators auf f(x,y) beziiglich der Variabeln z oder y aus-
geschlossen oder kann hochstens unter zusitzlichen Voraussetzungen er-
moglicht werden, welche dem gegebenen Problem véllig fremd sind. Aber
selbst wenn sich der Definitionsbereich von f(z,y) ins Unendliche er-
strecken sollte, so ist noch keineswegs gesagt, daB3 das Laplace-Integral
konvergiert.

Noch schwerer wiegen diese Einwidnde, wenn man statt der bekannten
Funktionen, wie es in der obigen Gleichung f(x,y) ist, die unbekannten
Funktionen betrachtet. Meistens weill man a priori nichts iiber das Ver-
halten solcher Funktionen im Unendlichen. Lést man das betreffende
Problem gleichwohl mit Hilfe der Laplace-Transformation, so hat man
stillschweigend Annahmen gemacht, welche hinterher, wenn die vermut-
liche Losung vorliegt, verifiziert werden miissen. Die Anwendbarkeit der
Laplace-Transformation 146t sich also erst a posteriori rechtfertigen.

Hiezu gesellen sich noch andere Nachteile : Die ¢nverse Laplace-Trans-
formation, die man bei jeder Aufgabe am Ende durchzufithren hat, ist an
weitere Voraussetzungen gebunden, die sich zwar zumeist nicht als ein-
schneidend erweisen, die aber schwer zu iiberblicken sind!?). Wenn die
bekannten Funktionen einer Differentialgleichung (Koeffizienten, Stor-
glieder) fest gegeben sind, so bedient man sich praktisch ausfiihrlicher
Tabellen fiir die direkte und die inverse Laplace-Transformation. Bleiben
aber die bekannten Funktionen ,,variabel®, sieht man also von ganz
speziellen Beispielen ab, so existiert keine allgemein giiltige Formel fiir die
inverse Laplace-Transformation. Dies gilt insbesondere fiir die komplexe
Umkehrformel

z+100
.

Sl =5y | et (26)

r—1ioo

(2 > 0 hinreichend gro8). Sie kann, blindlings angewandt, zu ganz falschen
Ergebnissen fithren12). Formel (26) bietet nicht unbetriichtliche analyti-
sche Schwierigkeiten, die sich zweifellos aus der ungliicklichen Lage des
Integrationsweges erkliaren. Denn dieser fiihrt gerade durch die Singulari-
tdt der e-Funktion und mithin des Integranden hindurch. Nur unter
giinstigen Umstédnden, wie ein solcher zuféllig im Beispiel von § 3 vorlag,

12) Doetsch (1), p. 125 ff. Vgl. ferner das Beispiel in Doetsch (2), p. 52—55.
13) 8. das Beispiel in Doetsch (1), p. 89.
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kann der Integrationsweg so gelegt werden, dafl der Integrand in allen
seinen Punkten reguldr ist.

In seinem Lehrbuch iiber die Laplace-Transformation sagt G. Doetsch
iiber alle diese Méngel*): ,,... die Hauptschwierigkeit bei unserer
Methode besteht darin, von der auf Grund einer gréeren Zahl von Vor-
aussetzungen erhaltenen Funktion nachzuweisen, dal3 sie wirklich eine
Lésung ist, und unter welchen weitesten Bedingungen sie diese Eigen-
schaft hat. Diese Aufgabe ist deshalb so schwierig, weil die Losung in
einem reichlich komplizierten Ausdruck besteht, ndmlich durchweg
durch ,singulire’ Integrale dargestellt wird.*

Ganz anders verhilt es sich mit der Fantappiéschen Methode. Zunichst
einmal kann der Operator J bei den fiir Differentialgleichungen iiblichen
Voraussetzungen auf bekannte und auf unbekannte Funktionen ohne
weiteres angewandt werden, da eben das Integrationsintervall in (2) end-
lich ist und, wenn noétig, hinreichend klein gewihlt werden kann. Wesent-
lich ist, daB fiir die Integrationen nur solche Funktionswerte heran-
gezogen werden, welche dem gegebenen Problem eigen sind. Der Operator
J tragt insbesondere der Tatsache Rechnung, daf fiir gewisse Anfangs-
wertprobleme nur ,lokale“ Lésungen sinnvoll sind.

Auch im weiteren Verlauf der Rechnung sind keine umstindlichen
oder gar unkontrollierbaren Voraussetzungen zu machen. Es mufl nur
gefordert werden, daf die formal durch Operatorenkalkiil erhaltene Funk-
tion g(4,?) eine gewisse funktionentheoretische Eigenschaft besitze. Da-
mit ndmlich Formel (5) oder (6) anwendbar sind, mufl g(A,¢) als eine in
der Umgebung von 1 = 0 regulire analytische Funktion von 4 voraus-
gesetzt werden (siehe § 1).

Bei gewohnlichen Differentialgleichungen ist diese Voraussetzung
stets erfiillt, wie man aus § 5 sofort entnehmen kann. Bei partiellen Diffe-
rentialgleichungen dagegen konnen ,,singuldre Fille“ auftreten, die zwar
dem Verfahren der Laplace Transformation zuginglich sind, in denen
aber die Methode des Operators J versagt, weil nimlich g¢(4,¢) fir
A = 0 singulir ist. Ein Beispiel dafiir ist die parabolische Differential-
gleichung

Pu_ou_
0x? a
sofern man mit Riicksicht auf gewisse, fiir die Anwendungen wichtige
Randbedingungen den Operator  nur in bezug auf ¢ und nicht in bezug

14) Doetsch (1), p. 385. Vgl. ferner Doetsch (2), p. 57.
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auf x anwenden kann. In diesem Falle wird g(A,t) eine Funktion von

V4 und besitzt in A= 0 einen Verzweigungspunkt 1%).

Man beachte wohl, dafl ¢g(4,¢) in der Variabeln ¢ nicht als analytisch
vorausgesetzt werden muf}. Ja sogar Unstetigkeiten sind zugelassen, so-
fern nur das auf die Variable 7 beziigliche Integral in (5) oder (6) einen
Sinn hat. Dies hat zur Folge, daf} Storglieder in unhomogenen Differen-
tialgleichungen Sprungstellen aufweisen diirfen. Als Beispiel seien die in
der mathematischen Physik und der Elektrotechnik auftretenden im-
pulsiven Funktionen (fonctions de Dirac) erwihnt. Sie setzen der Fan-
tappiéschen Methode ebensowenig Schwierigkeiten entgegen wie der La-
place-Transformation.

§ b. Vergleich des formalen Vorgehens

In § 4 haben wir dargelegt, welche Unzulinglichkeiten der direkten
und der inversen Laplace-Transformation anhaften, wenn man sie zur
Integration von Differentialgleichungen beniitzen will. Ferner haben wir
gesehen, wieviel einfacher und klarer die Voraussetzungen sind, unter
denen die Methode des Operators § anwendbar ist.

Man koénnte nun versucht sein, zu vermuten, die Methode der Laplace-
Transformation gleiche ihre Nachteile durch ein formal einfacheres Vor-
gehen aus, so daf3 sie sich fiir praktische Zwecke, etwa fiir die Arbeit des
Ingenieurs besser eigne als die Fantappiésche Operatorenmethode. Dies
ist jedoch keineswegs der Fall. Es lassen sich zwar Beispiele finden, wo
bald das eine und bald das andere Verfahren formal ein wenig rascher
zum Ziele fithrt. Aber im allgemeinen ist die ,.Rechenarbeit® dieselbe.

Um dies zu erliutern und zugleich die enge formale Verwandtschaft
der beiden Verfahren darlegen zu konnen, betrachten wir eine gewohn-
liche, lineare Differentialgleichung mit konstanten Koeffizienten

Yy () + ayy™ U (E) + -+ a,y () = f(2) (27)
und setzen der Einfachheit halber verschwindende Anfangswerte voraus :
y(0) =0, y'(0)=0,..., y™ 1 (0) =0 . (28)
Setzen wir
Ly(t) = nls) , L) = (s ,

15) Gestatten es die Anfangsbedingungen, daB  in bezug auf die Variable x angewandt
werden kann, so lassen sich parabolische Gleichungen auch mit Hilfe von J lésen, s. Fan-
tappié (4), (5), (6). Im iibrigen stehen noch andere von L. Fantappié betrachtete Opera-
toren zur Verfiigung, mit deren Hilfe auch die fir J ,,singularen® Falle gelost werden
kénnen, s. Fantappié (7), (9).
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so fiihrt die Laplace-Transformation (1) die Differentialgleichung (27)
unmittelbar in die algebraische Gleichung

(8" + a; 8" -+ -+ a,)-n(s) = @(9) (29)
iiber. Durch Residuenkalkiil oder mit Hilfe von Tabellen fiir die Laplace-
Transformation verschafft man sich

1
s +a,8"t4-..4a,

und erhilt dann bekanntlich die Losung der Aufgabe mit Hilfe des
Faltungssatzes in der Gestalt 6)

g () =2

¢
y(t)=§q(t——f)f(f) dr . (30)

Dieselbe Aufgabe l6sen wir auch mit Hilfe des durch (2) definierten
Operators J§. Wir setzen in (2) ¢, = 0 und wenden J n-mal auf (27) an.
Mit Riicksicht auf (28) ergibt sich dann die Integralgleichung

I4+aJ+aI+ +aI)yl) =3I f) . (31)

Dividieren wir formal durch die Klammer auf der linken Seite und be-
niitzen die Formel (4), so folgt

Nn

)

y(t):1+a13+...+an3nf(t)=
A —
— e[S (o7 a dr —
-2:”.]72—](; 1+“11+'~+an/1"f(’) T
Co 0
t 1 e t—}-\-r
"—2e
zf 2mlf 1+a11+...+an,ﬁdl f@)ydz . (32)
0 Co

Wir vergleichen dieses Ergebnis formal mit (30). Dem in der Klammer
von (32) stehenden Residuenintegral entspricht in (30) offenbar die Funk-
tion ¢(t — ). Die praktische Auswertung dieses Residuenintegrals kann
analog wie fiir die Laplace-Transformation durch eine passende Tabelle
von Residuen erleichtert werden.

16) Doetsch (1), p. 161.
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Das andere Integral in (32), welches sich auf die Variable v bezieht, ist,
wie (30) zeigt, nichts anderes als das in der Theorie der Laplace-Trans-
formation bekannte Faliungsintegral.

Diese enge formale Analogie kénnte leicht dariiber hinwegtduschen,
daf} zwischen den beiden Verfahren inhaltlich wesentliche Unterschiede
bestehen. Auf Grund des in § 4 Gesagten ist es in der Tat ausgeschlossen,
das eine Verfahren auf das andere reduzieren zu kénnen.

(Eingegangen den 2. April 1948.)
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