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Uber die Berechnung der Skalarprodukte
ganzer Modulformen

Von Hawns PeTERssoN, Hamburg

1. Bei der Untersuchung metrischer Eigenschaften der automorphen
Funktionen hat sich bisher gezeigt, dal man zu vollig tibersichtlichen
Darstellungen fiir die Skalarprodukte ganzer automorpher Formen nur
gelangt, wenn der eine der Skalarfaktoren als Linearkombination Poin-
caréscher Reihen gegeben ist, wihrend vom andern gewisse Fourier- oder
analoge Entwicklungskoeffizienten bekannt sind!). In der vorliegenden
Abhandlung entwickle ich, ausgehend von einem Ansatz von Rankin?),
ein Verfahren zur Bestimmung des Skalarprodukts zweier ganzen Modul-
formen hoherer Stufe aus deren Fourierreihen. Als Ergebnis kann eine
Formel angesehen werden, die dieses Skalarprodukt durch das Residuum
einer gewissen Dirichletreihe ausdriickt ; obwohl damit das urspriingliche
auf ein neues Problem reduziert wird, gelingt auf diesem Wege erstmalig
die numerische Berechnung eines allgemein bestimmten Systems solcher
Skalarprodukte.

Fiir die Modulformen hoherer Stufe sind mit den genannten beiden
Ansidtzen nunmehr zwei Moglichkeiten gegeben, Skalarprodukte explizit
zu bestimmen. Ein etwas genauerer Vergleich der beiden Verfahren ist
nicht ohne Interesse und soll deshalb hier folgen.

Vorgelegt sei die Aufgabe, das Skalarprodukt (f,g) zu berechnen;
dabei seien die ganzen Modulformen f(r) und g¢(z) (von der gleichen
reellen Dimension —r) durch ihre Fourierentwicklungen gegeben, d. h.
es seien die n-ten Fourier-Koeffizienten b,, ¢, von f(z) bzw. g(z) be-
kannt. Dann kann man entweder das hier dargestellte Verfahren an-

1) H. Petersson, Uber eine Metrisierung der automorphen Formen und die
Theorie der Poincaréschen Reihen, Math. Annalen 117 (1940); Einheitliche Be-
griindung der Vollstandigkeitssatze fiir die Poincaréschen Reihen vonreeller
Dimension bei beliebigen Grenzkreisgruppen von erster Art, Abhandl. Math.
Seminar Hamburg 14 (1941).

2) R. A. Rankin, Contributions to the theory of Ramanujan’s function 7(n)
andsimilararithmetical functions II: The order of the Fourier coefficients of
integral modular forms, Proc. Cambr. Philos. Soc. Vol. 35 (1939).
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wenden und gelangt so zu der Aufgabe der Residuenbestimmung der Di-
richletreihe mit dem n-ten Koeffizienten b,¢,. Oder aber man kann
versuchen, die Darstellung von f(7) als Linearkombination endlich vieler
Poincaréschen Reihen G (7, v), etwa des parabolischen Typus zur Spitze
oo, heranzuziehen. Gelingt es, die dabei auftretenden Koeffizienten 4, zu
berechnen, so erhilt man das Skalarprodukt in der einfachen Gestalt

e, ¥ A, &, ¢, mit einer numerischen Konstanten e, und elementaren kon-
1 4

stanten Faktoren «,. Die genannte Residuenbestimmung ist also mit der
Bestimmung der Koeffizienten 1, dquivalent, und diese Koeffizienten-
bestimmung setzt im allgemeinen voraus, dafl die Fourier-Koeffizienten
der Poincaré-Reihen G/(t,v) in ihren wesentlichen Eigenschaften be-
kannt sind. In dieser Forderung begegnen wir einem der schwierigsten
der noch ungelosten Probleme aus der Theorie der Modulfunktionen.
Durch seine Beziehung zu den Residuen der erwidhnten Dirichletreihen
wird ein Zusammenhang aufgedeckt, der die Poincaré-Reihen in eine
engere Verbindung zu den Begriffen der klassischen analytischen Zahlen-
theorie bringt.

Aus dem hier kurz dargestellten Sachverhalt geht hervor, dall man das
an erster Stelle genannte Verfahren der Residuenbestimmung vornehm-
lich dann anwenden wird, wenn es sich in der gestellten Aufgabe um eine
konkrete Berechnung handelt. Von dieser Art sind die in den letzten
Abschnitten der Arbeit mitgeteilten numerischen Formeln. Ihr wesent-
licher Wert liegt u. a. darin, dal sie Beispiele fiir die arithmetischen
Eigenschaften der Skalarprodukte arithmetisch ausgezeichneter ganzer
Modulformen liefern.

In gewissen anderen Fillen hat sich bereits gezeigt, dafl den Skalar-
produkten metrisch und arithmetisch ausgezeichneter Modulformen eine
arithmetische Bedeutung zukommt?). Betrachtet man etwa die von
Hecke eingefiihrten modifizierten Eisensteinreihen G (z,a,, a,, N)
(r ganz und = 3) und ihre Analoga fiir eine beliebige Kongruenzunter-
gruppe I' der Modulgruppe [ (1), so erweisen sich diese ganzen Modul-
formen, die wir allgemein mit E_,(v,a,[) (a = {a,, a,}) bezeichnen
wollen, als metrisch und arithmetisch in hohem Mafle ausgezeichnet.
Einerseits nidmlich stehen sie auf der vollen Schar der ganzen Spitzen-
formen der gleichen Dimension — r und der gleichen Gruppe I' senkrecht,
andrerseits verhilt sich die einzelne Funktion E_,(r,a,T) in den
Spitzen eines Fundamentalbereichs § von I in der Weise, da8 sie in allen

3) H. Petersson, Metrische Theorie der Eisensteinreihen, Monographie, erscheint
spater mit erweitertem Inhalt in Einzelabhandlungen.
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Spitzen mit genau einer Ausnahme verschwindet, in dieser einen Spitze
aber — bei Wahl der iiblichen Ortsvariabeln — das konstante Glied 1
oder 2 aufweist. Uberdies gestattet jede Funktion E_,(v,a,l) Ent-
wicklungen nach diesen Ortsvariabeln mit Koeffizienten, die fiir passen-
des N dem Korper der N-ten Einheitswurzeln angehoren und hier als
Briiche mit einem gemeinsamen festen Nenner geschrieben werden
konnen.

Die dabei verwendete Metrik beruht auf der iiblichen Erkldrung des
Skalarprodukts (f, g) der ganzen Modulformen f(z), g(z), die zur
gleichen Gruppe [, zur gleichen reellen Dimension —r und zum gleichen
Multiplikatorsystem v des Betrages 1 gehoren : Fiir jeden (etwa als hyper-
bolisches Polygon auffaBbaren) Fundamentalbereich § von [ ist

(f,9) = (f(1), 9(2)) = (f{(2), 9(7); 1) = .fgff(f)?i(f) y~tdx dy (1)

Wir nennen diese Funktionen f(t),g(r) Modulformen {I', —r, v} oder
bei ganzem r, wenn alle Multiplikatorwerte v gleich 1 sind, auch Modul-
formen {I, —r}.

Die oben mit E_,(7, a, I') bezeichneten ganzen Modulformen {I", —7}
sind durch die genannten Eigenschaften, und zwar bereits durch deren
erste und zweite, eindeutig bestimmt. Daher bilden die Skalarprodukte je
zweier verschiedenen E_, (7, a, ') ein durch I' und r vollig festgelegtes
endliches Zahlensystem 3. (Das Skalarprodukt einer Reihe E_.(7,a, ')
mit sich selbst existiert nicht.) Wird die Gruppe I' auf irgendeinen be-
stimmten Typus von Kongruenzgruppen einer der Stufen ¥=1,2,3,...
eingeschrinkt, so hingt 3 nur noch von den natiirlichen Zahlen N, r ab,
und eine weitere Spezialisierung von I auf gewisse numerisch fixierte
Matrizengruppen bewirkt, dafl 3 durch r allein eindeutig bestimmt ist.
Dies gilt insbesondere fiir den einfachsten in Betracht kommenden Fall
eines solchen numerisch spezialisierten I, d.i. die von

1 2 0 —1 1 1
2 — l? -
v _—(0 1) ’ = (1 0) [ _(0 1)] ®
erzeugte Gruppe I = g des Theta-Nullwerts

too
By()=0()= X e, )
Mm=—c0
Hier enthilt ein Fundamentalbereich § von [ = [, die fiir unser
Problem niedrigst-mogliche Anzahl von genau zwei indquivalenten
Spitzen, und 3 besteht aus einer einzigen, nur von dem geraden ganz-
zahligen Parameter 7 = 4 abhiingigen Zahl ,.
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Das in der Abhandlung3) entwickelte Verfahren zur Bestimmung der
Skalarprodukte allgemeiner automorphen Eisensteinreihen reeller Dimen-
sion ergibt im Spezialfall der Modulformen {I"y, —r}, daB @, bis auf einen
angebbaren rationalen Zahlfaktor mit #~¢-D{(r — 1) iibereinstimmt
(r gerade und =4). Es ldge also nahe, die o, als die Analoga der Ber-
noullischen Zahlen fiir die Werte der Riemannschen Zetafunktion in den
ungeraden Zahlen anzusehen. Hierzu sei bemerkt, daBl sich einerseits
die verwendete Gruppe [ 4 in besonders einfacher Weise kennzeichnen
1a8t, und daB andrerseits @, der bis auf angebbare rationale Zahlfaktoren
einzige Wert ist, der als Skalarprodukt von ganzen Modulformen {Ig,—r}
mit der oben genannten Orthogonalititseigenschaft iiberhaupt auftreten
kann, vorausgesetzt lediglich, da die konstanten Glieder dieser Modul-
formen in den Spitzen von { rational sind. Als spezielle Formel besonders
einfacher Bauart sei aus diesem Zusammenhang die folgende mit den
Theta-Nullwerten

+ o . T 2
B =0hc+)= X (—me™ g(1)= X ™D (4
gebildete Relation zitiert :
2 -
£(3) =2 (95, (BeBa)* 5 Ts) - (5

Eine befriedigende Analogie der &, zu den Bernoullischen Zahlen wire
jedoch erst dann hergestellt, wenn es gelinge, die arithmetische Natur
der @, aufzukliren. Hieriiber ist gegenwirtig nichts bekannt. Es ldge
nahe, zu vermuten, dafl das Skalarprodukt zweier ganzen Modulformen
rationaler Dimension, die zu einer Kongruenzgruppe in [ (1) gehoren,
und deren Multiplikatoren sdmtlich Einheitswurzeln sind, falls es exi-
stiert und nicht verschwindet, transzendent ist, vorausgesetzt, dal die
Entwicklungskoeffizienten dieser Modulformen in den Spitzen bei Wahl
der iiblichen Ortsvariabeln einem algebraischen Zahlkérper endlichen
Grades angehoren und sich als Briiche mit einem gemeinsamen festen
Nenner schreiben lassen. Aus diesem Satze wiirde die Transzendenz aller
o, und damit aller 7=-V ¢ (r — 1) unmittelbar folgen. Aber die Beispiele
von Modulformen der Dimension —$ in der vorliegenden Abhandlung
zeigen, daBl diese Vermutung nicht in der angegebenen Allgemeinheit zu-
treffen kann.

Das im folgenden entwickelte Verfahren zur Berechnung der Skalar-

produkte fithrt bei allgemeinen Theta-Null- und Teilwerten, u. a. also
24

8
auch bei den Funktionen 7 (7) =V 4(7) und 73(7) =V 4(t), zu numeri-
schen Ergebnissen. Im Falle der Dimension —4 entstehen Werte, die sich
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von # um rationale oder reell-quadratisch irrationale Faktoren unter-
scheiden, im Falle der Dimension — § sind die Skalarprodukte selbst
rational oder reelle quadratische Irrationalitdten.

Die Durchfithrung der Beweise gliedert sich in zwei Teile. Im ersten
Teil (Abschnitt 2, 3, 4) kommen nur die Félle zur Sprache, in denen das
Produkt f(t)g(r) in allen Spitzen verschwindet. Hier 148t sich die erste
Identitit (Satz 4, (20)) fiir beliebige Grenzkreisgruppen von erster Art
mit der Spitze oo beweisen. Dagegen ergibt sich die Ubereinstimmung des
Skalarprodukts (f, g) mit dem durch gewisse elementare Faktoren modi-
fizierten Residuum der erwéhnten Dirichletreihe nur fiir Kongruenzunter-
gruppen [ der Modulgruppe I (1). Zum Beweise auf Grund von Satz 4
geniigt die Heranziehung einfacher Umformungen der Eisensteinreihen
nach dem Vorgang von Hecke %).

Im zweiten Teil (Abschnitt 5, 6, 7) handelt es sich um die Dimensionen
—¢r mit 0<r<1 und die Paare ganzer Modulformen f(7), ¢g(zr) in
{F, —r,v} mit der Eigenschaft, da f(r)g(z) nicht in allen Spitzen
verschwindet. Mit Hilfe der Primform-Logarithmen werden aus f und g
ganze Modulformen von stetig verdnderlicher reeller Dimension her-
gestellt, deren Produkt in allen Spitzen verschwindet, und auf die daher
die im ersten Teil bewiesene Formel angewendet werden kann. Die all-
gemeine Schlullformel des Satzes 8 in Abschnitt 6 entsteht aus dieser
durch einen Grenziibergang.

In den letzten Abschnitten 7 und 8 werden die allgemeinen KErgebnisse
auf eine gewisse Klasse von einfachen Thetareihen angewendet. Welche
arithmetischen Anwendungen zu erwarten sind, wird aus den Entwick-
lungen des Abschnitts 8 deutlich ; hier gelingt es in einem Beispiel, die
lineare Schar der zu den ganzen Spitzenformen orthogonalen Funktionen
explizit aus terndren Thetareihen zusammenzusetzen.

Zu dem etwas komplizierten Approximationsverfahren des zweiten
Teils, also zu der Heranziehung der Primform-Logarithmen und der
automorphen Formen stetig verdnderlicher Dimension, ist zu bemerken,
daB die gleichen Hilfsmittel auch bei der Berechnung der Skalarprodukte
der automorphen Eisensteinreihen, also etwa beim Beweise von (5), die
entscheidende Rolle spielen. An den SchluBfformeln der vorliegenden
Abhandlung ist der Umstand hervorzuheben, daB sie zwar nur fiir Kon-
gruenzuntergruppen der Modulgruppe, aber fiir beliebige reelle Dimen-
sion und beliebige Multiplikatoren des Betrages 1 bewiesen wird.

4) E. Hecke, Theorie der Eisensteinschen Reihen hoherer Stufe und ihre An-
wendung auf Funktionentheorie und Arithmetik, Abhandl. Math. Seminar Ham-
burg 5 (1927).
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Bei Rankin tritt — stark spezialisiert und als Mittel zu ganz anderen
Zwecken — zum ersten Male diejenige Umformung auf, die hier in Ab-
schnitt 3 fiir allgemeine Grenzkreisgruppen von erster Art zu der Dar-
stellung (20) von Satz 4 fithrt. Diese Umformung steht in engster Be-
ziehung zu dem Verfahren, durch dasin der Abhandlung ) die metrischen
Eigenschaften der Poincaréschen Reihen bestimmt werden. Abgesehen
von der genannten Umformung sind die Methoden der vorliegenden Ab-
handlung von denen der Rankinschen Arbeit?) vollig verschieden.

Zum Schluf} sei bemerkt, dall man mit dem Verfahren der vorliegenden
Abhandlung auch gewisse spezielle Ergebnisse der Untersuchung ) ablei-
ten kann. So erhilt man die Werte der Skalarprodukte der Eisensteinreihen
von gerader Dimension —r < —4 mit Multiplikatoren Eins zu den
Kongruenzgruppen [,(¢) (¢ Primzahl) und ihren Transformierten, also
insbesondere auch zur Gruppe g des Theta-Nullwerts (3): #(r), und
damit den einleitend hervorgehobenen Sachverhalt iiber die Werte der
Riemannschen ({(s) fiir die ungeraden s =k = 3. Die Resultate von
Fulnote 3 in dieser Richtung gehen iiber die hier erwahnten Sonderfille
weit hinaus. Sie geben die Werte der Skalarprodukte der automorphen
Eisensteinreihen von reeller Dimension — r unterhalb — 2 mit beliebigen
Multiplikatoren des Betrages Eins zu beliebigen Grenzkreisgruppen I
von erster Art.

Hinsichtlich der Bezeichnungen werde folgendes verabredet :

Der konjugiert-komplexe Wert einer komplexwertigen Funktion
fis.6(2,y,2,...) wird meistens mit ]_‘;,j,k(x, Y,2,...) bezeichnet. Ge-
legentlich werden Hinweise auf Gleichungen, Sétze und Zitate des Textes
in eckigen Klammern gegeben.

Die obere Halbebene y >0 der komplexen Variabeln 7 = x -+ ¢ty

: . b .
(z, y reell) wird mit §, die zweite Zeile einer Matrix S = (z d) mit

S8 = {c,d}, die zweireihige Einheitsmatrix ((1) (1)) mit I, die Matrix

((1) 1\17) (N reell) mit UY bezeichnet.

C,, C,,... bedeuten positive Konstanten; C,(f,g,...) gibt eine nur
von f,g,... abhingige positive Zahl an.

Fiir einige allgemeine Begriffe und Konstruktionen der Theorie der
automorphen Funktionen vgl. die Abhandlungen ?), 5) des Verfassers.

2. Unter einer Grenzkreisgruppe von erster Art verstehen wir hier
eine Matrizengruppe I von folgender Beschaffenheit :

8) H. Petersson, Zur analytischen Theorie der Grenzkreisgruppen I, IIL
Math. Annalen 115 (1938), im folgenden zitiert mit G I, G II.
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Die Matrizen L von I' haben die Gestalt L = (“ A ) mit reellen Ele-

y 0
menten und der Determinante |L| = 1. Die den L von I' durch
/= == ——-ﬂi.é_ — ;
'=Lr=L(1) = v 3 (t=z+1ty, xreell, y>0)

zugeordneten Substitutionen bilden eine Substitutionsgruppe I, die in
der oberen r-Halbebene §) einen kanonischen Fundamentalbereich K be-
sitzt. Das Parkett der Bereiche LR (L < I') verdichtet sich gegen die
ganze reelle r-Achse.

Kennzeichnend fiir jeden kanonischen Fundamentalbereich & ist, dafl
aus | durch Zuordnung dquivalenter Kantenziige eine geschlossene Rie-
mannsche Fliche B von endlichem Geschlecht p, entsteht, auf der die
Kantenziige eine kanonische Zerschneidung bestimmen. $) ist universelle,
iiber endlich vielen Punkten in vorgegebenen Ordnungen verzweigte
Uberlagerungsfliche von B. Das kanonische Schnittsystem besteht aus
erstens p, Paaren von Riickkehrschnitten, deren zwei beliebige einen
festen Punkt, den Kreuzungspunkt miteinander gemein haben, zweitens
aus den vom Kreuzungspunkt zu den Verzweigungspunkten fiihrenden
Verzweigungsschnitten. Keine zwei Schnitte haben einen anderen Punkt
als den Kreuzungspunkt miteinander gemein.

Die Verzweigungspunkte entsprechen den elliptischen und paraboli-
schen Fixpunkten von [ in § bzw. auf der reellen Achse oder im Unend-
lichen. & enthélt aus jedem System untereinander dquivalenter solcher
Fixpunkte genau einen Vertreter und zu jedem von diesen in dessen Nihe
eine volle Umgebung von nach I indquivalenten Punkten in . Es kann
und soll angenommen werden, dal ! von endlich vielen hyperbolischen
Strecken und Halbgeraden berandet wird. Die parabolischen Fixpunkte

von I' (d. h. die Fixpunkte parabolischer Substitutionen von I') heifien
parabolische Spitzen oder auch kurz Spitzen. _

Im folgenden wird vorausgesetzt, daB8 I' die Matrix —I und daB T
parabolische Substitutionen enthilt; die erste dieser Voraussetzungen
verursacht keine Beschrinkung der Allgemeinheit. Bei gewissen Grenz-
kreisgruppen ist sie notwendig erfiillt, sie soll daher zunichst generell
unterstellt werden. In den Sonderfillen solcher ', die —I nicht enthalten,
sind an den zu beweisenden Formeln geringfiigige Modifikationen anzu-

bringen.
Ist {=A"1c0 eine Spitze von I, so wird dabei stets 4 als reelle Matrix
mit |A| =1 angenommen, 4 = {a,,a,} geschrieben, unter N die

kleinste positive Zahl derart verstanden, daB P=A"'UAc T, und
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N
I" gewihlt. Eine ganze automorphe Form {I', —r, v} ist eine in § regu-
lire analytische Funktion f(t), die dort iiberall den Transformations-
gleichungen

f(L7)=v(L)(yT+0)y[() (Lcl,L={y,d) (6)

geniigt und fiir jede Spitze { von [ eine Entwicklung von der Gestalt

= exp (27: ? id—f—) als ortsuniformisierende Variable des Punktes {i.b.a.

2ni(n+x)%

[ =(@r+a (4D, fi(D=Sb,(d.he ¥

zuldft. Die hier auftretenden Werte v(L) konstituieren ein (kohirentes)
Multiplikatorsystem [[", —r]. Im folgenden wird vorausgesetzt, daB alle
Multiplikatorwerte den Betrag 1 haben. Unter dieser Voraussetzung
existieren nicht-konstante ganze automorphe Formen {I', —r,»} einer
reellen Dimension —r nur fir »>0. Es sei also iiberdies r>0. In (7)
wird x wie iiblich durch

v(P) =" (P=A7'UN4, 0=<«k<1)
und (m, T + m,)" fiir reelle m,, my # 0,0 durch
—a<arg (m, v+ my)< + = (rc H)

bestimmt (G I, passim). Wir nehmen ferner an, dafl r parabolische Sub-
stitutionen mit dem Fixpunkt oo enthalte, d. h. also, dal (= co eine
Spitze von I sei. Dies bedeutet, daB UY c I’ mit passendem N >0 zu-
trifft, und kann erforderlichenfalls durch eine auf I' auszuiibende Trans-
formation mit einer reellen Matrix der Determinante 1 bewirkt werden.

Es bezeichne o, die Anzahl der Spitzen (= A~'oco eines kanonischen
Fundamentalbereichs & von I'. Wir zerlegen & in o, Bereiche (Spitzen-
sektoren) B, von folgender Beschaffenheit : B, enthilt genau eine Spitze
von K, nidmlich ¢, und mit dieser eine volle Umgebung von nach I' in-
dquivalenten Punkten in §. B, wird wie & von endlich vielen hyper-
bolischen Strecken und Halbgeraden berandet. Zwei verschiedene solche
Bereiche B, haben hochstens Randpunkte miteinander gemein; der
einzelne Bereich $B, besteht aus einem Gebiet und aus einem Teil von
dessen Rand.

Gelegentlich werden die Spitzen von & numeriert. Wir schreiben dann

C—-—“Ch::A;‘—loo, Ahreell, 'Ahl—;l (1 <h §O‘0)
und verwenden die Symbole 4,, P,, N,, «, fir das betreffende { = ¢,

in der oben angegebenen Bedeutung. Speziell sei ¢, = oo, 4, = I, und,
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wenn von dieser Spitze die Rede ist, x;, = x. Fiir jedes { =A1c0ocC K
liegt A, in einem Vertikalhalbstreifen positiver Mindesthohe und fiillt
fiir hinreichend grofle Ordinaten einen (i. a. anderen) solchen Halbstreifen
genau aus.

Mit € =C(I', —r,v) bezeichnen wir die Schar der ganzen Formen,
mit €+ =C¢+ ([, —7,v) die Schar der ganzen Spitzenformen (d. h. der
ganzen in allen Spitzen verschwindenden Formen) {I', —7r,v}. f(z) cC+
heiBt f(r)c® wund b,(4,,f) = 0 fir diejenigen 2 (1 <k < 0,) mit
k, = 0. Wir schreiben zur Abkiirzung, wenn f und g in € liegen :

b‘n([’f):bfn’ bn(I’g):cn (f$gCG)’ N’K fur Nl’Kl (8)

und beweisen nun die folgenden Aussagen, deren erste mit ihrem Beweis

aus der neueren Literatur iiber Modulfunktionen wohlbekannt ist :
r

Satz 1. Fur vc$, f(r)cC+ gilt |f(z)] < Ci(fy = .

7 ——
Beweis: y2 |f(7)| ist gegeniiber den Substitutionen von I' voll in-
variant und im Bereich ® beschrinkt.

Satz 2. Fir 19, y <, (x>0 beliebig, aber fest), f(z)cC gilt
1H(D)] = Celf,o0) y .

Beweis: Es sei y, die untere Grenze der y = Jm v fir v B,,
h die Strecke £ < <&+ N, y=1vy, (0<y,<py). Jeder Punkt 7,
von b liegt in einem Bereich L' ! und daher in einem Teilbereich
LB, (Lc ). Dies besagt

MvwwcAB,, M=AL, {= Ao eine Spitze von ], Lc T .
Fir beliebige 7 $ folgt aus (6) und (7)

= LD (g ma
T oD+ o4, Do)

fa (M) (M = {m,, mp}) ,

Daher ist |f(7o)| = |my7o + ma|™"|f4 (M %) | < C5(f) | My 7o + my| . Die
Verwendung der Konstanten C,(f) erklidrt sich aus der Struktur von
A B, , der Lage von M 7, und daraus, daB nur endlich viele 4 in Betracht
kommen. Wenn m, verschwindet, so gilt co = M-lco=L1¢{ (LcT),
also { =00, A=1, M =L = +U" mit ganzem h und M1, =
7o+ hNcB,, was der Voraussetzung y,<<yu, widerspricht (G I,
Satz 2, Zusatz). Nach GI, Satz 2 ist also |m,| = 9,(4, ') (J, konstant),
und daraus folgt die Behauptung zunichst fiir y <u,. Andrerseits hat
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y"|f(7)| die Periode N, ist also fiir 3 u, < y < &, beschrinkt. Dies gibt
die volle Giiltigkeit von Satz 2.
Im folgenden setzen wir wie angekiindigt «, = x ({, =o0),

A=Af)=r fir fcC, A:A(f):—;— fir fc @+

und erhalten

|f ()] —<—:04(f>0‘1)y~)‘ 0<y =&;,0,>0, Cy=C, oder (), (9)

Rk a — 2T it K)—
ba=ba (L= [ e F L e el
E¥ia (10)

2

16, | SOs(f)(n+x*  (n+x>0,C=e¥ C),

§+N dx © -—41r(n+x)~z{
0s [ H@+in g =X b e Y <oy, ()
3 n=

n 47
kEIbk|2§Cs(f)(n+K)“ (n+x>0, Cs=e¥ C7), (12
=0

5‘.1: 1bic | =C5 (f,9) (1) ("H‘K>Oa C,(f.9)= VCs (NCs (93

k=0

hier wurde A’ = A(g) fir gc € (oder gcC+) geschrieben.
Aus (13) folgt die absolute Konvergenz der Dirichletreihe

); (13)

D@e:f.) =D fgsN = = 2% (fgcE) (14

n4+x>0 T"; + «)®

fir 6>A+ A4 (s=0-+1t; o, t reell).
Es seien nunmehr f und g ganze Formen {[, —r, v} derart, daB fg
in allen Spitzen von ' verschwindet. Wir setzen

_ —4am(n K)g §+‘N . — s d
YO =p@fe)= X byg.e V= f(x+w)g(x+zy)—~§—

n+4x>0 E
und behaupten: Fiir alle komplexen s mit ¢ = Res>41 + 4’ gilt

NsI
w(y;f,g)ys“ldy=m)(%)D(8;f,g) : (15)

Zum Beweise erschlieBen wir nach der Cauchy-Schwarzschen Unglei-

chung aus (11) zunichst
—annin) L

0 X |byc,le < Cs(f, gy (¥y>0) .

n+k>0
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Diese Abschitzung besteht mit C,(f, «,) C4(g9, ;) an Stelle von Cq(f, g)
urspriinglich nur fiir 0 <y < «,, 148t sich aber sofort auf ganz § aus-
dehnen. DaB (15) gilt, folgt aus

0 y

—4a(n+ )l —ompl —_—A A
S lbacale N s N oy (5)7
n=p
o —4Tnt) i (2PN o
f X b,c,e yldy| < Cy(f,g) 2" | e Yy’ Ty .
% \n=» 0

Es bezeichne nun B den Vertikalhalbstreifen ¢ < x <&+ N, y>0.
Dann besagt (15) den folgenden (nunmehr bewiesenen)

Satz 3. Esset fcC, gcC, und es verschuinde fg in allen Spitzen
von I; es set o= Res>A+ A und D(s;f,q) durch (14) erkldrt.
Dann existieren beide Seiten der folgenden Gleichung im Stnne absoluter
Konvergenz :

1 .
wJ 107 @yt dedy = %%(fl D(s;f.9) - (16)

Nach dem Beweise von Satz 1 existiert sowohl die linke Seite dieser
Gleichung als auch das mit ihr iibereinstimmende j'zp(y s 9y tdy
0

im Sinne absoluter Konvergenz bereits fir ¢ >7r; A4 4 A’ ist = r oder
= 3r oder = 2r. Die linke Seite von (16) hingt von & nicht ab.

Uber die Moglichkeit einer Verschiarfung der in diesem Abschnitt be-
wiesenen Abschitzungen seien noch einige Bemerkungen gestattet. Was
zundchst die Verschirfung der Aussagen von Satz 1 und 2 angeht, so hat
man hierunter, da diese Sdtze wesentlich nur fir y — 0 in Betracht
kommen, eine Ungleichung

1f(7)] = C'uly) (C’>0 konstant)

zu verstehen, in der u(y)y® fir fc@€+ und u(y)y fir fcC,
fEC+ mit y gegen Null streben.

In diesem Sinne ist Satz 1 niemals verschéarfbar¢). Ferner erkennt man
aus (7), daB eine ganze Form {I', —r,v} (»>0, |v|=1), dienicht in al-
len Spitzen verschwindet, bei senkrechter Annidherung an die reellen Spit-
zen, in denen sie nicht verschwindet, in der genauen Ordnung r ins Unend-

¢) H. Petersson, Ein Summationsverfahren fiir die Poincaréschen Reihen
von der Dimension —2 zu den hyperbolischen Fixpunktepaaren, Math. Zeit-
schrift 49 (1944), s. insbesondere §5, Satz 7.
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liche wiichst. Was die Abschitzung der Fourier-Koeffizienten b, angeht,
so laft sich fiir die Formen f mit r>2 der Exponent 4 = r auf der
rechten Seite der letzten Gleichung (10) um eine volle Einheit erniedrigen,
falls f nicht in allen Spitzen verschwindet. DaB eine weitere Verschirfung
der so entstehenden Abschitzung nicht allgemein stattfinden kann,
zeigen die expliziten Formeln fiir die Fourierkoeffizienten der Eisenstein-
reihen ganzer Dimension —r < — 3 mit Multiplikatoren 1 zu den Kon-
gruenzuntergruppen der Modulgruppe.

Der genau analoge Sachverhalt besteht fiir den Exponenten 24 = 27
auf der rechten Seite von (12). Er kann fiir »>2, wenn f nicht in allen
Spitzen verschwindet, um eine volle Einheit erniedrigt werden, und zwar
gilt dies fiir die allgemeinen oben eingefiihrten automorphen Formen auf
Grund der Tatsache, daf} sich diese mit Hilfe der Linearkombinationen
der automorphen Eisensteinreihen additiv auf ganze Spitzenformen re-
duzieren lassen. Eine weitere Verschirfung der dadurch entstehenden
Abschitzung wird abermals durch die speziellen Eisensteinreihen ganzer
Dimension der Kongruenzgruppen widerlegt.

SchlieBlich zeigt Theorem 1 bei Rankin?), daf3 die rechte Seite von (12)
fir jede ganze Spitzenform von ganzer Dimension mit Multiplikatoren 1
zu einer der genannten Kongruenzgruppen die genaue Groflenordnung
der Quadratsummen der Koeffizienten-Betrdge angibt.

Im ibrigen gelten die hier mitgeteilten Aussagen iiber die Verminde-
rung der Exponenten in den Abschitzungen (10) und (12) fiir ganze
Nicht-Spitzenformen nicht mehr allgemein, sobald 0<r<2 ist. So be-
trigt die Verminderung dieser Exponenten fiir die klassischen einfachen
Theta-Null- und Teilwerte von der Dimension —1 genau {. Fiir die in
Abschnitt 7 diskutierten einfachen Thetareihen 9,(t, 2, N) von der Di-

mension —2, die in allen Spitzen verschwinden, gilt (10) mit A'= 3} =
%m li . Es besteht AnlaBl zu der Vermutung, dafl (10) fiir alle ganzen
r

Spitzenformen mit A = 5 —i— -+ ¢ bei beliebigem &>0 zutrifft. (Vgl.

FuBnoten 2),7) und die in FuBnote 2) angegebene Literatur.)

3. Essei { = A"1co eine Spitze von I, S(4, ') ein volles System
von Matrizen M aus Al mit verschiedenen zweiten Zeilen. Die ,,Poin-
carésche Betragreihe“

Q(S,T,A,r)z !

McSw,n | mTtm,|®

(AI:‘{mlsmz}: G=m28>2) (17)

) H. Petersson, Uber die Entwicklungskoeffizienten der automorphen For-
men, Acta Mathematica 58 (1932).
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konvergiert fiir festes s mit ¢>2 auf jedem Vertikalhalbstreifen von
positiver Mindesthohe in § gleichmiBig absolut. Sie geniigt den Trans-
formationsgleichungen

ds,St, A, TN)=|ct +d|*DP(s,7,48,81TS)
‘ (S reell, |S| =1, 8= {c,d})
O, Lr, A, T)=|yr+ 6|*DP(s,7,4,T)
(LcT, L= {y,d}).

(17a)

Wir betrachten fiir o>r das Doppelintegral

W(s;f,9; I"):—llv&j'f(t)?j(r)di(2s——2r+2,7,1,F)y”—ldxdy . (18)

Unser Ziel ist, zu zeigen, dal W (s;f,g; ) bis auf einen konstanten
Zahlfaktor mit der linken Seite von (16) iibereinstimmt. Zu diesem Zwecke
zerlegen wir das Doppelintegal iiber & in die Doppelintegrale iiber die Teil-
bereiche B, , filhren in deren jedem die neue Variable 7’ =4 7 einund fin-
den mit 7’ = 2’ + iy’ nach (17a), am einfachsten unter Benutzung der
Identitat

s—r+1
Y

8—1
4 dzdy =

r—2 o
[y T + my | 25212 [m, © + m, [2—2r+2 Yy Pdrdy =
d,
— (3m Mayrrer g Y
1
N Ca 7%
. 1 = 1 " dx’dy'.
Jm; (s;1.9) =N ffA (t) g4 (") Mcg(”_) |m! v + m] [2s-2r+2 y72
4B M= MA—1
(19a)

Hier kann, weil f,(7')g, (v') im Unendlichen exponentiell verschwindet,
die Summe mit dem Doppelintegral legal vertauscht werden. Geschieht
dies, und wird die erwiéhnte Variablentransformation wieder riickgéingig
gemacht, so ergibt sich

f(@) g (v) i1 dx dy
Jo (6:1,0) = N ucsl, r).[f [yt my e U T

Diese Reihe konvergiert nach ihrer Herkunft fiir beschrinkte s mit
o>7r+ o (x>0 fest) gleichmiBig absolut, und es wird nunmehr nach (7)
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W(s;f,g;l')zjv f§f0)g @) ytdzedy .
4 Mce(z n My
Zur weiteren Umformung dieses Ausdrucks bedienen wir uns der Kon-
struktion JIII, § 4. Da der Integrand auf der rechten Seite gegeniiber
den U (h ganz) offenbar translationsinvariant ist und die Summe von
der Auswahl des Systems & (I, ') nicht abhingt, findet man zunichst

Wehg D=2 5 [[I07@y1dedy;
MCe) Sy
hier bezeichnet Sy ein vollstindiges Teilsystem eines passend bestimm-
ten Systems S,= &(I,I) derart, daB SF von jedem Matrizenpaar
M, M’ aus G, fir welches M' = — M gilt, genau einen Vertreter ent-
halt DaB die rechte Seite der 1 letzten Glelchung bis auf den Faktor 2 mit
der linken Seite von (16) iibereinstimmt, 148t sich genau so wie der ent-
sprechende Sachverhalt in J III, § 4, beweisen (wo sich auch die Er-
klirung von S, und &,, findet), so dal wir auf die Darstellung des Be-
weises verzichten konnen.
Wir erhalten daher

Satz 4. Unter den Voraussetzungen und in den Bezeichnungen von
Satz 2, (17) und (18) gilt : Es existiert W(s;f,g; ) firalle komplexen s
mit o>r. Wird D(s;f,g; ) gemap (14) erklirt, so besteht die Formel

Ns T (s)
(4 7)°

Von Wichtigkeit fiir die fernere Theorie ist der Nachweis dafiir, dafl
W(s;f,g; ) beim Ubergang von I' zu einem Normalteiler I’ von end-
lichem Index in I ungedndert bleibt. Zum Beweise zerlege man das
System der Spitzen L-'co (L c I') in Aquivalenzklassen nach I'". Durch-
liuft ¢’ = A’ 'co(A’cT) ein Vertretersystem dieser Klassen, und be-
zeichnet P’ = A'7*U°YA’ die Grundmatrix von ¢’ i. b.a. '/, so hingt
die natiirliche Zahl ¢ von A’ nicht ab, und es besteht die mengentheore-
tische Zerlegung

Wis;f,g;T) =2 D (s;f,9;T) (@>A-+2) . (20

c—1
r= SUYA'T.

v=0 A’

c—1

Sie bedeutet, daB S S UYA4’ K] einen Fundamentalbereich § von '’
v=0 A4'

darstellt ; aus ihr folgt

D(s, v, 1, F)MZ@(S 1, A, T =X |aj v+ a,|* P(s,A'v, I,T")

A
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(A’ = {a;,a,}), und es wird demnach

W(s;f.9; l')——— Sfff@g@P@s—2r+2,7,1,My"dedy .

4’ 1'%
Da auch &(s, 7, UB, ') =®(s,7,I,T’) fiir jedes reelle B zutrifft,
kann nach (17a) in der Summe auf der rechten Seite A’ durch U 4’
ersetzt werden. Geschieht dies und wird sodann iiber » =0,1,2,..., |
¢ — 1 summiert, so ergibt sich gemif

c—1

W(s;f,g; l')-m— >3 Jf I0g@@@s—2r+2,7,1,T) y*dady
v=0 A’ pvN4'q
die Behauptung.
Wiinscht man diese Invarianz fiir die rechte Seite von (20) direkt zu
bestédtigen, so hat man f, g durch Reihen von der Gestalt

* 2mi(n’ +K')— = 2 mi(n! 4K’y ——
f)= X Bue X g@) = X ype o

n'’=0 n’=0

auszudriicken und dabei «’ durch
v(UN)=e2"*=¢e?™*  d. h. ck=mny+« (0=«"<1, n,ganz)

zu bestimmen. Wegen

]((T) _ E bn 62 'n'i(cn~|—cl<)‘;,%\7‘~ — § bn e27'ri(¢m+n0+,(r)%
n=0 o
wird in der Tat
ﬂn’ ;n’ bn En
D(s;f,g,r,)= 2 SE————— T E =C—3D(S;fag;r

n'+x’>0 (’l‘b, —+ K’)s n+tw>0 (C n- n0+K’)3

Wir formulieren dieses Ergebnis als

Satz b. Beide Seiten der Gleichung (20) von Satz 4 bletben ungeindert,
wenn [ durch einen Normalteiler T’ von endlichem Index in T ersetzt wird.

4. Die weiteren Umformungen von W (s;f,g; ) erfolgen unter der
Voraussetzung, da ' — abgesehen von einer notwendigen Modifikation,
die die Matrix —I betrifft — mit der Hauptkongruenzgruppe I (N)
(bestehend aus den ganzzahligen unimodularen L =1 (mod N )) iiber-
einstimmt. Da diese Matrizengruppe die Matrix —I nur fir N =1, 2
enthilt, ist (20) dahin zu #ndern, da nunmehr

(2 fiir N=1,2] 9y

W(s;f,g;l'(N))=5‘Ns:t)(f)D(35fa9?r(N))’ = fir N>2 |

(4
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Es habe der Vektor a = {a,,a,} ganzzahlige Komponenten. Wir
setzen

1 ~ 1
F(s,7,a,N)= s F(s,7r,a,N)= .
S mt-E%(N) |my T+ my|® T mi=aiy) |MaT+Hmy|® ’
(mlym2)=l MI,Mzio,o

(21)
offenbar gilt @(s,r,4,[(N))=F(s,7,4,N). Wir bilden ferner die
Dirichletreihen

Q(s,k,N)= ¥ ”"”s“, P(s,h,N)= ¥ J— (22)
iy 7] n= h(N) |7
n=+40 n30

Sie treten in der nach dem Vorgange von Hecke?) leicht beweisbaren
Beziehung auf :

F(;,z,a,N)=§-k%Ng(s,k,zv)i’(s,r,ka,zv) (21,00, N)=1)  (28)

Wir benutzen (23), um aus der Fourier-Entwicklung von F die Fourier-
Entwicklung von F' abzuleiten. Man hat zunichst

~

F(s.t,a,N)= s—1

(e

© o)

400 . my|zt+ag

=6(%)P(s,a2,N) + )yl-sP(s—l a,,N)+Hs,7,a,N),

H(s"r,a,N):-l—tf 2 lmlil—se N yl“sB(s’nlmll%—) ’
= ax()
ml:izoin
+oo ‘ s . 1, wenn x ganz,
Bls,u)= J e™*™# (u+i) *(u—i) du (ureel), 6(w)={0 " }-

Hieraus folgt

s—1

y%-rté )
. Yy E Q(s,k,N)P(s—1,ka,,N)+
2N I.,(S) k mod N
= (k,N)=1

F(s,7,a,N)=6-¢(a) +

2
+3 3 Q(s,k,N)H(s,7,ka,N) . (24)
k mod N
(k,N)=1

mit e(q) =1 fir a = +{0,1} (mod N), £(a) = 0 sonst.
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Um nun das Verhalten des Integrals W(s;f,g;I) (FT=T (&N )) als
Funktion von s zu bestimmen, zerlegen wir es nach (19), (19a) in die
Bestandteile

1
Jgg(s;]‘,g)zﬁ ﬁf T)F(2s —2r+ 2,7,d/,N)y*dxdy (25)
(a =A",4cT (1)

Offenbar wird nun & (@) = & (2) = & (£) = {1 omsty )] ((=A"'oC R),
und wir erhalten daher 0 (sonst)

Jﬂsg(S;f,g) = J;,1 () + Jg,z (s) + J;,s (s) ,
Joa@) =6 0@ 5 ([ @ T y1dzdy ,
Boo

Va 's—r+13) «
2N2 I'(s—r+1)

Jg,z (8) =

X ¥ Q2s—2r+2,k,N)P(2s—2r+1,ka;,N) [§ f,(0)g4(x)y—*+2dxdy,
k mod N i,
(k,N)=1

Jy 5(8) = L Y Q2s-2r+2,k,N) [ [ f4(1)g4(x) H(25-27+2,7,ka’, N) y* dxdy.
’ 2N iod v A%,
(k,N)=1 (26)

Hier erweist sich zunéchst J,,(s) unmittelbar als eine ganze Funk-
tion von s. Beriicksichtigt man ferner, daB} eine Abschitzung
| B(s, u)| < Cy(C)e~™H fiir |s| <C und alle reellen u # 0 zutrifft,
so sieht man, dal auch das Integral in der Darstellung von J, ;(s) eine
ganze Funktion von s ist; dies gilt sogar bereits dann, wenn von der
Funktion f,(7)g,(7) nur feststeht, daB sie auf 4B, beschrinkt ist.
Daraus folgt, dal sich J,,(s) in der Halbebene o>r — % reguldr-
analytisch verhilt. Was schlieBlich J, ,(s) betrifft, so ist a) der I'-Quo-
tient, b) jeder Faktor @ in der Summe iiber k fiir ¢>r — 1 reguliir;
c) jeder Faktor P in dieser Summe bis auf einen einfachen Pol im Punkte
s = r iiberall regulir, d) das Integral eine ganze Funktion von s. Dies
besagt, daB J, ,(s) fiir alle s in der Halbebene o>r — 1 mit moglicher
Ausnahme eines einfachen Pols im Punkte s = r iiberall reguldr ist.
Das Residuum von J¢,(s) in diesem Pol s =r hat den Wert

i p(m) 1 = ~
SNE 2 N T 7) y"2dxdy
2 N2 (”;‘5)031 n? N !gng( )94(0)y Y
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und damit ergibt sich nach Satz 5 schlieBlich als erstes Hauptresultat
der folgende

Satz 6. Es sei [ eine durch endlich viele Kongruenzen definierte Unter-
gruppe der Modulgruppe, es seien f(t), g(t) ganze Modulformen {I,—r, v}
der reellen Dimension —r <O mat lauter Multiplikatoren v des Betrages 1,
es verschwinde f(t) g(z) in allen Spitzen von . Bildet man die Foumer—
Entwicklungen von f(7), g(r) in der Gestalt

® 27i(n + &) j: o 2mri(n + K) —
f(x)= X b,e ¥, g(@m= Xc,e y (0= k<1)
n=0 n=0

und aus ithren Koeffizienten die Dirichletreihe
b,c,
nirso (m 4 )’
80 ist duese fiir o> 2r absolut konvergent, in die Halbebene o>r — 1 ana-
lytisch fortsetzbar und dort iberall regulir mit der einzig moglichen Aus-

nahme eines einfachen Poles im Punkte s =r. Das Residuum von
D(s;f,g;T)im Punkte s = r hat stets den Wert

Res,—, D (s;f,9; ) = 1(\?:;):(;; f(fag;r) : (27)

D(s;f,9;T)= X

Daber bezeichnet : N die Breite des Fundamentalbereichs von T 1m Unend-
lichen, x die durch v(UY) = ™% (0< k< 1) erklirte Zahl, u den Index

der Substitutionsgruppe T in der Modulgruppe T (1) (diese als Substitutions-
gruppe aufgefaft) und (f,g; ) das Skalarprodukt von f mit g ¢.b.a. T.

b. Wenn 0<r<1 ist, so laBt sich zwei beliebigen ganzen automor-
phen Formen {I, —r,v} gemifB (2) ein Skalarprodukt zuordnen. Es
soll nun bewiesen werden, daf3 auch in diesem Falle Satz 6 in allen
wesentlichen Teilen zutrifft. Zum Beweis bedienen wir uns eines Approxi-
mationsverfahrens, das sich auf die Eigenschaften der automorphen Prim-
formen griindet.

Es sei I' eine Grenzkreisgruppe von erster Art im Sinne von 2., & ein
kanonischer Fundamentalbereich von . J eder Spitze {=A"1c0 von ]
entspricht eine automorphe Primform Z(z, {) c {I', —go,u}, d.h. eine
ganze automorphe Form von folgender Beschaﬁenheit: Z(t,¢) ist in
allen Punkten von R, gemessen in den ortsuniformisierenden Variabeln,
ausnahmslos regulir und in allen Punkten von & mit der einzigen Aus-
nahme der Spitze ¢ von Null verschieden. In { hat Z(7, {) eine Null-
stelle von erster Ordnung. Die Formenklasse {I', —g,, u;} von Z(7, {)
ist mit einer positiven universellen Gruppenkonstanten g, und mit einem
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gewissen Multiplikatorsystem u, des Betrages 1 zu bilden, und Z(v, {)
ist durch die genannten Eigenschaften bis auf einen konstanten Faktor
eindeutig bestimmt. Um Z(z, {) vollig festzulegen, schreibt man vor,
daB der niedrigste Fourier-Koeffizient b,(4,Z(7, {)) in der Entwick-

A
lung (6) von Z (7, {) nach Potenzen von ¢ = exp (27”3—3;) den Wert 1

haben soll. Man kann demnach den Logarithmus A(z, ) von Z(z, {)
durch

Afr,0) =108 (5,0) = — ealog (0,7 + a5) + 278 2T 4 1D, (¢, 4)

eindeutig bestimmen, wobei man unter LQ,(t, 4) eine fiir |¢|<1 kon-
vergente Potenzreihe in ¢ zu verstehen hat.
Wir schreiben ¢, fiir {, verwenden N,, 4, mit 4, = {a,,, a,,} in der

unter 2. angegebenen Bedeutung und erhalten im Sinne von (6)

A
A, () =A(r,8) = —eolog a7+ aj) + 6,270 1\571 + (¢ 4;,4,)
t; = exp (2 7 AA"]I) , Q(t;;4;,4,) fir |t <1 konvergent;
i

h,j=1,2,...,0, . (28)

Sodann bilden wir mit den Parametern 7,=0 (1<h=<g0,) die Funktion
P (T ) (77)) = exXp (hE Na An (T)) :kﬂ Z (v,Ly)n [exp x = €7] . (29)
=1 =1

P(z, (n)) stellt ersichtlich eine ganze automorphe Form {I', —g, 7, (o
~ ao . 3 -
von der Dimension —gyn = —g, ¥ 7, und zu einem gewissen Multi-
h=1
plikatorsystem u,, des Betrages 1 dar. Ferner gilt nach (28), (29):
At
~ 2miy; oy

P(r,()) = (@nt+ag)%"e "7 exp(ZmQt;4;,4,)

h=1

und daher im Sinne von (6)

2 77'1:177' <

Oy 27ri—f—‘
PAj (r,(n)):e i exp (2 17;,53(6 Ni ;Az'aAh)) . (30)
h=1

Wir verstehen nun unter f(v),g(r) zunichst zwei beliebige ganze
automorphe Formen der Klasse {I, —7,, v,}, wo 7, eine feste Zahl mit
0<r,<1 und v, ein festes Multiplikatorsystem des Betrages 1 angibt.
Wir teilen die natiirlichen Zahlen A =1,2,..., 0, in zwei Klassen b,
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und b, ein: hcl, bedeute, daBl f(z) g(z) in der Spitze ¢, nicht ver-
schwindet, hch,, daB f(z)g(r) in , verschwindet. Fiir hc b, gilt
also entweder x,>0 oder b,(4,,f)b,(4,,9) =0 oder beides. Fiir
hch, hingegen gilt sowohl «, = 0 als auch by(4,, f) b,(4,,9) #0;
dabei ist [ von erster Art und «, aus v,(P,) = 2™*» (0<«, <1,
1<h < 0,) zu bestimmen.

Uber die Parameter 7, setzen wir voraus, daB sie den Bedingungen

0=n, =7 (hch), m=0 (hch) (31)

geniigen, wo 73, eine fiir jedes » c }), im Laufe der Untersuchung geeignet
zu bestimmende positive Konstante <1 angibt; solange eine solche
Bestimmung noch nicht getroffen ist, werde #} =31 gesetzt. Wir schrei-
ben im folgenden (9)>0, wenn #,>0 fiir alle hc},; dagegen be-
deute (n)=0 lediglich das Bestehen der Relationen (31). Den durch (31)
fir die #, (hc},) beschriebenen Variabilitdtsbereich nennen wir $R°.

Aus (30) erhilt man den im folgenden sehr oft, auch ohne ausdriick-
liches Zitat anzuwendenden und fiir beliebige I' von erster Art giiltigen

Satz 7. Fir jede Spitze {=A"'oo von K ist P,(7,(n)) eine auf der
Menge v AB,, (n)c R° simultan stetige und beschrinkte Funktion von
T und (n).

Fiir alle Wertsysteme (7)=0 sind f(7) P(z, (1)) und g(= 7) P(z, (n))
ganze automorphe Formen {I, —r,v} mit r =7, + 0,7, v = 9, Uy -
Fir (n)>0 verschwindet ihr Produkt in allen Spitzen. Daher gilt nach
(20), wenn o>2r = 27, + 20,7 :

NeI'(s b, I, fP)b,(I,gP)
SRR (>0 -
n+x (32)
Hier ist «* = x, = « ein von () unabhéngiger fester Wert, falls 1 c b, ;
dagegen «* = 7, im Falle 1ch, (man beachte {, =co). In jedem

Falle sind alle Koeffizienten b,(I,fP), b,(I,9P) (n=0) nach (10)
und Satz 7 stetige Funktionen von (n) auf R°, und es gilt

10,0, P) B (LgP) S Cuo () 1+ =827 7207 (), (3

Ws;fP,gP;IN) =2

wo C(f,g) nach Satz 7 und dem Beweise des Satzes 2 von () nicht
abhiingt ; daraus folgt, daB die Summe der Glieder mit n=1 in der
Dirichletreihe auf der rechten Seite von (32) fiir alle beschrinkten s mit

62270+ 207+ x>0, @McR [n=3 7] (34

hChy
gleichmiBig in s und den 7, absolut konvergiert.
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6. Zur genaueren Diskussion von W(s,fP,gP; (V) (I = ()
zerlegen wir dieses Integral nach dem Schema (19), (19a), (25) in die Teil-
integrale J B, (8;fP,gP) ((cK) und deren jedes in die entsprechend

(26) bestimmten Summanden
J§,1 (8 ) (77)) ’ Jg,z ('9 ’ (77)) ) Jg,a (8, (7})) .

Hier erweist sich zunichst
1 —
Jea(s, (?7))=6‘7V— gj;f f(@) g (@)|P (7, (n)) Py dxdy ({=o00,(n)>0) (35)

als eine fiir alle komplexen s und alle (n) in R° simultan stetige, in s
regulir-analytische Funktion von s und (%), falls 1 c§,. In diesem Falle
ist auch in (32) «* fest, und wenn «* verschwindet, so beginnt die Reihe
in (32) frithestens mit » = 1. Diese Dirichletreihe D(s;fP, g P, I'(N))
ist also unter den Bedingungen (34) eine simultan stetige Funktion von
s und ().

Es sei zweitens 1cb,, also «* =1,, by(I,f) # 0 #£by(L,g). Wir
schreiben 7 fiir 7, und vollziehen im Integranden von (35) die Zerlegung

@) g ()P, ) * =

—27(1+42 n)l

= by (L,IP)by(I,gP)e ¥4 e YR(z. () ((z0); (36)

hier stellt R(z,(n)) eine auf r7cB,, (n) < R° simultanstetige be-
schrinkte Funktion von 7z und () dar.
Im folgenden werden wir jede im Bereiche

o‘>max('ro+goﬁ—-—%, To‘l‘@oﬁ“‘(l“"'o‘“go;;)ao), (n) c R

in s und (r) simultan stetige, in s regulir-analytische Funktion von s und
() unterschiedslos mit Q(s, ()) bezeichnen, und zwar auch dann, wenn
sie etwa in einer nur fiir () >0 giiltigen Gleichung auftritt. Auflerdem
sollen jetzt die %) (b < B,) einander gleich und so klein gewihlt werden,
daB gyn<4 und 2g,7 <3(1 —1,) fiir alle () in RO zutrifft. Diese
Bedingung ist, wenn etwa 7} = 3 gesetzt und r, festgehalten wird, fir
alle hinreichend groflen N von selbst erfiillt, weil nach einem Fundamen-
talsatz iiber automorphe Formen
12

Qo:Qo(N)zm, p(N)=[TQ):TAN)] .
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Im Sinne dieser Festsetzungen gilt nach (36) zunichst
?/

T (8, (77))—— — by (I,{P)by (I, P) He T gyt dady + (s, ()

((n) >0) )

Da B, fiir die rmit y=49° einen Vertikalhalbstreifen der Breite N genau
ausfiillt, wofern ¥° passend gewihlt wird, ergibt sich weiter

I 1 (8, (1)) =6, (I,{P) by (I, g P) j e TV y1gy 4 Q(s, ()

b (L1 P) B (LgP) () TO+2(5.t)  (()>0).

37)

Das erste Glied auf der rechten Seite dieser Gleichung stimmt mit dem-

jenigen Ausdruck auf der rechten Seite von (32) iiberein, welchen man

erhilt, indem man von der dort auftretenden Dirichletreihe alle Glieder

mit 7»>0 tilgt. Nennt man nun «, die zu v, gehorige (frither mit «,

bezeichnete, aus der Relation v,(UY) = ™0 (0 < k, < 1) erklirte) feste

Zahl, so gewinnt man aus (35), (37) die sowohl fiir 1 c b, als auch fiir
1 cb,, aber zunichst nur fiir (77)>0 giﬂtige Darstellung

_ N[ (s) b (I,{P) b A LgP)
CEm T ()
= X J;,z (sa (77)) -+ J;,a (8, (77)) = 'Q(S» (77)) (("7) >0) . (38)
tCK {C8

Man erhilt J, , (s (7)) aus dem entsprechenden J, ;(s) in (26), in-
dem man dort f,(v 7)g4(7) durch f,(7)g,(7v)|P4(z, (n))|? und r durch
o + 0o 7 ersetzt. Eine Wiederholung der friiher iiber J ¢,3(s) angestell-
ten Betrachtungen li8t erkennen, da die zweite Summe auf der rechten
Seite in (38) in dem Ausdruck (s, (y)) aufgeht, da das Integral die
geforderten Stetigkeits- und Regularitits-Eigenschaften sogar fiir alle
komplexen s und alle (n)=0 aufweist.

Wir untersuchen schlieBlich J,,(s, (r)) in der wie bei J, (s, (1))
modifizierten Darstellung (26). Sowohl der I'- Quotient als auch die Fak-
toren @ in der Summe iiber & sind Funktionen vom Typus £(s, ()). Das
gleiche gilt ersichtlich vom Doppelintegral iiber 4B ¢- Denn nach Satz 7
ist

fA(T)gA(T)lpA(T7(77))|2 &llf TCA%;‘: (W)Cmo
in 7, (5 simultan stetig und beschriankt. Beriicksichtigt man schlieB-
lich, daB die Faktoren P sidmtlich bis auf den einzigen allen gemeinsamen
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Pol s = 7y + g, 7 iiberall reguliire Funktionen von s — 7, — g, 7 sind,
so erlangt man die Berechtigung zu der folgenden Deduktion :

Man wihle feste Werte s, 7° mit 0<7°< 3, 0 —27,>20,1° 3 1, setze
hCh
73 = n° und lasse den variabeln Vektor () (mit den Komponenten

m(hch)) in dem Wirfel 0<7,<#° gegen den Nullvektor (n) =0
streben. Aus (38) folgt dann

NeT (s)
@n)

Hier stellt die rechte Seite eine fir o>max (r, — 1,7, — (1 —7,), 0)
mit der einzig moglichen Ausnahme eines einfachen Pols bei s = r, regu-
lire analytische Funktion von s dar. Das Residuum in diesem Pole hat
den oben angegebenen Wert (27).

Die damit fiir 0<r<1 bewiesene Erweiterung des ersten Haupt-
satzes 6 hat folgenden Wortlaut :

0~ D(s;1.9; I'N))_ Zch(S 0)+2(s,0) ((n)=0). (39)

Satz 8. Satz 6 gilt — mit einer einzigen geringfiigigen Modifikation —
auch dann, wenn 0<r<<1 istund f(z), g(r) vollig beliebige ganze Modul-
formen (I, —r,v} sind (I, v wie in Satz 6). Die Modifikation besagt :
D(s;f,g; ) istindies-Halbebene o >max (r — 4,r — (1 —r), 0) ana-
lytisch fortsetzbar.

7. Die im folgenden mitgeteilten Beispiele beziehen sich simtlich auf
Modulformen von den Dimensionen — 1 und — 3. Aus (27) folgt fiir

r——g und r——g

(.g:T)=2aVN{-Res,_, D(s;f.0s0)  (r=14),
“ (40)

§D(8;f,g;r) (r

=
I
Do

3
. . 1waw2 M
(f,g;N = ¢N T Res,

Il
nojcs
S

Dies ergibt zunichst fir f=g=19;,, I =Ty [(2) (3)]:
@,9,; N =aV2. (41)

Den gleichen Wert findet man fiir die Skalarprodukte von 39, und &, mit
sich selbst, wenn man in jedem Falle 'y durch eine passend bestimmte,
zu [, dquivalente Untergruppe von I (1) ersetazt.

In der Formenklasse {I'(4), — 3, v3} mit

sgny—1 sgn 8—1

= 5) - ()™

fir L=1(mod4), L={y,d8},y+0 (42)
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((-g) = 1) liegen die ganzen Modulformen
*

T

Oy (1) = 3, (E) . O (1) =B, (—g) . O =9,(27) . (43)

Da der Rang der Schar & der ganzen Modulformen {I (4), — 3, vy}
gleich 2 ist, sind die Funktionen (43) linear abhiingig. In der Tat gilt

O (T) — Oy (7) — 2 Op(t) =0 . (44)
Die Skalarprodukte der @y, 6,, zu je zweien erhalten nach (40) die Werte
(Coos Ooo; T (4)) = (O1, Oy s T (4)) = 167,  (Og, Oy T(4)) =0, (45)

6y und 6, bilden also eine Orthogonalbasis, ~1—W Oy und 1 b1 €ine

Py
normierte Orthogonalbasis von &. Daf +Vm Va

(@10’ @10; r(4)) = (@wa @10; r(4)) = e (@ou Oy ; r(4)) = 8x

ist, kann direkt aus (40) oder nach den Rechenregeln iiber Skalarprodukte
aus (44), (45) erschlossen werden.

Zu den einfachen Thetareihen gehort ferner nach einer Eulerschen Iden-
titdt die Funktion

24 miL ® . +o wil(Gn-}—l)Z
@) =VA@)=e 2 1—-E"™) = ¥ (—1)re = ., (46)
m=1 n=-—00
die eine ganze Modulform von der Dimension — zur vollen Modulgruppe
darstellt. Fiir das Skalarprodukt von % mit sich selbst findet man nach
(40) und Satz 6 =Vé

Bei der Bestimmung der Skalarprodukte ganzer Modulformen von der
Dimension — % hat man darauf zu achten, dafl das Produkt der Skalar-
faktoren in allen Spitzen der betreffenden Gruppe verschwinden muB8.
An expliziten Beispielen fiir niedere Stufen bieten sich zunichst die
folgenden ganzen Spitzenformen dar 8):

— o9 Ti— (2n—1)2 ® i~ k2

PO =VAD =X ()= ea—ne T — 3 (TR
n=1 k=1 k
+® 7i—(3n+1) % i k2

L I DRSS 1 (| TN

8) Die Funktionen 93> 15 7%, 7t 951 spielen in der systematischen Theorie der Dirichlet-
reihen mijt Eulerscher Produktentwicklung (bei dem heutigen Stande dieser Theorie)
eine ausgezeichnete Rolle, vgl. E. Hecke, Herleitung des Eulerprodukts der Zeta-
funktion und einiger L-Reihen aus ihren Funktionaleigenschaften, Math.
Annalen 119 (1944).
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Nach (40) und Satz 6 erhélt man als Skalarprodukte dieser Modulformen
mit sich selbst die Werte
V2 _ Vé
(7,7 T (1) =9 (?7419;1,7741931;r3):—8‘“- (49)
Zur Aufstellung einfacher Thetareihen hoherer Stufe macht man
iiblicherweise einen Ansatz von der Gestalt

f(T,h,N) = ~§(N)e2m'm 2 ’ (50)

in der A eine passend zu bestimmende natiirliche Zahl derart bezeichnet,
daB die entstehenden Funktionen f moglichst einfach gebauten Trans-
formationsgleichungen geniigen. Ich habe frither?) die Reihen (50) fiir
beliebiges natiirliches IV, ganzes A und A = 4 diskutiert, mich aber in-
zwischen davon iiberzeugt, dafl man die damals untersuchten Theta-
reihen aus einem anderen, jenem gegeniiber nur geringfiigig modifizierten
Funktionensystem erhilt, welches sich bei Modulsubstitutionen nach be-
sonders einfachen Formeln umsetzt.

Wir wihlen in (50) N >0 gerade, 2 ganz, 4 = 2 und bilden sogleich
neben den Reihen (50) die entsprechend normierten Teilwerte der Ab-
leitungen der elliptischen Thetafunktion nach der Gittervariabeln :
@ b, N)= 5 ¢ 7" 8@,h,N)= X me ¥ . (5]

m=h(N) m= h(N)
Um die Funktionaleigenschaften dieser Reihen zu formulieren, fassen
wir die beiden Gleichungen (51) geméf3
i md (Z. =0, 1)
Hh@,h,N)= X mre ¥
m=h(N)
zu einer Formel zusammen und verstehen im folgenden unter A stets eine

der beiden Zahlen 0, 1. Es gilt

9 (t,—h,N) = (—1)29,(v,h,N) , (52)
v
0A(T+1ah’N)=e ¥ ﬁl(r,h’N) s (53)
ﬂl(r7h’N) = E ﬁl(mot:k:moN) (m0>OganZ) ’ (54)
kmod moN

k= h(N)

b
ﬂl(—"-‘;l—,h,zv)ﬂ_i)xV(‘-‘“—‘{%‘)‘”‘“N"% s ¢ ¥ (c,i,N). (55)

7 mod N

9) H. Petersson, Uber die Entwicklungskoeffizienten der ganzen Modul-
formenund ihre Bedeutung fiir die Zahlentheorie, Abhandl. Math. Seminar Ham-
burg 8 (1930).
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Man gewinnt (55) durch eine Fourier-Entwicklung unter Benutzung
des Poissonschen Summationsverfahrens. Aus den Formeln (52), (53),
(54), (55) ergeben sich nach dem iiblichen Vorgehen!®) auf Grund einer
lingeren Rechnung die genauen und vollstindigen Aussagen iiber das
Verhalten der #,(v,h, N) bei Ausiibung von Modulsubstitutionen.

b
Es sei erstens S = (ad) cl(1), ¢>0. Dann gilt (A=0, 1)
c
ﬁA(ST,h,N)::
__.7_7_2_ _— _‘lT_‘lb_ v2 hV
=(—1)*e * (cr—]—d)%H(CN) b M e y (e ),u(%,k—}—dv,N) h(r,», N)

v mod N

mit k2 (56)

a . i .
H(“C‘JO:N) = X e ¥ (Jo ganz).

k mod ¢eN
k=jo(N)

ab

Es sei zweitens S = (
cd

)cro (2N) (d.h. ScT (1), ¢= 0 (mod 2N),
C%O). Dann gilt

%.4_)\ T 4-1 c N ‘niib—hf—
"hSt,h,N)y=(ct+d)° e * (T)*e ¥ 9 (r,ah,N) (57)

mit (—g«) nach (42) fiir ganze m +£0, n=1(2).
* - .
Es sei drittens L = (;’j g) cl@2N), » =0. Dann gilt
14 3+
O (Le . N)= (%) ¢r+0) " O e.h, W) (58)

Nach (56), (58) sind die #,(r,h, N) sidmtlich ganze Modulformen
{T@N), — 1, v5} (vgl. (42), (58)), die & (7,h, N) simtlich ganze
Spitzenformen {I(2N), — $, v4}. Mit Riicksicht auf (52) geniigt es, die
Yo(t,h,N) fiir O§h§l——2\z, die &, (r,h,N) fir 1§h<l~;—r zu betrach-

ten; diese Funktionen sind linear unabhingig.
Die Skalarprodukte der 9y(z,k, N) und der ¥,(t,k,N) je unter-
einander lassen sich iiberaus einfach bestimmen. Es ergibt sich nach (40),

Satz 6 und Satz 8: N
0<h §—2—
(ﬁz(f,h,N),ﬁ;\(r,k’,N);I'(2N))=0, wenn N’ h+h', 2=0,1,
Oéh/é? (59)

19) E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Annalen 97
(1926).
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(6 (z, b, N), 8 (z, h, N); [ (2 ) :5027&‘/%&_(1%1\1)_ (o <h< g)

it 60

o 1 (0<h<~1§—) 3 B (60)
2 (h:o,-z-)

wo allgemein T die Gruppe der Substitutionen v/ = L7 mit Lc I be-
zeichnet ; ebenso findet man

(0l(z,h,N),e91(z,k,N);r(zN)):]/Z-;f”‘sz’ (o<h<£;7—) (61)

Der Zusammenhang der Reihen (51) mit den (fiir beliebiges natiirliches
N’ gebildeten) Funktionen

.m'mz_f_, Zn_:'f ime
B (T,h,N)= X ¢ 2, 8 (0.hN)= X (=1)¥ ¢
m=k(N') m=h(N"')
2 (m+3)2 =7
Dot Ny = x o T (62)
m=h(N’)

aus ?) wird ersichtlich durch die Formeln

P (7, B, N') =3y (v, h,2N") + 3 (z,h + N',2N') ,

Py (v, B, N') =9 (v, h,2N') — 9 (v, h + N',2N’) ,

S0 (t, b, N') = (v, 2h + 1,2N") (63)
vermittelt ; analog (44) gilt hier

Po(t, 2 + 1, N') 4+ 95 (v, 28 + 1, N') = 29,(r,h, N') .

Die Skalarprodukte der Funktionen (62) untereinander kénnen aus (59),
(60) leicht berechnet werden.

Im iibrigen darf man die Einfithrung der Funktionen (62) nicht als
iiberfliissig ansehen. Das Beispiel (vgl. (46))

ﬂ(T) = 7901(‘67 17 6) (633‘)

zeigt, daBl aus den oben betrachteten 9y(7,h, N) (N gerade) durch
passende Linearkombination ganze Spitzenformen von der Dimension
— 4 mit J-Multiplikatoren gebildet werden kénnen. Analog (63a) gilt

p»(r) =0(r,1,4), p@)HKET=3(27,1,6)—3, (27,2,6). (63b)

8. Im folgenden soll an einem Beispiel erldutert werden, in welcher
Richtung Anwendungen der vorliegenden Theorie zu erwarten sind. Zu-
nichst bemerken wir iiber die Funktionen #)(z,h, N), daB sie, falls
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N = 0 (mod 4), als Modulformen bereits zu der Gruppe r (N) der
Matrizen

L:((;a)c:r(l) mit a«=06=1 (modN), B=y=0 (mod2N)

und dort zu einem gewissen Multiplikatorsystem v (L)= vy(L)= 1
gehoren :

By (Lw.h, N) =5y (L) (7 + 0 9, (2.5, )
8—1 N

JL) =0y @)= (—1)* (1-6-_)* (LcT(N),N=0 (mod 4)). (64)

|-(N ) ist ein Normalteiler in (1), und [ (2N) hat in F(N ) den
Index 2. Da alle Spitzen von |~'(N ) nach ihrer Transformation ins Un-
endliche (mit Hilfe je einer Matrix aus r(1)) die Breite 2N haben, so
ist die Anzahl der indquivalenten Spitzen eines Fundamentalbereichs ‘Z’"; N
©(2N)
.- _preenen 2N
fir T(2N). (V) enthilt wegen I'(N)c I'(N) keine elliptischen Sub-
stitutionen.

Wir wollen auf die ganzen Formen der Dimensionen — { und — § zur
Gruppe I:(4) sogleich den Riemann-Rochschen Satz in seiner Ausdeh-

nung auf automorphe Formen reeller Dimensionen anwenden (G II)
und bemerken deshalb, dafl, wie man nachrechnet,

von F(N ) halb so grof}, wie die entsprechende Anzahl o(2N) =

oy (P) =1 (65)

fiir jede parabolische Erzeugende P = A™*U?* A von ['(N), wo A, wie
iiblicherweise bei Untergruppen der Modulgruppe, in (1) liegend an-
genommen wird.

Esseinun N = 4. Wir bezeichnen mit p, das Geschlecht, mit g, = g,

a(2N)
2

die oben genannte Spitzenanzahl von ‘E’y yfir N =4, mit gy, den

Index [F(l) : F(4)]. Dann wird zunichst ¢, = 12,—’{—; = 8, und die
Fundamentalrelation

~

~ qé M
ergibt p, = 3.

Wir kombinieren die wegen v,(L) = 41 und (65), (66) giiltige Formel
vﬂ(_%a 54: <1>) =4—-3+1+ "’o(“‘ %> 543 0) =2 =+ "’0(_ %: 774: (l) (67)
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des genannten allgemeinen Riemann-Rochschen Satzes mit der Tatsache,
daB 9,(r, 1, 4) eine nicht identisch verschwindende ganze Spitzenform
{F(4), —3, v,} darstellt, daB also »y(— 3, v,, a) mindestens gleich 1 ist.
Nach (67) wird deshalb N

il — %, v, {1)=3 ,

was auch unmittelbar aus der linearen Unabhingigkeit der d4(z, %, 4)
(0=<h<2) hervorgeht. Multipliziert man ¢, (z, 1, 4) mit einem vollen
System linear unabhéngiger ganzen Formen {l~'(4), —3, vy}, so erhilt
man ebenso viele linear unabhéingige Differentiale erster Gattung. Nach
(66) kann daher nicht »,(— 4, v, {1>)>3 sein; es folgt also

vo(“‘%,54,<1>): 3, Vo(-—%,?74=0)= 1, (68)

und die Funktionen ¢,(t) = 9¢(7, %, 4) (b = 0,1, 2) bilden eine Basis
der Schar der ganzen Formen {I (4), — L, v,}. DaB in dieser Schar keine
ganzen Spitzenformen enthalten sind, erkennt man etwa durch den fol-
genden Schluf : 5

Angenommen, es sei @*(7) eine ganze Spitzenform {I(4), —1,9,}.
Dann gewinnt man in den Funktionen f, = (p*)2¢, (B = 0,1, 2) drei
linear unabhéngige ganze Spitzenformen {F(4), —3,%,}, im Gegensatz

u (68). Folglich gilt

'Vo(—%'aa4) C[):O 3 1’0(“%,54,<1>)=10 ¢ (69)
Fiir beliebiges gerades N >0 wund beliebige ganze A, k,, h; mit

0= h, = y setzen wir

2 3
O(t;hy, ho, by ; N)=0O (7, h,N) = ITGy(t, h;, N)
i=1
(b = {hy; hs, hs}) . (70)

Alle diese O (7,1, N) stellen offenbar ganze Modulformen {I" (2N), — 3, v}

und fiir N = 0 (mod 4) auch ganze Modulformen {F(N ), — 3, vy} dar.
Sie gestatten die Entwicklungen
0.9, M) =a,0,Ne ¥ ()
mit n=0
a,(h, N) = Anzahl der Darstellungen n = m? + mj + mi mit ganzen
m; = h; (mod N) .
Im Falle N =4 kommen die 10 Vektoren b§ = {h,, hy, b3} =

{0,0,0}, {0,0,1}, {0,0,2}, {0,1,1}, {0,1,2}, {0, 2, 2},
1,1,1}, {1,1,2}, {1,2,2}, {2,2,2} (72)
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in Betracht. Dadurch, daBl man fiir jedes dieser § die Restklassen mod 8
oder 16 oder 32 bestimmt, in denen ein » = m3 + m2 + m2 mit m;, = h,
(mod 4) liegen muB, gewinnt man mit Hilfe primitiver Rechnungen eine
volle Einsicht in die lineare Struktur des Systems der elf ganzen Modul-
formen

O(r, b, 4) (h aus (72)), & (7,1, 4) (73)

aus der Klasse {F(4), —3,9,}. Es zeigt sich, daB einerseits die zehn
Formen @(7, b, 4) in (73) linear unabhingig sind, also wegen (69) die
Schar der ganzen Modulformen { r 4), — 3, v,} aufspannen ; daBl andrer-
seits zwischen den elf Funktionen (73) eine und (abgesehen von konstan-
ten Faktoren) nur eine lineare Relation, ndmlich

Hh(r,1,4)=06(r;0,0,1;4) — O(7;1,2,2;4) (74)
besteht.
Die Skalarprodukte zwischen den allgemeinen Thetareihen @ (z, |, N)
einerseits und ¢, (t, A, N) andrerseits lassen sich nach Satz 6 durch die
Residuen der Dirichletreihen

e am*(b)‘zv) s amz(b’N)
D (s) = D*(s;h,h,N) = mZ=1 B =N m§1 ST (75)
m= h(N) m= —h(N)

im Punkte s = g— ausdriicken. D*(s; §, h, N) verschwindet in sehr
vielen Fillen identisch, insbesondere fiir

N =4, h=1 undalle h aus (72) mit h=#{0,0,1}, h#{1,2,2}. (76)

Wir bezeichnen nun fiir irgendeine der unter 2. erkldrten Scharen
C=C, —r,v) mit ®=RN(I', —r, v) die lineare Schar aller derjeni-
gen Formen aus € ([, —r, v), welche auf der vollen Schar €+(I', —r, v)
der ganzen Spitzenformen {I, —r, v} senkrecht stehen, und nennen
kurz die Normalschar von €+ (innerhalb von €). Man erkennt im vor-

liegenden Sonderfall {I (4), —2,%,}, daB alle acht ©(z,b,4) (§ nach
(76)) der Normalschar 9t angehoren. Wegen (74) liegen hingegen nicht die
beiden iibrigen

O(r,h,4) =0(r;0,0,1;4), ©O(r;1,2,2;4)
zugleich in 9, wohl aber ist eine gewisse lineare Verbindung

A(r) = 2,60(r;0,0,1;4) 4+ 2,60(7;1,2,2;4)
(49, A, 7~ 0, 0 konstant) (77)
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in N enthalten. M| hat nach (68), (69) den Rang 9; die Funktionen

O(r,h,4) (b nach (76)) und A(z) bilden also eine Basis von R.
Zur Herleitung arithmetischer Identitédten fiir die Darstellungsanzahlen

a,(bh, 4) hitte man die Eisensteinreihen der betreffenden Formenklasse

{F(4), — 3, v,} aufzustellen. Leider sind in den diesbeziiglichen Unter-
suchungen von H. Maa@} ') gerade die hier in Betracht kommenden Stufen
4, 8, 12 ausgeschlossen worden, so dal von dieser Seite gegenwirtig keine
Aufkldrung erfolgen kann. Zwar darf erwartet werden, daf} eine solche im

Sonderfall der Klasse {F(4) ,—3,v,} auch mit den vorhandenen Hilfs-
mitteln moglich ist, obwohl andrerseits gerade aus der Arbeit 1*) hervor-
geht, daB es zur volligen Durchdringung der komplizierten Verhiltnisse
im Bereiche der allgemeinen Eisensteinreihen aus {I'(2N), — 2, v3} neu-
artiger Methoden bedarf. Die ungewthnlichen Schwierigkeiten des hier
erwihnten Problems werden durch die folgenden Tatsachen beleuchtet :
Einerseits héingen die Fourier-Koeffizienten spezieller Eisensteinreihen
von der Dimension — $ aufs engste mit den Klassenzahlen der imaginér-
quadratischen Zahlkorper zusammen ; die allgemeinen Eisensteinreihen
{F(2N), —3,vs} missen also auf ein System arithmetischer Funk-
tionen fiihren, die als die nichstliegenden Verallgemeinerungen dieser
Klassenzahlen aufzufassen sind. Andrerseits miiite eine befriedigende
Theorie dieser Eisensteinreihen erweisen, dafl die Reihen die Normal-
schar ® =N (I (2N), —$, vs) aufspannen ; mit diesem Sachverhalt ist
nach allen bisher an Eisensteinreihen gemachten Erfahrungen zu rechnen
(vgl. J 111, §§ 3, 4 und FuBnote 12)). Die allgemeine Theorie der Normal-
scharen zeigt nun, da die Normalschar von der Dimension — § durch
die konstanten Glieder der ganzen Formen von der Dimension — 4 in den
Spitzen eindeutig bestimmt ist. Von den Gesetzen aber, die diese konstan-
ten Glieder befolgen, ist gegenwiirtig nur sehr wenig bekannt. —

Nach erfolgter Konstruktion der Eisensteinreihen {F(4), —3, Uy}
lassen sich die gesuchten arithmetischen Identititen fiir die sdémtlichen
a,(h,4) durch den Vergleich der ersten Fourier-Koeffizienten der be-
treffenden Theta- und Eisensteinreihen elementar gewinnen. Ebenso er-
gibt sich die nur bis auf einen konstanten Faktor bestimmte Funktion
A(t) und mit ihr wegen

(/1(1'),’01(1:, 1,4); I?—'(4:)) =0

1y H. MaaB, Konstruktion ganzer Modulformen halbzahliger Dimension
mit §-Multiplikatoren in einer und zwei Variabeln, Abhandl. Math. Seminar
Hamburg 12 (1937).

12) H. Petersson, Uber die systematische Bedeutung der Eisensteinschen
Reihen, erscheint in den Abhandl. Math. Seminar Hamburg.
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das Verhiltnis sowohl der Skalarprodukte

~ ~

(©(7;0,0,1;4),9,(r,1,4); T (4)), (6(7;1,2,2;4),9,(7,1,4); [ (4))

als auch der Residuen der Dirichletreihen D*(s; §,1,4) fir h = {0,0,1}
und § = {1,1,2} im Punkte s =3. —

In einigen der oben mitgeteilten Beispiele beruht die Orthogonalitit
gewisser Paare von Thetafunktionen darauf, daBl die Systeme der Fourier-
Exponenten der beiden Thetareihen eines Paares in verschiedenen Rest-
klassen nach einem passend bestimmten Modul liegen. Zur Ableitung
solcher Orthogonalitétsrelationen kann man sich héufig des folgenden
Zusammenhanges bedienen :

Essei =T (), r>0, |v] =1 und die zur Spitze co von [ (N)
gehorige reelle Zahl « = 0. Sind zwei ganze Modulformen f(7), g¢(%)
aus {[(N), —r,v} vorgelegt, deren Fourier-Exponenten (vgl. (7) mit
A = I) den Restklassen « bzw. f mod N angehéren, so gilt

T

=l w

hO=fa+D=¢c Yf@), g@=ga+)=e Yg@.  (18)

Aus den Grundeigenschaften des Skalarprodukts (dessen Existenz vor-
ausgesetzt werde) ergibt sich nun einerseits (f,, g,) = (f, ¢), andrerseits
nach (78)

. a—B

foa)=¢e ¥ (f.g) .

Daher ist (f,g) = 0, falls o« == (mod N). Unter gewissen Annahmen
iiber v 148t sich jede ganze Form fc {I'(N), —r, v} linear mit konstan-
ten Koeffizienten aus solchen ganzen Formen {I (N), —r, v} kombinie-
ren, deren Fourier-Exponenten jeweils einer festen Restklasse mod N an-
gehoren. Fiir die ganzen Formen {[ (N), —r, 1} (r ganz) ist der hier dar-
gestellte Zusammenhang ein Sonderfall eines allgemeinen Satzes iiber die
Orthogonalitéit von Formensystemen, die sich bei den Transformationen
der vollen Modulgruppe nach zwei indquivalenten irreduziblen Darstel-
lungen der Modulargruppe umsetzen!3).

(Eingegangen den 23. Januar 1948.)

13) H. Petersson, Konstruktion dersamtlichen Lésungen einer Riemannschen
Funktionalgleichung durch Dirichletreihen mit Eulerscher Produktent-
wicklung II, Math. Annalen 117 (1940), s. insbesondere Satz 11, §2.

199



	Über die Berechnung der Skalarprodukte ganzer Modulformen.

