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Ùber die Berechnung der Skalarprodukte
ganzer Modulformen

Von Hans Peteksson, Hamburg

1, Bei der Untersuchung metriseher Eigenschaften der automorphen
Funktionen hat sich bisher gezeigt, da8 man zu vôllig ubersichtliehen
Darstellungen fur die Skalarprodukte ganzer automorpher Formen nur
gelangt, wenn der eine der Skalarfaktoren als Linearkombination Poin-
caréscher Reihen gegeben ist, wâhrend vom andern gewisse Fourier- oder
analoge Entwicklungskoeffizienten bekannt sind1). In der vorliegenden
Abhandlung entwickle ich, ausgehend von einem Ansatz von Rankin2),
ein Verfahren zur Bestimmung des Skalarprodukts zweier ganzen
Modulformen hôherer Stufe aus deren Fourierreihen. Als Ergebnis kann eine
Formel angesehen werden, die dièses Skalarprodukt durch das Residuum
einer gewissen Dirichletreihe ausdriickt ; obwohl damit das urspriingliche
auf ein neues Problem reduziert wird, gelingt auf diesem Wege erstmalig
die numerische Berechnung eines allgemein bestimmten Systems solcher

Skalarprodukte.
Fur die Modulformen hôherer Stufe sind mit den genannten beiden

Ansâtzen nunmehr zwei Môglichkeiten gegeben, Skalarprodukte explizit
zu bestimmen. Ein etwas genauerer Vergleich der beiden Verfahren ist
nieht ohne Interesse und soll deshalb hier folgen.

Vorgelegt sei die Aufgabe, das Skalarprodukt (/, g) zu berechnen ;

dabei seien die ganzen Modulformen f(r) und g(r) (von der gleichen
reellen Dimension — r) durch ihre Fourierentwicklungen gegeben, d. h.

es seien die w-ten Fourier-Koeffizienten bn, cn von /(r) bzw. g(r)
bekannt. Dann kann man entweder das hier dargestellte Verfahren an-

*) H. Peters8on9 Ûber eine Metrisierung der automorphen Formen und die
Théorie der Poincaréschen Reihen, Math. Annalen 117 (1940); Einheitliche Be-
grûndungder Vollstândigkeitssàtze fur die Poincaréschen Reihen von reeller
Dimension bei beliebigen Grenzkreisgruppen von erster Art, Abhandl. Math.
Seminar Hamburg 14 (1941).

2) JR. A. Rankin, Contributions to the theory of Ramanujan's function t(n)
and similar arithmetical functions II: The order of the Fourier coefficients of
intégral modular forms, Proc. Cambr. Philos. Soc. Vol. 35 (1939).
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wenden und gelangt so zu der Aufgabe der Residuenbestimmung der Di-
richletreihe mit dem n-ten Koeffizienten bn~cn. Oder aber man kann
versuchen, die Darstellung von f(r) als Linearkombination endlich vieler
Poinearéschen Reihen G(r, v), etwa des parabolischen Typus zur Spitze
oo, heranzuziehen. Gelingt es, die dabei auftretenden Koeffizienten Xv zu
berechnen, so erhâlt man das Skalarprodukt in der einfachen Gestalt
er J£ K &v cv m^ einer numerisehen Konstanten er und elementaren kon-

stanten Faktoren <xv. Die genannte Residuenbestimmung ist also mit der
Bestimmung der Koeffizienten Xv âquivalent, und dièse Koeffizienten-
bestimmung setzt im allgemeinen voraus, daB die Fourier-Koeffizienten
der Poincaré-Reihen G(r,v) in ihren wesentlichen Eigenschaften be-
kannt sind. In dieser Forderung begegnen wir einem der schwierigsten
der noch ungelôsten Problème aus der Théorie der Modulfunktionen.
Durch seine Beziehung zu den Residuen der erwàhnten Dirichletreihen
wird ein Zusammenhang aufgedeckt, der die Poincaré-Reihen in eine

engere Verbindung zu den Begriffen der klassischen analytisehen Zahlen-
theorie bringt.

Aus dem hier kurz dargestellten Sachverhalt geht hervor, daB man das

an erster Stelle genannte Verfahren der Residuenbestimmung vornehm-
lich dann anwenden wird, wenn es sich in der gestellten Aufgabe um eine
konkrete Berechnung handelt. Von dieser Art sind die in den letzten
Abschnitten der Arbeit mitgeteilten numerisehen Formeln. Ihr wesent-
licher Wert liegt u. a. darin, daB sie Beispiele fur die arithmetischen
Eigenschaften der Skalarprodukte arithmetisch ausgezeichneter ganzer
Modulformen liefern.

In gewissen anderen Fallen hat sich bereits gezeigt, daB den Skalar-
produkten metrisch und arithmetisch ausgezeichneter Modulformen eine
arithmetische Bedeutung zukommt3). Betrachtet man etwa die von
Hecke eingefiihrten modifizierten Eisensteinreihen G* (t, al9 a2, N)
(r ganz und ^ 3) und ihre Analoga fur eine beliebige Kongruenzunter-
gruppe f der Modulgruppe F"(l), so erweisen sich dièse ganzen
Modulformen, die wir allgemein mit E_r(r, a, F) (a {al9 a2}) bezeichnen
wollen, als metrisch und arithmetisch in hohem MaBe ausgezeichnet.
Einerseits nâmlich stehen sie auf der vollen Schar der ganzen Spitzen-
formen der gleichen Dimension — r und der gleichen Gruppe F senkrecht,
andrerseits verhâlt sich die einzelne Funktion E_r(r, a, F) in den
Spitzen eines Fundamentalbereichs Ç von F in der Weise, daB sie in allen

8) H. Peterêson, Metrische Théorie der Eisensteinreihen, Monographie, erscheint
sp&ter mit erweitertem Inhalt in Einzelabhandlungen.
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Spitzen mit genau einer Ausnahme verschwindet, in dieser einen Spitze
aber — bei Wahl der ublichen Ortsvariabeln — das konstante Glied 1

oder 2 aufweist. Ùberdies gestattet jede Funktion E_r(r, a, F) Ent-
wieklungen nach diesen Ortsvariabeln mit Koeffizienten, die fur passen-
des N dem Kôrper der N-ten Einheitswurzeln angehôren und hier als
Bruche mit einem gemeinsamen festen Nenner geschrieben werden
kônnen.

Die dabei verwendete Metrik beruht auf der ublichen Erklàrung des

Skalarprodukts (f,g) der ganzen Modulformen /(r), g(r), die zur
gleichen Grappe F, zur gleichen reellen Dimension — r und zum gleichen
Multiplikatorsystem v des Betrages 1 gehôren : Fur jeden (etwa als hyper-
bolisches Polygon auffaBbaren) Fundamentalbereich 5 von F ist

(f,9)= (f(r),g(T)) (/(r),g(T);r) $$ f(r) g (r) if~Hx dy (1)
%

Wir nennen dièse Funktionen / t) <7 r) Modulformen {F, — r, v} oder
bei ganzem r, wenn aile Multiplikatorwerte v gleich 1 sind, auch
Modulformen {F, —/•}.

Dieobenmit E_r(t, a, f) bezeichneten ganzen Modulformen {f, —r}
sind dureh die genannten Eigenschaften, und zwar bereits durch deren
erste und zweite, eindeutig bestimmt. Daher bilden die Skalarprodukte je
zweier verschiedenen E_r(r, a, F) ein durch F und r vôllig festgelegtes
endliches Zahlensystem 3- (Das Skalarprodukt einer Reihe E_r(r, a, F)
mit sich selbst existiert nicht.) Wird die Gruppe F auf irgendeinen be-

stimmten Typus von Kongruenzgruppen einer der Stufen N—l, 2, 3,...
eingeschrânkt, so hângt 3 nur noch von den natiirlichen Zahlen JV, r ab,
und eine weitere Spezialisierung von F auf gewisse numerisch fixierte
Matrizengruppen bewirkt, da8 3 durch r allein eindeutig bestimmt ist.
Dies gilt insbesondere fur den einfachsten in Betracht kommenden Fall
eines solchen numerisch spezialisierten F, d. i. die von

HTi) ["-(i.1)] <2)

erzeugte Gruppe f V^ des Theta-Nullwerts

*,(t) *(t)= +£ e"*™1 (Z)
m=—oo

Hier enthâlt ein Fundamentalbereich 5 von f ~ f$ die fur unser
Problem niedrigst-môgliche Anzahl von genau zwei inâquivalenten
Spitzen, und 3 besteht aus einer einzigen, nur von dem geraden ganz-
zahligen Parameter r ^ 4 abhângigen Zahl œr.
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Das m der Abhandlung3) entwickelte Verfahren zur Bestimmung der
Skalarprodukte allgememer automorphen Eisensteinreihen reeller Dimen
sion ergibt îm Spezialfail der Modulformen {f#, — r}, daB a> r bis auf einen
angebbaren rationalen Zahlfaktor mit 7i~{r~1)C(^— 1) uberemstimmt
(r gerade und ^4) Es lage also nahe, die a>, als die Analoga der Ber
noulhschen Zahlen fur die Werte der Riemannschen Zetafunktion m den
ungeraden Zahlen anzusehen Hierzu sei bemerkt, daB sich emerseits
die verwendete Gruppe [""# m besonders emfacher Weise kennzeichnen
laBt, und daB andrerseits a>r der bis auf angebbaie rationale Zahlfaktoren
emzige Wert ist, der als Skalarprodukt von ganzen Modulformen {f"#, — r}
mit der oben genannten Orthogonalitatseigenschaft uberhaupt auftreten
kann, vorausgesetzt ledighch, daB die konstanten Glieder dieser Modul
formen m den Spitzen von g rational smd Als spezielle Formel besonders
emfacher Bauart sei aus diesem Zusammenhang die folgende mit den
Thêta Nullwerten

Wl — OO W — 00

gebildete Relation zitiert

Eme befriedigende Analogie der c5 r zu den Bernoullischen Zahlen ware
jedoch erst dann hergestellt, wenn es gelange, die anthmetische Natur
der a>r aufzuklaren Hieruber ist gegenwartig mchts bekannt Es lage
nahe, zu \ermuten, daB das Skalarprodukt zweier ganzen Modulformen
rationaler Dimension, die zu einer Kongiuenzgruppe m ï"(l) gehoren,
und deren Multiphkatoren samtlich Emheitswurzeln sind, falls es exi-
stiert und nicht verschwmdet, transzendent ist, vorausgesetzt, daB die
Entwicklungskoeffizienten dieser Modulformen in den Spitzen bei Wahl
der ublichen Ortsvanabeln einem algebraischen Zahlkorper endhehen
Grades angehoren und sich als Bruche mit einem gememsamen festen
Nenner schreiben lassen Aus diesem Satze wurde die Transzendenz aller
Sr und damit aller ^-(r~1) f (r — 1) unmittelbar folgen Aber die Beispiele
von Modulformen der Dimension — f m der vorliegenden Abhandlung
zeigen, daB dièse Vermutung nicht m der angegebenen Allgememheit zu-
treffen kann

Das îm folgenden entwickelte Verfahren zur Berechnung der
Skalarprodukte fuhrt bei allgememen Theta-Null- und Teilwerten, u a also

424 8

auch bei den Funktionen ^(t)=1/z!(t) und rjz(r) ==VA(t), zu numeri-
schen Ergebmssen Im Falle der Dimension — ^ entstehen Werte, die sich
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von n um rationale oder reell-quadratisch irrationale Faktoren unter-
seheiden, im Falle der Dimension — | sind die Skalarprodukte selbst
rational oder réelle quadratische Irrationalitàten.

Die Durehfûhrung der Beweise gliedert sich in zwei Teile. Im ersten
Teil (Abschnitt 2, 3, 4) kommen nur die Fàlle zur Sprache, in denen das
Produkt f(r)g(r) in allen Spitzen verschwindet. Hier lâBt sich die erste
Identitàt (Satz 4, (20)) fur beliebige Grenzkreisgruppen von erster Art
mit der Spitze oo beweisen. Dagegen ergibt sich die Ûbereinstimmung des

Skalarprodukts (/, g) mit dem durch gewisse elementare Faktoren modi-
fizierten Residuum der erwàhnten Dirichletreihe nur ftir Kongruenzunter-
gruppen F der Modulgruppe F(l). Zum Beweise auf Grund von Satz 4

genugt die Heranziehung einfacher Umformungen der Eisensteinreihen
nach dem Vorgang von Hecke 4).

Im zweiten Teil (Abschnitt 5, 6, 7) handelt es sich um die Dimensionen
— r mit 0<r<l und die Paare ganzer Modulformen /(t), g(r) in
{F, —r, v} mit der Eigensehaft, da8 /(t)^(t) nicht in allen Spitzen
verschwindet. Mit Hilfe der Primform-Logarithmen werden aus / und g

ganze Modulformen von stetig verânderlicher reeller Dimension her-

gestellt, deren Produkt in allen Spitzen verschwindet, und auf die daher
die im ersten Teil bewiesene Formel angewendet werden kann. Die all-
gemeine SchluBformel des Satzes 8 in Abschnitt 6 entsteht aus dieser
durch einen Grenzubergang.

In den letzten Abschnitten 7 und 8 werden die allgemeinen Ergebnisse
auf eine gewisse Klasse von einfachen Thetareihen angewendet. Welche
arithmetischen Anwendungen zu erwarten sind, wird aus den Entwick-
lungen des Abschnitts 8 deutlich ; hier gelingt es in einem Beispiel, die

lineare Schar der zu den ganzen Spitzenformen orthogonalen Funktionen
explizit aus ternàren Thetareihen zusammenzusetzen.

Zu dem etwas komplizierten Approximationsverfahren des zweiten
Teils, also zu der Heranziehung der Primform-Logarithmen und der

automorphen Formen stetig verânderlicher Dimension, ist zu bemerken,
da8 die gleichen Hilfsmittel auch bei der Berechnung der Skalarprodukte
der automorphen Eisensteinreihen, also etwa beim Beweise von (5), die

entscheidende Rolle spielen. An den SchluBformeln der vorliegenden
Abhandlung ist der Umstand hervorzuheben, daB sie zwar nur fur Kon-
gruenzuntergruppen der Modulgruppe, aber fur beliebige réelle Dimension

und beliebige Multiplikatoren des Betrages 1 bewiesen wird.

4) E. Hecke, Théorie der Eisensteinschen Reihen hôherer Stufe und ihre An-
wendung auf Funktionentheorie und Arithmetik, Abhandl. Math. Seminar Ham-

burg 5 (1927).
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Bei Rankin tritt — stark spezialisiert und als Mittel zu ganz anderen
Zwecken — zum ersten Mâle diejenige Umformung auf, die hier in Ab-
schnitt 3 fur allgemeine Grenzkreisgruppen von erster Art zu der Dar-
stellung (20) von Satz 4 fuhrt. Dièse Umformung steht in engster Be-
ziehung zu dem Verfahren, durch das in der Abhandlung*) die metrischen
Eigenschaften der Poincaréschen Reihen bestimmt werden. Abgesehen
von der genannten Umformung sind die Methoden der vorliegenden
Abhandlung von denen der Rankinschen Arbeit2) vôllig verschieden.

Zum SehluB sei bemerkt, daB man mit dem Verfahren der vorliegenden
Abhandlung auch gewisse spezielle Ergebnisse der Untersuchung 3) ablei-
ten kann. So erhâlt man die Werte der Skalarprodukte der Eisensteinreihen
von gerader Dimension — r ^ — 4 mit Multiplikatoren Eins zu den
Kongruenzgruppen fo(q) (q Primzahl) und ihren Transformierten, also
insbesondere auch zur Gruppe f# des Theta-Nullwerts (3) : #(r), und
damit den einleitend hervorgehobenen Sachverhalt uber die Werte der
Riemannschen f (s) ftir die ungeraden s — k ^ 3. Die Resultate von
FuBnote 3 in dieser Richtung gehen uber die hier erwâhnten Sonderfalle
weit hinaus. Sie geben die Werte der Skalarprodukte der automorphen
Eisensteinreihen von reeller Dimension — r unterhalb — 2 mit beliebigen
Multiplikatoren des Betrages Eins zu beliebigen Grenzkreisgruppen f
von erster Art.

Hinsichtlich der Bezeichnungen werde folgendes verabredet :

Der konjugiert-komplexe Wert einer komplexwertigen Funktion
fi,3,k(x> y>z>- • •) wird meistens mit fijik(x9 y, z,...) bezeichnet. Ge-

legentlich werden Hinweise auf Gleichungen, Sâtze und Zitate des Textes
in eckigen Klammern gegeben.

Die obère Halbebene y > 0 der komplexen Variabeln r x + i y

(x, y reell) wird mit §, die zweite Zeile einer Matrix 8 1 ,1 mit
/l 0\ \C '

Q= {c,d}, die zweireihige Einheitsmatrix I mit /, die Matrix
/l JV\ ^ 'II (N reell) mit UN bezeiehnet.

Cl9C29... bedeuten positive Konstanten ; Ck(f,g,...) gibt eine nur
von f,g,... abhàngige positive Zahl an.

Fur einige allgemeine Begriffe und Konstruktionen der Théorie der

automorphen Funktionen vgl. die Abhandlungen x), 5) des Verfassers.

2. Unter einer Grenzkreisgruppe von erster Art verstehen wir hier
eine Matrizengruppe F von folgender Beschaffenheit :

5) H. Petersaon, Zur analytischen Théorie der Grenzkreisgruppen I, II
Math. Annalen 115 (1938), im folgenden zitiert mit GI, G II.
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Die Matrizen L von V haben die Gestalt L l j mit reellen Ele-
\y à/

menten und der Déterminante | L | 1. Die den L von f durch

t' IteI(t) =="~x4" (r a;-)-i#, arreell, t/>0)

zugeordneten Substitutionen bilden eine Substitutionsgruppe F", die in
der oberen r-Halbebene § einen kanonischen Fundamentalbereich R be-
sitzt. Das Parkett der Bereiche LSt (L<zV) verdichtet sich gegen die
ganze réelle r-Achse.

Kennzeichnend fur jeden kanonischen Fundamentalbereich ${ ist, da6
aus 51 durch Zuordnung âquivalenter Kantenzûge eine geschlossene Rie-
mannsche Flâche 93 von endlichem Geschlecht pQ entsteht, auf der die
Kantenzûge eine kanonische Zerschneidung bestimmen. § ist universelle,
ûber endlich vielen Punkten in vorgegebenen Ordnungen verzweigte
Ûberlagerungsflâche von 23. Das kanonische Schnittsystem besteht aus
erstens p0 Paaren von Ruckkehrschnitten, deren zwei beliebige einen
festen Punkt, den Kreuzungspunkt miteinander gemein haben, zweitens
aus den vom Kreuzungspunkt zu den Verzweigungspunkten fûhrenden
Verzweigungsschnitten. Keine zwei Schnitte haben einen anderen Punkt
als den Kreuzungspunkt miteinander gemein.

Die Verzweigungspunkte entsprechen den elliptischen und paraboli-
schen Fixpunkten von F in § bzw. auf der reellen Achse oder im Unend-
lichen. $t enthâlt aus jedem System untereinander âquivalenter solcher

Fixpunkte genau einen Vertreter und zu jedem von diesen in dessen Nâhe
eine voile Umgebung von nach f inàquivalenten Punkten in §. Es kann
und soll angenommen werden, da8 R von endlich vielen hyperbolischen
Strecken und Halbgeraden berandet wird. Die parabolischen Fixpunkte
von f (d. h. die Fixpunkte parabolischer Substitutionen von F") heiBen

parabolische Spitzen oder auch kurz Spitzen. _Im folgenden wird vorausgesetzt, dafi f die Matrix —/ und da8 f
parabolische Substitutionen enthâlt ; die erste dieser Voraussetzungen
verursacht keine Beschrânkung der AUgemeinheit. Bei gewissen Grenz-

kreisgruppen ist sie notwendig erfûllt, sie soll daher zunâchst generell
unterstellt werden. In den Sonderfâllen solcher f, die —/ nicht enthalten,
sind an den zu beweisenden Formeln geringfugige Modifîkationen anzu-
bringen.

Ist f =A~1oo eine Spitze von F, so wird dabei stets A als réelle Matrix
mit \A\ 1 angenommen, A {al5a2} geschrieben, unter N die

kleinste positive Zahl derart verstanden, dafi P A~1UNAcz T, und
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(A r \2ni —— I als ortsuniformisierende Variable des Punktes f i.b. a.

f gewâhlt. Eine ganze automorphe Form {V, —r,v} ist eine in § regu-
l&re analytische Funktion /(r), die dort iiberall den Transformations -

gleichungen

f(Lr)=v(L)(yr + ÔYf(T) (L c F,L {y,«}) (6)

geniigt und fur jede Spitze f von F eine Entwicklung von der Gestalt
00 2/r£(»+*)

f(T) (a1r + ai)-*fA(AT), fA (r) X 6,(4 ,/)e * (7)

zulàfit. Die hier auftretenden Werte v(L) konstituieren ein (kohârentes)
Multiplikatorsystem [F, — r]. Im folgenden wird vorausgesetzt, da6 aile
Multiplikatorwerte den Betrag 1 haben. Unter dieser Voraussetzung
existieren nicht-konstante ganze automorphe Formen {F, — r, v} einer
reellen Dimension — r nur fur r>0. Es sei also ûberdies r>0. In (7)
wird k wie iiblich durch

v(P) e2niK (P A

und (m! t + m2)r fur réelle m!, ra2 # 0, 0 durch

— n < arg (m1 x + m2) ^ + n (rc§)
bestimmt (G I, passim). Wir nehmen ferner an, da6 F parabolische Sub-
stitutionen mit dem Fixpunkt oo enthalte, d. h. also, daB f oo çine
Spitze von F sei. Dies bedeutet, daB UN c F mit passendem N>0 zu-
trifft, und kann erforderlichenfalls durch eine auf F auszuubende
Transformation mit einer reellen Matrix der Déterminante 1 bewirkt werden.

Es bezeichne a0 die Anzahl der Spitzen C A"1 oo eines kanonischen
Fundamentalbereichs 51 von F. Wir zerlegen R in a0 Bereiche (Spitzen-
sektoren) 93^ von folgender Beschaffenheit : SBÇ enthâlt genau eine Spitze
von 51, nâmlich C, und mit dieser eine voile Umgebung von nach F in-
àquivalenten Punkten in <r>. 93^ wird wie 51 von endlich vielen hyper-
bolischen Strecken und Halbgeraden berandet. Zwei verschiedene solche
Bereiche $8^ haben hôchstens Randpunkte miteinander gemein ; der
einzelne Bereich 33ç besteht aus einem Gebiet und aus einem Teil von
dessen Rand.

Gelegentlich werden die Spitzen von Si numeriert. Wir schreiben dann

C Çh Al1oo, Ahreell, \Ah\ 1 (1 ^
und verwenden die Symbole Ah, Ph, Nh9 Kh fur das betreffende C Ch

in der oben angegebenen Bedeutung. Speziell sei ^ 00, Ax /, und,
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wenn von dieser Spitze die ïtede ist, kx #c. Fur jedes C A~x oocft
liegt A 93ç in einem Vertikalhalbstreifen positiver Mindesthôhe und fûllt
fur hinreichend groBe Ordinaten einen (i. a. anderen) solchen Halbstreifen
genau aus.

Mit (£ (£ (F, —r, v) bezeichnen wir die Schar der ganzen Formen,
mit (£+ (£+ (F, — r, v) die Schar der ganzen Spitzenformen (d. h. der

ganzen in allen Spitzen verschwindenden Formen) {F, — r,v}. /(t)c(E+
heiBt /(r)c(£ und bo(Ah, f) 0 fur diejenigen h (1 <£ h ^ a0) mit
Kn 0. Wir schreiben zur Abkiirzung, wenn / und g in G liegen :

&„(/,/) &„, &M(J,<7) cn (/,jcî); JV,* fur i^1)Kl (8)

und beweisen nun die folgenden Aussagen, deren erste mit ihrem Beweis
aus der neueren Literatur ùber Modulfunktionen wohlbekannt ist :

Satz 1. Fur tcg, /(t)cï+ ffttt |/(t)| ^ ^(f)y~T
f

Beweis: j/^|/(t)| ist gegeniiber den Substitutionen von F voll
invariant und im Bereich R beschrânkt.

Satz 2. Fur tc§, y ^ ocx (oc^O beliebig, aber fest), /(r)c(£ gilt

Beweis : Es sei /^0 die untere Grenze der î/ 3m T f^r T c ^«
t) die Strecke l^^^f + iV, y y0 (O<yo<juo). Jeder Punkt r0

von f) liegt in einem Bereich L~x 51 und daher in einem Teilbereich

Zr1^ (LcT). Bies besagt

Mr0 c -4 95ç, iyr ^4i, C ^i"1 oo eine Spitze von 5t, L c F

Fur beliebige t c § folgt aus (6) und (7)

v(L)(yr+ô)r a(A9L)v(L)

Daher ist \f(ro)\ \m1ro + m2\-r\fA(Mro)\^Cz(f)\m1ro+m2\--r. Die
Verwendung der Konstanten C3 (/) erklârt sich aus der Struktur von
A 93ç, der Lage von M r0 und daraus, daB nur endlich viele A in Betracht
kommen. Wenn m1 verschwindet, so gilt oo M~xoo L-1 f (LcV),
also C oo, ^4=7, ^=^=1^=^ C^^^ niit ganzem A und M r0

r0 + hN cSBoo, was der Voraussetzung yo<juo widerspricht (G I,
Satz 2, Zusatz). Nach GI, Satz 2 ist also \mx\ ^&0(A,r) (&0 konstant),
und daraus folgt die Behauptung zunâchst fur 2/</V Andrerseits hat
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yr\f(r)\ die Période N> ist also fur \fiQ^y ^ocx beschrànkt. Dies gibt
die voile Giiltigkeit von Satz 2.

Im folgenden setzen wir wie angekiindigt k^ k (fx =00),

A A(/) r fûr/cŒ, A A (/) !- fur /c(E;+
là

und erhalten

|/(t)| ^(/.«Ojr* (0<y^«1>«1>0, (7. ^ oder C2), (9)

K
(10)

J. (IX C° —*" K^-TK/-

(12)

; (13)

hier wurde î! A(«7) fur gc£ (oder grc£+) geschrieben.
Aus (13) folgt die absolute Konvergenz der Dirichletreihe

fur c>A + X1 (s a + it; a, t reell).
Es seien nunmehr / und g ganze Formen {T, —r, v} derart, daB fg

in allen Spitzen von f verschwindet. Wir setzen

47r(n+*)-| ^/"^Y

n+K>0 |
und behaupten : Fiir aile komplexen s mit a 9îes>A+ kr gilt

Zum Beweise erschlieBen wir nach der Cauchy-Schwarzschen Unglei-
chung aus (11) zunâchst

y

n+K>0

12 Commentarii Mathematici Helvetici ^^7



Dièse Abschâtzung besteht mit CA(f9 ax) Cà(g, oct) an Stelle von C8(f,g)
ursprûnglich nur fur 0 < y ^ocly laBt sich aber sofort auf ganz § aus-
dehnen. DaB (15) gilt, folgt aus

v \bncn\e~*'T{n+K)* ^e~*"P* C8(f,g

i \*-p Mje
b

Es bezeichne nun 93 den Vertikalhalbstreifen Iâa;^| + ^V, y>0.
Dann besagt (15) den folgenden (nunmehr bewiesenen)

Satz 3. Es sei /c(£, ^cG, und es verschwinde fg in allen Spitzen
von I"; es sei cr=5Re5>A + A/ und D(s;f,g) durch (14) erklârt.
Dann existieren beide 8eiten der folgenden Gleichung im Sinne absoluter

Konvergenz :

5j'fW()*dd ^^ D(s;f,g) (16)-W 5j'f

Nach dem Beweise von Satz 1 existiert sowohl die linke Seite dieser
00

Gleichung als auch das mit ihr iibereinstimmende J xp(y ; /, g)ys~~1dy
o

im Sinne absoluter Konvergenz bereits fur a>r; X -\- î! ist r oder

f r oder 2r. Die linke Seite von (16) hàngt von | nicht ab.
Ûber die Môglichkeit einer Verschârfung der in diesem Abschnitt

bewiesenen Abschâtzungen seien noch einige Bemerkungen gestattet. Was
zunâchst die Verschârfung der Aussagen von Satz 1 und 2 angeht, so hat
man hierunter, da dièse Sàtze wesentlich nur fur y -> 0 in Betracht
kommen, eine Ungleichung

I / (t) | ^ C'p (y) (C > 0 konstant)

zu verstehen, in der {t(y)y2 fur /c(£+ und fi(y)yr fur
/cjz(£+ mit y gegen Null streben.

In diesem Sinne ist Satz 1 niemals verschàrfbar6). Ferner erkennt man
aus (7), daB eine ganze Form {f, — r, v) (r > 0, | v \ 1), die nicht in
allen Spitzen verschwindet, bei senkrechter Annâherung an die reellen Spitzen,

in denen sie nicht verschwindet, in der genauen Ordnung r ins Unend-

•) H. Peter88<m, ESin Summationsverfahren fiir die Poincaréschen Reihen
von der Dimension —2 zu den hyperbolisehen Fixpunktepaaren, Math. Zeit-
schrift 49 (1944), s. insbesondere § 5, Satz 7.
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liche wàchst. Was die Abschàtzung der Fourier-Koeffizienten bn angeht,
so lâBt sich fur die Formen / mit r > 2 der Exponent X r auf der
rechten Seite der letzten Gleichung (10) um eine voile Einheit erniedrigen,
falls / nicht in allen Spitzen verschwindet. DaB eine weitere Versehârfung
der so entstehenden Abschàtzung nicht allgemein stattfinden kann,
zeigen die expliziten Formeln fin* die Fourierkoeffizienten der Eisenstein-
reihen ganzer Dimension — r <J — 3 mit Multiplikatoren 1 zu den Kon-
gruenzuntergruppen der Modulgruppe.

Der genau analoge Sachverhalt besteht fur den Exponenten 2X 2r
auf der rechten Seite von (12). Er kann fur r > 2, wenn / nicht in allen
Spitzen verschwindet, um eine voile Einheit erniedrigt werden, und zwar
gilt dies ftir die allgemeinen oben eingefuhrten automorphen Formen auf
Grund der Tatsache, da8 sich dièse mit Hilfe der Linearkombinationen
der automorphen Eisensteinreihen additiv auf ganze Spitzenformen re-
duzieren lassen. Eine weitere Versehârfung der dadurch entstehenden
Abschàtzung wird abermals durch die speziellen Eisensteinreihen ganzer
Dimension der Kongruenzgruppen widerlegt.

SchlieBlich zeigtTheorem 1 beiRankin2), daB die rechte Seite von (12)
fur jede ganze Spitzenform von ganzer Dimension mit Multiplikatoren 1

zu einer der genannten Kongruenzgruppen die genaue GrôBenordnung
der Quadratsummen der Koeffizienten-Betrâge angibt.

Im ubrigen gelten die hier mitgeteilten Aussagen tiber die Verminde-

rung der Exponenten in den Abschàtzungen (10) und (12) fur ganze
Nicht-Spitzenformen nicht mehr allgemein, sobald 0<r<2 ist. So be-

tràgt die Verminderung dieser Exponenten fur die klassischen einfachen
Theta-Null- und Teilwerte von der Dimension — J genau -|. Fur die in
Abschnitt 7 diskutierten einfachen Thetareihen ê1(r,h, N) von der
Dimension —1|, die in allen Spitzen verschwinden, gilt (10) mit X*— ^
r 1

-~ ~ — Es besteht AnlaB zti der Vermutung, daB (10) fur aile ganzen

Spitzenformen mit X — — \- e bei beliebigem e>0 zutrifft. (Vgl.

FuBnoten 2), 7) und die in FuBnote 2) angegebene Literatur.)
3. Es sei C ^.~1oo eine Spitze von V, Q(A,V) ein voiles System

von Matrizen M aus A V mit verschiedenen zweiten Zeilen. Die ,,Poin-
carésche Betragreihe"

Q L (17)

7) H. Petersson, Ûber die Entwicklungskoeffizienten der automorphen
Formen, Acta Mathematica 58 (1932).
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konvergiert fur festes s mit cr>2 auf jedem Vertikalhalbstreifen von
positiver Mindesthôhe in § gleichmàBig absolut. Sie geniigt den Trans-
formationsgleichungen

0{s,Sr,A, I") \cx +d\'0(s, t,
(Sreell, |0| 1, 5= {c,d})

(17a)
*(«, ir, 4, D \y x + ô\> <P{s, x, A, V)

(LcT, L= {y,ô})

Wir betrachten fiir a>r das Doppelintegral

r (18)

Unser Ziel ist, zu zeigen, daB W(s ; f, g ; f) bis auf einen konstanten
Zahlfaktor mit der linken Seite von (16) ubereinstimmt. Zu diesem Zwecke
zerlegen wir das Doppelintegal iiber Si in dieDoppelintegrale ûber die Teil-
bereiche SBç, fuhren in deren jedem die neueVariable t'=At einundfin-
den mit x' xr + iy' nach (17 a), am einfachsten unter Benutzung der
Identitât

y8-1 yS-T+l
dxdv

±r E J9As;f,g) (19)

(19 a)

Hier kann, weil fA {r')ljA {x') im Unendlichen exponentiell verschwindet,
die Summe mit dem Doppelintegral légal vertauscht werden. Geschieht
dies, und wird die erwâhnte Variablentransformation wieder rûckgângig
gemacht, so ergibt sich

.fa)-± V ff>Ug)- N Mczf{IS)J J

Dièse Reihe konvergiert nach ihrer Herkunft fur beschrânkte s mit
a (<x>0 fest) gleichmàBig absolut, und es wird nunmehr nach (7)
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Zur weiteren Umformung dièses Ausdrucks bedienen wir uns der Kon-
struktion JIII, § 4. Da der Integrand auf der rechten Seite gegenuber
den UhN (h ganz) offenbar translationsinvariant ist und die Summe von
der Auswahl des Systems <5(/, F) nicht abhângt, findet man zunâchst

W(s;f9g;D ^r £ $$ f(r)g (r)y

hier bezeichnet S* ein vollstândiges Teilsystem eines passend bestimm-
ten Systems (So ©(/, F) derart, daB ®* von jedem Matrizenpaar
M, Mr aus So, fur welches Jf ' — if gilt, genau einen Vertreter ent-
hâlt. DaB die rechte Seite der letzten Gleichung bis auf den Faktor 2 mit
der linken Seite von (16) ubereinstimmt, lâBt sieh genau so wie der ent-
sprechende Sachverhalt in J III, § 4, beweisen (wo sieh auch die Er-
klârung von ©0 und $tM findet), so daB wir auf die Darstellung des Be-
weises verzichten kônnen.

Wir erhalten daher

Satz 4. Unter den Voraussetzungen und in den Bezeichnungen von
Satz 2, (17) und (18) gilt : Es existiert W (s ; /, g ; F) fur aile komplexen s

mit a>r. Wird D(s; f, g ; f) gemâfi (14) erJclârt, so besteht die Formel

^f^ V) (20)

Von Wichtigkeit fur die fernere Théorie ist der Nachweis dafur, daB
W (s ; /, g ; F) beim Ùbergang von F zu einem Normalteiler V von end-
lichem Index in F ungeandert bleibt. Zum Beweise zerlege man das

System der Spitzen L~1oo (LaV) in Âquivalenzklassen nach F;. Durch-
lâuft £' Ar~xoo(Ar a F) ein Vertretersystem dieser Klassen, und
bezeichnet Pf Af~~1UcNA/ die Grundmatrix von £' i. b. a. V, so hangt
die natûrliehe Zahl c von A1 nieht ab, und es besteht die mengentheore-
tische Zerlegung

r=2i; uvNAT'.
v=0 A'

c-1
Sie bedeutet, daB J£ JS UvNA'Si einen Fundamentalbereich g; von F'

darstellt ; aus ihr folgt
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(Ar {a[, ar2}) und es wird demnach

Da auch &(s, r, ZJP, F') =&(s, r,/, F') fur jedes réelle p zutrifft,
karm nach (17a) in der Summe auf der reehten Seite Ar durch UvNAf
ersetzt werden. Geschieht dies und wird sodann uber v 0,1,2,...,
c — 1 summiert, so ergibt sich gemàB

le2 E JJ f
0 A' N

die Behauptung.
Wunscht man dièse Invarianz fur die rechte Seite von (20) direkt zu

bestâtigen, so hat man /, g durch Reihen von der Gestalt

'cn g(r)= V y ,e cN

n'=0

auszudrucken und dabei k' durch

v(UeS) ****** évi"\ d.h. CK n0 + Kf (0^#c'<l, no ganz)

zu bestimmen. Wegen

n=0 n—0

wird in der Tat

D{8\f,g\V')= 2 2 -: : -~j-~ c~*D(s',i,g; V).
n'+K'X) (Ur + /c')s w+if> (C W+^+

Wir formulieren dièses Ergebnis als

Satz 5. Beide Seiten der Gleichung (20) von Satz 4 bleiben ungeândert.
wenn f durch einen Normalteiler f von endlichem Index in V ersetzt wird.

4. Die weiteren Umformungen von W(s ; /, g ; T) erfolgen unter der

Voraussetzung, da6 F — abgesehen von einer notwendigen Modifikation,
die die Matrix — / betrifft — mit der Hauptkongruenzgruppe F (N)
(bestehend aus den ganzzahligen unimodularen L I (mod N)) uber-
einstimmt. Da dièse Matrizengruppe die Matrix — / nur fur N 1, 2

enthâlt, ist (20) dahin zu ândern, daB nunmehr
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Es habe der Vektor a {ax, a2} ganzzahlige Komponenten. Wir
setzen

F(s,r,a,N) 2 -. j Fs F(a,r,a,N) 2
(21)

offenbar gilt 0(s, t,,4, V(N)) F(s,r,A,N). Wir bilden ferner die
Dirichletreihen

Q{s,k,N)= 2 ^1, P(s,h,N)= 2 -t^tï-. (22)
\n\ \n\

Sie treten in der nach dem Vorgange von Hecke4) leicht beweisbaren

Beziehung auf :

F(8yr,a,N) % £ Q(8,k,N)F(8,r,ka,N) ((a^a^N)^!) (23)
Jkmod^

Wir benutzen (23), um aus der Fourier-Entwicklung von F die Fourier-
Entwieklung von F abzuleiten. Man hat zunachst

F(8.t,a,N)= n

1 sonst

Hieraus folgt

& mod iV

2

Q(s,k,N)H(s,r,Jca,N) (24)

mit e(a) 1 fur a ±{0, 1} (mod N), e(a) 0 sonst.
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Um mm das Verhalten des Intégrais W{s ; f, g ; F) (T I"(J\O) als
Funktion von s zu bestimmen, zerlegen wir es nach (19), (19a) in die
Bestandteile

J^{s;f,g) ~ j^ fA(r)gA(r)F(2s-2r+2,r,a',N)y^dxdy (25)

(' M4
Offenbar wird nun e (af) s (a) e0 (£) [J !^^} (f =^~xoo c il),
und wir erhalten daher

«5-So (0 -^ | J / (r) £

Vn r(S-r + %)

X 2
ik modN
(k,N)=l

(*,JV)=i (26)

Hier erweist sich zunâchst Jç^is) unmittelbar als eine ganze Funktion

von s. Berucksichtigt man ferner, daB eine Abschâtzung
\B{8,/i)\ ^O9(C)c-ir|'*1 fur \s\^C und aile reellen ^^0 zutrifft,
so sieht man, daB auch das Intégral in der Darstellung von Jç>3(s) eine

ganze Funktion von s ist ; dies gilt sogar bereits dann, wenn von der
Funktion /^(t)^(t) nur feststeht, daB sie auf -425c beschrânkt ist.
Daraus folgt, daB sich Jçf3(s) in der Halbebene a>r — ^ regulâr-
analytisch verhâlt. Was schlieBlich J^ 2(s) betrifft, so ist a) der F-Quotient,

b) jeder Faktor Q in der Summe uber k fur a>r — -| regulâr ;

c) jeder Faktor P in dieser Summe bis auf einen einfachen Pol im Punkte
s r ûberall regulâr, d) das Intégral eine ganze Funktion von s. Dies

besagt, daB Jçy2(s) fur aile 5 in der Halbebene a>r — ^ mit môglicher
Ausnahme eines einfachen Pois im Punkte s r uberall regulâr ist.
Das Residuum von J^ 2 (s) in diesem Pol s r hat den Wert

n>0
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und damit ergibt sich nach Satz 5 sehlieBlich als erstes Hauptresultat
der folgende

Satz 6. Es sei Y eine durch endlich viele Kongruenzen definierte Unter-
gruppeder Modulgruppe,esseien f{x),g{r) ganzeModulformen {Y,— r,v}
der reellen Dimension — r < 0 mit lauter Multiplikatoren v des Betrages 1,
es verschwinde f(r)g(r) in allen Spitzen von Y. Bildet man die Fourier-
Entwicklungen von f(r),g(r) in der Gestalt

00 27Tt(n+ *)-*- °° ^f(r)=Zbne », g(r) Zcne
n=0 n=0

und ans ihren Koeffizienten die Dirichletreihe

n+K>0 (n + k)8

so ist dièse fur a>2r absolut konvergent, in die Halbebene a>r — ^ ana-
lytisch fortsetzbar und dort ûberall regulâr mit der einzig môglichen Aus-
nahme eines einfachen Pôles im Punkte s r. Das Besiduum von
D(s ; /, g ; Y) im Punkte s r hat stets den Wert

Dabei bezeichnet : N die Breite des Fundamentalbereichs von V im TJnend-

lichen, k die durch v(UN) e2niK (0^k<1) erklârte Zahl, fi den Index
der Substitutionsgruppe V in der Modulgruppe V 1 {dièse als Substitutions-

gruppe aufgefa/it) und (/, g ; Y) das Skalarprodukt von f mit g i. b. a. Y.

5. Wenn 0<r<l ist, so làBt sich zwei beliebigen ganzen automor-
phen Formen {Y, —r,v) gemâB (2) ein Skalarprodukt zuordnen. Es
soll nun bewiesen werden, daB auch in diesem Falle Satz 6 in allen
wesentlichen Teilen zutrifft. Zum Beweis bedicnen wir uns eines Approximations

verfahrens, das sich auf die Eigenschaften der automorphen Prim-
formen grundet.

Es sei f eine Grenzkreisgruppe von erster Art im Sinne von 2., R ein
kanonischer Fundamentalbereich von Y. Jeder Spitze £ A~1 oo von R
entspricht eine automorphe Primform Z (r, Ç) c {f, — #<,, ^}, d. h. eine

ganze automorphe Form von folgender Beschaffenheit : Z(t, Ç) ist in
allen Punkten von il, gemessen in den ortsuniformisierenden Variabeln,
ausnahmslos regulàr und in allen Punkten von Si mit der einzigen Aus-
nahme der Spitze C von Null verschieden. In C hat Z(r, C) ehie Null-
stelle von erster Ordnung. Die Formenklasse {Y, —qq, u^} von Z(r, f)
ist mit einer positiven universellen Gruppenkonstanten £0 und mit einem
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gewissen Multiplikatorsystem u^ des Betrages 1 zu bilden, und Z(r, Ç)

ist durch die genannten Eigenschaften bis auf einen konstanten Faktor
eindeutig bestimmt. Um Z(r, C) vôllig festzulegen, schreibt man vor,
daB der niedrigste Fourier-Koeffizient 61(J4,Z(r, £)) in der Entwiek-

(A x\2ni 1 den Wert 1

haben soll. Man kann demnach den Logarithmus A(r, f) von Z(r, f)
durch

A (r, C) logZ(r, C) - <?0log (a1r + a2) + 2ni^- + tQ0 (t,A)

eindeutig bestimmen, wobei man unter «Qo(£, A) eine fur \t\ <1 kon-
vergente Potenzreihe in t zu verstehen hat.

Wir schreiben t,n fur £, verwenden Nh, Ah mit Ah {ahl, ah2} in der

unter 2. angegebenen Bedeutung und erhalten im Sinne von (6)

iv 3

l A r\
t}. exp l2ni -^-1 d (^ ; -4,, /1A) fur 113 \ < 1 konvergent ;

h,7=1,2,. .,a0 (28)

Sodann bilden wir mit den Parametern rjh^O (l<sh^o0) die Funktion

P (t (ij)) exp S ^4,(t))=Sz(t, CJ^ [exp » e«] (29)

stellt ersichtlich eine ganze automorphe Form {F, —^0 rj, u^}
von der Dimension — £0 rj — q0 ]? r\n und zu einem gewissen Multi-

h=l
plikatorsystem u^ des Betrages 1 dar. Ferner gilt nach (28), (29) :

Ai
P(T> (y)) (anT + a>il Q*n e *e*v(£Vh'

und daher im Sinne von (6)

Pa • (r > (*?)) e
^ ^ exP ^S %û(e ^?'

; A3, /lJ (30)

Wir verstehen nun unter f(r),g(r) zunâchst zwei beliebige ganza
automorphe Formen der Klasse {f, — r0, v0}, wor0 eine feste Zahl mit

0<r0<l und vo ein festes Multiplikatorsystem des Betrages 1 angibt.
Wir teilen die natiirlichen Zahlen h 1, 2,..., a0 in zwei Klassen ïh

186



und ï)2 ein: ha ï^ bedeute, da6 f{r)g(r) in der Spitze Çh nicht ver-
schwindet, ftct)2, daB f(r)g(r) in Çh verschwindet. Fiir ftcïfe gilt
also entweder Kh>0 oder &0(^ft>/) M^*>flO 0 oder beides. Fiir
h c ^ hingegen gilt sowohl Kh 0 als auch bQ(Ah,f) bo(Ah, g) ^ 0 ;

dabei ist f von erster Art und Kh aus vo(P^) e27riKh (0^Kh<\
1 <^A fg ct0) zu bestimmen.

liber die Parameter rjh setzen wir voraus, daB sie den Bedingungen

(*cW5 % 0 (kcW (31)

geniigen, wo rfh eine fur jedes haï)1 im Laufe der Untersuchung geeignet
zu bestimmende positive Konstante <£ ^ angibt ; solange eine solche

Bestimmung noch nicht getroffen ist, werde rj°h ^ gesetzt. Wir schrei-
ben im folgenden (^)>0, wenn rjh>0 fur aile ic^; dagegen
bedeute (^)^O lediglich das Bestehen der Relationen (31). Den durch (31)
fur die rjh (4 c ^) beschriebenen Variabilitâtsbereich nennen wir 91°.

Aus (30) erhâlt man den im folgenden sehr oft, auch ohne ausdrùck-
liches Zitat anzuwendenden und fiir beliebige F von erster Art giiltigen

Satz 7. Fur jede Spitze f A~1oo von R ist P^(t,(^)) eine auf der

Menge r c A 93-, (rj) c 5R° simultan stetige und beschrânkte Funktion von

r und (r)).

Fur aile Wertsysteme (rj)^O sind /(r) P(r, (yj)) und g{x) P(t, (r)))

ganze automorphe Formen {f, — r, v} mit r r0 + Qorj, v vou(Yjy
Fur (^) > 0 verschwindet ihr Produkt in allen Spitzen. Daher gilt nach
(20), wenn a>2r 2r0 + 2qotj:

Hier ist k* kx k ein von (tj) unabhângiger fester Wert, falls lcl)2;
dagegen /c* ^x im Falle 1 c ï)x (man beachte Ci =00). In jedem
Falle sind aile Koeffizienten bn(I,fP), bn{I,gP) (n^O) nach (10)
und Satz 7 stetige Funktionen von (r)) auf 9t°, und es gilt

-S 16* (^ /P) 6» (^ fir P) | ^ <7M (/, g) (n + *•)«'•+«••? c Ro) (33)
ifc=o

wo @io(f> 9) nack Satz 7 und dem Beweise des Satzes 2 von (^) nicht
abhângt ; daraus folgt, daB die Summe der Glieder mit n ^ 1 in der
Dirichletreihe auf der rechten Seite von (32) fiir aile beschrànkten s mit

(^)c9î0 [£= J£ flj (34)

gleichmaBig in « und den ^7i absolut konvergiert.
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6. Zur genaueren Diskussion von W(s ,fP,gP; V (N)) (f f (N))
zerlegen wir dièses Intégral nach dem Schéma (19), (19a), (25) in die Teil-
integrale J% (s ; / P, g P) (f c 51) und deren jedes in die entsprechend

(26) bestimmten Summanden

Hier erweist sich zunâchst

(35)

als eine fur aile komplexen s und aile fa) in 9Î° simultan stetige, in s

regulàr-analytisehe Funktion von s und (tj), falls 1 c ï)2 • In diesem Falle
ist auch in (32) *c* fest, und wenn #c* verschwindet, so beginnt die Reihe
in (32) frûhestens mit n 1. Dièse Birichletreihe D(s;fP,gP, f(N))
ist also unter den Bedingungen (34) eine simultan stetige Funktion von
s und (rj).

Es sei zweitens 1 c ï)x, also #c* ^, 60 (/, /) ^ 0 ^ 60 (/, g). Wir
schreiben ?y fur r/x und vollziehen im Integranden von (35) die Zerlegung

0); (36)

hier stellt R{r, (rj)) eine auf rcSB^, (ty) c 91° simultanstetige be-

schrànkte Funktion von x und (r\) dar.
Im folgenden werden wir jede im Bereiche

Omax (ro + Qor} — \, r0 + q0 rj — (l — r0 — ^0 ^), 0) fa) c 91°

in 5 und (ri) simultan stetige, in s regulàr-analytisehe Funktion von s und

fa) unterschiedslos mit Q(s, (^)) bezeichnen, und zwar auch dann, wenn
sie etwa in einer nur fur (rj) >0 gultigen Gleichung auftritt. AuBerdem
sollen jetzt die rfh (h c fa) einander gleich und so klein gewâhlt werden,
da6 Q0rj<i und 2QoV < j(l — ro) fur ftU© fa) in 5R° zutrifft. Dièse

Bedingung ist, wenn etwa rj°h ^ gesetzt und r0 festgehalten wird, fur
aile hinreichend groBen N von selbst erfûllt, weil nach einem Fundamen-
talsatz ûber automorphe Formen
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Im Sinne dieser Festsetzungen gilt nach (36) zunâchst

^ '*7"1*y^dxdy

Da 2?M fur die t mit y^&° einen Vertikalhalbstreifen der Breite N genau
ausfiillt, wofern ê° passend gewâhlt wird, ergibt sich weiter

,1 (« fo)) «5- K (I, f P) b0 (I, g P) J e N y*-* dy + D(s, (r,))

(37)
Das erste Glied auf der rechten Seite dieser Gleichung stimmt mit dem-
jenigen Ausdruck auf der rechten Seite von (32) iiberein, welchen man
erhâlt, indem man von der dort auftretenden Dirichletreihe aile Glieder
mit n>0 tilgt. Nennt man nun k0 die zu v0 gehôrige (fruher mit kx
bezeichnete, aus der Relation vo(UN) e27TÎK° (0 ^ #co< 1) erklàrte) feste
Zahl, so gewinnt man aus (35), (37) die sowohl fur 1 c^ als auch fur
lc^2) aber zunachst nur fur (^)>0 gultige Darstellung

bn(I,fP)bn(I,gP)

(8(s,(y))+ 2 ^,3(s, (i?)) + Û(«, (ri)) {(V) >0) • (38)

Man erhâlt Jç3(s, (^)) aus dem entsprechenden J^3(s) in (26),
indem man dort /^l(t)^(t) durch /^(t)^(t)| P^ (t, (^))|2 und r durch
ro + QoV ersetzt. Eine Wiederholung der fruher uber J^ 3 (s) angestell-
ten Betrachtungen làBt erkennen, dafî die zweite Summe auf der rechten
Seite in (38) in dem Ausdruck Q(s, (rj)) aufgeht, da das Intégral die
geforderten Stetigkeits- und Regularitàts-Eigenschaften sogar fur aile
komplexen s und aile (^)^O aufweist.

Wir untersuchen schlieBlich </çj2(s> (v)) m ^eT w^e ^e^ Jç,s(s> (v))
modifizierten Darstellung (26). Sowohl der f-Quotient als auch die Fak-
toren Q in der Summe uber h sind Funktionen vom Typus Q(s, (rjj) Das
gleiche gilt ersichtlich vom Doppelintegral uber A<$>ç. Denn nach Satz 7

ist

f(\P(A))\2 f i» (q) c 9Î°

in r, (rj) simultan stetig und beschrânkt. Berucksichtigt man schlieBlich,

daB die Faktoren P sâmtlich bis auf den einzigen allen gemeinsamen
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Pol s r0 -\~ qo7] iiberall regulâre Funktionen von s — r0 — q07j sind,
so erlangt man die Berechtigung zu der folgenden Deduktion :

ManwâhlefesteWertes, rf mit 0<^0^^, a — 2ro>2Qo7]° J£ 1> setze
hdfii

rfh rj° und lasse den variabeln Vektor (r/) (mit den Komponenten

^(icy) in dem Wiirfel O^r]h^r)0 gegen den Nullvektor (//) o

streben. Aus (38) folgt dann

^^ <>)- (39)

Hier stellt die rechte Seite eine fur a > max (r0 ~ ^, r0 — 1 — r0), 0)
mit der einzig môglichen Ausnahme eines einfachen Pois bei s r0 regulâre

analytische Funktion von s dar. Das Residuum in diesem Pôle hat
den oben angegebenen Wert (27).

Die damit fiir 0<r<l bewiesene Erweiterung des ersten Haupt-
satzes 6 hat folgenden Wortlaut :

Satz 8. Satz 6 gilt — mit einer einzigen geringfugigen Modification —

auch dann, wenn 0<r< 1 ist und f(r),g(r) vôllig beliebige ganze Modul-
formen {F, — r, v} sind (f, v tvie in Satz 6). Die Modification besagt:

D(s ; /, g ; f) ist in die s-Halbebene g > max (r — ^, r — (1 — r), 0) ana-
lytisch fortsetzbar.

7. Die im folgenden mitgeteilten Beispiele beziehen sich sâmtlich auf
Modulformen von den Dimensionen — ^ und — |. Aus (27) folgt fur
r — |^ und r J| :

fe1D(ê;f,g;r) (r J)
(40)

Dies ergibt zunâchst fiir / — g ê3, f f^. [(2) (3)]:

(41)

Den gleichen Wert findet man fiir die Skalarprodukte von #0 un(i ^2

sich selbst, wenn man in jedem Falle T$ durch eine passend bestimmte
zu f^. âquivalente Untergruppe von f(l) ersetzt.

In der Formenklasse {T(4), — |,%} mit
sgny—1 3gn8—l

fur i /(mod4), L {y,ô},y$O (42)
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Il-H =11 liegen die ganzen Modulformen

#00 W #3 ©01 (T) #0 (~j 01O (T) #2 (2 T) (43)

Da der Rang der Schar S der ganzen Modulformen {f(4), — |, v^}
gleich 2 ist, sind die Funktionen (43) linear abhangig. In der Tat gilt

®oo(r) - ©oi(t) - 2 <910(t) 0 (44)

Die Skalarprodukte der 0W, 0Q1 zu je zweien erhalten nach (40) die Werte

(©oc, ©oo T(4)) (<901, <901 T(4)) 16*, (©oo, 6>01 ; T(4)) - 0 (45)

#00 und <901 bilden also eine Orthogonalbasis, ——0^ und ——- 0O1 eine
normierte Orthogonalbasis von ®. DaB

(©10, 01O, T(4)) (©oo, 01O, T(4)) - (0O1, 01O, r(4)) S*

ist, kann direkt aus (40) oder nach den Rechenregeln uber Skalarprodukte
aus (44), (45) erschlossen werden.

Zu den einfachen Thetareihen gehort ferner nach einer Eulerschen Iden-
titat die Funktion

00
12 n (i ç2 7Timt\

n

+ 00

— 00

l)«e 12^
(46)

die eine ganze Modulform von der Dimension — J zur vollen Modulgruppe
darstellt. Fur das Skalarprodukt von rj mit sich selbst findet man nach
(40) und Satz 6 ^ (47)

Bei der Bestimmung der Skalarprodukte ganzer Modulformen von der
Dimension — | hat man darauf zu achten, daB das Produkt der Skalar-
faktoren in allen Spitzen der betreffenden Gruppe verschwinden muB.
An expliziten Beispielen fur niedere Stufen bieten sich zunâchst die
folgenden ganzen Spitzenformen dar 8).

JL 4\8. oo ^JL^n-l)*
VA(r) V(~l)n-1(2^- l)e 4

M\ * /

()e 3 (48)

8) Die Funktionen dz,ri9rf,rf â^1 spielen in der systematischen Théorie der Dirichlet-
h mit Eulerscher Produktentwicklung (bei dem heutigen Stande dieser Théorie)

©me ausgezeichnete Rolle, vgl. E. Hecfce, Herleitung des Eulerprodukts der Zêta-
funktion und einiger iy-Reihen aus îhren Funktionaleigenschaften, Math.
A 119 (1944).
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Nach (40) und Satz 6 erhâlt man als Skalarprodukte dieser Modulformen
mit sich selbst die Werte

^, (v*K1y^1;^) ^-. (49)

Zur Aufstellung einfacher Thetareihen hôherer Stufe macht man
ûblieherweise einen Ansatz von der Gestalt

m~h(N)

in der A eine passend zu bestimmende naturliehe Zahl derart bezeichnet,
daB die entstehenden Funktionen / môglichst einfach gebauten Trans-
formationsgleichungen geniigen. Ich habe frûher9) die Reihen (50) fur
beliebiges natûrliches N, ganzes h und A 4 diskutiert, mich aber in-
zwischen davon uberzeugt, daB man die damais untersuchten Thetareihen

aus einem anderen, jenem gegeniiber nur geringfûgig modifizierten
Funktionensystem erhâlt, welches sich bei Modulsubstitutionen nach be-

sonders einfachen Formeln umsetzt.
Wir wahlen in (50) JV>0 gerade, h ganz, A 2 und bilden sogleich

neben den Reihen (50) die entsprechend normierten Teilwerte der Ab-
leitungen der elliptischen Thetafunktion nach der Gittervariabeln :

S lr Ji N\ V p N S (t h N\ V m p n (^l)uq \i y IV xv j — s *-> j ifj \t j fv 3 ±y j — ^. ni/ & \o jl j

Um die Funktionaleigenschaften dieser Reihen zu formulieren, fassen

wir die beiden Gleichungen (51) gemâB

* / i an ^ x "I-* (^ °.1>
#x (t 9 h, N) ]? wA e

zu einer Formel zusammen und verstehen im folgenden unter A stets eine

der beiden Zahlen 0, 1. Es gilt
(52)

(53)

(m0 > 0 ganz) (54)
k mod m0N
k E h(N)

e N ^x(r5;,îV) (^)
mod N

9) H. Peter88<m, Ûber die Entwicklungskoeffizienten der ganzen Modul-
formen und ihre Bedeutung fur die Zahlentheorie, Abhandl. Math. Seminar HaDa-

burg 8 (1930).
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Man gewinnt (55) durch eine Fourier-Entwicklung unter Benutzung
des Poissonschen Summationsverfahrens. Aus den Formeln (52), (53),
(54), (55) ergeben sich nach dem ublichen Vorgehen10) auf Grand einer
langeren Rechnung die genauen und vollstandigen Aussagen uber das
Verhalten der ^A(T,A,iVr) bei Ausubung von Modulsubstitutionen.

Es sei erstens 8 | \ c l"(l), c>0. Dann gilt (À 0, 1)
\c a)

v mod N

¦* - (66)

Jj,j,,N)= S " " tf.ganz).
\ ° / k mod cN

Es sei zweitens S (a ^) c To (2^) (d. h. S c T (1), c 0 (mod 2N),
c — 0). Dann gilt

e N^(Xiah,N) (57)
\ ci /*

mit — i nach (42) fur ganze m 4= 0, ?i 1 (2)\n /* /„ r\Es sei drittens L i ^ 1 c f (2N), y§0 Dann gilt

i(r9h,N) (58)

Nach (56), (58) sind die êQ(r,h,N) samtlich ganze Modulformen
{V(2N), — 1, v$} (vgl. (42), (58)), die ^(r,^,^) samtlich ganze
Spitzenformen {f(2N), — f, v$} Mit Rucksicht auf (52) genugt es, die

N N
&0(r,h,N) fur O^Ag —, die ^(t,^,^) fur l^fe<— zu betrach-

ten, dièse Funktionen sind linear unabhangig.
Die Skalarprodukte der &0(r,h,N) und der êx(r,h,N) je unter-

einander lassen sich uberaus einfach bestimmen. Es ergibt sich nach (40),
Satz 6 und Satz 8.

(t, h, N),A (r, h',M ; T(2N)) 0, wenn f, A=0,l,

(59)

10) ^. Hecke, Zur Théorie der elhptischen Modulfunktionen, Math. Annalen 97
(1926).
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mit
f
(60)

wo allgemein f die Gruppe der Substitutionen rr Lr mit icf be-
zeichnet ; ebenso findet man

f) (61)

Der Zusammenhang der Reiheu (51) mit den (fur beliebiges natiirliches
Nf gebildeten) Funktionen

m=h(N')

S_JL_
2JV'

m—h

în(T,k,N')= V
m=h(N')

(62)

aus 9) wird ersichtlich durch die Formeln

#„ (t, h, N') &0 (r, h, 2N') + &0 (r, h + N', 2N')
&01 (t, h, N') #0 (t, h, 2N') - ê9 (r, h + N', 2N')

»M(r,h,N')=»9(T,2h+l,2N') (63)

vermittelt ; analog (44) gilt hier

#m(r,2h+ l,N')+êol(r,2h+ 1, N') 2#m(t, h, N')
Die Skalarprodukte der Funktionen (62) untereinander kônnen aus (59),
(60) leicht berechnet werden.

Im ûbrigen darf man die Einfuhrung der Funktionen (62) nicht als

ûberflussig ansehen. Das Beispiel (vgl. (46))

^(t)=#oi(t,1,6) (63a)

zeigt, da6 aus den oben betrachteten &0(r,h,N) (N gerade) durch
passende Linearkombination ganze Spitzenformen von der Dimension
— -| mit #-Multiplikatoren gebildet werden kônnen. Analog (63 a) gilt

iî8(t)=#i(t,1,4), ^(T)^-1(T) ^(2T,l,6)-^1(2r,2,6). (63b)

8. Im folgenden soll an einem Beispiel erlàutert werden, in welcher

Richtung Anwendungen der vorliegenden Théorie zu erwarten sind. Zu-
nâchst bemerken wir ûber die Funktionen #^(r, A, JV), dafi sie, falls
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N 0 (mod 4), als Modulformen bereits zu der Grappe f (N) der
Matrizen

a mit ocEEÔ=l (modN), p y O (mod2iV)

und dort zu einem gewissen Multiplikatorsystem v (L) vN (L)
gehôren :

— / N\
v{L) vN (L) (- 1) 4 {-j-J^ (Lcf(N)9N O (mod 4)) (64)

Ï(N) ist ein Normalteiler in l"(l), und f(2N) hat in V (N) den

Index 2. Da aile Spitzen von T(iV^) nach ihrer Transformation ins Un-
endliche (mit Hilfe je einer Matrix aus f(l)) die Breite 2N haben, so

ist die Anzahl der inâquivalenten Spitzen eines Fundamentalbereichs $N

von V(N) halb so grofi, wie die entsprechende Anzahl ^(2^) ^-
— — ju xY

fur r(2N). f(N) enthâltwegen f(N)cf(N) keine elliptischen Sub-
stitutionen.

Wir wollen auf die ganzen Formen der Dimensionen — J und — & zur
Gruppe f(4) sogleich den Riemann-Rochschen Satz in seiner Ausdeh-

nung auf automorphe Formen reeller Dimensionen anwenden (G II)
und bemerken deshalb, da8, wie man naehrechnet,

vN(P)=l (65)

fur jede parabolische Erzeugende P A~x U2N A von f (N), wo A, wie
ublicherweise bei Untergruppen der Modulgruppe, in f(l) liegend an-
genommen wird.

Es sei nun N 4. Wir bezeichnen mit pé das Geschlecht, mit qà aé
a(2N)die oben genannte Spitzenanzahl von ^N fur jV 4, mit /^4 den

Index [F(l) : f (4)]. Dann wird zunâchst aà 12,-^-= 8, und die
Fundamentalrelation

ergibt p4 3.
Wir kombinieren die wegen vA(L) ± 1 und (65), (66) gultige Formel

4-3 + l+ro(-f,?4,û) 2 + yo(-f,î4,a) (67)
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des genannten allgemeinen Riemann-Rochschen Satzes mit der Tatsache,
da8 ^1(t, 1, 4) eine nicht identisch verschwindende ganze Spitzenform

{F(4), — |-, ?4} darstellt, da8 also vo(— ^, vA, a) mindestens gleich 1 ist.
Nach (67) wird deshalb

was auch unmittelbar aus der linearen Unabhângigkeit der #0(t, h, 4)

(O^h-^2) hervorgeht. Multipliziert man ^(t, 1, 4) mit einem vollen

System linear unabhângiger ganzen Formen {F (4), — -|, #4}, so erhâlt
man ebenso viele linear unabhàngige Difïerentiale erster Gattung. Nach
(66) kann daher nicht vo(—^, vé, <1»>3 sein; es folgt also

1 (68)

und die Funktionen <ph(r) #0(T> h, 4) (h 0, 1, 2) bilden eine Basis
der Schar der ganzen Formen {F (4), — 1, v4}. Da6 in dieser Schar keine

ganzen Spitzenformen enthalten sind, erkennt man etwa durch den fol-
genden SchluB :

Angenommen, es sei <p+(r) eine ganze Spitzenform {F(4), — -|, v4}.
Dann gewinnt man in den Funktionen fh {(p+)2(ph (h 0,1,2) drei

linear unabhàngige ganze Spitzenformen {F(4), — |, vé}, im Gegensatz
zu (68). Folglich gilt

^ ^10 • (69)

Fur beliebiges gerades N>0 und beliebige ganze hl9h2, hs mit
N

<i h,- < —r- setzen wir- *- 2
3

6>(t ;h1,h2,h3;N) 0(r,ï),N) J70o(t, ^, i^)

(^ ={»!,»,, A,})
l=1

(70)

Aile dièse 6>(r,l),iV) stellenoffenbarganzeModulformen {f(2N), — f,%}
und fur iV'^O^odé) auch ganze Modulformen
Sie gestatten die Entwicklungen

mit n=0

oB(ï), N) — Anzahl der Darstellungen n m\ + m\-{- m\ mit ganzen

m{ h{ (mod N)
Im Falle N 4 kommen die 10 Vektoren I) {Aj^, h2, h3}

{0,0,0}, {0,0,1}, {0,0,2}, {0,1,1}, {0,1,2}, {0,2,2},
{1,1,1}, {1,1,2}, {1,2,2}, {2,2,2} (72)
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in Betracht. Dadurch, da8 man fur jedes dieser ï) die Restklassen mod 8

oder 16 oder 32 bestimmt, in denen ein n m\-\- m\-\- m\ mit mt- ht
(mod 4) liegen muB, gewinnt man mit Hilfe primitiver Rechnungen eine
voile Einsicht in die lineare Struktur des Systems der elf ganzen Modul-
formen

0(t,Ï),4) (ï) aus (72)), 0^,1,4) (73)

aus der Klasse {F(4), —--|, t;4}. Es zeigt sich, daB einerseits die zehn
Formen 0(r, ï), 4) in (73) linear unabhângig sind, also wegen (69) die

Schar der ganzen Modulformen {F (4), — |, vé} aufspannen ; daB andrer-
seits zwischen den elf Funktionen (73) eine und (abgesehen von konstan-
ten Faktoren) nur eine lineare Relation, namlieh

^(r, 1, 4) - 0(r ; 0, 0, 1 ; 4) - 0(r ; 1, 2, 2 ; 4) (74)
besteht.

Die Skalarprodukte zwischen den allgemeinen Thetareihen 0(r, N)
einerseits und ^(r, h, N) andrerseits lassen sich nach Satz 6 durch die
Residuen der Dirichletreihen

- £
m=l

m~-h(N)

im Punkte s J| ausdrucken. D* (s ; ï), h, N) verschwindet in sehr
vielen Fâllen identisch, insbesondere fiir

N 4, h=l und aile ^ aus (72) mit ï)^{0,0,l}, E)^ {1, 2, 2}. (76)

Wir bezeichnen nun fiir irgendeine der unter 2. erklârten Scharen
£ G(f, ~-r, v) mit 91 9l(F, — r, v) die lineare Schar aller derjeni-
gen Formen aus G(F, — r, v), welche auf der vollen Schar (£+ (F, — r, v)
der ganzen Spitzenformen {F, — r, v} senkrecht stehen, und nennen 91

kurz die Normalschar von (£+ (innerhalb von G). Man erkennt im vor-
liegenden Sonderfall {F(4), — ^, ?4}, daB aile acht <9(r,ï),4) (I) nach
(76)) der Normalschar 5R angehôren. Wegen (74) liegen hingegen nicht die
beiden ubrigen

<9(t,Ï),4) <9(t;0,0, 1 ; 4) <9(t; 1,2, 2; 4)

zugleich in 51, wohl aber ist eine gewisse lineare Verbindung

A(r) Ao 0(r ; 0, 0, 1 ; 4) + h @(r ; 1, 2, 2 ; 4)

(Ao, Ax ^ 0, 0 konstant) (77)

197



in 51 enthalten. 31 hat nach (68), (69) den Rang 9 ; die Funktionen
@(t, ï), 4) (J) nach (76)) und A(r) bilden also eine Basis von ït.

Zur Herleitung arithmetischer Identitâten fur die Darstellungsanzahlen
an(fy> 4) hàtte man die Eisensteinreihen der betrefïenden Formenklasse

{ F (4), — ^, vé} aufzustellen. Leider sind in den diesbeziiglichen Unter-
suehungen von H. MaaBn) gerade die hier in Betracht kommenden Stufen
4, 8, 12 ausgeschlossen worden, so daB von dieser Seite gegenwârtig keine

Aufklârung erfolgen kann. Zwar darf erwartet werden, daB eine solche im
Sonderfall der Klasse {F(4), — ^, v4} auch mit den vorhandenen Hilfs-
mittehi môglich ist, obwohl andrerseits gerade aus der Arbeit u) hervor-
geht, daB es zur vôlligen Durchdringung der komplizierten Verhâltnisse
im Bereiche der allgemeinen Eisensteinreihen aus {f (2N), — §, v#) neu-
artiger Methoden bedarf. Die ungewôhnlichen Schwierigkeiten des hier
erwâhnten Problems werden durch die folgenden Tatsachen beleuchtet :

Einerseits hângen die Fourier-Koeffizienten spezieller Eisensteinreihen
von der Dimension — | aufs engste mit den Klassenzahlen der imaginâr-
quadratischen Zahlkôrper zusammen ; die allgemeinen Eisensteinreihen

{f(2N), —§j^} mussen also auf ein System arithmetischer
Funktionen fûhren, die als die nâchstliegenden Verallgemeinerungen dieser
Klassenzahlen aufzufassen sind. Andrerseits mûBte eine befriedigende
Théorie dieser Eisensteinreihen erweisen, daB die Reihen die Normal -

schar 51 91 (f (2N), — ^, i;^.) aufspannen ; mit diesem Sachverhalt ist
nach allen bisher an Eisensteinreihen gemachten Erfahrungen zu rechnen

(vgl. J III, §§ 3, 4 und FuBnote 12)). Die allgemeine Théorie der Normal-
scharen zeigt nun, daB die Normalschar von der Dimension — J| durch
die konstanten Glieder der ganzen Formen von der Dimension — ^ in den

Spitzen eindeutig bestimmt ist. Von den Gesetzen aber, die dièse konstanten

Glieder befolgen, ist gegenwârtig nur sehr wenig bekannt. —

Nach erfolgter Konstruktion der Eisensteinreihen {T(4),—§5^4}
lassen sich die gesuchten arithmetischen Identitâten fur die sàmtlichen

an(ï), 4) durch den Vergleich der ersten Fourier-Koeffizienten der
betrefïenden Thêta- und Eisensteinreihen elementar gewinnen. Ebenso er-

gibt sich die nur bis auf einen konstanten Faktor bestimmte Funktion
A(r) und mit ihr wegen

11 H. Maafi, Konstruktion ganzer Modulformen halbzahliger Dimension
mit (9-Multiplikatoren in einer und zwei Variabeln, Abhandl. Math. Seminar

Hamburg 12 (1937).
12) H. Peter88<m, Ûber die systematische Bedeutung der Eisensteinschen

Reihen, erscheint in den Abhandl. Math. Seminar Hamburg.
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das Verhàltnis sowohl der Skalarprodukte

(<9(r; 0,0,1 ;±)iê1(r,lA) ;?(*)), (6>(r ; 1,2,2 ; 4), ^(r, 1,4) ; f (4))

als auch der Residuen der Dirichletreihen D*(s ; ï), 1,4) fur ï) {0,0,1}
und î) {1, 1, 2} im Punkte s ^. —

In einigen der oben mitgeteilten Beispiele beruht die Orthogonalitàt
gewisser Paare von Thetafunktionen darauf, da6 die Système der Fourier-
Exponenten der beiden Thetareihen eines Paares in verschiedenen Rest-
klassen nach einem passend bestimmten Modul liegen. Zur Ableitung
solcher Orthogonalitâtsrelationen kann man sich hâufig des folgenden
Zusammenhanges bedienen :

Es sei f f (N), r > 0, | v | 1 und die zur Spitze oo von F (N)
gehôrige réelle Zahl k 0. Sind zwei ganze Modulformen /(r), g(t)
aus {F(i\f), —r, v} vorgelegt, deren Fourier-Exponenten (vgl. (7) mit
A /) den Restklassen oc bzw. p mod N angehôren. so gilt

/i(T) /(T + l) e **^/(t), g1(r) g(r+l) e m*g(r) (78)

Aus den Grundeigenschaften des Skalarprodukts (dessen Existenz vor-
ausgesetzt werde) ergibt sich nun einerseits (f1, g^) (f,g), andrerseits
nach (78) a_0

Daher ist (/, g) 0, falls a ^k p (mod AT). Unter gewissen Annahmen
uber v Iâ8t sich jede ganze Form / c { f (N), — r, v} linear mit konstan-
ten Koeffizienten aus solchen ganzen Formen {F(N), —r, v} kombinie-
ren, deren Fourier-Exponenten jeweils einer festen Restklasse mod N
angehôren. Fur die ganzen Formen {f (N), — r, 1} (r ganz) ist der hier dar-
gestellte Zusammenhang ein Sonderfail eines allgemeinen Satzes liber die
Orthogonalitàt von Formensystemen, die sich bei den Transformationen
der vollen Modulgruppe nach zwei inâquivalenten irreduziblen Darstel-
lungen der Modulargruppe umsetzen13).

(Eingegangen den 23. Januar 1948.)

18) H. Peters8on, Konstruktion der sâmtlichen Lôsungen einer Riemannschen
Funktionalgleichung durch Dirichletreihen mit Eulerscher Produktent-
wicklung II, Math. Annalen 117 (1940), s. insbesondere Satz 11, §2.
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