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Sul comportamento asintotico
dell' n-esimo polinomio di Laguerre
nell’ intorno dell’ascissa 4 n

Per Francesco Tricomi, Torino

1. — Nello studio del comportamento asintotico per n — oo del-
Pn-esimo polinomio di Laguerre :

L@ =4

m!

= art) = 3 (=1 (0 )

n! dx" il

n—-l—oc) "

si constata il fatto, a prima vista un po’ strano, che gli intorni dei punti

=0 ed = = 4n sirivelano come singolari. Ad esempio cio risulta in
modo oltremodo evidente da un lavoro del Moecklin (relativo al caso
o« = 0) pubblicato nel 1934 in questa stessa rivistal), dalla trattazione
contenuta nella fondamentale opera di Szegé sui polinomi ortogonaliZ),
nonché da una mia Nota del 19413) in cui, generalizzando uno dei risul-
tati ottenuti dal Moecklin al caso « # 0, facevo vedere come una sempli-
cissima formula asintotica per L{*(x), mentre dava risultati sorprenden-
temente esatti nell’snterno dell’intervallo (0, 47), cadeva invece insanabil-
mente in difetto nelle prossimita degli estremi di questo.

Per quel che concerne il punto z = 0 la difficoltd pud considerarsi
ormai come completamente superata perché in un altro mio precedente
lavoro*) — recentemente generalizzato alle funzioni ipergeometriche con-
fluenti’) — ho mostrato come L{®(x), nell’intorno destro di = =0,
possa svilupparsi (supposto «>— 1) in una serie non solo asintotica, ma

1) E. Moecklin, Asymptotische Entwicklungen der Laguerreschen Poly-
nome, Comment. Math. Helv. 7, 1934—35, p. 24—48.

2) @. Szegé, Orthogonal Polynomials, New York 1939; Amer. Math. Soc. Collo-
quium publ. n° 23, p. 192 e seg.

3) F. Tricoms, Generalizzazione di una formula asintotica sui polinomi di
Laguerre e sue applicazioni, Atti R. Acc. Scienze Torino 76, 1940—41, p. 288—316.

4) F. Tricomi, Sviluppo dei polinomi di Laguerre e di Hermite in serie di
funzioni di Bessel, Giorn. Ist. Ital. Attuari 12, 1941, p. 14—33.

8) F. Tricomi, Sulle funzioni ipergeometriche confluenti, Annali di Matema-
tica (4) 26, 1947—48, p. 141 —175.

150



addirittura assolutamente ed uniformemente convergente, del tipo

m—o

2 Ja+m (2 l/;_x_) ’

o0
LY (x)=e* Y a,x
m=0

dove b & un’arbitraria costante non negativa (con privilegio pel valore
h = 1) e le J denotano funzioni di Bessel. Fra l’altro, con I'ausilio della
precedente formula, ho ultimamente ottenuto ¢) uno sviluppo asintotico
dei prima zeri dei polinomi di Laguerre, cioé dei piu piccoli fra essi, da
cui si deduce in particolare la seguente, molto aderente?) formula asin-
totica :

) 2_1 *2
R R TR

dove A%, denota I'r-esimo degli n zeri (tutti reali e positivi) di L®(z).
disposti in ordine crescente e j, , I'r-esimo zero reale-positivo della fun-
zione di Bessel J,(x).

Meno soddisfacente ¢ invece lo stato attuale della questione per quel
che concerne l'intorno del punto x = 4%, perché lo sviluppo all’'uopo
ottenuto dal Moecklin col metodo del colle, oltre ad essere valido soltanto
per « = 0, & desolantemente complicato®), mentre i piu generali ed
eleganti risultati ottenuti con lo stesso metodo dallo Szegé (op. cit.) nel-
Pintorno del punto z =» = 4n + 2(x 4+ 1) non vanno oltre il primo
termine, e la complicazione dei calcoli fa passare la voglia di andare oltre
per la stessa via.

Per queste ragioni non mi sembra privo d’interesse far qui vedere come,
combinando il metodo del colle con un ancora poco conosciuto metodo di
studio delle equazioni differenziali lineari, sia possibile ottenere senza
troppe difficolta quanti si vogliano termini di uno sviluppo, non solo asin-
totico ma assolutamente ed uniformemente convergente di L{™(x) nel-

'8) F. Tricomi, Suglizeri delle funzionidicuisiconosceunarappresentazione
asintotica, Annali di Matematica. (4) 26, 1947—48, p. 283—300.
7) Ad esempio nel caso a =0, n =10, r =1 la (1) fornisce }.(1(:,)’1 = 0,13779 mentre
il valore esatto & 0,13781. Dianzi si conosceva soltanto, se non m’inganno, la formula
-2
1D, =227 4 0
(Szegd, op. cit. p. 123—124, Tricomi, op. cit. 3), p. 305.)

8) E’ probabile che il Moecklin sarebbe giunto a risultati pii semplici se avesse svilup-
pato intorno all’ascissa « = ¥ = 4n -+ 2 invece che intorno ad z == 4n. Ma nel caso
@ = ( cio si presentava ben poco spontaneo! Colgo I'occasione per avvertire che i valori
esplicitamente dati dal Moecklin per i coefficienti da lui indicati con a,; e ag; non sono
esatti: devono moltiplicarsi per 'unitd immaginaria .
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Pintorno del predetto punto x = »; sviluppo di cui calcolero esplicita-
mente i due primi termini ottenendo cosi la formula

e * LY (z) =

£ 3+5a 1 ') V4‘ " —3
Y1 Al(t)+[‘5‘A1(t)+T t“‘é‘ TR Al(t)] 3" + O (n (2;
dove si & posto
3
B 4 1 B } 3+5x I'3) _ ~
x—vw—l/:—;-v b, y1=(—1)" [1/6 T F(%)v l]+0(n

: (3)
e si ¢ denotata con A4,(t) la cosiddetta fumzione di Airy, la cui espres-
sione mediante funzioni di Bessel & la seguente :

e 10 A T

Fra P’altro, la (2) conduce alla seguente rappresentazione asintotica
degli ulttm: zeri dei polinomi di Laguerre :

3 3 —
2 __
j’iza)n r+1 =V ng’r 1’% + _;— (Vi; ZT) v % -+ o) (n-—d) ’ (5)

dove 7, denota 1'r-esimo zero reale-positivo della funzione di Airy?®), che
nel caso 7 = 1 rettifica una formula sull’'ultimo zero di L{*(z) preceden-
temente ottenuta da V. K. Spencer1?) col metodo di confronto di Sturm.

2. — Ilsuaccennato nuovo metodo di studio delle equazioni differenziali
lineari, che puo forse farsi risalire al mio indimenticabile collega ed amico
G. Fubini'), non sembra ancora molto conosciuto, nonostante sia stato

) Le 4, sono legate agli zeri s, della funzione J_ 1 () +J 1 (z), di cui é data una

tabella a p. 751 delle Bessel Functions di G. N. Watson, dalla relazxone 2(¢,/ 3)2 =8, che

implica
3 iy = (3 5y)

10y V. E. Spencer, Asymptotic expressions for the zeros of generalized La-
guerre polynomials and Weber functions, Duke Math. Journ. 3, 1937, p. 667—675.
La formula analoga alla (5) dello Spencer (la (42), alla fine del lavoro) va corretta nel senso
che in luogo di 4n + 2a deve essere scritto », cio® 4n 4+ 2a + 2; il che non & privo
d’importanza perché il primo termine di essa si altera della quantita finita 2, mentre la
formula finisce, come la nostra (5), con O(n-1).

11) @. Fubini, Studi asintotici per alcune equazioni differenziali, Rend. Acc.
Lincei (6) 26, 1937, p. 2563—259.
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gid ripetutamente adoperato, specie in Italial?). Vale pertanto la pena
di esporne rapidissimamente il concetto restando, per semplicitd, nel-
I’'ambito delle equazioni del second’ordine, benché la sua estensione al-
Pordine n e perfino a certi tipi di equazioni non lineari, non presenti
particolari difficolta.

Il metodo é fondato sull’osservazione che se una data equazione diffe-
renziale lineare di 2° ordine si scrive sotto la forma

Y' 4+ p(@)y + p(x)y = A(2)y" + B(x)y' + C(x)y (6)
dove

Yy + ()Y + p(x)y =0

sia un’equazione che si sa integrare esplicitamente, di cui si conoscono
cioé due integrali linearmente indipendenti :

y, = F,(x), Yy = Fy(x) ;

alla (6) puo formalmente applicarsi il procedimento lagrangiano della
variazione delle costanti arbitrarie che, posto

y = Cy(2)F,(x) + Cp(x)Fy(x), y' = C1()F1(x) + Co()Fy(x) (7)

conduce, nell’ipotesi che sia A4 (x) = 1, alle due equazioni integrali di
Volterra nelle funzioni incognite C,(z) e C,(x):

Oy (@) = 11 — [ Fa(&) [9,(6)C1 (&) + By(8)C, (6)]dE

Cy(2) = 7, + | Fy(6) [@,(8)C1(8) + B, (6)C,(6)]dé

avendo denotato con y, e y, due costanti legate ai valori di ¥ e y per
x = x, dalle equazioni

Y(x) = 71 F1 (%) + yo Fy (%), 4’ (%) = y1 F1(%0) + 2 Fy(xo)  (8)
e con D, e D, le (note) funzioni date dalla formula

A@F! (@) +B@F,(@)+C@F ()
D, (x) = 2 u , (=12 9
“ 01— A@I V@) e=ba O
dove W (x) denota il wronskiano dei due integrali F,(x) e F,(x).
Anzi il precedente sistema integrale puo, con facili trasformazioni, ri-

dursi alle due equazioni integrali ad una sola incognita :

12) Per esempio nel mio recente libro: Equazioni differenziali (Torino, Einaudi,
1948) che contiene un’appendice esplicitamente dedicata a detto metodo. Esso com-
Prende in se come caso particolare il metodo “di Liouville-Steckloff”” ripetutamente usato
da @. Szegé nell’ opera cit. 2).
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Gi(o) — [ K(z, G, (&)de = dy(z), (i=1,2),  (10)

avendo posto

F\(&) F,(¢)

K= D,(x) Dy(x)

; (11)

e si giunge cosi alla seguente formula di rappresentazione degli integrali
della data equazione :
Fy(&) Fy(é) |

Y=Y (2) + 9y, Y,(x); Yi(x):Fi(x)+f F,(z) F,(x)

(t=1,2), (12)

dove G; — quale soluzione dell’equazione integrale di Volterra di seconda
specie (10) — e data dalla serie assolutamente ed umiformemente conver-
gente :

Gi(x) = D, (x) + jx' [K(z,8) + Ky(x,8) + Ky(x,8) +- - - |D:(5)dE,  (13)

avendo, come di consueto, designato con K,, K,,... i successivi iterat
del nucleo K(z, &).

E’ molto notevole il fatto che le considerazioni precedenti si applicano
,,qualunque* siano, piccoli o grandi, i coefficienti 4, B e C del secondo
membro della (6). Tuttavia se tali coefficienti sono ,,piccoli®, cioé se —
contenendo ’equazione un certo parametro 4 — si-possa asserire che per
u —> 0 & (uniformemente rispetto ad x)

A(x) =0 ("), B(x)=0(W"), C(x)=0(w"), (h>0) (14)
sard in conseguenza
@,(x)::O(,uh), K(x,é‘)::O(,u"), K2(x’§):0(:u’2h)> K3(x’§)::0(/"’3h)" .

e lo sviluppo ottenuto sostituendo nella seconda delle (12) la serie (13)
assumera anche un carattere asintotico ; il che implica che, in particolare,

si avrd Y (x) =F,(2) 4+ O (u"),
L\ F (&) F,(&
Yi(@)=Fy(@) + | F zw)) F :w))

Zo

D, (§)dE + O (u),. .. (15)

3. — 11 metodo di cui sopra pud, fra I’altro, applicarsi, e in molteplici
modi, all’equazione differenziale delle funzioni ipergeometriche con-

fluenti :
2y’ +(c—2)y —ay=0 (16)
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il cui integrale regolare nell’origine ed assumente ivi il valore 1 — che si
designa abitualmente con ¥, (a ;¢ ; x) o, pilt semplicemente, con F (a,c ; x)
¢ legato ai polinomi di Laguerre dall’uguaglianza,

L® (z) = ("‘j;")lr(—n,(x+ 1;2) . - (17)
Agli scopi che abbiamo qui in vista conviene praticare anzitutto nella
(16) la sostituzione z
y=-e?z

con che essa diviene

- dz z

e successivamente, posto per brevita13)
2¢c — 4a =

cambiare la variabile indipendente x in una nuova variabile ¢ legata alla
precedente dalla relazione

3, —
1
x=v——'/§—v3t (18)
con che si giunge all’equazione differenziale :
k: J—
d?z 1 [ dz dz _ V4 —%)
zﬁ+§‘z~(tﬁﬁ+"z{)”’ ("“ 3" (19)

che si presta egregiamente all’applicazione del metodo precedente, perché
nel caso dei polinomi di Laguerre, cioé nel caso in cui &

a=—n, c=ox-+1, v=4n + 2(x + 1)

—2
i coefficienti del secondo membro sono O(n °) per m— oo.

Inoltre I’equazione ottenuta uguagliando a zero il primo membro della
(19) e cioe I'equazione
ﬂ -+ 1 tz=20 (20)

aiz ' 3

¢ un’equazione che s’integra facilmente mediante funzioni di Bessel
d’ordine 4 }. Precisamente essa & ’equazione cui soddisfa la funzione di
Airy cui si & gid accennato, eppero due suoi integrali linearmente indipen-

denti sono
y, = 4,(2), Yy = Ay ()

13) La quantitd » = 2¢ — 4a coincide col quadruplo del primo dei due parametri & ed
m introdotti dal Whittaker nello studio delle funzioni ipergeometriche confluenti.
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dove A,(z) ¢ data dalla (4) ed A,(x) dall’analoga formula

A, (t) = —g- Vi zJ__ g [2 (;;)%] —J, [2 (%)g]i (21)

dove si & cambiato il segno interposto fra le due funzioni di Bessel e

inoltre si & moltiplicato tutto per V3.
Questi due integrali sono effettivamente indipendenti perché, essendo

1
A4,(0) = V§A1(O) = Ij(g) = —n

2 .
a0)= —viao =18 _ (22)

il loro wronskiano W — necessariamente costante perché nella (20) manca

il termine con la derivata prima — & dato dalla formula
A0 40| 4040 4 -
Ay () A5(t) A{(O)AQ(O)i 3

Bastano gid queste poche considerazioni per potere asserire — utiliz-
zando la prima delle (15) — che se y(x) & una qualsiasi funzione iper-
geometrica confluente, cioé una qualsiasi soluzione della (16); dette y,
e y, due opportune costanti, al divergere del parametro », cioé per
a —> — oo, dovra aversi

-z
2

e Ty@) =y [4:() F 007 )]+ n[At) + 00" D],  (24)

ci6 che — a prescindere dalla determinazione delle costanti y, e y, — ©
in sostanza il risultato ottenuto dallo Szegé pei polinomi di Laguerre.
Invero, avendosi allora (v. piu avanti, §9)

27" 64‘%L vw% + 01, y, =0 (n7Y) ,

y1=(—1)"
la (24) coincide con la formula (8.22.11) a p. 195 dell’op. cit. sotto?).

4. — Per ottenere una maggiore approssimazione non ¢’é che da cal-
colare un termine successivo, cio& servirsi della seconda invece che della
prima delle (15). All’'uopo occorre anzitutto calcolare ®; per mezzo della
(9), che nel caso attuale fornisce :

0, (5) = [£4:6) —3c4{O] -+ 0, (=1,2)

156



eppero, detti Z, e Z, due integrali linearmente indipendenti della (16) e
supposto x, = 0, potrd porsi
t

2,0 = 4.0 + £ [ (4,040 - 4,0 4,0][£4,) - 3c41(@)] dt
0

+ O(p?) . (25)
Sono ora da calcolare gli 8 integrali indefiniti :
Ii,i:jngi(f)Aj(E)dE: I:j,j:j‘Ai(g)A;'(E)df, (¢,7=1,2)

di cui alcuni sono quasi immediati. Invero si ha anzitutto che
I:z - 1A§(§)
e successivamente, tenendo conto della (23), si hanno le due equazioni
Lot Ly=40A4E. L,-L,=(Wi—=—Z¢
che forniscono subito i valori dei rimanenti I’. Quanto agli integrali I, ;
non ¢’ & che da osservare che, con una facile derivazione in cui giova tener
conto della (20), si ha
’;E [634.4; + 3(A;, — £A) (A, — £A4)] =324, 4, + (4[4, + A, 4))
+ 3(— £47) (4, — £4)) + 3(4; — £4)) (— £4])
= 3824, A, + 8(A]A, + A,4) + £2A4,(4, — £4))
+ 824,(4, — £A]) = 5EA A,
donde segue che
I, = %64, 4,08 + 3[4 — £45(0)] [4,) — £45(8)] -

Passando al calcolo degli integrali definiti che a noi servono si trovano

cosi le formule
4

[ £24,(6) 4, () d =
304,04, (1) + 3 [Ai () — tA1(0] [A:(0) — t4;(8)] — § 4,(0) 4:(0)
[edi@ds = Ao + 4.0 — tdiO] — §410) .

[ 4,5 Al (&)de = 3 4%(¢) — $A4%(0) |

[ 4,0 430)dE = 34,0 4,0) — 5t — 34,0 4:(0) ,
t
[ 1@ A,d = F4,04,0) + 5t — $4,(0)4,(0)
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Sostituendo questi valori nella (25) avvengono molte semplificazioni
e a calcoli effettuati — nel cui corso giova tener presente la (23) —. si
giunge alla formula

12 1 1 I'(i
200 = 4,0+ | S 410+ (5 — )|t 05 T%]AM)
, Iy 1 r@ :

(26)

dove per ¢+ =2 & da porre A, ,(t) = 34,(¢). In particolare, nel caso
dei polinomi di Laguerre, dette y, e y, due costanti opportune, vale la
formula :

e *LP(@)=n 3A1<t)+ ["’g A0+ (t~ﬂ)A1(t)+oc’—%Az(t)]quO(uz)

|
\
a0+ [§ 40+ (4 40— VBA, 0 [u-0] 1)

avendo, per abbreviare, posto

1 3450 1 7(3)

c

—_—— == =, — N 28

g 5 10 2 T(z) ~° (28)
5. — La sola difficoltd che si presenta nell’utilizzazione pratica della

(27) — o delle pil generali formule che potrebbero ottenersi calcolando
ulteriori termini della serie (13) — sta nell’effettiva determinazione delle
due costanti y, e y,. Vedremo fra breve come questa difficolta possa
venire superata completamente col metodo del colle che, dovendo venir
cosi utilizzato soltanto per la valutazione asintotica di un determinato
valore di L{®(z) (quello corrispondente ad = = »), subisce sostanziali
semplificazioni.

Merita tuttavia la pena di osservare che — utilizzando i risultati otte-
nuti da Szego limitatamente al fatto che da essi risulta che |

i 3
n=0(u"), rn=0("), (29)

ed ammettendo come evidente che in una formula di rappresentazione
asintotica di una funzione limitata non possano figurare funzioni non
limitate — quanto & stato stabilito nel § precedente basta gia per otte-
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L@ = A0+ F A0+ (=0 4,0 ut (G + 1) a0 4402

141

nere la rappresentazione asintotica (5) degli ultimi zeri dei polinomi di
Laguerre.

Invero, tenendo conto delle (29), la (27) puod scriversi

B

ma — ammesso il principio suaccennato — nella rappresentazione asinto-
tica della funzione

) - =

—e * L®(x)

” n (

che é limitata (anzi tende a zero) per x — -+ oo, cioe per { - — oo,
non puo figurare la funzione 4, (f) che tende invece ad co per ¢ - — oo,
perché i soli integrali della (20) che restano limitati per ¢ - — oo sono
notoriamente quelli del tipo CA4,(t); dunque dovra necessariamente
essere

,ﬂ 72 :0 0
V3 . (1) (30)

il che implica che gli zeri di L{®(z) possono pensarsi ottenuti risolvendo
un’equazione della forma:

440+ |5 4{0 + ot - BAO)n+ 0w =0,

cio che, per un teorema generale contenuto nel mio lavoro cit. ¢), implica
che, detto ¢, il valore di ¢ corrispondente all’ (n — r + 1)-esimo zero di
L™ () ed i, I'r-esimo zero reale-positivo di A4,(t), puo senz’altro scri-
versi che

1

b=, — ()[’ 1G,) + o/ Gy — P) A ]u+0<)

cioe
=2
)

L, = ir - —'51” + 0(:“'2)

e di qui il passaggio alla (5) & immediato.
Il teorema generale cui si & ora alluso ha I'enunciato seguente :

Se la funzione f(x, u) & suscettibile (uniformemente rispetto ad x) della
rappresentazione asintotica

f(z, ) :é} 9 (2, p) pk 4 O (um+1)
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dove g,(x,u) denola una funzione derivabile almeno m — k + 1 wolte
rispetto ad x nell’intorno div uno zero semplice x, della funzione go(x, u);
dato 1l numero positivo ¢, piccolo a piacere, per |p| minore di un opportuno
8, la funzione f(x,u) ha almeno uno zero xy compreso fra x, — ¢ ed

X, + €, e tale che risulia
m—1

Ty = Xy + p X w, pk 4+ O (umt) |
k=0

dove wy, wy, W,,..., W,_, Sono opportune quantitda dipendenti dai valor:
per x = x, delle g, e delle loro derivate, di cur la prima ha Uespressione
sequente
_ 91 (@es )
AT

dove Uapice denota derivazione rispetto ad x.

6. — Per svincolare i precedenti risultati da qualsiasi ,,principio” non
rigorosamente dimostrato e dalla trattazione di Szeg6, nonché per porci
in grado di adoperare la (27) nella sua integrita, converra cercare ora di
determinare direttamente le costanti y, e y,, facendo poi vedere che le
(29) e la (30) sono effettivamente verificate.

All’uopo ci serviamo del metodo del colle che, come si e gia accennato,
permette di determinare con grande precisione e relativa semplicita i va-
lori dell’ n-esimo polinomio di Laguerre e della sua derivata nel punto
x = v, 0, piu esattamente, i valori di

kl == [e— 2 L;a) (x)] .

=V

che, come risulta dalle (8), sono legati alle costanti y, e y, dalle equazioni

f Jp—
dx 4 |
V141(0) + 724, (0) = by, y145(0) + 72 45(0) = ky—- = — V‘?T e
da cui si traggono facilmente le formule

V3 9% . gt 4 1 98 .37 4
1= 1 kl - w& k2 ’ Ve S e 4 k2 . (31)
r(g)

i
fpscad.
(opl
[y
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Cominciamo con I'osservare che la ben nota rappresentazione integrale
dei polinomi di Laguerre :

1 dz
@ () — ~2
L3 (x) 2m-g§l§e (1+ )(+ ) . (32)
dove C' denota una curva chiusa del piano complesso z (da percorrersi in
verso positivo nell’integrazione) comprendente nel suo interno il punto
z = 0 ma lasciante fuori il punto z = — z, pud mettersi sotto una ri-

marchevole nuova forma notando anzitutto che pud manifestamente
scriversi che

n+2‘—+—1 a+1
1 x4z 2 x4tz A x4z
—1)» (@) == _ ——— e
i =g e (D) () ()T
c
x g, xt22 i x-1 a—1
. '¢>e_z 2 2 (_:E+x+2z 2 T x+22 2dz—
— 27 € x+2z 2 2 2 2 -
¢ 2 2
x4+ 22 ":' a—1
_~2ni(§) ‘ﬁe " x4+ 2z x
o — 7
x

e praticando successivamente il cambiamento di variabile

2
e+2z
x
che conduce alla formula

1

(—1yre L& (z) = — 2‘“.35} (i“)%u—:z); i (33)

27
C

dove C’ & una qualsiasi curva chiusa del piano ¢ (corrispondente alla
curva C del piano z) comprendente nel suo interno il punto { =1 ma
lasciante fuori il punto ¢ = — 1.

In forma un po’ diversa, se poniamo

z 4
T2 (14-C0\e| v
10g [e (-l—-:zt) ] =3 Da (C)
il che conduce alla formula

%(C)=~21—10g %—f{—%—

<8

c~(1——‘5)<:+—f—+~—i+--- (34)
o v 3 5
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e, in particolare, per z = », alla formula:

%(C)*—10g1+§ (= Q—l— C5+57+ (34")

potremo scrivere che é
(~ e IR = 2 Fe a7 ER
7. — La rappresentazione integralcj '(35) — che pone in chiara luce il

peculiare carattere dell’ascissa x = v, che & la sola per cui la funzione
¢.(€) ha uno zero del terz’ordine per { = 0 — puo essere evidentemente
applicata usando come curva C’ una curva del tipo di quella indicata in
figura, cioé composta dai due segmenti

uguali 40 ed OB delle due semirette r, ? f

ed 7, uscenti dall’origine con le anomalie
4+ ¢ — dove ¢ & un angolo acuto (pel
momento) qualsiasi — e dall’arco K fra

esse compreso della circonferenza di cen- / \K
tro O e raggio O4 = R>1, da percor-

rersi nel verso da B ad 4. Dico anzi che ___ \ P ¢
essendo (almeno nel caso x = v) " N-o ! R
2o, =2
lim [e2 " (1—¢) 2 dE=0 (36)
R>oo
K
si pud passare al limite per R — oo; cid B

che, considerato che i contributi delle
due semirette indefinite 7, ed r, (percorse
entrambe nel verso da 0 ad oo) all’inte-
grale sono manifestamente complessi coniugati, eppero &

"‘!+!=—2743! ’

implica la possibilitd di sostituire alla (35), almeno nel caso = = v, la
pit semplice formula

(—1)re 2L () = 2:3f TNy T . @

ez §

Per legittimare questo passaggio occorre perd dimostrare la (36), cio
che si fa abbastanza agevolmente osservando anzitutto che sulla circon-
ferenza K, su cui & |{| = R, si ha ovviamente

R—1<[~1|<R 41
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donde segue et

| (1—¢) &

intendendosi assunto il segno piz o il segno meno secondoché & « > 1
oppure —1<x < 1. In secondo luogo osserviamo che, sull’arco K, si
ha pure che

x—1

<(R41) * (38)

R{> Rcos g

cio che, tenuto conto che cos >0 e che ovviamente &

lim log -——T ¢ =0
{»>o ""C

porta con sé che — detto n un numero positivo qualsiasi — per R mag-
giore di un opportuno R, — sull’arco K si avra simultaneamente

RE>n, ‘9ilog i:i:g [<:n )
donde, per la (34’), segue che

14+¢ _
—r =

:——_%9{5-}_%[mg—mlog—i—%}g—]>%91é'2%licos<p. (39)

— R, (2) =R¢ — 49t log

Dalle due disuguaglianze (38) e (39) & facile desumere la relazione di
limite (36). Infatti da dette disuguaglianze segue subito che

lf Oy e dc|<f »<>§(1_52) :

1 v o—1

<f TR )t d|<me (B

-1

ac <

il che dimostra Pagsunto perché l'ultimo membro tende visibilmente a
zero per R — oo.

8. — Lo sviluppo in serie della funzione ¢,({) indicato nella (34'), e
di cui non ci siamo finora serviti, non vale ovviamente che per |{|<1.
Pero ancorche sia |£| > 1 esso vale come sviluppo asintotico, nel senso
che, qualunque sia 'intero m, puod asserirsi che &

3 5 2m—1
P =54 St o)
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e

cido che, con Poincaré, si traduce nella scrittura

Cs
@y (£) m———+ + -

donde si trae ulteriormente che
vl 3 yib v £7 vi3

e el e (e ® (1+vc_,“5+ '%%i’_+ )( +l’§+..-)-~m

NG

vis p Y2 £10

5 7
e (1+M +v1i T 18 T 200 Jr)

Analogamente puo porsi

a—1 ~
I R

48

da cui, moltiplicando fra loro le due serie asintotiche e sostituendo nella
(37), si deduce che

1 4

(-1)re 2LO () w

v§3
(1-o) (3~«) .., (1 x) (3—x) (5—wx)
3f [ g o 105 48 &0+ C .‘-]dc.

Giunti a questo punto procuriamo di determinare ’angolo acuto ¢ in
modo conforme allo spirito del metodo del colle, cioé in modo che, posto
¢ = pe’®, l’esponenziale decresca il pil rapidamente possibile al crescere
di p; cio che, essendo

3
vé Q (cos 3¢ + ¢ 8in 3 )
si realizza evidentemente ponendo ¢ = g , il che implica
3 3 kmw . .
¥ e Ckzgke‘*t, dC=e3de.

6 6

Conseguentemente la precedente formula assume 1’aspetto

(-1)re g L™ (v) (40)

v o3 m

cn——~3f -——[ .3 1;“ de s+ E‘Qg’:ﬁle‘essi-{-%gsesgi-i-'"]dg
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da cui, tenendo conto che ¢

w . Py w ., 5
s _ o _ V3 3¢ _ sf__ V3
Se =sing = —-, e =0, e = 5 >

81 ha

-l)re 2 LD @) v

2

g-ay3 [ € 1-a) (3~ 1-ox) (3—01) (5—
e 6 I:l__(_—ﬁ._‘_)_g(;“)g4+( 0‘)(48“)(0 “)QG_*_%Q',—*-]dQ .

0
Finalmente eseguiamo I'ultimo cambiamento di variabile

3 _— 8
3

1 1 1+ -1 2
4 t3’ dQ:_é_G?) 3t 3dt

6

con che gli integrali dei singoli termini vengono ricondotti a quello che
definisce la funzione I" e si conclude che é

14

i
=1, o=16%»

e LY@ wn
T L TP PR R L P

donde, essendo v = O(n), si deduce in particolare che &

k,=e ®L® @)= ’(:&Dj 9 8 o (%) v 40 (n"g) . (41)

cio che basta giad ai nostri scopi.
Per valutare anche k,, ciod, in sostanza, L{®**P (v), non ¢’¢ che da osser-

vare che, per la (32), si ha

1 A z\*t1 dz
(oc+1) — -2 - —
LaZ () = 271 E¢76 (1+ Z) (1 T x) z

1 ¢’ z\" z\* z dz
= —21 1 — — E—
27 e(+z)(l+x)xz
c
cioé che la sola diversitd rispetto al caso precedente sta nell’aggiunta
sotto integrale del fattore

Z-3c-%.

z
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Conseguentemente dalla (40) puo senz’altro dedursi che

(— 1 F L 0) + § L0

9—a—1 n _vedr @ 1 — 37 s
) — Sfe 6 [631‘_}_ 2“_9263 +"‘]Qestde
0

da cui, con calcoli perfettamente analoghi a quelli pit sopra eseguiti, si
trae che

e P[LED o)+ L LO )] v
(— 1" (2 }83456a (1) -3
c/)——n——2 .3 [r(3) TH6 TS (g)v +]

donde, cambiando il segno, segue in particolare che

Icgz—(“l)nz’%“"‘.?,%[l‘(;) 3+6 d-3+5“1’(£)v_"d’t]nLO(n““‘). (42)

7T 5 3

9. — Dalle precedenti espressioni asintotiche di k, e k, si passa im-
mediatamente a quelle di y, e y, servendosi delle (31) ; precisamente, con
facilissimi calcoli, si trovano cosi le formule

SO
W
+
ot
R
~
—_
L
-
L——J‘__l
+
S
N\
s |
o
N

— 1)» 2 63 3 %

2 3460 I'(§) | S
ya=(—1)" Vi 10 ré)v +O<n ) (43)

Queste formule confermano anzitutto le (29). In secondo luogo da esse
si ricava immediatamente che

V2 Va 1 3+5« I'(3) _2
— - +0(n?
py. 2\ 23 10 I'(%) ( )

cioé, ricordando le (28),
/
P2 %8 o

[ 41 N 1/5

il che conferma anche la (30). Restano con cid pienamente legittimate la
fondamentale formula (2) col valore di y, dato dalla (3), nonché le con-
seguenze che ne abbiamo tratte e principalmente la (5).
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Notiamo finalmente che dividendo I’'una per 1’altra le espressioni pre-
cedentemente trovate di k, e k, si puo subito ottenere una non spregevole
espressione asintotica della derivata logaritmica dell’n-esimo polinomio
di Laguerre nello speciale punto = = ». Precisamente si ha cosi

417 o) |

\

—_— )

| mvw

’ 1
B 1 b 8T oy 13kse o0
IOG) 2 R 2 T'(1) 2 5

da cui segue senz’altro che

L&'p) 1 Ve I(}) -4, 3+50 _3
90 2 2 I3’ T 10 M 0( )
v=4n+2x+2) . (44)

(Regu le 16 mars 1948.)
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