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Sul comportamento asintotico
delTii-esimo polinomio di Laguerre
nelTintorno dell'ascissa An
Per Francesco Tricomi, Torino

1. — Nello studio del comportamento asintotico per n -> oo del-
Vn-esimo polinomio di Laguerre :

si constata il fatto, a prima vista un po' strano, che gli intorni dei punti
x 0 ed x 4:n si rivelano corne singolari. Ad esempio ciô risulta in
modo oltremodo évidente da un lavoro del Moechlin (relativo al caso
oc 0) pubblicato nel 1934 in questa stessa rivista1), dalla trattazione
contenuta nella fondamentale opéra di Szegô sui polinomi ortogonali2),
nonchè da una mia Nota del 19413) in cui, generalizzando uno dei risul-
tati ottenuti dal Moecklin al caso oc ^ 0, facevo vedere corne una sempli-
cissima formula asintotica per L^fa), mentre dava risultati sorprenden-
temente esatti nelFmJemo dell'intervallo (0, en), cadeva invece insanabil-
mente in difetto nelle prossimità degli estremi di questo.

Per quel che concerne il punto x 0 la difficoltà puô considerarsi
ormai corne completamente superata perché in un altro mio précédente
lavoro4) — recentemente generalizzato aile funzioni ipergeometriche con-

fluenti5) — ho mostrato corne L^ix), nell'intorno destro di x 0,

possa svilupparsi (supposto oc > — 1 in una série non solo asintotica, ma

*) JE, Moecklin, Asymptotische Entwicklungen der Laguerreschen
Polynôme, Comment. Math. Helv. 7, 1934—35, p. 24—46.

2) G. Szegô, Orthogonal Polynomials, New York 1939; Amer. Math. Soc. Collo-

quium publ. n° 23, p. 192 e seg.

8) F. Tricomi, Generalizzazione di una formula asintotica sui polinomi di
Laguerre e sue applicazioni, Atti R. Ace. Scienze Torino 76, 1940—41, p. 288—316.

4) F. Tricomi, Sviluppo dei polinomi di Laguerre e di Hermite in série di
funzioni di Bessel, Giorn. Ist. Ital. Attuari 12, 1941, p. 14—33.

6) F, Tricomi, Sulle funzioni ipergeometriche confluenti, Annali di Matema-
tica (4) 26, 1947—48, p. 141-175.
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addirittura assolutamente ed uniformemente convergente, del tipo

Lf (x) e»* S am x 2
Ja+m (2 Vn x)

dove h è un'arbitraria costante non negativa (con privilegio pel valore
h J) e le J denotano funzioni di Bessel. Fra l'altro, con l'ausilio délia
précédente formula, ho ultimamente ottenuto6) uno sviluppo asintotico
dei primi zeri dei polinomi di Laguerre, cioè dei più piccoli fra essi, da
cui si deduce in particolare la seguente, molto aderente1) formula asin-
totica :

dove X^r dénota Yr-esimo degli n zeri (tutti reali e positivi) di
disposti in ordine crescente e jar Vr-esimo zéro reale-positivo délia fun-
zione di Bessel J^x).

Meno soddisfacente è invece lo stato attuale délia questione per quel
che concerne l'intorno del punto x 4n, perché lo sviluppo all'uopo
ottenuto dal Moecklin col metodo del colle, oltre ad essere valido soltanto

per oc 0, è desolantemente complicato8), mentre i più generali ed

eleganti risultati ottenuti con lo stesso metodo dallo Szegô (op. cit.) nel-
l'intorno del punto x v-=4:n-\-2(oc-{' 1) non vanno oltre il primo
termine, e la complicazione dei calcoli fa passare la voglia di andare oltre
per la stessa via.

Per queste ragioni non mi sembra privo d'intéressé far qui vedere corne,
combinando il metodo del colle con un ancora poco conosciuto metodo di
studio délie equazioni differenziali lineari, sia possibile ottenere senza

troppe difficoltà quanti si vogliano termini di uno sviluppo, non solo
asintotico ma assolutamente ed uniformemente convergente di 2^a)(#) nel-

e) F. Tricomi, Sugli zeri délie funzioni di cui si conosce una rappresentazione
asintotica, Annali di Matematica. (4) 26, 1947—48, p. 283—300.

7) Ad esempio nei caso a — 0, n 10, r — 1 la (1) fornisce A^q x 0,13779 mentre
il valore esatto è 0,13781. Dianzi si conosceva soltanto, se non m'inganno, la formula

(Szegô, op. cit. p. 123—124, Tricomi, op. cit. 3), p. 305.)
8) E* probabile che il Moecklin sarebbe giunto a risultati più semplici se avesse svihip-

pato intorno all'ascissa x v 4w -f 2 invece che intorno ad x 4ra. Ma nel caso
a 0 ciô si presentava ben poco spontaneo Colgo Foccasione per avvertire che i valori
esplicitamente dati dal Moecklin per i coefficienti da lui indicati con a21 e a22 non sono
esatti : devono moltiplicarsi per l'unità immaginaria i.
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Fintorno del predetto punto x v ; sviluppo di cui calcolerô esplicita-
mente i due primi termini ottenendo cosi la formula

Yi x (t)
10 2

A,\
—. 1

(2)
dove si è posto

3r
2~a f 3/-

\w | Va

n L
(3)

e si è denotata con A^t) la cosiddetta funzione di Airy, la cui espres-
sione mediante funzioni di Bessel è la seguente :

Fra Paltro, la (2) conduce alla seguente rappresentazione asintotica
degli ultimi zeri dei polinomi di Laguerre :

"* ~* (5)

dove ir dénota Vr-esimo zéro reale-positivo délia funzione di Airy9), che

nelcaso r=l rettifica una formula sull'ultimo zéro di L^(x) preceden-
temente ottenuta da F. E. Spencer1Q) col metodo di confronto di Sturm.

2. — II suaccennato nuovo metodo di studio délie equazioni differenziali
lineari, che puô forse farsi risalire al mio indimenticabile collega ed amico

G.Fubini11), non sembra ancora molto conosciuto, nonostante sia stato

9) Le ir sono legate agli zeri sr délia funzione J_ t (x) -f Ji (x), di cui è data una
3 3 3

tabella a p. 751 délie Bessel Functions di G. N. Watson, dalla relazione 2(*r/3)2 sr che

implica
' 2

Fr-=
10) V. E. Spencer, Asymptotic expressions for the zéros of generalized La-

guerre polynomials and Weber functions, Duke Math. Journ. 3, 1937, p. 667—675.
La formula analoga alla (5) dello Spencer (la (42), alla fine del lavoro) va corretta nel senso
che in luogo di 4n -\- 2a deve essere scritto v, cioè 4w -f- 2a -f- 2; il che non è privo
d'importanza perché il primo termine di essa si altéra délia quantità finita 2, montre la
formula finisce, corne la nostra (5), con O(n-1).

n) G.Fubini, Studi asintotici per alcune equazioni differenziali, Rend. Ace.

Lincei (6) 26, 1937, p. 253—259.
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già ripetutamente adoperato, specie in Italia12). Vale pertanto la pena
di esporne rapidissimamente il concetto restando, per semplicità, nel-
l'ambito délie equazioni del second'ordine, benchè la sua estensione al-
Tordine n e perfino a eerti tipi di equazioni non lineari, non presenti
particolari difficoltà.

Il metodo è fondato sull'osservazione che se una data equazione difïe-
renziale lineare di 2° ordine si scrive sotto la forma

y" + Vi{*)yf + Pz(x)y A{x)y" + B{x)y' + C(x)y (6)
dove

sia un'equazione che si sa integrare esplicitamente, di cui si conoscono
cio è due integrali linearmente indipendenti :

alla (6) puô formalmente applicarsi il procedimento lagrangiano délia
variazione délie costanti arbitrarie che, posto

y C^F^x) + C2(x)F2(x), y' C^Ffa) + C2(x)Ff2(x) (7)

conduce, nell'ipotesi che sia A (x) ¦=£ 1, aile due equazioni integrali di
Volterra nelle funzioni incognite C1(x) e C2(x) :

Cl(x) Yi-S
X

02(x) y2+ J

avendo denotato con yx e y2 due costanti legate ai valori di y e y' per
x x0 dalle equazioni

y (x0) Yl Fx (x0) + y2 F2 (x0), y1 (x0) yx F[ (x0) + y2 F2 (x0) (8)

e con <Pt e &2 le (note) funzioni date dalla formula

0. (x) ?—LJ*L^

dove W(x) dénota il wronskiano dei due integrali Ft(x) e F2(x).
Anzi il précédente sistema intégrale puô, con facili trasformazioni, ri-

dursi aile due equazioni integrali ad una sola incognita :

12) Per esempio nel mio récente libro: Equazioni differenziali (Torino, Einaudi,
1948) che contiene un'appendice esplicitamente dedicata a detto metodo. Esso com-
prende in se corne caso particolare il metodo "di Liouville-Steckloff " ripetutamente usato
da G. Szegô nell' opéra cit.2).
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Ot(x) -§K(x,
avendo posto

0t(x) 1,2), (10)

(H)

e si giunge cosl alla seguente formula di rappresentazione degli integrali
délia data equazione :

Y,{x)=Ft{x)+ j
(*=1,2)

°

(12)

dove Ci — quale soluzione dell'equazione intégrale di Volterra di seconda

specie (10) — è data dalla série assolutamente ed uniformemente convergente

:

Qt(x) (13)

avendo, corne di consueto, designato con K2, KZJ. i successivi iterati
del nucleo K(x,£).

W molto notevole il fatto che le considerazioni precedenti si applicano
,,qualunque" siano, piccoli o grandi, i coefficients A, B e C del secondo
membro délia (6). Tuttavia se tali coefficients sono ,,piccoli", cioè se —

contenendo Fequazione un certo parametro ^ — si possa asserire che per
ju -» 0 è (uniformemente rispetto ad x)

(h>0) (14)

sarà in conseguenza

e lo sviluppo ottenuto sostituendo nella seconda délie (12) la série (13)

assumera anche un carattere asintotico ; il che implica che, in particolare,
si avrà

F1(x) F2(x)«0

3. —- II metodo di cui sopra puô, fra l'altro, applicarsi, e in molteplici
modi, all'equazione differenziale délie funzioni ipergeometriche con-

fluenti :

xy" + (c _ x) y' — ay 0
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il cui intégrale regolare nelForigine ed assumente ivi il valore 1 — che si
désigna abitualmente con lF1 (a ; c ; x) o, più semplicemente, con F (a, c ; x)
è legato ai polinomi di Laguerre dall'uguaglianza

(-n,a+l;x) (17)

Agli scopi che abbiamo qui in vista conviene praticare anzitutto nella
(16) la sostituzione x

y e
2

z

con che essa diviene

e successivamente, posto per brevità13)

2c — 4a v

cambiare la variabile indipendente x in una nuova variabile t legata alla
précédente dalla relazione

v^t (18)

con che si giunge all'equazione differenziale :

«Pz 1 fïf/ï
che si presta egregiamente all'applicazione del metodo précédente, perché
nel caso dei polinomi di Laguerre, cioè nel caso in cui è

a — n c <%-}- 1 v 4n-f 2(oc + 1)

i coefficienti del secondo membro sono O (n '

per n -> oo.
Inoltre l'equazione ottenuta uguagliando a zéro il primo membro délia

(19) e cioè l'equazione

^î + I^O (20)

è un'equazione che s'intégra facilmente mediante funzioni di Bessel
d'ordine i \ • Precisamente essa è l'equazione cui soddisfa la funzione di
Airy cui si è già accennato, epperô due suoi integrali linearmente indipen-
denti sono

yx Ax(x) y2 - A2{x)

18) La quantità v 2 c — 4a coincide col quadruplo del primo dei due parametri h ed
w* introdotti dal Whittaker nello studio délie funzioni ipergeometriche confluenti.
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dove Ax(x) è data dalla (4) ed A2(x) dalPanaloga formula

(21)

dove si è cambiato il segno interposto fra le due funzioni di Bessel e

inoltre si è moltiplicato tutto per l/3.
Questi due integrali sono effettivamente indipendenti perché, essendo

(22)

il loro wronskiano W — necessariamente costante perché nella (20) manca
il termine con la derivata prima — è dato dalla formula

W
7t

3
(23)

Bastano già queste poche eonsiderazioni per potere asserire — utiliz-
zando la prima délie (15) — che se y (x) è una qualsiasi funzione iper-
geometrica confluente, cioè una qualsiasi soluzione délia (16) ; dette yY

e y2 due opportune costanti, al divergere del parametro v, cioè per
a -> — oo, dovrà aversi

c 2y(x) y1[A1(t)+O(v *)] + y*[A2(t)+O(v *)] (24)

ciô che — a prescindere dalla determinazione délie costanti yt e y2 — è

in sostanza il risultato ottenuto dallo Bzegô pei polinomi di Laguerre.
Invero, avendosi allora (v. più avanti, § 9)

0 (n~i y2 0

la (24) coincide con la formula (8.22.11) a p. 195 dell'op. cit. sotto2).

4. — Per ottenere una maggiore approssimazione non c'è che da cal-

colare un termine successivo, cioè servirsi délia seconda invece che délia

prima délie (15). AIPuopo occorre anzitutto calcolare &t per mezzo délia

(9), che nel caso attuale fornisce :
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epperô, detti Zx e Z2 due integrali linearmente indipendenti délia (16) e

supposto x0 — 0, potrà porsi

(25)

Sono ora da calcolare gli 8 integrali indefiniti :

Itit=$PAttf)A,(Ç)dÇ, 7j,=Ji4,(f)4(f)d!, (.-,/= 1,2)

di cui alcuni sono quasi immediati. Invero si ha anzitutto che

ï*,* \A\{è)
e successivamente, tenendo conto délia (23), si hanno le due equazioni

che forniscono subito 1 valori dei rimanenti /'. Quanto agli integrali /t>)
non c'è che da osservare che, con una facile derivazione in cui giova tener
conto délia (20), si ha

~ [PA.A, + 3(At - U[) (A, - ÇA',)] WAtA, + P{A'%A, + A,A't)

+ 3(- U'I) {A, - ÇA',) + 3(ii, - U[) (- W,)
9?AtA, + P(A'%A, + AtA't) + ?At{A, - ^A'})

donde segue che

® + f [Atm - u'
Passando al calcolo degli integrali definiti che a noi servono si trovano

cosi le formule

f [At(t) - tA[(t)] [At(t) - tA't{t)]

{t) + $[A,{t) - tA't(t)]* - f^(0)
0

jt -
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Sostituendo questi valori nella (25) awengono moite semplificazioni
e a calcoli effettuati — nel cui corso giova tener présente la (23) — si

giunge alla formula

(»=1,2),
(26)

dove per i 2 è da porre .4Î+1(<) SA1(t). In particolare, nel caso
dei polinomi di Laguerre, dette yx e y2 due costanti opportune, vale la
formula :

t(t)+ \^-A'1(t)+<*'{t-p) Ax ^2

(27)

avendo, per abbreviare, posto

c 1 3 +5a
2 5 "" io ~ ' 2 r(§) p '

5. — La sola difficoltà che si présenta nell'utilizzazione pratica délia
(27) — o délie più generali formule che potrebbero ottenersi calcolando
ulteriori termini délia série (13) — sta nelFeffettiva determinazione délie
due costanti yx e y2. Vedremo fra brève corne questa difficoltà possa
venire superata completamente col metodo del colle che, dovendo venir
cosl utilizzato soltanto per la valutazione asintotica di un determinato
valore di I/jp(x) (quello corrispondente ad x v), subisce sostanziali

semplificazioni.
Mérita tuttavia la pena di osservare che — utilizzando i risultati otte-

nuti da Szegô limitatamente al fatto che da essi risulta che

yi 0 (/»*), y, 0 (,,*), (29)

ed ammettendo corne évidente che in una formula di rappresentazione
asintotica di una funzione limitata non possano figurare funzioni non
limitate — quanto è stato stabilito nel § précédente basta già per otte-
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nere la rappresentazione asintotica (5) degli ultimi zeri dei polinomi di
Laguerre.

Invero, tenendo conto délie (29), la (27) puo scriversi

** PYi.

ma — ammesso il principio suaccennato — nella rappresentazione asintotica

délia funzione

che è limitata (anzi tende a zéro) per x -> + oo, cioè per t -> — oo,
non puo figurare la funzione A2 (t) che tende invece ad oo per t -> — oo,
perché i soli integrali délia (20) che restano limitati per t -> — oo sono
notoriamente quelli del tipo CA1(t); dunque dovrà necessariamente
essere

^A + J^_ o (p) (30)

il che implica che gli zeri di L^(x) possono pensarsi ottenuti risolvendo
un'equazione délia forma :

Ax{t) + \jAilt) + <*'(* -0Mi(o]a* + 0{f) o

cio che, per un teorema générale contenuto nel mio lavoro cit.6), implica
che, detto tr il valore di t corrispondente alF (n — r + \)-esimo zéro di
L^(x) ed ir Vr-esimo zéro reale-positivo di A1(t), puo senz'altro
scriversi che

cioè

e di qui il passaggio alla (5) è immediato.
Il teorema générale cui si è ora alluso ha l'enunciato seguente :

Se la funzione f(x, p) è suscettibile (uniformemente rispetto ad x) délia
rappresentazione asintotica
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dove gk(x,fjt) dénota una funzione derivabile almeno m — k + 1 volte

rispetto ad x néWintorno di uno zéro semplice x0 délia funzione go(x, fi) ;

dato il numéro positivo e, piccolo a piacere, per \ /u, \ minore di un opportune
ô, la funzione f(x,ju) ha almeno uno zéro x* compreso fra x0 — e ed

x0 -\- e, e taie che risulta
m-1

dove w0, wx, w2,..., wm_x sono opportune quantité dipendenti dai valori
per x xQ délie gk e délie loro derivate, di cui la prima ha Vespressione

seguente

dove Vapice dénota derivazione rispetto ad x.

6. — Per svincolare i precedenti risultati da qualsiasi ,,principio" non
rigorosamente dimostrato e dalla trattazione di Szegô, nonchè per porci
in grado di adoperare la (27) nella sua integrità, converrà cercare ora di
determinare direttamente le costanti y1 e y2, facendo poi vedere che le

(29) e la (30) sono effettivamente verificate.
AlFuopo ci serviamo del metodo del colle che, corne si è già accennato,

permette di determinare con grande precisione e relativa semplicità i
valori delF n-esimo polinomio di Laguerre e délia sua derivata nel punto
x v, o, più esattamente, i valori di

che, corne risulta dalle (8), sono legati aile costanti yt e y2 dalle equazioni

dor ï fi. 4

y^^O) + y2^2(0) *lf yi^(0) + YtA't{0) k,^ - |/-/ h

da cui si traggono facilmente le formule

r
160

G)

J 1 é. 3 { jJ
7

1 é. 3 { j* r= —* + 7TV k* '



Cominciamo con Fosservare che la ben nota rappresentazione intégrale
dei polinomi di Laguerre :

dove C dénota una curva chiusa del piano complesso z (da percorrersi in
verso positivo nell'integrazione) comprendente nel suo interno il punto
z 0 ma lasciante fuori il punto z — x, puô mettersi sotto una ri-
marchevole nuova forma notando anzitutto che puô manifestamente
scriversi che

dz-

e praticando successivamente il cambiamento di variabile

che conduce alla formula
*

(4^|)4 C1 — C2)2 dC (33)

dove 0' è una qualsiasi curva chiusa del piano C (corrispondente alla
curva G del piano z) comprendente nel suo interno il punto C 1 ma
lasciante fuori il punto f — 1.

In forma un po' diversa, se poniamo

log|

il che conduce alla formula

--r/i + fw v

(341
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e, in particolare, per x v, alla formula :

Ç~ 3 + 5 + 7

potremo scrivere che è

(- l)ne
Ot-1

k 2

(340

(35)

7. — La rappresentazione intégrale (35) — che pone in chiara luce il
peculiare carattere delFascissa x v, che è la sola per cui la funzione
<px(Ç) ha uno zéro del terz'ordine per f 0 — puô essere evidentemente
applicata usando corne curva Cr una curva del tipo di quella indicata in
figura, cioè composta dai due segmenti
uguali AO ed OB délie due semirette rx
ed r2 uscenti daiï'origine con le anomalie
±ç> — dove <p è un angolo acuto (pel
momento) qualsiasi — e dalFarco K fra
esse compreso délia circonferenza di cen~

tro 0 e raggio OA R > 1, da percor-
rersi nel verso da B ad A. Dico anzi che
essendo (almeno nel caso x v)

lim /¦
a-1

„ O (36)

si puô passare al limite per R ~> oo ; cio
che, considerato che i contributi délie
due semirette indefinite rx ed r2 (percorse
entrambe nel verso da 0 ad oo) alPinte-
grale sono manifestamente complessi coniugati, epperô è

implica la possibilité di sostituire alla (35), almeno nel caso x v, la

più semplice formula

(~l)ne 2 Z<na> (y) 3 le 2 v
(1 — C2) 2 rfC (37)

Per legittimare questo passaggio occorre perô dimostrare la (36), ciô

che si fa abbastanza agevolmente osservando anzitutto che sulla circon-
ferenza K, su cui è |f | R, si ha ovviamente

R2 - 1 < | C2 - 1 | < R2 + 1
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donde segue a-l a-l
(i (38)

intendendosi assunto il segno più o il segno meno secondochè è oc > 1

oppure — 1 <<% < 1. In secondo luogo osserviamo che, sull'arco K, si
ha pure che

9Î C > -B cos cp

ciô che, tenuto conto che cos ç? > 0 e che ovviamente è

lim log \±jr ~ 0

porta con se che — detto rj un numéro positivo qualsiasi — per R mag-
giore di un opportuno Ro — sull'arco K si avrà simultaneamente

donde, per la (34/), segue che

(39)

Dalle due disuguaglianze (38) e (39) è facile desumere la relazione di
limite (36). Infatti da dette disuguaglianze segue subito che

a-l
=/

a-l
(i - dC<

=/
v a—1 v

— — JR cos <p - — R cos g>

e * (-R2±l) 2 \dÇ\<7ie 4
a-l

il che dimostra Fassunto perché l'ultimo membro tende visibilmente a
zéro per R -> oo.

8. — Lo sviluppo in série délia funzione %{Ç) indicato nella (34;), e
di cui non ci siamo finora serviti, non vale ovviamente che per | f | < 1.
Perô ancorchè sia | £ | > 1 esso vale corne sviluppo asintotico, nel senso
che, qualunque sia Fintero m, puô asserirsi che è
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ciô che, eon Poincaré, si traduee nella scrittura

donde si trae ulteriormente che

+ +

Analogamente puô porsi

2 8 48

da cui, moltiplicando fra loro le due série asintotiche e sostituendo nella
(37), si deduce che

Giunti a questo punto procuriamo di determinare l'angolo acuto <p in
modo conforme allô spirito del metodo del colle, cioè in modo che, posto

f Qeiv, l'esponenziale decresca il più rapidamente possibile al ereseere
di g ; ciô che, essendo

v t^ v cfî* (cos 3 <p + i sin 3 cp)
6 6

si realizza evidentemente ponendo y — il che implica
S

j.o o kir 7T

Conseguentemente la précédente formula assume l'aspetto
v~Tw (40)

0
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da cui, tenendo conto che è

si ha

c/) -
0

Finalmente eseguiamo l'ultimo cambiamento di variabile

con che gli integrali dei singoli termini vengono ricondotti a quello che

definisce la funzione fe si conclude che è

donde, essendo v O(n), si deduce in particolare che è

(41)

ciô che basta già ai nostri scopi.
Per valutare anche k2, cioè, in sostanza, I/g+P (v), non c' è che da osser-

vare che, per la (32), si ha

cioè che la sola diversità rispetto al caso précédente sta nelFaggiunta
sotto intégrale del fattore
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Conseguentemente dalla (40) puô senz'altro dedursi che

da oui, con calcoli perfettamente analoghi a quelli più sopra eseguiti, si
trae che v

donde, cambiando il segno, segue in particolare che

v ,42,

9. — Dalle precedenti espressioni asintotiche di kx e k2 si passa im-
mediatamente a quelle di yx e y2 servendosi délie (31) ; precisamente, con
facilissimi calcoli, si trovano cosi le formule

Queste formule confermano anzitutto le (29). In secondo luogo da esse

si ricava immediatamente che

PYi Yr 2/3 10 r(f)
cioè, ricordando le (28),

il che conferma anche la (30). Restano con ciô pienamente legittimate la
fondamentale formula (2) col valore di yx dato dalla (3), nonchè le con-

seguenze che ne abbiamo tratte e principalmente la (5).
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Notiamo finalmente che dividendo l'una per Paîtra le espressioni pre-
cedentemente trovate di kx e k2 si puô subito ottenere una non spregevole
espressione asintotica délia derivata logaritmica delFn-esimo polinomio
di Laguerre nello spéciale punto x v. Precisamente si ha cosi

da cui segue senz'altro che

— v1+o(n '*)

2 2
V3/-v 3 +

(44)

(Reçu le 16 mars 1948.)
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