Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 22 (1949)

Artikel: Über die Randwerte meromorpher Funktionen einer Veränderlichen.

Autor: Weigand, Leonhard

DOI: https://doi.org/10.5169/seals-19195

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Randwerte meromorpher Funktionen einer Veränderlichen

Von LEONHARD WEIGAND, München

Einleitung

1. Nach dem klassischen Spiegelungsprinzip von H. A. Schwarz ist eine im Kreise |z| < 1 analytische Funktion f(z), die auf einem Bogen AB der Kreisperipherie stetig und reell ist, regulär in jedem Punkte von AB. Vor kurzem¹) wurde von Herrn C. Carath'eodory eine weitgehende Verallgemeinerung dieses Satzes angegeben, wobei auf die Stetigkeit der Funktion f(z) auf AB verzichtet wird. Der Beweis stützt sich im wesentlichen auf folgende Definition des Randwertes einer Funktion.

Definition. Ist f(z) eine beliebige, in einem Gebiete G definierte reelle oder komplexe Funktion und bezeichnen wir mit ζ irgendeinen Randpunkt von G, so nennen wir eine Zahl α einen Randwert von f(z) im Punkte ζ , wenn es mindestens eine gegen ζ konvergierende Folge von Punkten z, in G gibt, für welche

 $\lim_{\nu \to \infty} f(z_{\nu}) = \alpha \tag{1.1}$

gilt.

2. Das Hauptresultat der erwähnten Arbeit von Carathéodory ist ein allgemeiner Satz über das Verhalten einer in einem beschränkten Gebiete meromorphen Funktion in einem Randpunkte. Da unser Ziel die Umkehrung dieses Satzes ist, werden wir ihn hier anführen.

Zu diesem Zwecke betrachten wir auf der Riemannschen Zahlkugel eine "normale Überdeckungsfolge"²)

$$K_1, K_2, K_3, \dots$$
 (2.1)

von offenen Kreisen, d. h. eine abzählbare Menge von Kreisen, wobei einem beliebigen Kreise \varkappa der Riemannschen Kugel mit P als Mittelpunkt mindestens ein Kreis der Folge (2.1) zugeordnet werden kann, der im Inneren von \varkappa liegt und den Punkt P in seinem Inneren enthält.

¹⁾ C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comment. math. Helvet. vol. 19, fasc. 3, p. 263.

²) C. Carathéodory, Reelle Funktionen, Bd. I, Leipzig-Berlin 1939, § 85, S. 71.

Ist dann f(z) eine beliebige im Kreise |z| < 1 meromorphe analytische Funktion, so ordnen wir jedem Kreise K_{ν} der Folge (2.1) eine Punktmenge A_{ν} auf |z| = 1 zu, die aus allen Punkten ζ dieser Linie besteht, für die der Grenzwert

$$\lim_{r \to 1} f(r \zeta) \qquad (0 < r < 1) \tag{2.2}$$

entweder nicht existiert, oder, falls er vorhanden ist, mit einem Punkte von K_{ν} zusammenfällt.

Sei ferner

$$\delta_1 > \delta_2 > \delta_3 > \cdots \tag{2.3}$$

eine Folge ineinander geschachtelter Kreisbögen auf |z|=1, die einen gemeinsamen inneren Punkt ζ_0 besitzen und deren Längen gegen Null konvergieren.

Wir betrachten für jeden Wert von ν die Folge der Durchschnitte

$$A_{\nu} \delta_{1}, A_{\nu} \delta_{2}, A_{\nu} \delta_{3}, \dots$$
 $(\nu = 1, 2, \dots)$ (2.4)

und bezeichnen mit

$$n_j$$
 (2.5)

diejenigen ganzen Zahlen (falls es solche gibt), für die unter den Punktmengen $A_{n_j} \delta_p$ (p=1,2,...) mindestens eine das lineare Maß Null besitzt.

Nachdem wir auf diese Weise die n_j bestimmt haben, betrachten wir die offene Punktmenge

$$U = K_{n_1} + K_{n_2} + K_{n_3} + \cdots$$
 (2.6)

und ihre abgeschlossene Komplementärmenge H.

Die Menge H kann nie leer sein. Füllt H nicht die ganze Zahlkugel aus, so kann man ihre Komplementärmenge U als Summe von höchstens abzählbar vielen paarweise punktfremden Gebieten G_i darstellen.

3. Der in § 2 erwähnte Satz von Carathéodory lautet dann:

Satz I. Es sei eine analytische Funktion f(z) meromorph im Kreise |z| < 1 und ζ_0 ein beliebiger Punkt der Peripherie |z| = 1. Dann kann man nach den Vorschriften der letzten Paragraphen die Punkte der Riemannschen Zahlkugel als Summe

$$H+G_1+G_2+\cdots$$

von paarweise punktfremden Mengen darstellen, wobei H abgeschlossen und nicht leer ist und die G_i , die u. U. auch fehlen können, Gebiete bedeuten.

Dann ist für jedes beliebige der Gebiete G_i entweder jeder seiner Punkte Randwert von f(z) in ζ_0 oder aber kein einziger Punkt von G_i hat diese Eigenschaft. Die Menge der Randwerte von f(z) in ζ_0 besteht also jedenfalls aus der abgeschlossenen Menge H, der noch gewisse unter den Gebieten G_i hinzugefügt sind.

Die Umkehrung dieses Satzes lautet:

Satz II. Sind die Punkte der Riemannschen Zahlkugel als Summe

$$H+G_1+G_2+\cdots$$

von paarweise punktfremden Mengen dargestellt, wobei H eine beliebig vorgegebene, abgeschlossene und nicht leere Menge ist und die G_i , die u. U. auch fehlen können, Gebiete bedeuten, so gibt es stets eine im Kreise |z| < 1 meromorphe analytische Funktion f(z), für die in einem Punkte ζ_0 der Peripherie |z| = 1 die Punktmengen H und G_i die in den letzten Paragraphen angegebene Bedeutung haben. Die Punkte derjenigen unter den G_i , deren Begrenzung aus mehr als einem Kontinuum besteht, sind sämtlich Randwerte von f(z) in ζ_0 . Von jedem der übrigen Gebiete G_i kann man nach Belieben verlangen, da β entweder keiner oder jeder seiner Punkte Randwert von f(z) in ζ_0 ist.

Wir führen den Beweis des Satzes II in mehreren Schritten. Zuerst (§§ 4 bis 6) geben wir eine analytische Funktion f(z) an, die im Kreise |z| < 1 meromorph ist und für die in einem Punkte ζ_0 der Peripherie |z| = 1 die Menge H mit einem vorgegebenen beschränkten Kontinuum C identisch ist. Durch Spezialisierung von C ergeben sich dann die Fälle der Halb- und der Vollebene (§ 7). Nachdem wir in § 8 kurz auf die Frage der Randwerte eingegangen sind, folgen in den §§ 9 bis 12 zwei Beispiele von analytischen Funktionen, für welche die Menge H einmal aus drei isolierten Punkten besteht, das andere Mal aus abzählbar vielen paarweise fremden geschlossenen Jordankurven in beliebiger gegenseitiger Lage. Die dabei verwendeten Konstruktionsmethoden benutzen wir, um endlich in den §§ 13 bis 16 den Fall einer beliebigen abgeschlossenen und beschränkten Punktmenge H zu erledigen. Zuletzt (§§ 17 bis 19) beweisen wir die im Satze II aufgestellten Behauptungen bezüglich der Gebiete G_i .

H besteht aus einem Kontinuum

4. Um späterhin umständliche Unterscheidungen zu umgehen, erledigen wir gleich zu Anfang den trivialen Fall, wo das Kontinuum C aus dem einzigen Punkte w_0 besteht.

Ist eine im Kreise |z| < 1 meromorphe Funktion auch noch in dem Peripheriepunkte ζ_0 analytisch und besitzt sie dort den Wert w_0 , so enthält die in § 2 definierte Menge H nur den einen Punkt w_0 , der zugleich auch der einzige Randwert in ζ_0 ist.

Für die Funktion

$$f(z) = w_0 + e^{\left(\frac{\zeta_0 + z}{\zeta_0 - z}\right)^2}$$

bestehen die in ζ_0 gebildete Menge H und deren Komplementärmenge U aus dem einen Punkte w_0 bzw. aus lauter Randwerten von f(z).

Wir können somit im folgenden diesen einfachen Fall beiseite lassen und bezeichnen mit C ein beliebiges beschränktes Kontinuum, welches mindestens zwei Punkte enthält.

Um zu einer im Einheitskreise meromorphen Funktion w=f(z) zu gelangen, für die in einem Punkte ζ_0 auf der Peripherie |z|=1 die Menge H identisch mit dem Kontinuum C ist, konstruieren wir uns ein spezielles Riemannsches Flächenstück S in folgender Weise.

Nach einem bekannten Satze aus der Punktmengenlehre 3) kann man dem Kontinuum C mindestens eine monoton abnehmende Folge

$$U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots \tag{4.1}$$

von beschränkten Gebieten U_m zuordnen, deren Durchschnitt gleich C ist. Auf C wählen wir uns eine dichte, abzählbare Punktmenge

$$w_i \qquad (i=1,2,\ldots) \tag{4.2}$$

und weisen jedem dieser Punkte eine abgeschlossene Kreisscheibe k_i mit w_i als Mittelpunkt zu. Die Radien der k_i sollen derart gegen Null konvergieren, daß stets

$$k_i \subseteq U_i \quad \text{und} \quad k_i \cap k_{i+1}$$
 (i = 1, 2, ...) . (4.3)

Auf der Peripherie der Kreise k_1 und k_2 wählen wir je einen Bogen b_{11} und b_{20} und verbinden die beiden Endpunkte des einen Bogens mit denen des anderen in der Weise durch zwei sich gegenseitig nicht treffende Jordansche Kurvenstücke γ_{10} und γ_{11} , die mit k_1 und k_2 nur die Endpunkte gemein haben und ganz im Inneren des Gebietes U_1 verlaufen. daß die vier Kurvenstücke b_{11} , γ_{10} , b_{20} , γ_{11} die Begrenzung eines einfach zusammenhängenden, schlichten Riemannschen Flächenstückes S^1 ergeben, welches die Punkte w_1 und w_2 als innere Punkte enthält.

³⁾ C. Carathéodory, Reelle Funktionen, Leipzig-Berlin 1939, Bd. I, § 107, S. 90.

⁴⁾ Für zwei fremde Punktmengen A und B schreiben wir $A \circ B$.

Entsprechend wählen wir auf dem Kreisbogen b_{20} einen Teilbogen b_{21} und auf der Peripherie des Kreises k_3 einen Bogen b_{30} , und verbinden die beiden Endpunkte von b_{21} mit denen von b_{30} in der Weise durch zwei sich gegenseitig nicht treffende Jordansche Kurvenstücke γ_{20} und γ_{21} , die mit k_2 und k_3 nur die Endpunkte gemein haben und ganz im Gebiete U_2 verlaufen, daß die Kurvenstücke zusammen mit b_{30} und der nach Wegnahme von b_{21} verbleibenden Begrenzung von S^1 die Begrenzung eines einfach zusammenhängenden, im allgemeinen schlichtartigen Flächenstückes S^2 ergeben, welches neben w_1 und w_2 auch noch den Punkt w_3 im Innern enthält.

Haben wir so allgemein S^n konstruiert, so wählen wir auf dem der Begrenzung von S^n angehörenden Kreisbogen $b_{n+1,0}$ einen Teilbogen $b_{n+1,1}$ und auf der Peripherie von k_{n+2} einen Bogen $b_{n+2,0}$ und verbinden die beiden Endpunkte von $b_{n+1,1}$ mit denen von $b_{n+2,0}$ in der Weise durch zwei sich gegenseitig nicht treffende Jordansche Kurvenstücke $\gamma_{n+1,0}$ und $\gamma_{n+1,1}$, die mit k_{n+1} und k_{n+2} nur die Endpunkte gemein haben und ganz im Gebiete U_{n+1} verlaufen, so daß $\gamma_{n+1,0}$ und $\gamma_{n+1,1}$, zusammen mit $b_{n+2,0}$ und der nach Wegnahme von $b_{n+1,1}$ verbleibenden Begrenzung von S^n die Begrenzung des einfach zusammenhängenden, schlichtartigen Flächenstückes S^{n+1} ergeben, welches die Punkte w_1, \ldots, w_{n+2} im Inneren enthält.

So fortfahrend ergibt sich zu jedem ganzen $n \ge 1$ ein einfach zusammenhängendes, schlichtartiges Flächenstück S^n . Steht für jedes $n \ge 1$ fest, auf welche Art S^{n+1} aus S^n entsteht, und setzen wir diesen Prozeß unbeschränkt fort, so erhalten wir als Ergebnis ein einfach zusammenhängendes, schlichtartiges Riemannsches Flächenstück S, das sämtliche Punkte w_i der Folge (4.2) im Inneren enthält und dessen Projektion ins Innere von U_1 fällt. Dies ist leicht einzusehen.

Betrachten wir nämlich ein beliebiges geschlossenes und ganz auf S liegendes Polygon π , so stellt jede der endlich vielen Seiten p von π eine beschränkte und, mit Einschluß beider Endpunkte, abgeschlossene Punktmenge dar. Trennen wir die Fläche S^n von der Fläche S^{n+1} ab und bezeichnen die Menge der inneren Punkte dieser schlichten Restmenge mit R^n , so ist jedem Punkte der Seite p eine bestimmte dieser Restmengen als schlichte Umgebung zugeordnet. Nach dem Satze von Borel wird dann p bereits von endlich vielen der R^n überdeckt und dasselbe gilt dann auch vom Polygon π . Ist R^N diejenige dieser Restmengen mit größtem Index, so liegt π ganz in dem einfach zusammenhängenden, schlichtartigen Flächenstück S^{N+1} und zerlegt dieses und damit auch das Riemannsche Flächenstück S in zwei Teilflächen. Überdies liegt das Innere von π ganz in S^{N+1} , also auch ganz in S.

Daß die Projektion von S ins Innere von U_1 fällt und sämtliche Punkte w_i im Inneren von S liegen, folgt aus obiger Konstruktion, und damit ist unsere Behauptung bewiesen.

Die Begrenzung von S besteht durchweg aus Jordanschen Kurvenstücken.

5. Nach dem Hauptsatz der konformen Abbildung läßt sich S durch eine analytische Funktion w = f(z) auf das Innere des Kreises |z| < 1 übertragen. Die Abbildung ist in jedem Randpunkte von S stetig.

Sei $\{q_n\}$ eine unendliche Folge von Querschnitten auf S, wobei wir q_n im Kreise k_n derart anbringen, daß jeder Querschnitt q_n den vorhergehenden q_{n-1} vom folgenden q_{n+1} trennt. Die q_n sind paarweise punktfremd, auch in ihren Endpunkten. Jedes q_n teilt S in zwei Teilflächen, von denen wir diejenige mit g_n bezeichnen, welche q_{n+1} enthält. Wir erhalten so eine Folge von Teilflächen g_n , von denen jede in allen vorhergehenden enthalten ist und selbst alle folgenden enthält. Die Projektion der Teilfläche g_n fällt ganz ins Innere der Umgebung U_n der Folge (4.1).

Im Kreise |z| < 1 bekommen wir als Bild der q_n eine Folge von Querschnitten r_n , die wegen der Randstetigkeit der Abbildung die gleichen Eigenschaften wie die q_n besitzen, und eine Folge ineinandergeschachtelter Gebiete h_n . Wir behaupten, daß die Querschnitte r_n gegen einen Peripheriepunkt ζ_0 des Kreises |z| = 1 konvergieren, womit gezeigt ist, daß die Begrenzung von S durch w = f(z) stetig in die in ζ_0 punktierte Kreislinie |z| = 1 übergeht.

Wir beweisen zuerst, daß die Querschnitte r_n gegen die Kreisperipherie konvergieren. Andernfalls gibt es nämlich einen Punkt P in |z| < 1 derart, daß jede Umgebung U_P von P Punkte von unendlich vielen Querschnitten r_n enthält. Auf dem Flächenstück S entspricht dem Punkte P ein innerer Punkt Q, der entweder auf einen der Querschnitte q_n oder zwischen zwei aufeinanderfolgende dieser Querschnitte zu liegen kommt. Wir können dann auf S eine Umgebung U_Q von Q wählen, welche Punkte von höchstens einem einzigen Querschnitte q_{n_0} in ihrem Inneren enthält. Das Bild von U_Q im Einheitskreise stellt aber eine Umgebung von P dar, welche höchstens Punkte des Querschnittes r_{n_0} im Inneren enthält, womit ein Widerspruch herbeigeführt ist.

Durch die auf |z|=1 liegenden Endpunkte der Querschnitte r_n wird eine Folge

$$\eta_1 > \eta_2 > \eta_3 > \cdots \tag{5.1}$$

von ineinander geschachtelten Kreisbögen definiert, die einen gemein-

samen inneren Punkt ζ_0 besitzen und deren Längen, wie wir nun zeigen werden, gegen Null konvergieren.

Besitzt nämlich die Folge (5.1) als Durchschnitt einen Kreisbogen η , so wählen wir auf diesem Bogen einen beliebigen Punkt L. Das Bild des zu diesem Punkte führenden Radius, der nach obigem fast alle Querschnitte r_n an mindestens einer Stelle schneidet, stellt eine auf S verlaufende analytische Kurve dar, die entsprechend fast alle Querschnitte q_n an mindestens einer Stelle schneidet. Diese Kurve kann aber gegen keinen festen Punkt konvergieren, da die q_n in den Kreisen k_n liegen, deren Radien gegen Null gehen und deren Mittelpunkte w_n als Punkte einer abzählbaren, auf C dicht liegenden Menge keinem festen Punkte zustreben können. Somit existiert für den Punkt L kein radialer Grenzwert und da L auf η beliebig gewählt war, ergibt sich so ein Widerspruch zum Satze von Fatou.

Die durch w = f(z) gegebene Abbildung des Flächenstückes S auf |z| < 1 ist also randstetig in allen Punkten der Peripherie |z| = 1 bis auf den einen Punkt ζ_0 , gegen den die Querschnitte r_n konvergieren.

6. Es ist leicht einzusehen, daß die zu $z = \zeta_0$ gehörende abgeschlossene Punktmenge H, die nach Satz I aus lauter Randwerten von f(z) in ζ_0 besteht, mit dem Kontinuum C identisch ist.

Sei nämlich K_l ein beliebiger Kreis der normalen Überdeckungsfolge (2.1), δ_p ein beliebiger Bogen der Folge (2.3) und D der Durchschnitt von K_l mit C. Falls D nicht leer ist, können wir nach § 4 aus der Folge (4.2) eine unendliche Teilfolge von Punkten w_{i_n} $(i_1 < i_2 < \cdots)$ derart bestimmen, daß die den Punkten w_{i_n} beigeordneten Kreise k_{i_n} alle in K_l liegen. Von jedem der von den k_{i_n} ausgehenden Jordanschen Kurvenstücken, die ja Teile der Begrenzung des Flächenstückes S sind, verläuft dann mindestens ein Teilbogen ganz im Inneren von K_l . Diesen Teilbögen entsprechen als stetige Bilder gewisse Kreisbögen auf |z|=1, die nach den Überlegungen des § 5 gegen den Punkt ζ_0 konvergieren und somit, für genügend große Indizes i_n , ganz im Bogen δ_p enthalten sind. Die in § 2 definierte Punktmenge $A_l\delta_p$ hat also stets ein positives lineares Maß, weshalb K_l nicht der Punktmenge (2.6) angehören kann.

Liegt aber K_l ganz im Inneren der offenen Komplementärmenge C' von C, so wird K_l nur mit höchstens endlich vielen Umgebungen U_1, \ldots, U_{m_0-1} der Folge (4.1), die ja gegen das Kontinuum C konvergiert, Punkte gemein haben. Deshalb liegt auch die Teilfläche g_{m_0} von S auf Grund ihrer Definition in § 5 ganz außerhalb K_l . Somit ist für genügend großen Index, p der Durchschnitt des Kreisbogens δ_p mit der Punktmenge A_l leer und K_l gehört der Punktmenge (2.6) an.

Hat K_l mit C nur Randpunkte gemein, so läßt sich nur im Einzelfalle unterscheiden, ob K_l der Menge (2.6) angehört oder nicht. Dies ist jedoch belanglos, da wir zeigen können, daß die Vereinigung der im vorigen Absatze betrachteten Kreise K_l (die also ganz im Inneren der Menge C' liegen) identisch mit C' ist.

Zu diesem Zwecke schlagen wir um jeden Punkt P der offenen Menge C' einen Kreis \varkappa_P , dessen Radius gleich der halben Entfernung von P und der Begrenzung von C' ist. Nach der Definition der normalen Überdeckungsfolge in § 2 gibt es mindestens einen Kreis K_{ν} der Folge (2.1), der im Inneren von \varkappa_P liegt und den Punkt P in seinem Innern enthält. Nach dem Überdeckungssatze von Lindel"of existiert dann eine Teilfolge von (2.1), deren Vereinigung U die Menge C' überdeckt, und da jeder Kreis dieser Teilfolge im Innern von C' liegt, ist U = C'.

Damit ist gezeigt, daß die zu $z = \zeta_0$ gehörende Menge H mit dem Kontinuum C identisch ist.

7. Die im § 4 vorausgesetzte Beschränktheit von C war wesentlich, um den Satz von Fatou anwenden zu können. Um eine in |z| < 1 analytische Funktion zu finden, für welche die Menge H mit der Vollebene identisch ist, wählen wir speziell für C die abgeschlossene rechte Halbebene und konstruieren das zugehörige Flächenstück S durch passende Wahl der Punkte w_i , der Radien von k_i und der verbindenden Jordanschen Kurvenstücke $\gamma_{i,0}$ und $\gamma_{i,1}$, so daß über den Punkten Null und Unendlich kein Punkt von S zu liegen kommt.

Durch $u=w^2$ wird S in ein neues Flächenstück S^* übergeführt, die Menge der Punkte w_i ($i=1,2,\ldots$) in die abzählbare und auf der Vollebene dicht liegende Menge u_i und die Kreise k_i in die schlichten Gebiete k_i^* , welche u_i im Innern enthalten. Die Durchmesser dieser Gebiete werden im Gegensatze zu denen der Kreise k_i im allgemeinen nicht mehr gegen Null konvergieren. Doch streben die Durchmesser derjenigen k_i^* gegen Null, die allen den Punkten u_i zugeordnet sind, welche in einem beliebigen endlichen Kreise liegen.

Wird durch $w = \varphi(z)$ das Flächenstück S konform auf |z| < 1 abgebildet, wobei ζ_0 wieder der gemeinsame Punkt der Bögen (5.1) ist, so sehen wir ähnlich wie im vorigen Paragraphen, daß die abgeschlossene Menge H, die wir für die in |z| < 1 analytische Funktion $u = (\varphi(z))^2 = f(z)$ im Punkte ζ_0 bilden, mit der Vollebene zusammenfällt.

Ist nämlich K_i wieder ein beliebiger Kreis der normalen Überdeckungsfolge (2.1) und δ_p ein beliebiger Bogen der Folge (2.3), so wählen wir aus der Folge der Punkte u_i eine unendliche Teilfolge u_{i_n} derart, daß die

den u_{i_n} zugeordneten Gebiete $k_{i_n}^*$ alle in K_l liegen. Dem Teil der Begrenzung von S^* , der in K_l liegt, entsprechen als stetiges Bild unendlich viele Bögen auf |z|=1, die sich in ζ_0 häufen und somit, wenigstens teilweise, im Bogen δ_p enthalten sind. Die Menge A_l δ_p besitzt deshalb stets ein positives lineares Maß, die Menge (2.6) ist somit leer und deren Komplementärmenge H gleich der Vollebene.

Die in den letzten Paragraphen konstruierten Abbildungsfunktionen w=f(z) besitzen die bemerkenswerte Eigenschaft, daß sich auf jeder stetigen, ganz in |z|<1 verlaufenden und in den Punkt ζ_0 einmündenden Kurve γ stets eine gegen ζ_0 konvergierende Punktfolge finden läßt, deren Bildpunktfolge gegen einen beliebigen Punkt Q des Kontinuums C konvergiert. Man sieht dies leicht ein, wenn man bedenkt, daß das im Flächenstücke S (bzw. S^*) verlaufende Bild von γ dem Punkte Q unendlich oft beliebig nahekommt.

8. Die Komplementärmenge zu dem im § 4 vorgegebenen Kontinuum C kann als Summe von höchstens abzählbar vielen einfach zusammenhängenden Gebieten G_i (i = 1, 2, ...) dargestellt werden. Aus der Konstruktion des Flächenstückes S ergibt sich, daß kein einziges der G_i Randwerte von f(z) in ζ_0 enthält.

Zu jedem beliebigen inneren Punkte P eines der Gebiete G_i gibt es nämlich einen Index r_0 , so daß P ganz außerhalb der Umgebung U_{r_0} der Folge (4.1) liegt. Somit liegt P auch ganz außerhalb der Teilfläche g_{r_0} von S (§ 5). Da aber jede im Kreise |z| < 1 gegen den Peripheriepunkt ζ_0 konvergierende Punktfolge bis auf endlich viele ihrer Punkte in dem der Teilfläche g_{r_0} entsprechenden Gebiete h_{r_0} liegt, kann deren Bildpunktfolge auf S niemals gegen den Punkt P streben, womit unsere Behauptung bewiesen ist.

Soll aber z. B. das Gebiet G_1 aus lauter Randwerten von f(z) in ζ_0 bestehen, so müssen wir das Flächenstück S in passender Weise verändern. G_1 wird als einfach zusammenhängendes Gebiet von einem einzigen Kontinuum R begrenzt, welches als Teilmenge von C in allen Umgebungen (4.1) enthalten ist.

Sei

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \cdots \tag{8.1}$$

eine monoton zunehmende Folge von einfach zusammenhängenden, von Jordankurven begrenzten abgeschlossenen Gebieten, die alle in G_1 liegen, für die von einem gewissen Index $N \ge 1$ an

$$B_n \cap U_n \qquad (n \ge N) \tag{8.2}$$

gilt und deren Vereinigungsmenge gleich G_1 ist⁵).

Weiter wählen wir, für jeden Index $n \ge N$, auf der Begrenzung von B_n einen Bogen b_n , auf dem Randbogen $\gamma_{n,0}$ (§ 4) des Flächenstückes S einen Teilbogen c_n und verbinden die Endpunkte von b_n mit denen von c_n in der Weise durch zwei sich gegenseitig nicht treffende, ganz in dem Gebiete $U_n + G_1 B_n'$ (§) verlaufende Jordansche Kurvenstücke, so daß sämtliche B_n , zusammen mit S und den durch die Randbögen b_n , c_n und die verbindenden Jordanschen Kurvenstücke begrenzten Gebiete ein einfach zusammenhängendes, schlichtartiges Riemannsches Flächenstück S_{G_1} ergeben. Entsprechend verfährt man mit S_{G_1} , falls weitere der Gebiete G_i aus lauter Randwerten bestehen sollen. Allgemein erhält man auf diese Weise ein schlichtartiges einfach zusammenhängendes Riemannsches Flächenstück $S_{\Sigma G}$, welches aus S durch "Anhängen" gewisser Gebiete entsteht.

Möge S_{G_1} durch die analytische Funktion w = f(z) auf |z| < 1 abgebildet werden. Falls S_{G_1} beschränkt ist, läßt sich ähnlich wie in den §§ 5 und 6 zeigen, daß auf |z| = 1 ein Punkt ζ_0 existiert, in dem die Menge H gleich dem vorgegebenen Kontinuum C ist. Man hat dabei zu berücksichtigen, daß die Gebiete (8.1) gegen G_1 konvergieren und, für jedes $n \ge N$, die Jordanschen Kurvenstücke, welche die Endpunkte der Teilbögen b_n und c_n miteinander verbinden und Teile der Begrenzung von S_{G_1} sind, ganz im Gebiete $U_n \dotplus G_1$ B'_n verlaufen; der Durchschnitt dieser Gebiete ist aber gleich C.

Ist jedoch $S_{\mathcal{G}_1}$ nicht beschränkt (was z. B. zutrifft, wenn das Kontinuum C einfach zusammenhängend, G_1 also die Komplementärmenge zu C ist), schließen wir so: Durch die Teilbögen $\{c_n\}$ mit $n \geq N$, die nach Obigem Querschnitte auf $S_{\mathcal{G}_1}$ darstellen, zerfällt die Fläche $S_{\mathcal{G}_1}$ wieder in das Flächenstück S und unendlich viele einfach zusammenhängende Teilflächen, welche die Gebiete B_n als Teilmengen enthalten. Auf dem so erhaltenen Flächenstücke S bringen wir ferner dieselbe Querschnittfolge $\{q_n\}$ an, wie wir sie im § 5 eingeführt haben. Dann ergibt sich vermöge der Abbildungsfunktion w=f(z) als Bild der Folge $\{c_n\}$ im Kreise |z|<1 eine Querschnittfolge $\{s_n\}$, die den Kreis |z|<1 in ein dem Flächenstücke S entsprechendes einfach zusammenhängendes Gebiet S_z und gewisse unendlich viele weitere Gebiete F_n zerlegen.

⁵) Die Existenz einer solchen Folge ergibt sich aus der Tatsache, daß es in einem zweifach zusammenhängenden Gebiete stets eine geschlossene Jordankurve gibt, in deren Innerem wie Äußerem Randpunkte des Gebietes liegen.

⁶⁾ Mit B' bezeichnen wir die Komplementärmenge zu B.

Den Querschnitten $\{q_n\}$ entsprechen gewisse Querschnitte $\{p_n\}$ des Kreises |z|<1, welche zugleich auch Querschnitte des Gebiets S_z sind. Dabei trennen die Querschnitte p_i und p_{i+1} den Querschnitt s_i vom vorhergehenden s_{i-1} und nachfolgenden s_{i+1} (und damit auch das Gebiet F_i von F_{i-1} und F_{i+1}). Wird S_z durch $z=\psi(u)$ weiter auf |u|<1 konform und randstetig abgebildet, so geht die Querschnittsfolge $\{p_n\}$ in die Querschnittsfolge $\{r_n\}$ des § 5 über, von der wir damals zeigten, daß sie gegen einen Peripheriepunkt v_0 konvergiert. Wegen der Randstetigkeit von $z=\psi(u)$ entspricht dann v_0 ein Punkt ζ_0 auf |z|=1, gegen den dann auch die Folgen $\{p_n\}$, $\{s_n\}$ und $\{F_n\}$ konvergieren. Wir zeigen dann wie oben, daß in ζ_0 die Menge H gleich dem Kontinuum C ist.

Nun sehen wir aber auch ein, daß jeder im Gebiete G_1 liegende Punkt ω Randwert von w=f(z) ist. Da nämlich die Gebiete (8.1), die für $n \ge N$ ja Teile des Flächenstückes S_{G_1} sind, gegen G_1 konvergieren, liegen über ω stets unendlich viele Punkte

$$\omega_{n_0}, \omega_{n_0+1}, \omega_{n_0+2}, \dots \qquad (n_0 \ge N)$$
 (8.3)

von S_{G_1} , wobei ω_r der auf die Teilfläche B_r fallende Punkt ist. Der Index n_0 hängt von der Lage des Punktes ω in G_1 ab. Die Bildpunkte von (8.3) in |z| < 1, die wir mit ζ_r $(r \ge n_0)$ bezeichnen und für die also $f(\zeta_r) = \omega$ gilt, liegen nach Obigem beziehentlich in den Gebieten F_r und konvergieren deshalb gegen ζ_0 . Damit ist unsere Behauptung bewiesen.

Dieser Beweis gilt, abgesehen von sinngemäßen Erweiterungen, auch für die Fläche $S_{\Sigma G}$, d. h. also im Falle, daß mehrere Gebiete G_i aus Randwerten bestehen sollen.

Zwei Beispiele

9. Bevor wir den Fall einer beliebigen abgeschlossenen und beschränkten Punktmenge behandeln, wollen wir in diesem und den folgenden Paragraphen auf zwei spezielle Fälle genauer eingehen, da uns die dabei verwendeten Methoden im wesentlichen den allgemeinen Beweis liefern werden.

Die abgeschlossene Menge H bestehe diesmal aus den drei isolierten Punkten w_1 , w_2 und w_3 . Wir betrachten die zu diesen Punkten gehörige regulär verzweigte universelle Überlagerungsfläche F_{∞} (Modulfläche). Über jedem der "Grundpunkte" w_1 , w_2 , w_3 liegen bekanntlich unendlich viele logarithmische Windungspunkte $L_1^{(j)}$, $L_2^{(j)}$ und $L_3^{(j)}$ $(j=1,2,\ldots)$. Wir konstruieren uns auf der Fläche F_{∞} um jeden Windungspunkt $L_n^{(j)}$, (n=1,2,3) eine doppelspiralförmige stetige Kurve $\sigma_n^{(j)}$,

deren beide Äste den Punkt $L_n^{(i)}$ unendlich oft in entgegengesetzter Richtung umlaufen und sich ihm dabei asymptotisch nähern. Ferner sollen die Projektionen der Kurven $\sigma_n^{(j)}$ ganz in Kreise $K_n^{(j)}$ um w_n fallen, deren Radien mit wachsendem Index j monoton gegen Null abnehmen. Außerdem liege jeder der drei Kreise $K_1^{(1)}$, $K_2^{(1)}$ und $K_3^{(1)}$ ganz außerhalb der anderen zwei.

Zerschneiden wir F_{∞} entlang sämtlicher Spiralen $\sigma_n^{(j)}$, so zerfällt die Fläche in die einfach zusammenhängende, von den $\sigma_n^{(j)}$ begrenzte Fläche F'_{∞} und in unendlich viele weitere Teilflächen, für die je einer der obigen Windungspunkte Randpunkt ist. Bilden wir durch die analytische Funktion w = f(z) die Fläche F'_{∞} auf |z| < 1 ab, so geht jede der Randkurven $\sigma_n^{(j)}$ stetig in einen gewissen Kreisbogen $\delta_n^{(j)}$ auf der Linie |z| = 1 über. Bekanntlich ist das lineare Maß sämtlicher Bögen $\delta_n^{(j)}$ gleich 2π . Ferner häufen sich in einem Endpunkte ζ_0 eines beliebigen dieser Bögen, etwa $\delta_1^{(1)}$, unendlich viele weitere Kreisbögen $\delta_n^{(j)}$, sogar unendlich viele mit festem Index n.

Um zu zeigen, daß die aus den drei Punkten w_n bestehende Menge H die im § 2 angegebene Bedeutung hat, wählen wir wieder einen beliebigen Kreis K_i der normalen Überdeckungsfolge (2.1) und betrachten die zugehörige Menge A_i .

Liegt etwa der Grundpunkt w_1 innerhalb K_l , so von einem gewissen Index j_0 ab auch die unsere Fläche F'_{∞} berandenden Spiralen $\sigma_1^{(j)}$, deren Bilder $\delta_1^{(j)}$ sich in ζ_0 häufen. Also besitzt die Menge A_l δ_p für jedes p ein positives lineares Maß und K_l gehört nicht der Menge (2.6) an.

Liegen die drei Grundpunkte aber ganz im Äußeren von K_l , so werden nur endlich viele Spiralen $\sigma_n^{(j)}$ Punkte mit diesem Kreise gemein haben. Deshalb gibt es ein p_0 , so daß, für alle $p > p_0$, die Menge A_l δ_p leer und der Kreis K_l Teilmenge der Menge U ist. Wie im § 6 zeigt man dann mit Hilfe des Lindelöfschen Überdeckungssatzes, daß U mit der in w_1 , w_2 und w_3 punktierten Vollebene zusammenfällt, woraus unsere Behauptung folgt.

10. Die soeben erhaltene offene Punktmenge U besteht in unserem speziellen Falle aus einem einzigen, dreifach zusammenhängenden Gebiete G_1 . Wir beweisen hier aber gleich die allgemeine Aussage des Satzes II, wonach die Punkte derjenigen unter den Gebieten G_i , deren Begrenzung aus mehr als einem Kontinuum besteht, sämtlich Randwerte von f(z) im Punkte ζ_0 sind.

Sei also speziell G_{i_0} ein solches Gebiet, dessen Begrenzung aus mindestens zwei Kontinuen R_1 und R_2 besteht. Als Teilmengen der ab-

geschlossenen Menge H sind nach dem Satze I alle ihre Punkte Randwerte von f(z) in ζ_0 . Da die Kontinuen R_1 und R_2 punktfremd sind, können wir sie durch eine geschlossene Jordankurve Γ , die ganz im Innern von G_{i_0} verläuft, voneinander trennen. Ist Q_1 ein Punkt von R_1 , Q_2 ein Punkt von R_2 , so gibt es in |z| < 1 zwei gegen ζ_0 konvergierende Punktfolgen $\{z_k^{(1)}\}$ und $\{z_k^{(2)}\}$, deren Bildpunktfolgen $\{w_k^{(1)}\}$ und $\{w_k^{(2)}\}$ in der w-Ebene gegen Q_1 und Q_2 streben. Verbinden wir den Punkt $z_k^{(1)}$ und $z_k^{(2)}$ durch die Strecke p_k , so entspricht dieser ein analytisches Kurvenstück q_k , das $w_k^{(1)}$ und $w_k^{(2)}$ verbindet und die geschlossene Kurve Γ in mindestens einem Punkte ω_k schneidet, dem der Punkt ζ_k auf der Strecke p_k entspricht. Da Γ eine abgeschlossene Menge ist, enthält die Folge $\{\omega_k\}$ mindestens eine Teilfolge $\{\omega_k'\}$, die gegen einen Häufungspunkt ω_0 der Folge $\{\omega_k\}$ konvergiert. Die Bildfolge $\{\zeta_k'\}$ strebt aber gegen ζ_0 , somit ist ω_0 und nach dem Satze I jeder Punkt aus G_{i_0} Randwert von f(z) in ζ_0 .

11. Beim zweiten Beispiel bestehe die Menge H aus abzählbar vielen paarweise punktfremden geschlossenen Jordankurven Γ_n $(n=0,\pm 1,\pm 2,\ldots)$ in beliebiger gegenseitiger Lage; doch muß, da H nach Satz I ja stets abgeschlossen ist, eine Häufungsstelle der Γ_n Punkte von genau einer der Jordankurven sein. Der Einfachheit halber nehmen wir an, daß sämtliche Γ_n im Innern des Kreises $|w-1|=\frac{1}{2}$ liegen, was sich durch eine Lineartransformation immer erreichen läßt.

Nun verteilen wir die Kurven Γ_n in der Weise auf die Blätter der in Null und Unendlich gewundenen Logarithmusfläche, daß bei deren Abbildung durch $t = \log w$ in die schlichte punktierte t-Ebene das Bild γ_n von Γ_n ganz ins Innere des von den Geraden $\Re(t) = \log \frac{1}{2}$, $\Re(t) = \log \frac{3}{2}$ und $\Im(t) = 2n\pi$, $\Im(t) = 2(n+1)\pi$ gebildeten Rechteckes

$$R_n \tag{11.1}$$

zu liegen kommt.

Im Innern jeder Kurve γ_n wählen wir einen beliebigen Punkt t_n , entfernen alle t_n aus der t-Ebene und konstruieren zu dem verbleibenden, ∞ -fach zusammenhängenden Gebiete G die regulär verzweigte Überlagerungsfläche F_{∞} . Dies geschieht etwa in folgender Weise.

Wir verbinden, für jedes ganze n, den Punkt t_n mit t_{n+1} durch eine Strecke p_n und schneiden das Gebiet G entlang sämtlicher p_n auf, wodurch G in zwei Teilgebiete G_1 und G_2 zerlegt wird. Von jedem dieser beiden Gebiete denken wir uns unendlich viele Exemplare G_1^{2i} und G_2^{2i+1} ($i=0,1,2,\ldots$) übereinander gelegt und deren Ränder derart miteinander verheftet, so daß G_1^0 (nullte Generation) entlang jeder Strecke p_n

mit einem der Exemplare G_2^{2i+1} zusammenhängt. Dabei soll kein G_2^{2i+1} entlang mehrerer p_n mit G_1^0 verbunden sein. Dann ist G_1^0 von einem lückenlosen Kranze von lauter verschiedenen G_2^{2i+1} umgeben (erste Generation). In gleicher Weise verfahren wir mit diesen G_2^{2i+1} , indem wir sie entlang jeder ihrer Randstrecken p_n mit lauter von G_1^0 und unter sich verschiedenen Exemplaren G_1^{2i} verheften (zweite Generation). Allgemein werden die Exemplare der 2i-ten Generation entlang ihrer freien Randstrecken p_n mit lauter von den bereits früher verwendeten und unter sich verschiedenen Exemplaren G_2^{2i+1} , die der (2i+1)-ten Generation entsprechend mit Exemplaren G_1^{2i} verheftet. Dieses Verfahren, unbegrenzt fortgeführt, ergibt die gewünschte regulär verzweigte Überlagerungsfläche F_{∞} . Über jedem ihrer Grundpunkte t_n liegen unendlich viele logarithmische Windungspunkte $L_n^{(j)}$ $(j=1,2,\ldots)$. Sie alle sind, genau so wie der Punkt Unendlich, Randpunkte der Fläche. Auf gleiche Weise wie in § 4 zeigt man, daß F_{∞} einfach zusammenhängend und schlichtartig ist. Nach dem Hauptsatze der konformen Abbildung läßt sie sich deshalb durch eine analytische Funktion $t = \varphi(z)$ in die schlichte z-Ebene übertragen und da $\varphi(z)$ z. B. die drei Werte t_1 , t_2 und t_3 ausläßt, gehört F_{∞} nach *Picard* dem hyperbolischen Typus an.

Schneiden wir die Fläche F_{∞} um jeden Windungspunkt $L_n^{(j)}$ $(j=1,2,\ldots)$ entlang der unendlich oft durchlaufenen Kurve γ_n auf, so zerfällt sie in die unendlich vielen, paarweise punktfremden Umgebungen dieser Windungspunkte und in die einfach zusammenhängende Restfläche F_n . Bei der Abbildung $t=\varphi(z)$ von F_{∞} auf |z|<1 gehen die Umgebungen in gewisse einfach zusammenhängende Gebiete $H_n^{(j)}$ $(j=1,2,\ldots)$ und die Fläche F_n in das Komplementärgebiet E_n von |z|<1 über. Wir zeigen, daß jedes der Gebiete $H_n^{(j)}$ genau einen Peripheriepunkt $P_n^{(j)}$ des Einheitskreises als Randpunkt besitzt und daß die Punkte $P_n^{(j)}$ $(j=1,2,\ldots)$ auf |z|=1 dicht liegen.

Da E_n ein Gebiet, also zusammenhängend ist, kann die auf |z|=1 liegende Randpunktmenge eines der $H_n^{(j)}$ nicht aus mehr als einem Kontinuum bestehen. Bestünde aber diese Randpunktmenge aus einem Kreisbogen δ , so schließen wir folgendermaßen:

Wählen wir bei dem eben geschilderten Prozeß anstatt γ_n eine andere Jordankurve, etwa γ_m , so erhalten wir entsprechend eine Restfläche F_m und im Einheitskreise |z| < 1 die Gebiete $H_m^{(j)}$ und E_m . Dann ist kein Punkt des Bogens δ Randpunkt eines der $H_m^{(j)}$. Bei der weiteren Abbildung von E_m auf den Einheitskreis |u| < 1 gehe der Kreisbogen δ in den Kreisbogen δ' über und da |u| < 1 dann auch Abbild der beschränkten Restfläche F_m ist, existieren nach dem Satze von Fatou in allen

Punkten von δ' bis auf eine Nullmenge die radialen Grenzwerte, die alle gleich t_n sein müssen. Dies aber widerspricht dem Satze von F. und M. Riesz 7), wonach eine für |u| < 1 beschränkte analytische Funktion, deren radiale Grenzwerte auf einer Punktmenge von positivem linearen Maße auf |u| = 1 konstant sind, identisch gleich dieser Konstante ist. Somit besteht die auf |z| = 1 liegende Randpunktmenge jedes der Gebiete $H_n^{(j)}$ aus einem einzigen Punkte $P_n^{(j)}$.

Würden die Punkte $P_n^{(j)}$ $(j=1,2,\ldots)$ auf |z|=1 nicht dicht liegen, so gäbe es einen Kreisbogen η , der keinen Punkt $P_n^{(j)}$ enthielte. Bilden wir E_n auf |v|<1 ab, wobei η in η' übergeht, so existierten wieder in allen Punkten von η' bis auf eine Nullmenge die radialen Grenzwerte, von denen jeder gleich einem der Wert t_i mit $i\neq n$ sein müßte. Da die t_i aber eine Nullmenge darstellen, ergäbe sich ebenfalls ein Widerspruch zum Satze von Riesz.

12. Wir schneiden jetzt die Überlagerungsfläche F_{∞} in allen Blättern entlang sämtlicher Jordankurven γ_n $(n=0,\pm 1,\pm 2,\ldots)$ auf, wobei sie in die unendlich vielen Umgebungen der $L_n^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;j=1,2,\ldots)$ und in die einfach zusammenhängende Restfläche F zerfällt. Durch $t=\varphi(u)$ gehen die Umgebungen wieder in die Gebiete $H_n^{(j)}$, die Fläche F in das Restgebiet E von |u|<1 über. Die Begrenzung $R_n^{(j)}$ jedes der Gebiete $H_n^{(j)}$ ist zugleich auch ein Teil der Begrenzung von E und stellt das Abbild der den Windungspunkt $L_n^{(j)}$ unendlich oft umlaufenden Jordankurve γ_n dar. Bilden wir E durch $u=\psi(z)$ weiter auf |z|<1 ab, wobei die stetigen Kurven $R_n^{(j)}$ in die Kreisbögen $\delta_n^{(j)}$ übergehen, und bezeichnen wir einen Endpunkt eines beliebigen dieser Bögen, etwa $\delta_0^{(1)}$, mit ζ_0 , so haben wir in

$$w = e^{\varphi(\psi(z))} = e^{f(z)} \tag{12.1}$$

eine analytische Funktion, deren Menge H im Punkte ζ_0 genau aus sämtlichen Jordankurven Γ_n besteht.

Erstens ist nämlich, nach Fatou, das lineare Maß der Punktmenge auf |z|=1, für die keine radialen Grenzwerte existieren, gleich Null. Zweitens liegen, nach den Überlegungen des vorigen Paragraphen, auf |z|=1 in jeder beliebigen Umgebung von ζ_0 für jeden Index n unendlich viele der Kreisbögen $\delta_n^{(j)}$. Daraus folgt aber genau wie in § 6 unter Heranziehung des Lindelöfschen Überdeckungssatzes unsere Behauptung. Man hat dabei nur zu beachten, daß das Bild eines auf einem Bogen $\delta_n^{(j)}$ enden-

⁷⁾ R. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S. 197.

den Radius des Kreises |z| < 1 in der w-Ebene eine analytische Kurve darstellt, die in einem bestimmten Punkt der Jordankurve Γ_n einmündet.

Auf die Frage nach den Randwerten der Funktion (12.1) im Punkte ζ_0 wollen wir hier nicht weiter eingehen, da sie später (§§ 17 bis 19) im Zusammenhange mit dem allgemeinsten Falle ihre Erledigung finden wird.

Allgemeiner Fall

13. Nunmehr wählen wir für die Punktmenge H eine beliebige abgeschlossene und nicht die volle w-Ebene überdeckende Menge A. Nach Satz I darf A nicht leer sein. Wir können die Menge A sogleich als beschränkt annehmen.

Für abgeschlossene Punktmengen gelten die beiden allgemeinen Sätze ⁸):

- 1) Jede abgeschlossene, beschränkte Punktmenge kann als eine Gesamtheit von paarweise fremden Kontinuen angesehen werden.
- 2) Jeder abgeschlossenen Punktmenge A kann man mindestens eine monoton abnehmende Folge

$$U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots \tag{13.1}$$

von (offenen) Umgebungen U_i von A zuordnen, deren Durchschnitt gleich A ist.

Jede Umgebung U_i besteht aus höchstens abzählbar vielen, paarweise fremden Gebieten V_{ik} $(k=1,2,\ldots)$, die wir die *Umgebungskomponenten der Punktmenge A* nennen wollen. Die Menge sämtlicher Umgebungskomponenten von A ist abzählbar, so daß wir sie als Folge

$$V_0, V_1, V_{-1}, V_2, V_{-2}, \dots$$
 (13.2)

schreiben können. Dabei ist jede Umgebungskomponente V_n gleich einem bestimmten V_{ik} . Da die Menge A beschränkt ist, sind die Gebiete V_n so wählbar, daß die Folge (13.2) gleichmäßig beschränkt ist. Durch eine lineare Transformation erreichen wir dann, daß A und sämtliche V_n ins Innere des Kreises

$$|w - 1| = \frac{1}{2} \tag{13.3}$$

fallen. Die Bezeichnungen mögen dabei der Einfachheit halber dieselben bleiben.

Nachdem wir aus jeder Umgebungskomponente V_n einen festen Punkt

⁸⁾ C. Carathéodory, Reelle Funktionen, Bd. I, Leipzig-Berlin 1939, §§ 106 und 107.

 w_n gewählt haben, der zugleich auch Punkt von A ist, verteilen wir die V_n entsprechend dem Beispiele in § 11 in der Weise auf die Blätter der in Null und Unendlich gewundenen Logarithmusfläche, daß bei deren Abbildung durch $t = \log w$ in die schlichte punktierte t-Ebene das Bild W_n von V_n ganz ins Innere des von den Geraden $\Re(t) = \log \frac{1}{2}$, $\Re(t) = \log \frac{3}{2}$ und $\Im(t) = 2n\pi$, $\Im(t) = 2(n+1)\pi$ gebildeten Rechteckes

$$R_n \qquad (n = 0, \pm 1, \pm 2, \ldots)$$
 (13.4)

zu liegen kommt. Das in W_n liegende Bild von w_n bezeichnen wir mit t_n . Aus der in Unendlich punktierten t-Ebene entfernen wir sämtliche Punkte t_n und konstruieren zu dem verbleibenden, ∞ -fach zusammenhängenden Gebiete G die regulär verzweigte Überlagerungsfläche F_{∞} (§ 11). Über jedem ihrer Grundpunkte t_n liegen unendlich viele logarithmische Windungspunkte $L_n^{(j)}$ $(j=1,2,\ldots)$. Sie alle sind, wie auch der Punkt Unendlich, Randpunkte der Fläche. Ferner ist F_{∞} einfach zusammenhängend, schlichtartig und gehört dem hyperbolischen Typus an.

14. Wir verändern jetzt die Fläche F_{∞} in passender Weise. Ähnlich wie in § 9 konstruieren wir auf F_{∞} um jeden der Windungspunkte $L_n^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;\ j=1,2,\ldots)$ eine doppelspiralförmige stetige Kurve $\sigma_n^{(j)}$, deren beide Äste den Punkt $L_n^{(j)}$ unendlich oft in entgegengesetzter Richtung umlaufen und sich ihm dabei asymptotisch nähern. Dabei sollen die Projektionen der $\sigma_n^{(j)}$ ganz in Kreise $K_n^{(j)}$ um t_n fallen, die selbst alle im Innern des Rechteckes (13.4) liegen und deren Radien für $j+|n|\to\infty$ gegen Null konvergieren.

Zerschneiden wir F_{∞} entlang sämtlicher Spiralen $\sigma_n^{(j)}$, so zerfällt die Fläche in die einfach zusammenhängende, von den $\sigma_n^{(j)}$ und dem Punkte Unendlich begrenzte Fläche F'_{∞} und in unendlich viele weitere Teilflächen, für die je einer der obigen Windungspunkte $L_n^{(j)}$ Randpunkt ist. Wird F'_{∞} durch die analytische Funktion $t=\varphi(u)$ auf das Innere von |u|<1 abgebildet, so geht jede der Randkurven $\sigma_n^{(j)}$ stetig in einen gewissen Kreisbogen $\delta_n^{(j)}$ auf |u|=1 über. Von diesen gilt wie im Falle der Modulfunktion im § 9, daß das lineare Maß aller $\delta_n^{(j)}$ gleich 2π ist, ferner, daß sich in einem Endpunkte ζ_0 eines beliebigen dieser Bögen, etwa $\delta_0^{(1)}$, unendlich viele weitere Kreisbögen $\delta_n^{(j)}$, ja sogar unendlich viele mit festem Index n häufen. Diese Behauptungen beweisen wir kurz folgendermaßen.

Für jeden Index n wählen wir aus der Menge der Kreise $K_n^{(j)}$ $(j=1,2,\ldots)$ um t_n den größten und bezeichnen ihn mit $K_{(n)}$. In dessen Inneren liegen die Projektionen sämtlicher Spiralen $\sigma_n^{(j)}$ $(j=1,2,\ldots)$. Zerschneiden wir dann die Überlagerungsfläche F_{∞} in allen Blättern entlang der Kreise $K_{(n)}$, so zerfällt F_{∞} in die unendlich vielen Kreisumgebungen der

logarithmischen Windungspunkte $L_n^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;\ j=1,$ $2,\ldots$) und in die einfach zusammenhängende Restfläche F_{K} . Bei der Abbildung der Fläche F_{∞} auf den Einheitskreis |v| < 1 gehen die Kreisumgebungen in gewisse einfach zusammenhängende Gebiete $H_n^{(j)}$ und die Fläche F_K in das Restgebiet E_K von |v| < 1 über. Dann folgt wie in § 11, daß jedes $H_n^{(j)}$ genau einen Peripheriepunkt $P_n^{(j)}$ des Einheitskreises als Randpunkt besitzt und daß, für jeden Index n, die Punkte $P_n^{(j)}$ (j=1, $2,\ldots$) auf $\,|\,v\,|\,=\,1\,$ dicht liegen. Die auf der Fläche F_∞ verlaufenden Doppelspiralen $\sigma_n^{(j)}$ gehen bei der Abbildung in stetige Kurven $\sigma_n^{\prime(j)}$ über, die beziehentlich in den Gebieten $H_n^{(j)}$ liegen, in $P_n^{(j)}$ einmünden $^9)$ und die einfach zusammenhängenden Gebiete $H_n^{\prime(j)}$ einschließen $(H_n^{\prime(j)}$ ist also Teilgebiet von $H_n^{(j)}$). Das Komplementärgebiet E_{σ} der Gebiete $H_n^{\prime(j)}$ bezüglich |v| < 1 ist das schlichte Abbild der oben eingeführten Fläche F_{∞}' . Da nun erstens die Gebiete E_K und E_{σ} dieselben Peripheriepunkte des Einheitskreises als Randpunkte besitzen, zweitens das lineare Maß gegenüber eineindeutigen konformen Abbildungen invariant ist 10), folgen alle unsere Behauptungen sofort aus dem Ergebnis des § 11 in Verbindung mit dem Satze von Fatou.

15. Haben wir also die Fläche F'_{∞} durch die Funktion $t = \varphi(u)$ konform auf |u| < 1 abgebildet, wobei die Doppelspiralen $\sigma_n^{(j)}$ stetig in die Bögen $\delta_n^{(j)}$ auf |u| = 1 übergehen, ist ferner ζ_0 einer der Endpunkte eines dieser Kreisbögen, etwa speziell $\delta_0^{(1)}$, so können wir aus der Gesamtmenge der $\delta_n^{(j)}$ eine gegen ζ_0 konvergierende Teilfolge δ_n $(n = 0, \pm 1, \pm 2, \ldots)$ auswählen, wo δ_n das Bild einer der Doppelspiralen $\sigma_n^{(j)}$ $(j = 1, 2, \ldots)$ um den Grundpunkt t_n ist. Diese den Bögen δ_n entsprechenden Doppelspiralen bezeichnen wir mit σ_n .

Jeder Punkt t_n gehört nach § 13 einem Gebiete W_n an. Für jedes dieser Gebiete konstruieren wir uns in ähnlicher Weise wie in § 4 ein Riemannsches Flächenstück S_n , welches mit der Fläche F_∞' entlang eines gewissen Teilbogens von σ_n verheftet wird. Wir zeigen diese Konstruktion im einzelnen für n=0; in den übrigen Fällen $n\neq 0$ erfolgt sie analog.

Jedem Punkte τ_i $(i=1,2,\ldots)$ einer auf W_0 dicht liegenden und abzählbaren Punktmenge ordnen wir eine im Gebiete W_0 liegende abgeschlossene Kreisscheibe k_i zu, die τ_i als Mittelpunkt besitzt. Die Radien der Kreise sollen derart gegen Null konvergieren, daß stets

$$k_i \cap k_{i+1} \qquad (i = 1, 2, \ldots) .$$
 (15.1)

⁹⁾ Dies folgt aus der Stetigkeit der Abbildung.

¹⁰⁾ R. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S. 37.

Ferner sollen τ_1 und k_1 so gewählt sein, daß der Grundpunkt t_0 nicht im Inneren von k_1 liegt.

Auf der Peripherie von k_1 grenzen wir einen Bogen b_{11} , auf der von k_2 einen Bogen b_{20} ab und verbinden die beiden Endpunkte des einen Bogens mit denen des anderen in der Weise durch zwei sich gegenseitig nicht treffende Jordanbögen γ_{10} und γ_{11} , die mit k_1 und k_2 nur die Endpunkte gemein haben und ganz im Inneren des Gebietes W_0 verlaufen, so daß die vier Kurvenstücke b_{11} , γ_{10} , b_{20} , γ_{11} die Begrenzung eines einfach zusammenhängenden, schlichten Flächenstückes ergeben, welches die Mittelpunkte τ_1 und τ_2 der beiden Kreise k_1 und k_2 im Inneren enthält. In ähnlicher Weise wird k_2 mit k_3 verbunden und so fort (vgl. § 4). Das Ergebnis ist ein einfach zusammenhängendes, schlichtartiges Riemannsches Flächenstück S_0 , dessen Projektion ganz auf W_0 fällt. In gleicher Weise werden die anderen Flächenstücke S_n mit $n \neq 0$ gebildet.

Nun betrachten wir wieder die Fläche F'_{∞} und wählen auf der begrenzenden Doppelspirale σ_0 einen Punkt P und einen Kreis k_0 mit P als Mittelpunkt derart, daß erstens k_0 innerhalb W_0 liegt 11), und zweitens, daß der Kreis k_1 , dessen Inneres nach unserer Konstruktion Teilmenge von S_0 ist, ganz außerhalb k_0 liegt. Dies ist möglich, da der Kreis k_1 den Grundpunkt t_0 nach obiger Voraussetzung nicht in seinem Inneren enthält, also auch nicht die ganze Doppelspirale σ_0 , die t_0 umläuft, überdecken kann. Unter den Schnittpunkten des Kreises k_0 mit σ_0 existiert dann mindestens ein Paar Q' und Q'', für das der auf k_0 liegende Bogen $Q'\,Q''$ ganz außerhalb der Fläche F_∞' verläuft. Wir ersetzen das von Q'und Q'' begrenzte Kurvenstück von σ_0 durch diesen Kreisbogen $\,Q'\,Q''$ und erhalten so anstatt F'_{∞} eine neue einfach zusammenhängende Fläche $ilde{F}'_{\infty}$. Auf dem Randbogen $\,Q'\,Q''\,$ dieser Fläche wählen wir einen Teilbogen b_{01} und auf dem Randbogen b_{11} des Flächenstückes S_{0} einen Teilbogen b_{10} . Dann verbinden wir die Endpunkte von b_{01} mit denen von b_{10} in der Weise durch zwei sich gegenseitig nicht treffende Jordanbögen γ_{00} und γ_{01} , die mit k_0 und k_1 nur die Endpunkte gemein haben und ganz im Gebiete W_0 verlaufen, so daß die Kurven b_{01} , γ_{00} , b_{10} , γ_{01} die Begrenzung eines einfach zusammenhängenden schlichten Flächenstückes ergeben, welches ganz außerhalb $k_{\mathbf{0}}$ und $k_{\mathbf{1}}$ liegt und die Flächen \widetilde{F}'_{∞} und $S_{\mathbf{0}}$ gegenseitig verbindet.

In derselben Weise führen wir diesen Erweiterungsprozeß mit den übrigen Flächenstücken S_n $(n \neq 0)$ durch und erhalten so schließlich

 $^{^{11}}$) Dazu brauchen nur P in genügender Nähe des Grundpunktes t_0 und der Radius von k_0 genügend klein gewählt werden.

eine Fläche F_{∞}^* , die wir durch eine analytische Funktion $t = \psi(z)$ auf |z|<1 abbilden können. Die Begrenzung von F_{∞}^* besteht erstens, für jedes n, aus den Randkurven $\sigma_{n,1}$ und $\sigma_{n,2}$, die sich wiederum aus den zwei Ufern des angehefteten Flächenstückes S_n und den zwei sich daran anschließenden Ästen der Doppelspirale σ_n zusammensetzen, zweitens aus allen übrigen von den σ_n verschiedenen Doppelspiralen $\sigma_n^{(j)}$ und drittens schließlich aus dem Punkte Unendlich. Diese Randkurven $\sigma_{n,1}$, $\sigma_{n,2}$ und $\sigma_n^{(j)}$ gehen durch $t=\psi(z)$ stetig in Kreisbögen $\delta_{n,1}$, $\delta_{n,2}$ und $\delta_n^{(j)}$ auf |z|=1 über, deren gesamtes lineares Maß gleich 2π ist. Letzteres sieht man sofort ein, wenn man auf F_{∞}^* passende Querschnitte q_n $(n=0,\pm 1,\pm 2,\ldots)$ anbringt, durch welche F_{∞}^{*} wieder in die Fläche F_{∞}' und unendlich viele Teilflächen, die im wesentlichen die S_n darstellen, zerlegt wird. Die Bildquerschnitte r_n , von denen jeder einen Punkt auf $\delta_{n,1}$ mit einem auf $\delta_{n,2}$ verbindet, zerlegen |z| < 1 in ein der Fläche F_{∞}' entsprechendes Gebiet E' und in unendlich viele weitere Gebiete. Wendet man auf letztere die Überlegungen des § 5, auf E' die des § 14 an, so folgt unmittelbar unsere Behauptung.

Daraus, zusammen mit der Stetigkeit der Randabbildung folgt weiter, daß erstens die den beiden Randkurven $\sigma_{n,1}$ und $\sigma_{n,2}$ entsprechenden Bildkreisbögen $\delta_{n,1}$ und $\delta_{n,2}$ auf |z|=1 in einem ihrer Endpunkte zusammenstoßen (dieser ist singulärer Punkt für $\psi(z)$), und zweitens diese Kreisbogenpaare auf |z|=1 in derselben Reihenfolge liegen wie die den Randkurven σ_n entsprechenden Bildkreisbögen δ_n bei der Abbildung der Fläche F'_{∞} durch $t=\varphi(u)$ auf |u|<1 im vorigen Paragraphen. Also werden sich die Bogenpaare $\delta_{n,1}$, $\delta_{n,2}$ $(n=0,\pm 1,\pm 2,\ldots)$ in einem einzigen Peripheriepunkte ζ_0 häufen, welche nach der zu Anfang des § 15 gemachten Voraussetzung einer der Endpunkte des Kreisbogens $\delta_0^{(1)}$ ist.

16. Durch die Abbildung $w = L(e^t)$, wobei L eine passende lineare Transformation bedeutet, gehen die Gebiete W_n wieder in die Umgebungskomponenten V_n der Folge (13.2) über und die Punkte t_n in die Punkte w_n , deren Projektionen auf die Punktmenge A fallen. Die Bezeichnungen für F_{∞}^* , S_n und $\sigma_n^{(j)}$ behalten wir der Einfachheit halber bei.

Wir können jetzt zeigen, daß die Menge H, die wir für die Funktion

$$w = f(z) = L(e^t)$$
, $t = \psi(z)$, $|z| < 1$ (16.1)

im Peripheriepunkte ζ_0 bilden, mit der vorgegebenen abgeschlossenen Menge A übereinstimmt.

Die Menge der Punkte auf |z|=1, in denen kein radialer Grenzwert existiert, ist nach § 15 vom linearen Maße Null. Ferner liegen auf der

Linie |z|=1 in jeder Umgebung von ζ_0 die Bilder der Ränder von fast allen Flächenstücken S_n , die ihrerseits die Umgebungskomponenten V_n in der im Sinne des § 15 zu verstehenden Weise approximieren. Dabei gehört zu jeder der Umgebungskomponenten V_n genau ein S_n . Diejenigen Radien des Einheitskreises, die weder auf einem dem Rande eines S_n entsprechenden Kreisbogen noch in Punkten enden, in denen kein radialer Grenzwert existiert, münden dann in einen Peripheriepunkt, der einem Punkte auf einer der Doppelspiralen $\sigma_n^{(j)}$ bzw. σ_n entspricht. Diese Doppelspiralen sind aber so konstruiert, daß sie sich mit beiden Ästen asymptotisch dem Punkte w_n , dessen Projektion in die w-Ebene der Menge A angehört, nähern und überdies ganz in Umgebungen von w_n fallen, deren Durchmesser für wachsende Werte von j+|n| gegen Null konvergieren. Die entlang dieser Radien gefundenen Grenzwerte haben also an der Bildung von H nur insoweit Anteil, als sie die Punkte w_n ergeben. Somit ist H=A.

Die Randwerte

17. In diesem und den folgenden Paragraphen werden wir Aufschluß über die Randwerte der Funktion f(z) im Punkte ζ_0 erhalten und damit den Beweis des Satzes II zum Abschluß bringen.

Unter Beibehaltung der früheren Bezeichnungen schreibt sich die zur Menge H gehörende Komplementärmenge U als Summe von höchstens abzählbar vielen fremden Gebieten G_i . In § 10 sahen wir bereits, daß die Punkte der mehrfach zusammenhängenden unter den G_i sämtlich Randwerte von f(z) im Punkte ζ_0 sind. Die in den §§ 13 bis 16 konstruierte Funktion w = f(z), welche die Fläche F_{∞}^* auf |z| < 1 abbildet, ist insofern noch sehr speziell, als bei ihr auch die Punkte der einfach zusammenhängenden unter den G_i Randwerte in ζ_0 sind. Wir sehen dies so.

Wir betrachten ein beliebiges Gebiet G_i , etwa G_1 . Ist dann ω ein beliebiger Punkt aus G_1 , so liegen auf der Fläche F_{∞}^* unendlich viele Punkte

$$\omega_1, \, \omega_2, \, \omega_3, \dots \tag{17.1}$$

über ω . Wir zeigen, daß die Menge der Bildpunkte

$$\zeta_1, \zeta_2, \zeta_3, \dots \tag{17.2}$$

im Punkte ζ_0 einen Häufungspunkt besitzt, d. h. im Inneren jeder ε -Umgebung von ζ_0 mindestens einer der Punkte (17.2) liegt. Nun bedeutet es keinerlei Einschränkung, anzunehmen, daß die Schnittpunkte P_1 und P_2 des ε -Kreises mit |z|=1 beide auf zwei Kreisbögen $\delta_{n_1}^{(j_1)}$ und $\delta_{n_2}^{(j_2)}$ fallen, da ζ_0 ja ein Häufungspunkt der Bögen ist. Dann stellt der in

|z| < 1 verlaufende, P_1 und P_2 verbindende Teil des ε -Kreises einen Querschnitt r des Einheitskreises dar. Der Bildquerschnitt q auf der Fläche F_{∞}^* verbindet die zwei auf den Doppelspiralen $\sigma_{n_1}^{(j_1)}$ und $\sigma_{n_2}^{(j_2)}$ (welche den Grundpunkt w_{n_1} bzw. w_{n_2} umlaufen) liegenden Bildpunkte Q_1 und Q_2 , und zerlegt F_{∞}^* in zwei Teilflächen F_1 und F_2 . Wir behaupten, daß jede der beiden Teilflächen mindestens einen Punkt aus (17.1) als inneren Punkt enthält.

Da nämlich der Querschnitt q (einschließlich seiner Endpunkte Q_1 und Q_2) eine abgeschlossene und beschränkte Menge darstellt, kann er von endlich vielen, etwa N schlichten, ganz auf der Fläche F_{∞}^* liegenden Kreisscheiben überdeckt werden 12). Diese N Kreisscheiben liegen aber in höchstens N verschiedenen Blättern von F_{∞}^* . Deshalb läßt sich z. B. der Punkt Q_1 durch eine ganz auf der Teilfläche F_1 verlaufenden Jordankurve γ_1 mit einem der Punkte (17.1) verbinden. Dazu braucht γ_1 nur, von Q_1 ausgehend, den Grundpunkt w_{n_1} so oft (mindestens N-mal) in entsprechender Richtung zu umlaufen, um schließlich in ein Blatt zu gelangen, welches einen Punkt ω_k enthält. Da dasselbe auch für eine von Q_1 ausgehende und auf der Teilfläche \boldsymbol{F}_2 verlaufenden Jordankurve γ_2 gilt, ist unsere Behauptung bewiesen. Daraus folgt, daß in der ε-Umgebung von ζ_0 mindestens ein Punkt ζ_k existiert, für den $f(\zeta_k) = \omega_k = \omega$ ist. Da über die Zusammenhangszahl des Gebietes G_1 keine Annahme gemacht wurde, und da jeder Punkt der Menge H ebenfalls Randwert von f(z) im Punkte ζ_0 ist, so schließen wir, daß die Randwerte der in § 13 u.f. konstruierten Funktion die volle Ebene ausmachen.

18. Die Frage nach den Randwerten ist für den Fall, daß H aus einem einzigen Kontinuum besteht, bereits in § 8 vollständig beantwortet worden. Wir beschränken uns deshalb im folgenden auf abgeschlossenen Punktmengen A, die aus mindestens zwei fremden Kontinuen bestehen. Durch eine lineare Transformation erreichen wir wieder, daß erstens A ganz im Kreise $|w-1|=\frac{1}{2}$ liegt und zweitens dasjenige der Gebiete G_i (deren Vereinigung U die Komplementärmenge zu H darstellt), welches den Punkt Unendlich enthält, mehrfach zusammenhängend ist, nach dem Ergebnis des § 10 also von vorneherein aus lauter Randwerten von f(z) in ζ_0 besteht.

Seien diejenigen einfach zusammenhängenden unter den Gebieten G_i , von denen wir fordern, daß sie keinen Randwert enthalten, die Gebiete

$$G_{i_1}, G_{i_2}, G_{i_3}, \dots$$
 (18.1)

¹²) In den Endpunkten Q_1 und Q_2 kommen natürlich nur gewisse auf F_{∞}^* liegende Kreissegmente in Frage.

Ihre Anzahl ist höchstens abzählbar. In jedem G_{i_k} wählen wir einen festen Punkt w'_{i_k} .

Bei unseren weiteren Überlegungen knüpfen wir an die Ausführungen des § 13 an. Aus jeder Umgebungskomponente V_n $(n=0,\pm 1,\pm 2,\ldots)$ der Menge A wählen wir einen festen Punkt w_n von der Eigenschaft, daß seine Projektion auf die Menge A fällt, jedoch nicht Randpunkt eines der Gebiete G_{i_k} ist. Sollte aber jeder dieser Punkte eines V_n Randpunkt eines G_{i_k} sein (was z. B. zutrifft, wenn A aus zwei konzentrischen Kreisen besteht und wenn man fordert, daß das Innere des kleineren Kreises keinen Randwert von f(z) enthalten soll), so unterbleibe für dieses V_n im Gegensatze zur Konstruktion im § 13 die Auswahl eines Punktes w_n . Die Punkte w_n liegen also jedenfalls stets ganz außerhalb der Gebiete G_{i_k} .

Wir verteilen dann sämtliche Umgebungskomponenten V_n in passender Weise auf die Blätter der in Null und Unendlich gewundenen Logarithmusfläche und gehen von dort durch $t = \log w$ in die schlichte punktierte t-Ebene, wobei V_n in das im Rechtecke R_n (13.4) gelegene Gebiet W_n und, gegebenenfalls, der Punkt w_n in den Punkt $t_n \in W_n$ übergehen.

Wir zeichnen in alle R_n , ausgenommen in R_0 , die Bildgebiete G_{n,i_1} $(n \neq 0)$ von G_{i_1} ein. Der in G_{n,i_1} gelegene Bildpunkt des Punktes w'_{i_1} sei t_{n,i_1} . In die Rechtecke R_n mit $n \neq 0$, ± 1 zeichnen wir überdies auch noch die Bildgebiete G_{n,i_2} von G_{i_2} ein. Der in G_{n,i_2} gelegene Bildpunkt von w'_{i_2} sei t_{n,i_2} . Allgemein zeichnen wir in alle Rechtecke R_n mit $n \neq 0$, $\pm 1, \ldots, \pm k$ auch noch die Bildgebiete G_{n,i_k} von G_{i_k} mit den Bildpunkten t_{n,i_k} des Punktes w'_{i_k} ein. Dabei kann keiner der in R_n liegenden Punkte t_{n,i_k} $(k=1,2,\ldots,|n|)$ mit dem Punkte t_n (falls für diesen Index n ein solcher vorhanden ist) zusammenfallen, da erstere im Inneren der Gebiete G_{n,i_k} liegen, t_n dagegen in deren Äußerem.

Wir entfernen aus der in Unendlich punktierten t-Ebene sämtliche Punkte t_n und t_{n,i_k}^{-13}) und konstruieren über dem verbleibenden ∞ -fach zusammenhängenden Gebiete die regulär verzweigte (schlichtartige und einfach zusammenhängende) Überlagerungsfläche Φ_{∞} (vgl. § 11). Über dem Grundpunkte t_n von Φ_{∞} liegen die abzählbar vielen logarithmischen Windungspunkte $L_n^{(j)}$ $(j=1,2,\ldots)$, über dem Grundpunkte t_{n,i_k} die logarithmischen Windungspunkte $L_n^{(j)}$.

19. Dann konstruieren wir auf Φ_{∞} in bekannter Weise (§ 14) um jeden der Windungspunkte $L_n^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;\ j=1,2,\ldots)$ 14)

 $^{^{13})}$ Aus dem Rechtecke R_n werden dabei die endlich vielen Punkte $\ t_{n,i_k}\ (k=1,2,\ldots,|n|)$ und t_n weggenommen.

¹⁴) Im allgemeinen werden nach § 18 also gewisse Werte des Index n fehlen.

eine doppelspiralförmige stetige Kurve $\sigma_n^{(j)}$, deren beide Äste den Punkt $L_n^{(j)}$ unendlich oft in entgegengesetzter Richtung umlaufen und sich ihm dabei asymptotisch nähern. Dabei sollen die Projektionen der $\sigma_n^{(j)}$ ganz in Kreise $K_n^{(j)}$ um t_n fallen, die selbst alle einerseits innerhalb der Rechtecke R_n , andererseits ganz im Äußeren der Gebiete G_{n,i_k} liegen, und deren Radien für $j+|n|\to\infty$ gegen Null streben.

Um die Windungspunkte $L_{n,i_k}^{(j)}$ zeichnen wir ebenfalls Doppelspiralen in folgender Weise. Sei

$$\Gamma_{n,i_k}^{(1)}, \Gamma_{n,i_k}^{(2)}, \Gamma_{n,i_k}^{(3)}, \dots$$
 (19.1)

eine Folge von paarweise punktfremden, im Gebiete G_{n,i_k} liegenden geschlossenen Jordanschen Kurven, wobei jede Kurve $\Gamma_{n,i_k}^{(l)}$ die vorhergehende $\Gamma_{n,i_k}^{(l-1)}$ von der nachfolgenden $\Gamma_{n,i_k}^{(l+1)}$ trennt. Die Folge strebe mit wachsendem Index l gegen die Begrenzung von G_{n,i_k} . Da die Gebiete G_{n,i_k} $(n=\pm k,\pm (k+1),\ldots)$ alle unter sich kongruent sind, können wir weiter voraussetzen, daß dies auch von den Kurven $\Gamma_{n,i_k}^{(l)}$ $(n=\pm k,\pm (k+1),\ldots)$ gilt.

Nun konstruieren wir auf der Überlagerungsfläche Φ_{∞} um jeden der Windungspunkte $L_{n,i_k}^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;j,k=1,2,\ldots)$ eine doppelspiralförmige stetige Kurve $\varsigma_{n,i_k}^{(j)}$, deren beide Äste den Punkt $L_{n,i_k}^{(j)}$ unendlich oft in entgegengesetzter Richtung umlaufen und sich dabei der Begrenzung von G_{n,i_k} asymptotisch nähern. Weiter soll die Projektion von $\varsigma_{n,i_k}^{(j)}$ ganz im Inneren des Gebietes G_{n,i_k} , dabei aber ganz außerhalb der geschlossenen Kurve $\Gamma_{n,i_k}^{(j+|n|)}$ bliegen. Wir erreichen dadurch, daß sich sowohl die Projektionen der Doppelspiralen um den festen Grundpunkt t_{n,i_k} (wachsender Index j) als auch diejenigen der Doppelspiralen $\varsigma_{n,i_k}^{(j)}$ in den Rechtecken R_n mit $n=\pm k$, $\pm (k+1)$,... und festen Indizes j und i_k als Ganzes immer besser den Begrenzungen der kongruenten Gebiete G_{n,i_k} anschmiegen.

Nun zerschneiden wir die Fläche Φ_{∞} entlang sämtlicher Doppelspiralen $\sigma_n^{(j)}$ und $\varsigma_{n,i_k}^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;j,k=1,2,\ldots)$, wodurch Φ_{∞} in die einfach zusammenhängende Restfläche Φ_{∞}' und in unendlich viele Teilflächen, welche je einen der Windungspunkte $L_n^{(j)}$ bzw. $L_{n,i_k}^{(j)}$ als Randpunkt besitzen, zerfällt. Genau wie in § 15 wird die Fläche Φ_{∞}' durch "Anhängen" der Riemannschen Flächenstücke S_n $(n=0,\pm 1,\pm 2,\ldots)^{16}$) entlang gewisser Bögen der begrenzenden Doppelspiralen σ_n (die σ_n sind speziell ausgewählte unter den $\sigma_n^{(j)}$) erweitert. So erhalten wir schließlich

¹⁵⁾ Die Projektionen von $\varsigma_{n,i_k}^{(j)}$ liegt also ganz im Innern des "ringförmigen" Gebietes, das von der Begrenzung des Gebietes G_{n,i_k} und der Kurve $\Gamma_{n,i_k}^{(j+|n|)}$ eingeschlossen wird.

¹⁶⁾ Siehe Fußnote 14!

die schlichtartige, einfach zusammenhängende Riemannsche Fläche Φ_{∞}^* . Sie möge durch die analytische Funktion $t = \psi(z)$ auf das Innere des Kreises |z| < 1 abgebildet werden.

Andererseits wird Φ_{∞}^* durch $w=L(e^t)$ auf eine Fläche über der w-Ebene übergeführt, wo L eine passende Linearfunktion bedeutet. Dabei gehen die Gebiete W_n wieder in die Umgebungskomponenten V_n und die Grundpunkte t_n bzw. t_{n,i_k} in die Punkte w_n bzw. w'_{i_k} über. Die Bezeichnungen für die Fläche Φ_{∞}^* und die Linien $\sigma_n^{(j)}$, $\varsigma_{n,i_k}^{(j)}$ usw. behalten wir auch nach dieser Abbildung der Einfachheit halber bei.

Von der Funktion

$$w = L(e^{\psi(z)}) = f(z)$$
, $|z| < 1$, (19.2)

läßt sich dann ähnlich wie in den §§ 13 bis 16 zeigen, daß sie die unsere Fläche Φ_{∞}^{*} begrenzenden Doppelspiralen $\sigma_{n}^{(j)}$ (§ 14), die Ränder $\sigma_{n,1}$, $\sigma_{n,2}$ der angehängten Flächenstücke S_{n} (§ 15) und die Doppelspiralen $\varsigma_{n,i_{k}}^{(j)}$ stetig in Kreisbögen $\delta_{n}^{(j)}$, $\delta_{n,1}$ und $\delta_{n,2}$, und in $\delta_{n,i_{k}}^{(j)}$ auf der Linie |z|=1 überführt, deren gesamtes lineares Maß gleich 2π ist, und daß auf |z|=1 ein Punkt ζ_{0} existiert, in dem die in § 2 definierte Punktmenge H mit der Punktmenge A identisch ist. Bezüglich des Punktes ζ_{0} bemerken wir, daß sich in ihm sowohl die Kreisbögen $\delta_{n,1}$, $\delta_{n,2}$ (wegen des Index n beachte man wieder die Fußnote 14!) als auch die Bögen $\delta_{n,i_{k}}^{(j)}$ $(n=0,\pm 1,\pm 2,\ldots;k=1,2,\ldots,n;j$ speziell ausgewählt) häufen. Im übrigen verzichten wir hier auf die genaue Durchführung der Beweise, da sie sich unter Berücksichtigung der Ausführungen dieses Paragraphen ohne Schwierigkeit aus denen, wie wir sie für die Fläche F_{∞}^{*} in den §§ 14 u. f. führten, ergeben.

Nun sehen wir aber auch sofort ein, daß die Gebiete (18.1) keinen einzigen Randwert von f(z) in ζ_0 enthalten.

Betrachten wir nämlich einen beliebigen Punkt ω in irgendeinem der Gebiete (18.1), etwa in G_{i_1} , und ordnen wir ω eine ganz im Inneren von G_{i_1} liegende Umgebung U_{ω} zu, so folgt aus der Konstruktion der Riemannschen Fläche Φ_{∞}^* , daß sich über U_{ω} höchstens endlich viele Blätter von Φ_{∞}^* befinden, da sich die einen Teil der Begrenzung von Φ_{∞}^* bildenden Doppelspiralen $\varsigma_{n,i_1}^{(j)}$ als Ganzes sowohl mit wachsendem Index j als auch n immer besser der Begrenzung des Gebietes G_{i_1} anschmiegen. Daraus schließen wir, daß ω kein Randwert von f(z) in ζ_0 sein kann.

Damit ist der Satz II in allen Teilen bewiesen.