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Uber die Randwerte meromorpher Funktionen
einer Verdnderlichen

Von LEoNHARD WEIGAND, Miinchen

Einleitung

1. Nach dem klassischen Spiegelungsprinzip von H. 4. Schwarz ist
eine im Kreise |z| <1 analytische Funktion f(z), die auf einem Bogen
A B der Kreisperipherie stetig und reell ist, regulir in jedem Punkte von
AB. Vor kurzem?') wurde von Herrn C. Carathéodory eine weitgehende
Verallgemeinerung dieses Satzes angegeben, wobei auf die Stetigkeit der
Funktion f(z) auf A B verzichtet wird. Der Beweis stiitzt sich im wesent-
lichen auf folgende Definition des Randwertes einer Funktion.

Definition. Ist f(z) eine beliebige, in einem Gebiete G definierte reelle
oder komplexe Funktion und bezeichnen wir mit ¢ irgendeinen Randpunkt
von G, so nennen wir eine Zahl x einen Randwert von f(z) im Punkte C,
wenn es mindestens eine gegen { konvergierende Folge von Punkten z, in G
gibt, fir welche

lim f(z,) = « (1.1)
gult. v

2. Das Hauptresultat der erwéhnten Arbeit von Carathéodory ist ein
allgemeiner Satz iiber das Verhalten einer in einem beschrinktenGebiete
meromorphen Funktion in einem Randpunkte. Da unser Ziel die Um-
kehrung dieses Satzes ist, werden wir ihn hier anfiihren.

Zu diesem Zwecke betrachten wir auf der Riemannschen Zahlkugel
eine , normale Uberdeckungsfolge*?)

K, K, K,,... (2.1)

von offenen Kreisen, d. h. eine abzihlbare Menge von Kreisen, wobei
einem beliebigen Kreise » der Riemannschen Kugel mit P als Mittelpunkt
mindestens ein Kreis der Folge (2.1) zugeordnet werden kann, der im
Inneren von x liegt und den Punkt P in seinem Inneren enthilt.

) C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comment. math.
Helvet. vol. 19, fasc. 3, p- 263.

®) C. Carathéodory, Reelle Funktionen, Bd. I, Leipzig-Berlin 1939, § 85, S. 71.
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Ist dann f(z) eine beliebige im Kreise |z| <1 meromorphe analyti-
sche Funktion, so ordnen wir jedem Kreise K, der Folge (2.1) eine Punkt-

menge A, auf |z| = 1 zu, die aus allen Punkten { dieser Linie besteht,
fir die der Grenzwert
lim f(r {) (0<r<1) (2.2)
r—>1

entweder nicht existiert, oder, falls er vorhanden ist, mit einem Punkte
von K, zusammenfillt.

Sei ferner
0y >0z > 05 >+ (2.3)
eine Folge ineinander geschachtelter Kreisbogen auf |z| == 1, die einen
gemeinsamen inneren Punkt (, besitzen und deren Lingen gegen Null
konvergieren.

Wir betrachten fiir jeden Wert von » die Folge der Durchschnitte

A, 8,, A,6,, A,6,,. .. v=1,2,...) (2.4)

und bezeichnen mit

n (2.5)

i
diejenigen ganzen Zahlen (falls es solche gibt), fiir die unter den Punkt-
mengen An,. d, (p=1,2,...) mindestens eine das lineare Mafl Null
besitzt.

Nachdem wir auf diese Weise die n; bestimmt haben, betrachten wir
die offene Punktmenge

U=Kn14-Kn21LKn35r--- (2.6)

und ihre abgeschlossene Komplementidrmenge H .

Die Menge H kann nie leer sein. Fiillt H nicht die ganze Zahlkugel
aus, so kann man ihre Komplementidrmenge U als Summe von hochstens
abzihlbar vielen paarweise punktfremden Gebieten G; darstellen.

3. Der in § 2 erwidhnte Satz von Carathéodory lautet dann :

Satz 1. Es sei eine analytische Funktion f(z) meromorph im Kreise
|z2| <1 und C, ein beliebiger Punkt der Peripherie |z| = 1. Dann kann
man nach den Vorschriften der letzten Paragraphen die Punkte der Rie-
mannschen Zahlkugel als Summe

HA+G + G+

von paarweise punktfremden Mengen darstellen, wobei H abgeschlossen und
nicht leer ist und die Q;, die u. U. auch fehlen konnen, Gebiete bedeuten.
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Dann st fir jedes beliebige der Gebiete G, entweder jeder seiner Punkte Rand-
wert von f(2) wn £, oder aber kein einziger Punkt von G, hat diese Eigen-
schaft. Die Menge der Randwerte von f(z) in (, besteht also jedenfalls aus
der abgeschlossenen Menge H , der noch gewisse unter den Gebieten Q; hinzu-
gefuigt sind.

Die Umkehrung dieses Satzes lautet :

Satz II. Sind die Punkte der Riemannschen Zahlkugel als Summe

von paarweise punktfremden Mengen dargestellt, wobei H eine beliebig vor-
gegebene, abgeschlossene und nicht leere Menge ist und die G, die . U. auch
fehlen konnen, Gebiete bedeuten, so gibt es stets eine tm Kreise |z|<1
meromorphe analytische Funktion f(z), fir die in etnem Punkte C, der
Peripherie |z| = 1 die Punktmengen H und G, die in den letzten Para-
graphen angegebene Bedeutung haben. Die Punkte derjenigen unter den G,,
deren Begremzung aus mehr als einem Kontinuum besteht, sind simtlich
Randwerte von f(z) in {,. Von jedem der ibrigen Gebrete G, kann man nach
Belieben verlangen, daf entweder keiner oder jeder seiner Punkte Randwert
von f(z) in L, tst.

Wir fithren den Beweis des Satzes II in mehreren Schritten. Zuerst
(§§ 4 bis 6) geben wir eine analytische Funktion f(z) an, die im Kreise
|2| <1 meromorph ist und fiir die in einem Punkte {, der Peripherie
|2l = 1 die Menge H mit einem vorgegebenen beschrinkten Kontinuum
(' identisch ist. Durch Spezialisierung von C ergeben sich dann die Fille
der Halb- und der Vollebene (§ 7). Nachdem wir in § 8 kurz auf die
Frage der Randwerte eingegangen sind, folgen in den §§ 9 bis 12 zwei
Beispiele von analytischen Funktionen, fiir welche die Menge H einmal
aus drei isolierten Punkten besteht, das andere Mal aus abzihlbar vielen
paarweise fremden geschlossenen Jordankurven in beliebiger gegenseiti-
ger Lage. Die dabei verwendeten Konstruktionsmethoden benutzen wir,
um endlich in den §§ 13 bis 16 den Fall einer beliebigen abgeschlossenen
und beschrinkten Punktmenge H zu erledigen. Zuletzt (§§ 17 bis 19)

beweisen wir die im Satze II aufgestellten Behauptungen beziiglich der
Gebiete @, .

H bhesteht aus einem Kontinuum

4. Um spiterhin umstindliche Unterscheidungen zu umgehen, er-
]edigen wir gleich zu Anfang den trivialen Fall, wo das Kontinuum C
aus dem einzigen Punkte w, besteht.

127



Ist eine im Kreise |z|<<1 meromorphe Funktion auch noch in dem
Peripheriepunkte ¢, analytisch und besitzt sie dort den Wert w,, so ent-
hilt die in § 2 definierte Menge H nur den einen Punkt w,, der zugleich
auch der einzige Randwert in (, ist.

Fiir die Funktion

Sotz)?
f(2) ——-——wo+e( =

bestehen die in {, gebildete Menge H und deren Komplementidrmenge &’
aus dem einen Punkte w, bzw. aus lauter Randwerten von f(z).

Wir kénnen somit im folgenden diesen einfachen Fall beiseite lassen
und bezeichnen mit C ein beliebiges beschrinktes Kontinuum, welches
mindestens zwei Punkte enthilt.

Um zu einer im Einheitskreise meromorphen Funktion w = f(z) zu
gelangen, fiir die in einem Punkte {, auf der Peripherie |z| =1 die
Menge H identisch mit dem Kontinuum C ist, konstruieren wir uns ein
spezielles Riemannsches Flichenstiick 8 in folgender Weise.

Nach einem bekannten Satze aus der Punktmengenlehre?) kann man
dem Kontinuum C mindestens eine monoton abnehmende Folge

U,2U0,20;2--- (4.1)

von beschrinkten Gebieten U,, zuordnen, deren Durchschnitt gleich ¢
ist. Auf C' wihlen wir uns eine dichte, abzédhlbare Punktmenge

w, (t=1,2,...) (4.2)

und weisen jedem dieser Punkte eine abgeschlossene Kreisscheibe k; mit
w; als Mittelpunkt zu. Die Radien der £, sollen derart gegen Null konver-
gieren, daB} stets

k,SU, wund k;Ok,,? G=1,2,...). (4.3)

Auf der Peripherie der Kreise &, und k, wihlen wir je einen Bogen b,
und b,, und verbinden die beiden Endpunkte des einen Bogens mit denen
des anderen in der Weise durch zwei sich gegenseitig nicht treffende
Jordansche Kurvenstiicke y,, und y,,, die mit k, und %, nur die End-
punkte gemein haben und ganz im Inneren des Gebietes U, verlaufen.
daB die vier Kurvenstiicke by, 50, bgo, 75, die Begrenzung eines einfach
zusammenhingenden, schlichten Riemannschen Flichenstiickes S' er-
geben, welches die Punkte w, und w, als innere Punkte enthilt.

8) C. Carathéodory, Reelle Funktionen, Leipzig-Berlin 1939, Bd. I, § 107, S. 90-
%) Fiir zwei fremde Punktmengen 4 und B schreiben wir 4 O B.
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Entsprechend wéhlen wir auf dem Kreisbogen b,, einen Teilbogen b,,
und auf der Peripherie des Kreises k, einen Bogen b,,, und verbinden die
beiden Endpunkte von b,, mit denen von b,, in der Weise durch zwei sich
gegenseitig nicht treffende Jordansche Kurvenstiicke y,, und y,,, die
mit £, und k, nur die Endpunkte gemein haben und ganz im Gebiete U,
verlaufen, daf3 die Kurvenstiicke zusammen mit b,, und der nach Weg-
nahme von b,, verbleibenden Begrenzung von 8! die Begrenzung eines
einfach zusammenhéngenden, im allgemeinen schlichtartigen Fldchen-
stiickes S2 ergeben, welches neben w, und w, auch noch den Punkt w,
im Innern enthélt.

Haben wir so allgemein S™ konstruiert, so wihlen wir auf dem der
Begrenzung von S" angehorenden Kreisbogen b,., , einen Teilbogen
b,41,, und auf der Peripherie von &, , einen Bogen b, , , und verbinden
die beiden Endpunkte von b,,,; , mit denen von b, ,, , in der Weise durch
zwei sich gegenseitig nicht treffende Jordansche Kurvenstiicke y,,,, o und
Vus1,1> die mit k., und %k, , nur die Endpunkte gemein haben und ganz
im Gebiete U, , verlaufen,sodal y, ., und y,,, ;, zusammenmit b, ., ,
und der nach Wegnahme von b,,,, , verbleibenden Begrenzung von S” die
Begrenzung des einfach zusammenhingenden, schlichtartigen Flidchen-
stiickes S»+! ergeben, welches die Punkte w,,. .., w, , im Inneren enthalt.

So fortfahrend ergibt sich zu jedem ganzen n=1 ein einfach zusam-
menhédngendes, schlichtartiges Fldchenstiick S*. Steht fiir jedes n=>1
fest, auf welche Art Sn+! aus S™ entsteht, und setzen wir diesen Prozef3
unbeschrinkt fort, so erhalten wir als Ergebnis ein einfach zusammen-
hingendes, schlichtartiges Riemannsches Flidchenstiick S, das simtliche
Punkte w,; der Folge (4.2) im Inneren enthilt und dessen Projektion ins
Innere von U, fillt. Dies ist leicht einzusehen.

Betrachten wir ndmlich ein beliebiges geschlossenes und ganz auf S
liegendes Polygon z, so stellt jede der endlich vielen Seiten p von x eine
beschriinkte und, mit EinschluB beider Endpunkte, abgeschlossene
Punktmenge dar. Trennen wir die Fliche S von der Fliche S*+! ab und
bezeichnen die Menge der inneren Punkte dieser schlichten Restmenge
mit R", go ist jedem Punkte der Seite p eine bestimmte dieser Rest-
mengen als schlichte Umgebung zugeordnet. Nach dem Satze von Borel
wird dann p bereits von endlich vielen der R" iiberdeckt und dasselbe
gilt dann auch vom Polygon 7. Ist RY diejenige dieser Restmengen mit
grofftem Index, so liegt n ganz in dem einfach zusammenhéingenden,
schlichtartigen Flichenstiick S¥*! und zerlegt dieses und damit auch das
Riemannsche Flichenstiick S in zwei Teilflichen. Uberdies liegt das
Innere von = ganz in S¥*1, also auch ganz in S.
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Daf} die Projektion von § ins Innere von U, fillt und sdémtliche Punkte
w; im Inneren von § liegen, folgt aus obiger Konstruktion, und damit ist
unsere Behauptung bewiesen.

Die Begrenzung von 8 besteht durchweg aus Jordanschen Kurven-
stiicken.

5. Nach dem Hauptsatz der konformen Abbildung 148t sich S durch
eine analytische Funktion w = f(2) auf das Innere des Kreises |z|<1
iibertragen. Die Abbildung ist in jedem Randpunkte von S stetig.

Sei {q,} eine unendliche Folge von Querschnitten auf S, wobei wir ¢,,
im Kreise k, derart anbringen, dal} jeder Querschnitt ¢, den vorhergehen-
den ¢,_, vom folgenden ¢, ,, trennt. Die ¢, sind paarweise punktfremd,
auch in ihren Endpunkten. Jedes ¢, teilt S in zwei Teilflichen, von denen
wir diejenige mit g, bezeichnen, welche ¢, _, enthilt. Wir erhalten so eine
Folge von Teilflichen ¢, , von denen jede in allen vorhergehenden ent-
halten ist und selbst alle folgenden enthélt. Die Projektion der Teilfliche
g, fallt ganz ins Innere der Umgebung U, der Folge (4.1).

Im Kreise |z| <1 bekommen wir als Bild der ¢, eine Folge von Quer-
schnitten r,, die wegen der Randstetigkeit der Abbildung die gleichen
Eigenschaften wie die q, besitzen, und eine Folge ineinandergeschach-
telter Gebiete h,. Wir behaupten, daBl die Querschnitte », gegen einen
Peripheriepunkt ¢, des Kreises |z| = 1 konvergieren, womit gezeigt ist,
daB die Begrenzung von S durch w = f(z) stetig in die in {, punktierte
Kreislinie |z| = 1 ibergeht.

Wir beweisen zuerst, dal die Querschnitte r, gegen die Kreisperipherie
konvergieren. Andernfalls gibt es ndmlich einen Punkt P in |z| <1 der-
art, daBl jede Umgebung U, von P Punkte von unendlich vielen Quer-
schnitten 7, enthilt. Auf dem Flichenstiick S entspricht dem Punkte P
ein innerer Punkt @, der entweder auf einen der Querschnitte ¢, oder
zwischen zwei aufeinanderfolgende dieser Querschnitte zu liegen kommdt.
Wir kénnen dann auf S eine Umgebung U, von @ wihlen, welche Punkte
von hdchstens einem einzigen Querschnitte g, in ihrem Inneren enthilt.
Das Bild von U, im Einheitskreise stellt aber eine Umgebung von P dar,
welche hochstens Punkte des Querschnittes 7, im Inneren enthilt, womit
ein Widerspruch herbeigefiihrt ist.

Durch die auf |z| = 1 liegenden Endpunkte der Querschnitte r, wird
eine Folge

M>Ne > Mg > (5.1)

von ineinander geschachtelten Kreisbogen definiert, die einen gemein-
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samen inneren Punkt , besitzen und deren Lingen, wie wir nun zeigen
werden, gegen Null konvergieren.

Besitzt nimlich die Folge (5.1) als Durchschnitt einen Kreisbogen 7,
so wihlen wir auf diesem Bogen einen beliebigen Punkt L. Das Bild des
zu diesem Punkte fiihrenden Radius, der nach obigem fast alle Quer-
schnitte r, an mindestens einer Stelle schneidet, stellt eine auf S ver-
laufende analytische Kurve dar, die entsprechend fast alle Querschnitte ¢,
an mindestens einer Stelle schneidet. Diese Kurve kann aber gegen keinen
festen Punkt konvergieren, da die ¢, in den Kreisen k, liegen, deren Radien
gegen Null gehen und deren Mittelpunkte w, als Punkte einer abzéhlbaren,
auf C dicht liegenden Menge keinem festen Punkte zustreben konnen.
Somit existiert fiir den Punkt L kein radialer Grenzwert und da L auf
beliebig gewéhlt war, ergibt sich so ein Widerspruch zum Satze von Fatou.

Die durch w = f(z) gegebene Abbildung des Flidchenstiickes S auf
|z] <1 ist also randstetig in allen Punkten der Peripherie |z| =1 bis
auf den einen Punkt {,, gegen den die Querschnitte r, konvergieren.

6. Es ist leicht einzusehen, dal} die zu z = {, gehorende abgeschlos-
sene Punktmenge H , die nach Satz I aus lauter Randwerten von f(z) in
{o besteht, mit dem Kontinuum C identisch ist.

Sei nimlich K, ein beliebiger Kreis der normalen Uberdeckungsfolge
(2.1), J, ein beliebiger Bogen der Folge (2.3) und D der Durchschnitt
von K, mit C'. Falls D nicht leer ist, konnen wir nach § 4 aus der Folge
(4.2) eine unendliche Teilfolge von Punkten w,, (i; <7,<---) derart be-
stimmen, daB8 die den Punkten w,, beigeordneten Kreise £, alle in K,
liegen. Von jedem der von den k; ausgehenden Jordanschen Kurven-
stiicken, die ja Teile der Begrenzung des Flichenstiickes S sind, verlduft
dann mindestens ein Teilbogen ganz im Inneren von K,. Diesen Teil-
bogen entsprechen als stetige Bilder gewisse Kreishbogen auf |z]| =1,
die nach den Uberlegungen des § 5 gegen den Punkt £, konvergieren und
somit, fiir geniigend groBe Indizes ¢,, ganz im Bogen §, enthalten sind.
Die in § 2 definierte Punktmenge 4,6, hat also stets ein positives
lineares Maf3, weshalb K, nicht der Punktmenge (2.6) angehoren kann.

Liegt aber K, ganz im Inneren der offenen Komplementdrmenge C’
von C, so wird K, nur mit hochstens endlich vielen Umgebungen
U,,..., U,,—1 der Folge (4.1), die ja gegen das Kontinuum € konver-
giert, Punkte gemein haben. Deshalb liegt auch die Teilfliche g,, von S
auf Grund ihrer Definition in § 5 ganz auBlerhalb K,. Somit ist fiir ge-
niigend groBlen Index,p der Durchschnitt des Kreisbogens d, mit der
Punktmenge A4, leer und K, gehort der Punktmenge (2.6) an.
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Hat K; mit ¢ nur Randpunkte gemein, so 148t sich nur im Einzelfalle
unterscheiden, ob K, der Menge (2.6) angehort oder nicht. Dies ist jedoch
belanglos, da wir zeigen konnen, dafl die Vereinigung der im vorigen Ab-
satze betrachteten Kreise K, (die also ganz im Inneren der Menge C’
liegen) identisch mit C' ist.

Zu diesem Zwecke schlagen wir um jeden Punkt P der offenen Menge
C’ einen Kreis %, dessen Radius gleich der halben Entfernung von P
und der Begrenzung von O’ ist. Nach der Definition der normalen Uber-
deckungsfolge in § 2 gibt es mindestens einen Kreis K, der Folge (2.1),
der im Inneren von xp liegt und den Punkt P in seinem Innern enthilt.
Nach dem Uberdeckungssatze von Lindeldf existiert dann eine Teilfolge
von (2.1), deren Vereinigung U die Menge C’ iiberdeckt, und da jeder
Kreis dieser Teilfolge im Innern von C’ liegt, ist U = C’.

Damit ist gezeigt, dal die zu z = {, gehorende Menge H mit dem
Kontinuum €' identisch ist.

7. Die im § 4 vorausgesetzte Beschrinktheit von ' war wesentlich,
um den Satz von Fatouw anwenden zu konnen. Um eine in |z| <1 analy-
tische Funktion zu finden, fiir welche die Menge H mit der Vollebene
identisch ist, wihlen wir speziell fiir C die abgeschlossene rechte Halb-
ebene und konstruieren das zugehorige Flichenstiick § durch passende
Wahl der Punkte w,, der Radien von k; und der verbindenden Jordan-
schen Kurvenstiicke y;  und y, ;, so da@ iiber den Punkten Null und
Unendlich kein Punkt von § zu liegen kommt.

Durch % = w? wird § in ein neues Flichenstiick S* iibergefiihrt, die
Menge der Punkte w, (z = 1, 2,...) in die abzéhlbare und auf der Voll-
ebene dicht liegende Menge %, und die Kreise £, in die schlichten Gebiete
k¥, welche w; im Innern enthalten. Die Durchmesser dieser Gebiete wer-
den im Gegensatze zu denen der Kreise k; im allgemeinen nicht mehr
gegen Null konvergieren. Doch streben die Durchmesser derjenigen k;
gegen Null, die allen den Punkten u; zugeordnet sind, welche in einem
beliebigen endlichen Kreise liegen.

Wird durch w = ¢(2) das Fliachenstiick S konform auf |z|<1 ab-
gebildet, wobei {, wieder der gemeinsame Punkt der Bogen (5.1) ist, so
sehen wir dhnlich wie im vorigen Paragraphen, dall die abgeschlossene
Menge H, die wir fiir die in |2| <1 analytische Funktion u = (¢(z))? =
f(z) im Punkte {, bilden, mit der Vollebene zusammenfillt.

Ist ndamlich K, wieder ein beliebiger Kreis der normalen Uberdeckungs-
folge (2.1) und 4, ein beliebiger Bogen der Folge (2.3), so wihlen wir
aus der Folge der Punkte u, eine unendliche Teilfoige u,, derart, daBl die
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den u,, zugeordneten Gebiete k} alle in K, liegen. Dem Teil der Begren-
zung von S*, der in K, liegt, entsprechen als stetiges Bild unendlich viele
Bogen auf |z| = 1, diesichin ¢, hdufen und somit, wenigstens teilweise,
im Bogen §, enthalten sind. Die Menge A,d, besitzt deshalb stets ein
positives lineares Maf}, die Menge (2.6) ist somit leer und deren Komple-
mentidrmenge H gleich der Vollebene.

Die in den letzten Paragraphen konstruierten Abbildungsfunktionen
w = f(2) besitzen die bemerkenswerte Eigenschaft, dal sich auf jeder
stetigen, ganz in |z| <1 verlaufenden und in den Punkt ¢, einmiinden-
den Kurve y stets eine gegen {, konvergierende Punktfolge finden 148t,
deren Bildpunktfolge gegen einen beliebigen Punkt @ des Kontinuums C
konvergiert. Man sieht dies leicht ein, wenn man bedenkt, dafl das im
Flachenstiicke S (bzw. S*) verlaufende Bild von y dem Punkte ¢ unend-
lich oft beliebig nahekommt.

8. Die Komplementirmenge zu dem im § 4 vorgegebenen Konti-
nuum C kann als Summe von héchstens abzdhlbar vielen einfach zu-
sammenhéngenden Gebieten G, (: = 1, 2,...) dargestellt werden. Aus
der Konstruktion des Flachenstiickes S ergibt sich, dafl kein einziges der
G; Randwerte von f(z) in {, enthalt.

Zu jedem beliebigen inneren Punkte P eines der Gebiete G, gibt es
ndmlich einen Index 7y, so daBl P ganz aulerhalb der Umgebung U,
der Folge (4.1) liegt. Somit liegt P auch ganz auBlerhalb der Teilfliche
gr, von S (§ 5). Da aber jede im Kreise |z| <1 gegen den Peripherie-
punkt {, konvergierende Punktfolge bis auf endlich viele ihrer Punkte
in dem der Teilfliche g, entsprechenden Gebiete 4, liegt, kann deren
Bildpunktfolge auf S niemals gegen den Punkt P streben, womit unsere
Behauptung bewiesen ist.

Soll aber z. B. das Gebiet G, aus lauter Randwerten von f(z) in ¢,
bestehen, so miissen wir das Flidchenstiick S in passender Weise ver-
dndern. ¢, wird als einfach zusammenhéngendes Gebiet von einem einzi-
gen Kontinuum R begrenzt, welches als Teilmenge von C in allen Um-
gebungen (4.1) enthalten ist.

Sei
B,E B,SB;&--- (8.1)

eine monoton zunehmende Folge von einfach zusammenhingenden, von
Jordankurven begrenzten abgeschlossenen Gebieten, die alle in @, liegen,
fiir die von einem gewissen Index N=1 an

133



B,0U, (n=N) (8.2)

gilt und deren Vereinigungsmenge gleich @, ist?).

Weiter wihlen wir, fiir jeden Index n=N, auf der Begrenzung von
B, einen Bogen b,, auf dem Randbogen y, , (§ 4) des Flidchenstiickes §
einen Teilbogen ¢, und verbinden die Endpunkte von b, mit denen von
¢, in der Weise durch zwei sich gegenseitig nicht treffende, ganz in dem

Gebiete U, 1 G, B. ®) verlaufende Jordansche Kurvenstiicke, so daB
simtliche B,, zusammen mit § und den durch die Randbogen b,, ¢,
und die verbindenden Jordanschen Kurvenstiicke begrenzten Gebiete
ein einfach zusammenhéngendes, schlichtartiges Riemannsches Flidchen-
stiick Sg, ergeben. Entsprechend verfihrt man mit Sy , falls weitere der
Gebiete G, aus lauter Randwerten bestehen sollen. Allgemein erhilt man
auf diese Weise ein schlichtartiges einfach zusammenhingendes Rie-
mannsches Flidchenstiick Sy, welches aus § durch ,,Anhéngen® gewisser
Gebiete entsteht.

Moge Sg, durch die analytische Funktion w = f(z) auf |z|<1 ab-
gebildet werden. Falls S, beschrinkt ist, 1dBt sich dhnlich wie in den
§§ 5 und 6 zeigen, dafl auf |z] = 1 ein Punkt {, existiert, in dem die
Menge H gleich dem vorgegebenen Kontinuum C ist. Man hat dabei zu
beriicksichtigen, dal3 die Gebiete (8.1) gegen ¢, konvergieren und, fiir
jedes n =N, die Jordanschen Kurvenstiicke, welche die Endpunkte der
Teilbdgen b, und c¢,, miteinander verbinden und Teile der Begrenzung von

Sg, sind, ganz im Gebiete U, + @, B, verlaufen; der Durchschnitt
dieser Gebiete ist aber gleich C'.

Ist jedoch S nicht beschrinkt (was z. B. zutrifft, wenn das Konti-
nuum C einfach zusammenhéngend, ¢, also die Komplementidrmenge zu
C ist), schliefen wir so : Durch die Teilbogen {c,} mit n =N, die nach
Obigem Querschnitte auf Sg darstellen, zerfillt die Fliche Sg wieder in
das Flichenstiick § und unendlich viele einfach zusammenhingende
Teilflichen, welche die Gebiete B, als Teilmengen enthalten. Auf dem
so erhaltenen Flichenstiicke S bringen wir ferner dieselbe Querschniti-
folge {g,} an, wie wir sie im § 5 eingefiihrt haben. Dann ergibt sich
vermoge der Abbildungsfunktion w == f(z) als Bild der Folge {c,} im
Kreise |2| <1 eine Querschnittfolge {s,}, die den Kreis |[z|<1 in ein
dem Flidchenstiicke S entsprechendes einfach zusammenhingendes Ge-
biet S, und gewisse unendlich viele weitere Gebiete F', zerlegen.

5) Die Existenz einer solchen Folge ergibt sich aus der Tatsache, daB es in einem zwei-
fach zusammenhiéngenden Gebiete stets eine geschlossene Jordankurve gibt, in deren
Innerem wie AuBlerem Randpunkte des Gebietes liegen.

8) Mit B’ bezeichnen wir die Komplementérmenge zu B.
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Den Querschnitten {g,} entsprechen gewisse Querschnitte {p,} des
Kreises |2| <1, welche zugleich auch Querschnitte des Gebiets S, sind.
Dabei trennen die Querschnitte p, und p,,, den Querschnitt s; vom vor-
hergehenden s;_, und nachfolgenden s, , (und damit auch das Gebiet F,
vonF,_,und ¥, ). Wird S, durch z = y(u) weiter auf |u|<<1 konform
und randstetig abgebildet, so geht die Querschnittsfolge {p,} in die
Querschnittsfolge {r,} des § 5 iiber, von der wir damals zeigten, daf3 sie
gegen einen Peripheriepunkt v, konvergiert. Wegen der Randstetigkeit
von z = yw(u) entspricht dann v, ein Punkt {, auf [z| = 1, gegen den
dann auch die Folgen {p,}, {s,} und {F,} konvergieren. Wir zeigen dann
wie oben, da} in ¢, die Menge H gleich dem Kontinuum C ist.

Nun sehen wir aber auch ein, dafl jeder im Gebiete G, liegende Punkt
o Randwert von w = f(z) ist. Da ndmlich die Gebiete (8.1), die fiir
n=N ja Teile des Flidchenstiickes Sg sind, gegen G, konvergieren, liegen
iitber w stets unendlich viele Punkte N

gy Dpgr1s Pngrese - - (ng=N) (8.3)

von S, , wobei w, der auf die Teilfliche B, fallende Punkt ist. Der Index
ny hiingt von der Lage des Punktes w in G, ab. Die Bildpunkte von (8.3)
in |z|<1, die wir mit ¢, (r =n,) bezeichnen und fiir die also f({,) = o
gilt, liegen nach Obigem beziehentlich in den Gebieten F, und konver-
gieren deshalb gegen {,. Damit ist unsere Behauptung bewiesen.

Dieser Beweis gilt, abgesehen von sinngeméflen Erweiterungen, auch
fiir die Flache Syq, d. h. also im Falle, daB mehrere Gebiete G; aus Rand-
werten bestehen sollen.

Zwei Beispiele

9. Bevor wir den Fall einer beliebigen abgeschlossenen und beschrank-
ten Punktmenge behandeln, wollen wir in diesem und den folgenden
Paragraphen auf zwei spezielle Fiille genauer eingehen, da uns die dabei
verwendeten Methoden im wesentlichen den allgemeinen Beweis liefern
werden.

Die abgeschlossene Menge H bestehe diesmal aus den drei isolierten
Punkten w,, w, und w,. Wir betrachten die zu diesen Punkten gehorige
regulir verzweigte universelle Uberlagerungsfliche F_ (Modulfliche).
Uber jedem der ,,Grundpunkte® w, , w,, w, liegen bekanntlich unendlich
viele logarithmische Windungspunkte L{?, L{) und LY’ (j =1, 2,...).
Wir konstruieren uns auf der Fliche F_ um jeden Windungspunkt LY
(m=1,2,3; j=1,2,...) eine doppelspiralformige stetige Kurve o,
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deren beide Aste den Punkt L{) unendlich oft in entgegengesetzter Rich-
tung umlaufen und sich ihm dabei asymptotisch néhern. Ferner sollen
die Projektionen der Kurven o' ganz in Kreise K’ um w, fallen, deren
Radien mit wachsendem Index j monoton gegen Null abnehmen. Aufler-
dem liege jeder der drei Kreise K, K® und K{ ganz auBlerhalb der
anderen zwei.

Zerschneiden wir F_ entlang simtlicher Spiralen o), so zerfillt die
Fliche in die einfach zusammenhingende, von den ¢’ begrenzte Fliche
F/, und in unendlich viele weitere Teilfliichen, fiir die je einer der obigen
Windungspunkte Randpunkt ist. Bilden wir durch die analytische Funk-
tion w = f(z) die Fliche F. auf |z|<1 ab, so geht jede der Rand-
kurven o) stetig in einen gewissen Kreisbogen 6\ auf der Linie |z|=1
iiber. Bekanntlich ist das lineare MaB simtlicher Bogen ' gleich 2x.
Ferner hiaufen sich in einem Endpunkte {, eines beliebigen dieser Bogen,
etwa 0, unendlich viele weitere Kreisbogen 6, sogar unendlich viele
mit festem Index =.

Um zu zeigen, daBl die aus den drei Punkten w, bestehende Menge H
die im § 2 angegebene Bedeutung hat, wihlen wir wieder einen beliebigen
Kreis K, der normalen Uberdeckungsfolge (2.1) und betrachten die zu-
gehorige Menge 4,. :

Liegt etwa der Grundpunkt w, innerhalb K,, so von einem gewissen
Index j, ab auch die unsere Fliche F/ berandenden Spiralen ¢\, deren
Bilder 6{ sich in £, hdufen. Also besitzt die Menge A4, 6, fiir jedes p ein
positives lineares Mal und K, gehort nicht der Menge (2.6) an.

Liegen die drei Grundpunkte aber ganz im AuBeren von K, so werden
nur endlich viele Spiralen ¢! Punkte mit diesem Kreise gemein haben.
Deshalb gibt es ein p,, so daB, fiir alle p > p,, die Menge A4, d, leer und
der Kreis K, Teilmenge der Menge U ist. Wie im § 6 zeigt man dann mit
Hilfe des Lindelofschen Uberdeckungssatzes, daB U mit der in w;, w;
und w, punktierten Vollebene zusammenfillt, woraus unsere Behaup-
tung folgt.

10. Die soeben erhaltene offene Punktmenge U besteht in unserem
speziellen Falle aus einem einzigen, dreifach zusammenhingenden Ge-
biete @,. Wir beweisen hier aber gleich die allgemeine Aussage des
Satzes II, wonach die Punkte derjenigen unter den Gebieten G,, deren
Begrenzung aus mehr als einem Kontinuum besteht, sémtlich Randwerte
von f(z) im Punkte ¢, sind.

Sei also speziell G, ein solches Gebiet, dessen Begrenzung aus min-
destens zwei Kontinuen R, und R, besteht. Als Teilmengen der ab-

136



geschlossenen Menge H sind nach dem Satze I alle ihre Punkte Rand-
werte von f(z) in {,. Da die Kontinuen R, und R, punktfremd sind,
konnen wir sie durch eine geschlossene Jordankurve I', die ganz im
Innern von G, verlduft, voneinander trennen. Ist @, ein Punkt von R,,
@; ein Punkt von R,, so gibt es in |z| <1 zwei gegen {, konvergierende
Punktfolgen {{’} und {2}, deren Bildpunktfolgen {w{} und {w@}
in der w-Ebene gegen @, und @, streben. Verbinden wir den Punkt 2{"
und 2 durch die Strecke p,, so entspricht dieser ein analytisches Kurven-
stiick ¢,, das w{’ und w® verbindet und die geschlossene Kurve I" in
mindestens einem Punkte w, schneidet, dem der Punkt ¢, auf der Strecke
p. entspricht. Da I' eine abgeschlossene Menge ist, enthilt die Folge
{w,} mindestens eine Teilfolge {w}}, die gegen einen Hiufungspunkt w,
der Folge {w,} konvergiert. Die Bildfolge {{;} strebt aber gegen (,,
somit ist w, und nach dem Satze I jeder Punkt aus ¢;, Randwert von

f(z) in £,.

11. Beim zweiten Beispiel bestehe die Menge H aus abzdhlbar vielen
paarweise punktfremden geschlossenen Jordankurven I, (n = 0, +1,
+2,...) in beliebiger gegenseitiger Lage ; doch mul}, da H nach Satz I
ja stets abgeschlossen ist, eine Haufungsstelle der I", Punkte von genau
einer der Jordankurven sein. Der Einfachheit halber nehmen wir an, daf3
simtliche I, im Innern des Kreises |w — 1| = 4 liegen, was sich durch
eine Lineartransformation immer erreichen lagt.

Nun verteilen wir die Kurven I', in der Weise auf die Bldtter der in
Null und Unendlich gewundenen Logarithmusfliche, da bei deren Ab-
bildung durch ¢ = log w in die schlichte punktierte ¢-Ebene das Bild y,,
von I, ganz ins Innere des von den Geraden R(t) =log3, R(t) =log 3
und J(f) = 2nn, J(t) = 2(n + 1)z gebildeten Rechteckes

R, (11.1)
zu liegen kommt.

Im Innern jeder Kurve y, wihlen wir einen beliebigen Punkt ¢, , ent-
fernen alle ¢, aus der {-Ebene und konstruieren zu dem verbleibenden,
oo-fach zusammenhingenden Gebiete G die regulir verzweigte Uber-
lagerungsfliche F_. Dies geschieht etwa in folgender Weise.

Wir verbinden, fiir jedes ganze n, den Punkt ¢, mit ¢,,, durch eine
Strecke p, und schneiden das Gebiet G entlang simtlicher p, auf, wo-
durch @ in zwei Teilgebiete @, und G, zerlegt wird. Von jedem dieser
beiden Gebiete denken wir uns unendlich viele Exemplare G3* und G2+?
(¢=0,1,2,...) iibereinander gelegt und deren Rinder derart mitein-
ander verheftet, so daB3 @) (nullte Generation) entlang jeder Strecke p,
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mit einem der Exemplare G2*+' zusammenhingt. Dabei soll kein G2¢+1
entlang mehrerer p, mit G9 verbunden sein. Dann ist GY von einem
liickenlosen Kranze von lauter verschiedenen G**! umgeben (erste Ge-
neration). In gleicher Weise verfahren wir mit diesen G%*!, indem wir
sie entlang jeder ihrer Randstrecken p, mit lauter von G5 und unter sich
verschiedenen Exemplaren G%* verheften (zweite Gieneration). Allgemein
werden die Exemplare der 2:-ten Generation entlang ihrer freien Rand-
strecken p, mit lauter von den bereits frither verwendeten und unter
sich verschiedenen Exemplaren G3+!, die der (2¢ + 1)-ten Generation
entsprechend mit Exemplaren G* verheftet. Dieses Verfahren, unbe-
grenzt fortgefiihrt, ergibt die gewiinschte regulir verzweigte Uberlage-
rungsfliche F_. Uber jedem ihrer Grundpunkte ¢, liegen unendlich viele
logarithmische Windungspunkte LY (j =1, 2,...). Sie alle sind, genau
so wie der Punkt Unendlich, Randpunkte der Flidche. Auf gleiche Weise
wie in § 4 zeigt man, daB F  einfach zusammenhingend und schlicht-
artig ist. Nach dem Hauptsatze der konformen Abbildung 1iBt sie sich
deshalb durch eine analytische Funktion ¢ = @(z) in die schlichte
z-Ebene iibertragen und da ¢ (z) z. B. die drei Werte ¢,, t, und ¢, ausldgt,
gehort F_ nach Picard dem hyperbolischen Typus an.

Schneiden wir die Fliche F_, um jeden Windungspunkt L (j —
1,2,...) entlang der unendlich oft durchlaufenen Kurve y, auf, so zer-
fallt sie in die unendlich vielen, paarweise punktfremden Umgebungen
dieser Windungspunkte und in die einfach zusammenhéngende Rest-
fliche F,. Bei der Abbildung ¢ = ¢(2) von F_ auf |z|<<1 gehen die
Umgebungen in gewisse einfach zusammenhingende Gebiete HY) (j =
1,2,...) und die Fliche ¥, in das Komplementiirgebiet E, von |z|<1
iiber. Wir zeigen, daB jedes der Gebiete H genau einen Peripheriepunkt
P9 des Einheitskreises als Randpunkt besitzt und daB die Punkte PY’
(j=1,2,...) auf |z| =1 dicht liegen.

Da E, ein Gebiet, also zusammenhéngend ist, kann die auf |z| = 1
liegende Randpunktmenge eines der HY) nicht aus mehr als einem Konti-
nuum bestehen. Bestiinde aber diese Randpunktmenge aus einem Kreis-
bogen 4§, so schlieBen wir folgendermaflen :

Wihlen wir bei dem eben geschilderten Prozef3 anstatt y, eine andere
Jordankurve, etwa y,,, so erhalten wir entsprechend eine Restfliche F,,
und im Einheitskreise |z|<1 die Gebiete H) und K, . Dann ist kein
Punkt des Bogens § Randpunkt eines der HY). Bei der weiteren Abbil-
dung von E,, auf den Einheitskreis |u|<1 gehe der Kreisbogen 4 in
den Kreisbogen ¢’ itber und da |u| <1 dann auch Abbild der beschrink-
ten Restfliche F,, ist, existieren nach dem Satze von Fatou in allen
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Punkten von ¢’ bis auf eine Nullmenge die radialen Grenzwerte, die alle
gleich ¢, sein miissen. Dies aber widerspricht dem Satze von F. und
M. Riesz?), wonach eine fiir |u|<<1 beschrinkte analytische Funktion,
deren radiale Grenzwerte auf einer Punktmenge von positivem linearen
MaBe auf |u| = 1 konstant sind, identisch gleich dieser Konstante ist.
Somit besteht die auf |z| = 1 liegende Randpunktmenge jedes der Ge-
biete HY) aus einem einzigen Punkte P%.

Wiirden die Punkte PY’ (j = 1, 2,...) auf |z| = 1 nicht dicht liegen,
so gibe es einen Kreisbogen 7, der keinen Punkt P enthielte. Bilden wir
E,auf |v|<1 ab, wobei # in %’ iibergeht, so existierten wieder in allen
Punkten von #’ bis auf eine Nullmenge die radialen Grenzwerte, von
denen jeder gleich einem der Wert ¢, mit 2 # n sein miillite. Da die ¢,
aber eine Nullmenge darstellen, ergéibe sich ebenfalls ein Widerspruch
zum Satze von Riesz.

12.  Wir schneiden jetzt die Uberlagerungsfliche F_ in allen Blittern
entlang simtlicher Jordankurven y, (n = 0, 41, +2...) auf, wobei sie
im die unendlich vielen Umgebungen der Lﬁf’ (=0, +1, 4+2,...;
) =1,2,...) und in die einfach zusammenhéngende Restfliche F zer-
fillt. Durch ¢ = @(u) gehen die Umgebungen wieder in die Gebiete
HY | die Fliche F in das Restgebiet £ von |u|<1 iiber. Die Begrenzung
RY) jedes der Gebiete H? ist zugleich auch ein Teil der Begrenzung von
E und stellt das Abbild der den Windungspunkt LY unendlich oft um-
laufenden Jordankurve y, dar. Bilden wir £ durch u = y(2) weiter auf
|z]<1 ab, wobei die stetigen Kurven RY) in die Kreisbogen 6 iiber-
gehen, und bezeichnen wir einen Endpunkt eines beliebigen dieser Bogen,
etwa 6, mit {,, so haben wir in

w — e® W@ _ (12.1)

eine analytische Funktion, deren Menge H im Punkte {, genau aus simt-
lichen Jordankurven I", besteht.

Erstens ist ndmlich, nach Fatou, das lineare Maf3 der Punktmenge auf
|2] = 1, fiir die keine radialen Grenzwerte existieren, gleich Null. Zwei-
tens liegen, nach den Uberlegungen des vorigen Paragraphen, auf |z| = 1
n jeder beliebigen Umgebung von ¢, fiir jeden Index n unendlich viele
der Kreisbogen 6. Daraus folgt aber genau wie in § 6 unter Heran-
ziehung des Lindelofschen Uberdeckungssatzes unsere Behauptung. Man
hat dabei nur zu beachten, daB das Bild eines auf einem Bogen 6 enden-

") R. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S. 197.
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den Radius des Kreises |z|<1 in der w-Ebene eine analytische Kurve
darstellt, die in einem bestimmten Punkt der Jordankurve I, einmiindet.

Auf die Frage nach den Randwerten der Funktion (12.1) im Punkte £,
wollen wir hiér nicht weiter eingehen, da sie spéter (§§ 17 bis 19) im Zu-
sammenhange mit dem allgemeinsten Falle ihre Erledigung finden wird.

Allgemeiner Fall

13. Nunmehr wihlen wir fiir die Punktmenge H eine beliebige ab-
geschlossene und nicht die volle w-Ebene iiberdeckende Menge A . Nach
Satz I darf A nicht leer sein. Wir konnen die Menge A sogleich als be-
schrinkt annehmen.

Fiir abgeschlossene Punktmengen gelten die beiden allgemeinen
Sétze 8) :

1) Jede abgeschlossene, beschrinkte Punktmenge kann als eine Ge-
samtheit von paarweise fremden Kontinuen angesehen werden.

2) Jeder abgeschlossenen Punktmenge 4 kann man mindestens eine
monoton abnehmende Folge

U,2U0,2U;2--- (13.1)

von (offenen) Umgebungen U, von A4 zuordnen, deren Durchschnitt
gleich 4 ist.

Jede Umgebung U, besteht aus hochstens abzéhlbar vielen, paarweise
fremden Gebieten V;, (k= 1, 2,...), die wir die Umgebungskomponenten
der Punktmenge A nennen wollen. Die Menge sdmtlicher Umgebungs-
komponenten von A4 ist abzdhlbar, so dafl wir sie als Folge

Vo, Vi, Vi Vo, Vo, .t (13.2)

schreiben konnen. Dabei ist jede Umgebungskomponente ¥, gleich einem
bestimmten V.. Da die Menge 4 beschrinkt ist, sind die Gebiete V, so
wahlbar, dal die Folge (13.2) gleichméfig beschrinkt ist. Durch eine
lineare Transformation erreichen wir dann, da8 4 und sdmtliche V¥, ins

Innere des Kreises
lw—1|=1}% (13.3)

fallen. Die Bezeichnungen mogen dabei der Einfachheit halber dieselben
bleiben.
Nachdem wir aus jeder Umgebungskomponente V, einen festen Punkt

8) C. Carathéodory, Reelle Funktionen, Bd. I, Leipzig-Berlin 1939, §§ 106 und 107.

140



w, gewdhlt haben, der zugleich auch Punkt von A4 ist, verteilen wir die
V, entsprechend dem Beispiele in § 11 in der Weise auf die Blitter der
in Null und Unendlich gewundenen Logarithmusfliche, dal bei deren
Abbildung durch ¢ = log w in die schlichte punktierte {-Ebene das Bild
W, von V, ganz ins Innere des von den Geraden R(t) = log 3, R(t) =
logd und J(t) = 2nx=, J(t) = 2(nt+1)n gebildeten Rechteckes

R, m=0,+1,+2,...) (13.4)

zu liegen kommt. Das in W, liegende Bild von w,, bezeichnen wir mit ¢,,.

Aus der in Unendlich punktierten t-Ebene entfernen wir sdmtliche
Punkte ¢, und konstruieren zu dem verbleibenden, co-fach zusammen-
hingenden Gebiete G die regulir verzweigte Uberlagerungsfliche F_
(§ 11). Uber jedem ihrer Grundpunkte ¢, liegen unendlich viele logarith-
mische Windungspunkte L (j =1, 2,...). Sie alle sind, wie auch der
Punkt Unendlich, Randpunkte der Fliache. Ferner ist F'_ einfach zu-
sammenhédngend, schlichtartig und gehort dem hyperbolischen Typus an.

14. Wir verindern jetzt die Fliche F_ in passender Weise. Ahnlich
wie in § 9 konstruieren wir auf F,, um jeden der Windungspunkte L{
n=0,4+1,+2,...; 7=1,2,...) eine doppelspiralformige stetige
Kurve ¢!, deren beide Aste den Punkt LY’ unendlich oft in entgegen-
gesetzter Richtung umlaufen und sich ihm dabei asymptotisch nadhern.
Dabei sollen die Projektionen der o ganz in Kreise KY) um ¢, fallen,
die selbst alle im Innern des Rechteckes (13.4) liegen und deren Radien
fir j 4+ |n|—> oo gegen Null konvergieren.

Zerschneiden wir ¥ entlang simtlicher Spiralen ¢{’, so zerfillt die
Fliche in die einfach zusammenhingende, von den ¢’ und dem Punkte
Unendlich begrenzte Fliche F., und in unendlich viele weitere Teilflichen,
fiir die je einer der obigen Windungspunkte L) Randpunkt ist. Wird F_,
durch die analytische Funktion ¢ = ¢(u) auf das Innere von |u|<1
abgebildet, so geht jede der Randkurven ¢! stetig in einen gewissen
Kreisbogen 8’ auf |u| =1 iiber. Von diesen gilt wie im Falle der Modul-
funktion im § 9, daB das lineare MaB aller 6 gleich 2x ist, ferner, da8
sich in einem Endpunkte ¢, eines beliebigen dieser Bogen, etwa 6, un-
endlich viele weitere Kreisbogen 67, ja sogar unendlich viele mit festem
Index n hiufen. Diese Behauptungen beweisen wir kurz folgendermaBen.

Fiir jeden Index »n wihlen wir aus der Menge der Kreise K% (j =1,
2,...) um ¢, den groBten und bezeichnen ihn mit K ,,. In dessen Inneren
liegen die Projektionen simtlicher Spiralen o) (j = 1, 2,...). Zerschnei-
den wir dann die Uberlagerungsfliche F_ in allen Blittern entlang der
Kreise K ,,, so zerfillt ¥, in die unendlich vielen Kreisumgebungen der
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logarithmischen Windungspunkte LY (n =0, +1, 4+2,...; j==1,
2,...) und in die einfach zusammenhingende Restfliche F. Bei der
Abbildung der Fliche F, auf den Einheitskreis |v|<1 gehen die Kreis-
umgebungen in gewisse einfach zusammenhiingende Gebiete H und die
Flache Fj in das Restgebiet £ von |v| <1 iiber. Dann folgt wie in § 11,
daB jedes HY genau einen Peripheriepunkt P{’ des Einheitskreises als
Randpunkt besitzt und daB, fiir jeden Index n, die Punkte P (j =1,
2,...)auf |v] =1 dicht liegen. Die auf der Fliche F_ verlaufenden
Doppelspiralen ¢ gehen bei der Abbildung in stetige Kurven ¢/ iiber,
die beziehentlich in den Gebieten HY liegen, in P¥ einmiinden °) und die
einfach zusammenhingenden Gebiete H,?) einschlieBen (H,? ist also Teil-
gebiet von H{"). Das Komplementirgebiet E, der Gebiete H ) beziiglich
|v] <1 ist das schlichte Abbild der oben eingefiihrten Fliche ¥ . Da nun
erstens die Gebiete £ und E, dieselben Peripheriepunkte des Einheits-
kreises als Randpunkte besitzen, zweitens das lineare Ma@} gegeniiber ein-
eindeutigen konformen Abbildungen invariant ist1?), folgen alle unsere
Behauptungen sofort aus dem Ergebnis des § 11 in Verbindung mit dem
Satze von Fatou.

15. Haben wir also die Fliche F. durch die Funktion ¢ = ¢ (u) kon-
form auf |u|<1 abgebildet, wobei die Doppelspiralen ¢’ stetig in die
Bogen 6 auf |u| =1 iibergehen, ist ferner ¢, einer der Endpunkte
eines dieser Kreisbogen, etwa speziell 6§, so konnen wir aus der Gesamt-
menge der 67 eine gegen ¢, konvergierende Teilfolge d, (n = 0, 41,
+2,...) auswéhlen, wo §, das Bild einer der Doppelspiralen ¢! (j = 1,
2,...) um den Grundpunkt ¢, ist. Diese den Bogen 4, entsprechenden
Doppelspiralen bezeichnen wir mit o, .

Jeder Punkt ¢, gehort nach § 13 einem Gebiete W, an. Fiir jedes
dieser Gebiete konstruieren wir uns in dhnlicher Weise wie in § 4 ein
Riemannsches Flichenstiick §,,, welches mit der Fliche F. entlang eines
gewissen Teilbogens von o, verheftet wird. Wir zeigen diese Konstruk-
tion im einzelnen fiir n = 0; in den iibrigen Fillen n = 0 erfolgt sie
analog.

Jedem Punkte 7, (1 = 1, 2,...) einer auf W, dicht liegenden und ab-
zihlbaren Punktmenge ordnen wir eine im Gebiete W, liegende ab-
geschlossene Kreisscheibe k; zu, die 7, als Mittelpunkt besitzt. Die Radien
der Kreise sollen derart gegen Null konvergieren, dafl stets

k; O kipy (G=1,2,...). (15.1)

%) Dies folgt aus der Stetigkeit der Abbildung.
10) R. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S.37.
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Ferner sollen 7, und k, so gewéhlt sein, daB der Grundpunkt ¢, nicht
im Inneren von k, liegt.

Auf der Peripherie von k, grenzen wir einen Bogen b,,, auf der von k,
einen Bogen b,, ab und verbinden die beiden Endpunkte des einen Bo-
gens mit denen des anderen in der Weise durch zwei sich gegenseitig
nicht treffende Jordanbogen y,, und y,,, die mit k£, und k, nur die End-
punkte gemein haben und ganz im Inneren des Gebietes W, verlaufen,
so daf die vier Kurvenstiicke b,,, y,,, b5, 7;; die Begrenzung eines ein-
fach zusammenhingenden, schlichten Flichenstiickes ergeben, welches
die Mittelpunkte 7, und t, der beiden Kreise £, und %, im Inneren ent-
hilt. In dhnlicher Weise wird k, mit k; verbunden und so fort (vgl. § 4).
Das Ergebnis ist ein einfach zusammenhéngendes, schlichtartiges Rie-
mannsches Fliachenstiick §,, dessen Projektion ganz auf W, fillt. In
gleicher Weise werden die anderen Flachenstiicke S, mit » 7= 0 gebildet.

Nun betrachten wir wieder die Fliche F. und wihlen auf der begren-
zenden Doppelspirale ¢, einen Punkt P und einen Kreis £k, mit P als
Mittelpunkt derart, dall erstens k, innerhalb W, liegt1!), und zweitens,
daf der Kreis k,, dessen Inneres nach unserer Konstruktion Teilmenge
von 8 ist, ganz auBlerhalb k, liegt. Dies ist moglich, da der Kreis k, den
Grundpunkt ¢, nach obiger Voraussetzung nicht in seinem Inneren ent-
halt, also auch nicht die ganze Doppelspirale o,, die ¢, umliduft, iiber-
decken kann. Unter den Schnittpunkten des Kreises k, mit o, existiert
dann mindestens ein Paar @’ und @”, fiir das der auf k, liegende Bogen
Q' Q" ganz auBerhalb der Fliche F, verliuft. Wir ersetzen das von @’
und Q" begrenzte Kurvenstiick von ¢, durch diesen Kreisbogen @'@Q”
und erhalten so anstatt F eine neue einfach zusammenhingende Fliche

F! . Auf dem Randbogen @’ Q" dieser Fliche wihlen wir einen Teilbogen
by, und auf dem Randbogen b,, des Flachenstiickes S, einen Teilbogen
b,o. Dann verbinden wir die Endpunkte von by, mit denen von b,, in der
Weise durch zwei sich gegenseitig nicht treffende Jordanbogen y,, und
Yo1, die mit k, und %, nur die Endpunkte gemein haben und ganz im Ge-
biete W, verlaufen, so dal die Kurven by, o9, 010> ¥, die Begrenzung
eines einfach zusammenhingenden schlichten Flidchenstiickes ergeben,

welches ganz auBerhalb k, und %, liegt und die Flidchen FZ und S, gegen-
seitig verbindet.

In derselben Weise fiihren wir diesen Erweiterungsproze mit den
tibrigen Flichenstiicken S, (n % 0) durch und erhalten so schlieBlich

11) Dazu brauchen nur P in geniigender Niahe des Grundpunktes £, und der Radius von
ky geniigend klein gewihlt werden.
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eine Fliche FY, die wir durch eine analytische Funktion ¢ = y(z) auf
|z2] <1 abbilden kénnen. Die Begrenzung von F2* besteht erstens, fiir
jedes z, aus den Randkurven ¢, , und o, ,, die sich wiederum aus den
zwei Ufern des angehefteten Flichenstiickes S, und den zwei sich daran
anschlieBenden Asten der Doppelspirale o, zusammensetzen, zweitens
aus allen iibrigen von den o, verschiedenen Doppelspiralen ¢’ und drit-
tens schlieflich aus dem Punkte Unendlich. Diese Randkurven o, ,,
a5 und o gehen durch ¢=1y(z) stetig in Kreisbogen 4, ,, 9, , und
09 auf |z| =1 iiber, deren gesamtes lineares MaB gleich 27 ist. Letzte-
res sieht man sofort ein, wenn man auf F* passende Querschnitte g,
(n =0, +1, +2,...) anbringt, durch welche F* wieder in die Fliche
F. und unendlich viele Teilflichen, die im wesentlichen die S, darstellen,
zerlegt wird. Die Bildquerschnitte r,, von denen jeder einen Punkt auf
0, , mit einem auf 6, , verbindet, zerlegen |z| <1 in ein der Fliche F_,
entsprechendes Gebiet £’ und in unendlich viele weitere Gebiete. Wendet
man auf letztere die Uberlegungen des § 5, auf E’ die des § 14 an, so
folgt unmittelbar unsere Behauptung.

Daraus, zusammen mit der Stetigkeit der Randabbildung folgt weiter,
daBl erstens die den beiden Randkurven o, ; und o, , entsprechenden
Bildkreisbogen 4, ; und §, , auf |2] = 1 in einem ihrer Endpunkte zu-
sammenstoBen (dieser ist singuldrer Punkt fiir y(z)), und zweitens diese
Kreisbogenpaare auf |z| = 1 in derselben Reihenfolge liegen wie die
den Randkurven o, entsprechenden Bildkreisbégen 4, bei der Abbildung
der Fliche F. durch ¢ = @(u) auf |u|<1 im vorigen Paragraphen.
Also werden sich die Bogenpaare 6, ,, 0, , (R =0, £1, £2,...) in
einem einzigen Peripheriepunkte (, hdufen, welche nach der zu Anfang
des § 15 gemachten Voraussetzung einer der Endpunkte des Kreishogens
P ist.

16. Durch die Abbildung w = L(e*), wobei L eine passende lineare
Transformation bedeutet, gehen die Gebiete W, wieder in die Umgebungs-
komponenten V, der Folge (13.2) iiber und die Punkte ¢, in die Punkte
w,,, deren Projektionen auf die Punktmenge 4 fallen. Die Bezeichnungen
fiir F¥, 8, und o behalten wir der Einfachheit halber bei.

Wir konnen jetzt zeigen, dafl die Menge H, die wir fiir die Funktion

w = f(z) = L(e) , t=1yp(z), 2] <1 (16.1)

im Peripheriepunkte {, bilden, mit der vorgegebenen abgeschlossenen
Menge A iibereinstimmt.

Die Menge der Punkte auf |z| = 1, in denen kein radialer Grenzwert
existiert, ist nach § 15 vom linearen Mafle Null. Ferner liegen auf der

144



Linie |z| = 1 in jeder Umgebung von {, die Bilder der Rinder von fast
allen Flichenstiicken §,,, die ihrerseits die Umgebungskomponenten ¥,
in der im Sinne des § 15 zu verstehenden Weise approximieren. Dabei
gehort zu jeder der Umgebungskomponenten V, genau ein §,,. Diejenigen
Radien des Einheitskreises, die weder auf einem dem Rande eines S,
entsprechenden Kreisbogen noch in Punkten enden, in denen kein
radialer Grenzwert existiert, miinden dann in einen Peripheriepunkt, der
einem Punkte auf einer der Doppelspiralen ¢! bzw. ¢, entspricht. Diese
Doppelspiralen sind aber so konstruiert, daB} sie sich mit beiden Asten
asymptotisch dem Punkte w,, dessen Projektion in die w-Ebene der
Menge A angehort, ndhern und iiberdies ganz in Umgebungen von w,
fallen, deren Durchmesser fiir wachsende Werte von j 4+ |n| gegen Null
konvergieren. Die entlang dieser Radien gefundenen Grenzwerte haben
also an der Bildung von H nur insoweit Anteil, als sie die Punkte w, er-
geben. Somit ist H =4.

Die Randwerte

17. In diesem und den folgenden Paragraphen werden wir Aufschlull
iiber die Randwerte der Funktion f(z) im Punkte {, erhalten und damit
den Beweis des Satzes II zum Abschlufl bringen.

Unter Beibehaltung der fritheren Bezeichnungen schreibt sich die zur
Menge H gehorende Komplementirmenge U als Summe von hochstens
abzdhlbar vielen fremden Gebieten G;. In § 10 sahen wir bereits, dal die
Punkte der mehrfach zusammenhéngenden unter den G, simtlich Rand-
werte von f(z) im Punkte {, sind. Die in den §§ 13 bis 16 konstruierte
Funktion w = f(z), welche die Fliche FX auf |z| <1 abbildet, ist in-
sofern noch sehr speziell, als bei ihr auch die Punkte der einfach zu-
sammenhiingenden unter den G; Randwerte in {, sind. Wir sehen dies so.

Wir betrachten ein beliebiges Gebiet G, etwa G,. Ist dann  ein be-
liebiger Punkt aus G, so liegen auf der Fliche FX unendlich viele Punkte

W, Wy, Wg,. .. (17.1)

iiber w. Wir zeigen, dal die Menge der Bildpunkte
Cl, Czy Caw-- (17.2)

im Punkte ¢, einen Haufungspunkt besitzt, d. h. im Inneren jeder ¢-Um-
gebung von ¢, mindestens einer der Punkte (17.2) liegt. Nun bedeutet
es keinerlei Einschrinkung, anzunehmen, dafl die Schnittpunkte P, und
P, des e-Kreises mit |z| =1 beide auf zwei Kreisbogen 677 und §{*
fallen, da ¢, ja ein Hiufungspunkt der Bogen ist. Dann stellt der in
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|z| <1 verlaufende, P, und P, verbindende Teil des ¢-Kreises einen
Querschnitt r des Einheitskreises dar. Der Bildquerschnitt ¢ auf der
Fliche F¥ verbindet die zwei auf den Doppelspiralen ¢{» und ¢{/? (welche
den Grundpunkt w, bzw. w, umlaufen) liegenden Bildpunkte €, und
Q., und zerlegt F¥* in zwei Teilflichen ¥, und F,. Wir behaupten, daB
jede der beiden Teilflichen mindestens einen Punkt aus (17.1) als inneren
Punkt enthilt. ,

Da nédmlich der Querschnitt ¢ (einschliefSlich seiner Endpunkte @, und
Q,) eine abgeschlossene und beschrinkte Menge darstellt, kann er von
endlich vielen, etwa N schlichten, ganz auf der Fliche F} liegenden
Kreisscheiben iiberdeckt werden!?). Diese N Kreisscheiben liegen aber
in hochstens N verschiedenen Blittern von F* . Deshalb 148t sich z. B.
der Punkt @, durch eine ganz auf der Teilfliche F, verlaufenden Jordan-
kurve y, mit einem der Punkte (17.1) verbinden. Dazu braucht y, nur,
von @, ausgehend, den Grundpunkt w,, so oft (mindestens N-mal) in ent-
sprechender Richtung zu umlaufen, um schlieflich in ein Blatt zu ge-
langen, welches einen Punkt w, enthélt. Da dasselbe auch fiir eine von
@, ausgehende und auf der Teilfliche ¥, verlaufenden Jordankurve y,
gilt, ist unsere Behauptung bewiesen. Daraus folgt, daBl in der &-Um-
gebung von {, mindestens ein Punkt ¢, existiert,fiirden f({;)=w,= o
ist. Da liber die Zusammenhangszahl des Gebietes ¢, keine Annahme
gemacht wurde, und da jeder Punkt der Menge H ebenfalls Randwert
von f(z) im Punkte {, ist, so schlieBen wir, daB3 die Randwerte der in
§ 13 u. f. konstruierten Funktion die volle Ebene ausmachen.

18. Die Frage nach den Randwerten ist fiir den Fall, dal H aus
einem einzigen Kontinuum besteht, bereits in § 8 vollstéindig beantwor-
tet worden. Wir beschridnken uns deshalb im folgenden auf abgeschlosse-
nen Punktmengen A4, die aus mindestens zwei fremden Kontinuen be-
stehen. Durch eine lineare Transformation erreichen wir wieder, daf
erstens A ganz im Kreise |w — 1|= 1 liegt und zweitens dasjenige der
Gebiete (/; (deren Vereinigung U die Komplementdrmenge zu H dar-
stellt), welches den Punkt Unendlich enthélt, mehrfach zusammen-
hingend ist, nach dem Ergebnis des § 10 also von vorneherein aus lauter
Randwerten von f(z) in {, besteht.

Seien diejenigen einfach zusammenhingenden unter den Gebieten G;,
von denen wir fordern, daf3 sie keinen Randwert enthalten, die Gebiete

GG, G, .. (18.1)

21 t9?

12) Tn den Endpunkten @, und @, kommen natiirlich nur gewisse auf F'e, liegende Kreis-
segmente in Frage.

146



Thre Anzahl 1st hochstens abzéhlbar. In jedem G, Wahlen Wwir einen
festen Punkt w

Bei unseren Welteren Uberlegungen kniipfen wir an die Ausfiihrungen
des § 13 an. Aus jeder Umgebungskomponente V, (n = 0, +1, 4+2,...)
der Menge 4 wihlen wir einen festen Punkt w, von der Eigenschaft, daB
seine Projektion auf die Menge A fillt, jedoch nicht Randpunkt eines
der Gebiete (;, ist. Sollte aber jeder dieser Punkte eines ¥, Randpunkt
eines G;, sein (was z. B. zutrifft, wenn A aus zwei konzentrischen Kreisen
besteht und wenn man fordert, daB das Innere des kleineren Kreises
keinen Randwert von f(z) enthalten soll), so unterbleibe fiir dieses ¥V,
im Gegensatze zur Konstruktion im § 13 die Auswahl eines Punktes w,,.
Die Punkte w, liegen also jedenfalls stets ganz auBerhalb der Gebiete G,,.

Wir verteilen dann sémtliche Umgebungskomponenten V, in passen-
der Weise auf die Blatter der in Null und Unendlich gewundenen Loga-
rithmusfliche und gehen von dort durch ¢ =logw in die schlichte
punktierte {-Ebene, wobei ¥, in das im Rechtecke R, (13.4) gelegene
Gebiet W, und, gegebenenfalls, der Punkt w, in den Punkt ¢, e W, iiber-
gehen.

Wir zeichnen in alle R,, ausgenommen in R,, die Bildgebiete G, ;
(n # 0) von G, ein. Der in G, ; gelegene Bildpunkt des Punktes w’ sei
bo,i, - In die Rechtecke R, mit n % 0, 41 zeichnen wir iiberdies auch
noch die Bildgebiete G, ; von G, ein. Der in G, ; gelegene Bildpunkt
von wgz seit, ; . Allgemein zeichnen wir in alle Rechtecke R, mit n # 0,
+1,..., &k auch noch die Bildgebiete &, ; von G, mitden Bildpunk-
ten ¢, , des Punktes wj, ein. Dabei kann keiner der in R, liegenden
Punkte t, ,, (k=1,2,...,|n|) mit dem Punkte ¢, (falls fiir diesen Index
n ein solcher vorhanden ist) zusammenfallen, da erstere im Inneren der
Gebiete @, ,, liegen, ¢, dagegen in deren AuBerem.

Wir entfernen aus der in Unendlich punktierten t-Ebene simtliche
Punkte ¢, und ¢, ,,?) und konstruieren iiber dem verbleibenden co-fach
zusammenhidngenden Gebiete die regulidr verzweigte (schlichtartige und
einfach zusammenhingende) Uberlagerungsfliche @, (vgl. § 11). Uber
dem Grundpunkte ¢, von @, liegen die abzidhlbar vielen logarithmischen
Windungspunkte LY (j =1, 2,...), iiber dem Grundpunkte ¢, , die
logarithmischen Wlndungspunkte LY,

n,ik "
19. Dann konstruieren wir auf @, in bekannter Weise (§ 14) um
jeden der Windungspunkte LY (n = 0, 41, +2,...;j=1,2,...) 1)

13) Aus dem Rechtecke R, werden dabei die endlich vielen Punkte 54 (k=1,
2,...,|n|) und ¢, weggenommen
1‘) Im allgememen werden nach § 18 also gewisse Werte des Index n fehlen.
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eine doppelspiralformige stetige Kurve o, deren beide Aste den Punkt
LY unendlich oft in entgegengesetzter Richtung umlaufen und sich ihm
dabei asymptotisch ndhern. Dabei sollen die Projektionen der ¢! ganz in
Kreise K¢ um ¢, fallen, die selbst alle einerseits innerhalb der Rechtecke
R,, andererseits ganz im AuBeren der Gebiete G liegen, und deren
Radien fiir j 4 |n|— oo gegen Null streben.

Um die Windungspunkte L{. zeichnen wir ebenfalls Doppelspiralen

n, ik

n,ig
in folgender Weise. Sei
r'(nl,)'ik’rf,)ik’ ng,)ik’ « .. (19.1)

eine Folge von paarweise punktfremden, im Gebiete G, ;, liegenden ge-
schlossenen Jordanschen Kurven, wobei jede Kurve I'(); die vorher-
gehende I' 77 von der nachfolgenden I'¢ 1D trennt. Die Folge strebe mit
wachsendem Index I gegen die Begrenzung von @G, ,, . Da die Gebiete
G i (rn=+k, £(k+1),...) alle unter sich kongruent sind, kénnen
wir weiter voraussetzen, dafl dies auch von den Kurven I'Y, (n =
+k,+ (k4 1),...) gilt. )

Nun konstruieren wir auf der Uberlagerungsfliche @, um jeden der
Windungspunkte LY, (n =0, +£1,4+2,...;j,k=1,2,...) eine dop-
pelspiralformige stetige Kurve ¢, , deren beide Aste den Punkt L{;,
unendlich oft in entgegengesetzter Richtung umlaufen und sich dabei der
Begrenzung von @, ,, asymptotisch nihern. Weiter soll die Projektion
von ¢, ganz im Inneren des Gebietes G, ,,, dabei aber ganz aulerhalb
der geschlossenen Kurve I'{%/")15) liegen. Wir erreichen dadurch, daB
sich sowohl die Projektionen der Doppelspiralen um den festen Grund-
punkt £, .. (wachsender Index j7) als auch diejenigen der Doppelspiralen
¢, in den Rechtecken R, mit » = +k, +(k+1),... und festen
Indizes j und 7, als Ganzes immer besser den Begrenzungen der kon-
gruenten Gebiete G, .. anschmiegen.

Nun zerschneiden wir die Fliche @, entlang simtlicher Doppelspiralen
o und ¢, (n=0,+1,+2,...;7,k=1,2,...), wodurch &, in
die einfach zusammenhingende Restfliche @/ und in unendlich viele
Teilflichen, welche je einen der Windungspunkte LY bzw. L{?; als Rand-
punkt besitzen, zerfillt. Genau wie in § 15 wird die Fliche @, durch
,,Anhiingen“ der Riemannschen Flichenstiicke S, (n=0,4-1,4-2,...))
entlang gewisser Bogen der begrenzenden Doppelspiralen o, (die o, sind

speziell ausgewihlte unter den o!/)) erweitert. So erhalten wir schlielich

18) Die Projektionen von §$cj,)i & liegt also ganz im Innern des ,,ringférmigen‘‘ Gebietes,
das von der Begrenzung des Gebietes Gy ;; und der Kurve r gj}c" b eingeschlossen wird.

18) Siehe FuBnote 14!
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die schlichtartige, einfach zusammenhélngende Riemannsche Fliche ®¥ .
Sie moge durch die analytische Funktion ¢ = y(z) auf das Innere des
Kreises |z| <1 abgebildet werden.

Andererseits wird @®* durch w = L(e!) auf eine Flidche iiber der
w-Ebene iibergefithrt, wo L eine passende Linearfunktion bedeutet. Da-
bei gehen die Gebiete W, wieder in die Umgebungskomponenten ¥, und
die Grundpunkte ¢, bzw. ¢, ;, in die Punkte w, bzw. wﬁk iiber. Die Be-
zeichnungen fiir die Fliche @} und die Linien ¢{, ¢, usw. behalten wir
auch nach dieser Abbildung der Einfachheit halber bei.

Von der Funktion

w = L(e"?) = f(z) , |2| <1, (19.2)

1483t sich dann dhnlich wie in den §§ 13 bis 16 zeigen, daB sie die unsere
Fliche @} begrenzenden Doppelspiralen ¢¥’ (§ 14), die Réinder o, ,, 6, »
der angehingten Flichenstiicke S, (§ 15) und die Doppelspiralen ¢,
stetig in Kreisbogen 63, 8, , und 8, ,, und in 6{, auf der Linie |z| =1
iiberfiihrt, deren gesamtes lineares Maf} gleich 2 ist, und daf auf |[z| =1
ein Punkt {, existiert, in dem die in § 2 definierte Punktmenge H mit der
Punktmenge A identisch ist. Beziiglich des Punktes {, bemerken wir,
daB sich in ihm sowohl die Kreishogen 6, ,, 4, . (Wwegen des Index n»
beachte man wieder die FuBnote 14!) als auch die Bogen 6%, (n=0,
+1,4+2,...;k=1,2,...,n; j speziell ausgewdhlt) hiufen. Im iibri-
gen verzichten wir hier auf die genaue Durchfiihrung der Beweise, da sie
sich unter Beriicksichtigung der Ausfiihrungen dieses Paragraphen ohne
Schwierigkeit aus denen, wie wir sie fiir die Fliche F* in den §§ 14 u. f.
fithrten, ergeben.

Nun sehen wir aber auch sofort ein, dafl die Gebiete (18.1) keinen
einzigen Randwert von f(z) in ¢, enthalten.

Betrachten wir ndmlich einen beliebigen Punkt o in irgendeinem der
Gebiete (18.1), etwa in @, , und ordnen wir w eine ganz im Inneren von
G,, liegende Umgebung U, zu, so folgt aus der Konstruktion der Rie-
mannschen Fliche @, daB sich iiber U, héchstens endlich viele Blitter
von @* befinden, da sich die einen Teil der Begrenzung von @* bildenden
Doppelspiralen gﬁf,)il als Ganzes sowohl mit wachsendem Index j als
auch n immer besser der Begrenzung des Gebietes G; anschmiegen. Dar-
aus schlieffen wir, daBl w kein Randwert von f(z) in ¢, sein kann.

Damit ist der Satz II in allen Teilen bewiesen.

(Eingegangen den 17. Februar 1948.)
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