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Ûber die Randwerte meromorpher Funktionen
einer Verânderlichen
Von Leonhard Weigand, Miïnchen

Einleitung

1. Nach dem klassischen Spiegelungsprinzip von H. A. Schwarz ist
eine im Kreise \z\ < 1 analytische Funktion f(z), die auf einem Bogen
AB der Kreisperipherie stetig und reell ist, regulâr in jedem Punkte von
AB. Vor kurzem1) wurde von Herrn C. Carathéodory eine weitgehende
Verallgemeinerung dièses Satzes angegeben, wobei auf die Stetigkeit der
Funktion f(z) auf AB verzichtet wird. Der Beweis stûtzt sich im wesent-
lichen auf folgende Définition des Randwertes einer Funktion.

Définition, Ist f(z) eine beliebige, in einem Gebiete G definierte réelle
oder komplexe Funktion und bezeichnen wir mit £ irgendeinen Randpunkt
von G, so nennen wir eine Zahl oc einen Randwert von f (z) im Punkte f,
wenn es mindestens eine gegen Ç konvergierende Folge von Punkten zvinG
gibt, fur welche

lim /(*„) * (1.1)
gilt. *-*">

2. Das Hauptresultat der erwàhnten Arbeit von Carathéodory ist ein
allgemeiner Satz iiber das Verhalten einer in einem beschrânktenGebiete
meromorphen Funktion in einem Randpunkte. Da unser Ziel die Um-
kehrung dièses Satzes ist, werden wir ihn hier anfûhren.

Zu diesem Zwecke betrachten wir auf der Riemannschen Zahlkugel
eine ,,normale Ûberdeekungsfolge"2)

K19K%,KZ,... (2.1)

von offenen Kreisen, d. h. eine abzâhlbare Menge von Kreisen, wobei
einem beliebigen Kreise x der Riemannschen Kugel mit P als Mittelpunkt
mindestens ein Kreis der Folge (2.1) zugeordnet werden kann, der im
Inneren von x liegt und den Punkt P in seinem Inneren enthâlt.

l) C. Carathéodory, Zum Sehwarzschen Spiegelungsprinzip, Comment, math.
Helvet. vol. 19, fasc. 3, p. 263.

2) O. Carathéodory, Réelle Funktionen, Bd. I, Leipzig-Berlin 1939, § 85, S. 71.
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Ist daim f(z) eine beliebige im Kreise |z|<l meromorphe analyti-
sehe Funktion, so ordnen wir jedem Kreise Kv der Folge (2.1) eine Punkt-
menge Av auf 12: | 1 zu, die aus allen Punkten £ dieser Linie besteht,
fur die der Grenzwert

(2.2)

entweder nicht existiert, oder, falls er vorhanden ist, mit einem Punkte
von Kv zusammenfâllt.

Sei ferner
^1 ><52 >à3 >••• (2.3)

eine Folge ineinander geschachtelter Kreisbôgen auf | z \ — 1, die einen

gemeinsamen inneren Punkt f0 besitzen und deren Lângen gegen Nuli
konvergieren.

Wir betrachten fur jeden Wert von v die Folge der Durchschnitte

Avdlt A,ôt,Avâa,... (v=l,2,...) (2.4)

und bezeichnen mit
n, (2.5)

diejenigen ganzen Zahlen (falls es solche gibt), fur die unter den Punkt-
mengen An. ôp (p 1, 2,...) mindestens eine das lineare MaB Null
besitzt.

Nachdem wir auf dièse Weise die n^ bestimmt haben, betrachten wir
die offene Punktmenge

U Kni + Knt + Knt+.-. (2.6)

und ihre abgeschlossene Komplementârmenge H.
Die Menge H kann nie leer sein. Fullt H nicht die ganze Zahlkugel

aus, so kann man ihre Komplementârmenge U als Summe von hôchstens
abzàhlbar vielen paarweise punktfremden Gebieten Gt darstellen.

3. Der in § 2 erwâhnte Satz von Carathéodory lautet dann :

Satz I. Es sei eine analytische Funktion f(z) meromorph im Kreise
| z | < 1 und Co e*^ beliebiger Punkt der Peripherie | z | 1. Dann kann

man nach den Vorschriften der letzten Paragraphen die Punkte der Bie-

mannschen Zahlkugel als Summe

von paarweise punktfremden Mengen darstellen, wobei H abgeschlossen und

nicht leer ist und die Gi9 die u. U. auch fehlen kônnen, Gebiete bedeuten.
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Dannist fur jedes beliebige derGebiete Gt entweder jederseiner Punkte Rand-
tvert von f(z) in £0 oder aber hein einziger Punkt von Gt hat dièse Eigen-
schaft. Die Menge der Randwerte von f(z) in £0 besteht also jedenfalls aus
der abgeschlossenen Menge H, der noch gewisse unter den Gebieten Gt hinzu-
gefilgt sind.

Die Umkehrung dièses Satzes lautet :

Satz II. Sind die Punkte der Riemannschen Zahlkugel aïs Summe

von paarweise punktfremden Mengen dargestellt, wobei H eine beliebig vor-
gegebene, abgeschlossene und nicht leere Menge ist und die Gt, die u. U. auch
fehlen kônnen, Gebiete bedeuten, so gibt es stets eine im Kreise |z|<l
meromorphe analytische Funktion f(z), fur die in einem Punkte £0 der

Peripherie \z\ 1 die Punktmengen H und Gt die in den letzten Para-
graphen angegebene Bedeutung haben. Die Punkte derjenigen unter den Gt,
deren Begrenzung aus mehr als einem Kontinuum besteht, sind sàmtlich
Randwerte von f (z) in f0. Von jedem der ûbrigen Gebiete Gt kann man nach
Belieben verlangen, dafî entweder keiner oder jeder seiner Punkte Randwert
von f(z) in f0 ist.

Wir fiihren den Beweis des Satzes II in mehreren Schritten. Zuerst
(§§ 4 bis 6) geben wir eine analytische Funktion f(z) an, die im Kreise
| z | < 1 meromorph ist und fur die in einem Punkte £o der Peripherie
121 1 die Menge H mit einem vorgegebenen beschrânkten Kontinuum
C identisch ist. Durch Spezialisierung von C ergeben sich dann die Falle
der Halb- und der Vollebene (§7). Nachdem wir in § 8 kurz auf die
Prage der Randwerte eingegangen sind, folgen in den §§ 9 bis 12 zwei
Beispiele von analytischen Funktionen, fiir welche die Menge H einmal
aus drei isolierten Punkten besteht, das andere Mal aus abzâhlbar vielen
paarweise fremden geschlossenen Jordankurven in beliebiger gegenseiti-
ger Lage. Die dabei verwendeten Konstruktionsmethoden benutzen wir,
uni endlich in den §§13 bis 16 den Fall einer beliebigen abgesehlossenen
und beschrânkten Punktmenge H zu erledigen. Zuletzt (§§ 17 bis 19)
beweisen wir die im Satze II aufgestellten Behauptungen beziiglich der
Gebiete Qt.

H besteht aus einem Kontinuum
4. Um spâterhin umstândliche Unterscheidungen zu umgehen,

erledigen wir gleich zu Anfang den trivialen Fall, wo das Kontinuum C
aus dem einzigen Punkte wQ besteht.
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Ist eine im Kreise | z | < 1 meromorphe Funktion auch noch in dem
Peripheriepunkte £0 analytisch und besitzt sie dort den Wert w0, so ent-
hàlt die in § 2 definierte Menge H nur den einen Punkt w0, der zugleich
auch der einzige Randwert in f0 ^-

Fiir die Funktion

bestehen die in £0 gebildete Menge H und deren Komplementârmenge U

aus dem einen Punkte w0 bzw. aus lauter Randwerten von f(z).
Wir kônnen somit im folgenden diesen einfachen Fall beiseite lassen

und bezeiehnen mit C ein beliebiges beschrânktes Kontinuum, welches
mindestens zwei Punkte enthàlt.

Um zu einer im Einheitskreise meromorplien Funktion w f(z) zu

gelangen, fiir die in einem Punkte f0 auf der Peripherie \z\ 1 die

Menge H identisch mit dem Kontinuum C ist, konstruieren wir uns em

spezielles Eiemannsches Flachenstûck S in folgender Weise.
Nach einem bekannten Satze aus der Punktmengenlehre3) kann man

dem Kontinuum C mindestens eine monoton abnehmende Folge

U^Ut^U^... (4.1)

von beschrankten Gebieten Um zuordnen, deren Durehschnitt gleich C

ist. Auf C wàhlen wir uns eine dichte, abzàhlbare Punktmenge

Wi (i 1,2,...) (4.2)

und weisen jedem dieser Punkte eine abgeschlossene Kreisscheibe ki mit

Wi als Mittelpunkt zu. Die Radien der kt sollen derart gegen Null konver-

gieren, da6 stets

ki^Ui und i^o^i4) (< 1,2,...). (4-3)

Auf der Peripherie der Kxeise kx und k2 wâhlen wir je einen Bogen bn

und 620 und verbinden die beiden Endpunkte des einen Bogens mit denen

des anderen in der Weise durch zwei sieh gegenseitig nicht trefîende

Jordansche Kurvenstlicke y10 und yn, die mit kx und k2 nur die
Endpunkte gemein haben und ganz im Inneren des Gebietes U1 verlaufen,

da8 die vier Kurvenstlicke 6U, y10, b20, ylt die Begrenzung eines einfacb

zusammenhângenden, schlichten Riemannschen Flàchenstûckes S1 er-

geben, welches die Punkte wx und w2 als innere Punkte enthâlt.

8) C.Carathêodory, Réelle Funktionen, Leipzig-Berlin 1939, Bd. I, §107, S. 00.

4) Fiir zwei fremde Punktmengen A und B schreiben wir A O B.
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Entsprechend wâhlen wir auf dem Kreisbogen 620 einen Teilbogen b2l
und auf der Peripherie des Kreises kz einen Bogen 630, und verbinden die
beiden Endpunkte von 621 mit denen von 630 in der Weise durch zwei sich

gegenseitig nicht treffende Jordansche Kurvenstûcke y20 und y21, die
mit k2 und fc3 nur die Endpunkte gemein haben und ganz im Gebiete U2

verlaufen, daB die Kurvenstûcke zusammen mit 63O und der nach Weg-
nahme von b21 verbleibenden Begrenzung von S1 die Begrenzung eines
einfach zusammenhângenden, im allgemeinen schlichtartigen Flâchen-
stuckes S2 ergeben, welches neben wl und w2 auch noch den Punkt ws
im Innern enthâlt.

Haben wir so allgemein Sn konstruiert, so wàhlen wir auf dem der
Begrenzung von Sn angehôrenden Kreisbogen bn+10 einen Teilbogen
bn+11 und auf der Peripherie von kn+2 einen Bogen bn+20 un(i verbinden
die beiden Endpunkte von 6^+1,1 mit denen von bn+2 0 in der Weise durch
zwei sich gegenseitig nicht treffende Jordansche Kurvenstiicke yn+lt0 und
y«+1,1» ^e m^ kn+i un(i kn+2 nur die Endpunkte gemein haben und ganz
im Gebiete Un+l verlaufen, so daB yw+lj0 und yn+lyl, zusammen mit bn+2 0

und der nach Wegnahme von bn+11 verbleibenden Begrenzung von 8n die
Begrenzung des einfach zusammenhângenden, schlichtartigen Flâehen-
stûckes Sn+1 ergeben, welches die Punkte wx,..., wn+2 im Inneren enthàlt.

So fortfahrend ergibt sich zu jedem ganzen n ^ 1 ein einfach zusam-
menhângendes, schlichtartiges Flàchenstùck Sn. Steht fur jedes n^l
fest, auf welche Art $n+1 aus 8n entsteht, und setzen wir diesen ProzeB
unbeschrânkt fort, so erhalten wir als Ergebnis ein einfach zusammen-
hângendes, schlichtartiges Riemannsches Flàchenstùck S, das sàmtliche
Punkte wi der Folge (4.2) im Inneren enthâlt und dessen Projektion ins
Innere von U1 fallt. Dies ist leicht einzusehen.

Betrachten wir nàmlich ein beliebiges geschlossenes und ganz auf S
liegendes Polygon n, so stellt jede der endlich vielen Seiten p von n eine
beschrânkte und, mit EinschluB beider Endpunkte, abgeschlossene
Punktmenge dar. Trennen wir die Flâche Sn von der Flâche Sn+1 ab und
bezeichnen die Menge der inneren Punkte dieser schlichten Restmenge
mit Rn, so ist jedem Punkte der Seite p eine bestimmte dieser Rest-
mengen als schlichte Umgebung zugeordnet. Nach dem Satze von Bord
wird dann p bereits von endlich vielen der Rn ûberdeckt und dasselbe
gilt dann auch vom Polygon n. Ist RN diejenige dieser Restmengen mit
grôBtem Index, so liegt n ganz in dem einfach zusammenhângenden,
schlichtartigen Flâchenstiick SN+1 und zerlegt dièses und damit auch das
Riemannsche Flâchenstiick 8 in zwei Teilflâchen. Ûberdies liegt das
Innere von n ganz in SN+1, also auch ganz in 8.
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DaB die Projektion von S ins Innere von Ux fâllt und sâmtliche Punkte
w{ im Inneren von S liegen, folgt aus obiger Konstruktion, und damit ist
unsere Behauptung bewiesen.

Die Begrenzung von S besteht durchweg aus Jordanschen Kurven-
stiicken.

5. Nach dem Hauptsatz der konformen Abbildung lafit sich S durch
eine analytische Funktion w /(z) auf das Innere des Kreises |z\ < 1

ûbertragen. Die Abbildung ist in jedem Randpunkte von S stetig.
Sei {qn} eine unendliche Folge von Querschnitten auf S, wobei wir qn

im Kreise kn derart anbringen, da6 jeder Querschnitt qn den vorhergehen-
den qn_1 vom folgenden qn+1 trennt. Die qn sind paarweise punktfremd,
auch in ihren Endpunkten. Jedes qn teilt 8 in zwei Teilflâehen, von denen
wir diejenige mit gn bezeiehnen, welche qn+1 enthâlt. Wir erhalten so eine

Polge von Teilflâehen gn, von denen jede in allen vorhergehenden ent-
halten ist und selbst aile folgenden enthâlt. Die Projektion der Teilflâche

gn fâllt ganz ins Innere der Umgebung Un der Folge (4.1).
Im Kreise |z\ < 1 bekommen wir als Bild der qn eine Folge von

Querschnitten rn9 die wegen der Randstetigkeit der Abbildung die gleichen
Eigenschaften wie die qn besitzen, und eine Folge ineinandergeschach-
telter Gebiete hn. Wir behaupten, da6 die Querschnitte rn gegen einen

Peripheriepunkt f0 des Kreises | a: | X konvergieren, womit gezeigt ist,
da8 die Begrenzung von S durch w f(z) stetig in die in f0 punktierte
Kreislinie \z\ 1 ûbergeht.

Wir beweisen zuerst, da8 die Querschnitte rn gegen die Kreisperipherie
konvergieren. Andernfails gibt es nâmlich einen Punkt P in | z \ < 1 derart,

da8 jede Umgebung UP von P Punkte von unendlich vielen
Querschnitten rn enthâlt. Auf dem Flâchenstiick S entspricht dem Punkte P
ein innerer Punkt Q, der entweder auf einen der Querschnitte qn oder

zwischen zwei aufeinanderfolgende dieser Querschnitte zu liegen kommt.
Wir kônnen dann auf S eine Umgebung UQ von Q wâhlen, welche Punkte

von hôchstens einem einzigen Querschnitte qn in ihrem Inneren enthâlt.
Das Bild von UQ im Einheitskreise stellt aber eine Umgebung von P dar,
welche hôchstens Punkte des Querschnittes rn im Inneren enthâlt, womit
ein Widerspruch herbeigefûhrt ist.

Durch die auf | z \ 1 liegenden Endpunkte der Querschnitte rn wird
eine Folge

von ineinander geschachtelten Kreisbôgen definiert, die einen gemein-
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samen inneren Punkt £0 besitzen und deren Lângen, wie wir nun zeigen
werden, gegen Null konvergieren.

Besitzt nâmlich die Folge (5.1) als Durchsehnitt einen Kreisbogen rj,
so wâhlen wir auf diesem Bogen einen beliebigen Punkt L. Das Bild des

zu diesem Punkte fuhrenden Radius, der nach obigem fast aile Quer-
schnitte rn an mindestens einer Stelle schneidet, stellt eine auf S ver-
laufende analytische Kurve dar, die entsprechend fast aile Querschnitte qn
an mindestens einer Stelle schneidet. Dièse Kurve kann aber gegen keinen
festen Punkt konvergieren, da die qn in den Kreisen kn liegen, deren Radien
gegen Null gehen und deren Mittelpunkte w n als Punkte einer abzahlbaren,
auf C dicht liegenden Menge keinem festen Punkte zustreben konnen.
Somit existiert fur den Punkt L kein radialer Grenzwert und da L auf r\

beliebig gewahlt war, ergibt sich so ein Widerspruch zum Satze von Fatou.
Die durch w f(z) gegebene Abbildung des Flachenstuckes S auf

| z | < 1 ist also randstetig in allen Punkten der Peripherie | z \ 1 bis
auf den einen Punkt f0, gegen den die Querschnitte rn konvergieren.

6. Es ist leicht einzusehen, daB die zu z f0 gehorende abgeschlos-
sene Punktmenge H, die nach Satz I aus lauter Randwerten von f(z) in
t0 besteht, mit dem Kontinuum G identisch ist.

Sei namlich Kl ein beliebiger Kreis der normalen Ûberdeckungsfolge
(2.1), ôp ein beliebiger Bogen der Folge (2.3) und D der Durchsehnitt
von Kx mit C. Falls D nicht leer ist, konnen wir nach § 4 aus der Folge
(4.2) eine unendliche Teilfolge von Punkten wln (i1<i2<- • •) derart be-
stimmen, daB die den Punkten w%n beigeordneten Kreise kîn aile in Kx
liegen. Von jedem der von den ktn ausgehenden Jordanschen Kurven-
stucken, die ja Teile der Begrenzung des Flachenstuckes 8 sind, verlâuft
dann mindestens ein Teilbogen ganz im Inneren von Kx. Diesen Teil-
bôgen entsprechen als stetige Bilder gewisse Kreisbogen auf \z\ 1,
die nach den Ûberlegungen des § 5 gegen den Punkt f0 konvergieren und
somit, fur genugend groBe Indizes in, ganz im Bogen ôp enthalten sind.
Die in § 2 definierte Punktmenge Alèip hat also stets ein positives
Hneares MaB, weshalb Kx nicht der Punktmenge (2.6) angehoren kann.

Liegt aber Kt ganz im Inneren der offenen Komplementârmenge C!
von C, so wird Kt nur mit hochstens endlich vielen Umgebungen
Ulym.., Um _x der Folge (4.1), die ja gegen das Kontinuum C konver-
giert, Punkte gemein haben. Deshalb liegt auch die Teilflâche gmQ von 8
auf Grund ihrer Définition in § 5 ganz auBerhalb Kl. Somit ist fur
genugend groBen Index^ der Durchsehnitt des Kreisbogens ôp mit der
Punktmenge Ax leer und Kx gehort der Punktmenge (2.6) an.
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Hat K{ mit C nur Randpunkte gemein, so lâBt sich nur im Einzelfalle
unterscheiden, ob Kt der Menge (2.6) angehôrt oder nicht. Dies ist jedoch
belanglos, da wir zeigen kônnen, daB die Vereinigung der im vorigen Ab-
satze betrachteten Kreise Kt (die also ganz im Inneren der Menge C
liegen) identisch mit C" ist.

Zu diesem Zwecke schlagen wir um jeden Punkt P der offenen Menge
Cr einen Kreis xP, dessen Radius gleich der halben Entfernung von P
und der Begrenzung von C7 ist. Naeh der Définition der normalen Ûber-

deckungsfolge in § 2 gibt es mindestens einen Kreis Kv der Folge (2.1),
der im Inneren von hp liegt und den Punkt P in seinem Innern enthâlt.
Nach dem tîberdeekungssatze von Lindelôf existiert dann eine Teilfolge
von (2.1), deren Vereinigung U die Menge C ûberdeckt, und da jeder
Kreis dieser Teilfolge im Innern von C liegt, ist U Cr.

Damit ist gezeigt, daB die zu z ~ £0 gehôrende Menge H mit dem

Kontinuum C identisch ist.

7. Die im § 4 vorausgesetzte Beschrânktheit von C war wesentlich,
um den Satz von Fatou anwenden zu kônnen. Um eine in | z | < 1 analy-
tische Funktion zu finden, fur welche die Menge H mit der Vollebene
identisch ist, wahlen wir speziell fur C die abgeschlossene redite Halb-
ebene und konstruieren das zugehôrige Flâchenstuck S durch passende
Wahl der Punkte wt, der Radien von kt und der verbindenden Jordan-
schen Kurvenstûcke ytQ und yt>1, so daB ûber den Punkten Null und
Unendlich kein Punkt von S zu liegen kommt.

Durch u w2 wird S in ein neues Flâchenstuck $* ùbergefiihrt, die

Menge der Punkte wt (i 1, 2,... in die abzâhlbare und auf der
Vollebene dicht liegende Menge u% und die Kreise kt in die schlichten Gebiete
k*> welche u% im Innern enthalten. Die Durchmesser dieser Gebiete wer-
den im Gegensatze zu denen der Kreise kt im allgemeinen nicht mehr

gegen Null konvergieren. Doch streben die Durchmesser derjenigen k*

gegen Null, die allen den Punkten ul zugeordnet sind, welche in einem

beliebigen endlichen Kreise liegen.

Wird durch w tp(z) das Flâchenstuck S konform auf \z\ <l ab-

gebildet, wobei f0 wieder der gemeinsame Punkt der Bôgen (5.1) ist, so

sehen wir âhnlich wie im vorigen Paragraphes daB die abgeschlossene

Menge H, die wir fur die in | z \ < 1 analytische Funktion u (ç?( z ))2

f(z) im Punkte £o bilden, mit der Vollebene zusammenfâllt.

Ist nâmlich Kt wieder ein beliebiger Kreis der normalen Ûberdeckungs-

folge (2.1) und ôp ein beliebiger Bogen der Folge (2.3), so wahlen wir
aus der Folge der Punkte ut eine unendliche Teilfolge uln derart, daB die
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den uln zugeordneten Gebiete k*n aile in Kt liegen. Dem Teil der Begren-
zung von 8*, der in Kt liegt, entspreehen als stetiges Bild unendlich viele
Bôgen auf | z | 1, die sich in £0 hâufen und somit, wenigstens teilweise,
im Bogen ôp enthalten sind. Die Menge Ax àv besitzt deshalb stets ein
positives lineares MaB, die Menge (2.6) ist somit leer und deren Komple-
mentârmenge H gleich der Vollebene.

Die in den letzten Paragraphen konstruierten Abbildungsfunktionen
w f(z) besitzen die bemerkenswerte Eigenschaft, da8 sich auf jeder
stetigen, ganz in | z | < 1 verlaufenden und in den Punkt £0 einmunden-
den Kurve y stets eine gegen Co konvergierende Punktfolge finden lâBt,
deren Bildpunktfolge gegen einen beliebigen Punkt Q des Kontinuums C

konvergiert. Man sieht dies leicht ein, wenn man bedenkt, daB das im
Flachenstiicke S (bzw. 8*) verlaufende Bild von y dem Punkte Q unendlich

oft beliebig nahekommt.

8. Die Komplementârmenge zu dem im § 4 vorgegebenen Konti-
nuum C kann als Summe von hôchstens abzâhlbar vielen einfach zu-
sammenhàngenden Gebieten Ot (i 1,2,...) dargestellt werden. Aus
der Konstruktion des Flàehenstuekes S ergibt sich, daB kein einziges der
Ot Randwerte von f(z) in Co enthâlt.

Zu jedem beliebigen inneren Punkte P eines der Gebiete Gt gibt es

nàmlich einen Index r0, so daB P ganz auBerhalb der Umgebung UTq

der Folge (4.1) liegt. Somit liegt P auch ganz auBerhalb der Teilflâche
gVo von 8 (§ 5). Da aber jede im Kreise \z\ <1 gegen den Peripherie-
punkt Co konvergierende Punktfolge bis auf endlich viele ihrer Punkte
in dem der Teilflâche gr entsprechenden Gebiete hr liegt, kann deren
Bildpunktfolge auf S niemals gegen den Punkt P streben, womit unsere
Behauptung bewiesen ist.

Soll aber z. B. das Gebiet Gx aus lauter Randwerten von f(z) in Co

bestehen, so miissen wir das Flâchenstûck S in passender Weise ver-
àndern. Gx wird als einfach zusammenhângendes Gebiet von einem einzi-
gen Kontinuum R begrenzt, welches als Teilmenge von C in allen Um-
gebungen (4.1) enthalten ist.

Sei

B^B^B^--- (8.1)

eine monoton zunehmende Folge von einfach zusammenhângenden, von
Jordankurven begrenzten abgeschlossenen Gebieten, die aile in Gx liegen,
fur die von einem gewissen Index N^l an
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BnOUn (n^N) (8.2)

gilt und deren Vereinigungsmenge gleich Gx ist5).
Weiter wâhlen wir, fur jeden Index n^N, auf der Begrenzung von

Bn einen Bogen 6W, auf dem Randbogen yn0 (§ 4) des Flâchenstiickes S
einen Teilbogen cn und verbinden die Endpunkte von bn mit denen von
cn in der Weise durch zwei sich gegenseitig nicht treffende, ganz in dem

Gebiete Un -f- Gx Brn 6) verlaufende Jordansche Kurvenstiicke, so daB
sâmtliche Bn, zusammen mit 8 und den durch die Randbogen bn, cn
und die verbindenden Jordanschen Kurvenstùcke begrenzten Gebiete
ein einfach zusammenhângendes, schliehtartiges Riemannsches Flâchen-
stiick 8Gi ergeben. Entsprechend verfâhrt man mit SGi, fails weitere der
Gebiete G{ aus lauter Randwerten bestehen sollen. Allgemein erhàlt man
auf dièse Weise ein schliehtartiges einfach zusammenhângendes
Riemannsches Flàchenstiick 8EG, welches aus S durch ,,Anhângen" gewisser
Gebiete entsteht.

Môge SGi durch die analytische Funktion w / (z) auf | z \ < 1 ab-
gebildet werden. Falls 8Gi beschrânkt ist, lafit sich àhnlich wie in den

§§5 und 6 zeigen, daB auf \z\ 1 ein Punkt Co existiert, in dem die
Menge H gleich dem vorgegebenen Kontinuum C ist. Man hat dabei zu
beriicksiehtigen, daB die Gebiete (8.1) gegen Gx konvergieren und, fur
jedes n^N, die Jordanschen Kurvenstùcke, welche die Endpunkte der
Teilbogen bn und cn miteinander verbinden und Teile der Begrenzung von

80i sind, ganz im Gebiete Un + @i Bn verlaufen ; der Durchschnitt
dieser Gebiete ist aber gleich C.

Ist jedoch 8Gi nicht beschrânkt (was z. B. zutrifft, wenn das Kontinuum

G einfach zusammenhângend, Gx also die Komplementârmenge zu
C ist), schlieBen wir so : Durch die Teilbogen {cn} mit n^N, die nach
Obigem Querschnitte auf 8Gi darstellen, zerfallt die Flâche SQi wieder in
das Flàchenstiick S und unendlich viele einfach zusammenhângende
Teilflâchen, welche die Gebiete Bn als Teilmengen enthalten. Auf dem
so erhaltenen Flâchenstucke 8 bringen wir ferner dieselbe Querschnitt-
folge {qn} an, wie wir sie im § 5 eingefuhrt haben. Dann ergibt sich

vermôge der Abbildungsfunktion w f(z) als Bild der Folge {cn} im
Kreise |»|<1 eine Querschnittfolge {sn}, die den Kreis |z|<l in ein
dem Flâchenstucke S entsprechendes einfach zusammenhângendes Ge-

biet 8Z und gewisse unendlich viele weitere Gebiete Fn zerlegen.

6) Die Existenz einer solchen Folge ergibt sich aus der Tatsache, dafi es in einem zwei-
fach zusaimnenhângenden. Gebiete stets eine geschlossene Jordankurve gibt, in deren
Innerem wie Âufîerem Randpunkte des Gebietes liegen.

6) Mit B' bezeichnen wir die Komplementârmenge zu B.

134



Den Querschnitten {qn} entsprechen gewisse Querschnitte {pn} des
Kreises \z\ < 1, welche zugleich auch Querschnitte des Gebiets 8Z sind.
Dabei trennen die Querschnitte p% und pt+1 den Querschnitt s{ vom vor-
hergehenden sl_1 und nachfolgenden sî+1 (und damit auch das Gebiet Fz
vonFt_x undFt+1). Wird Sz durch z xp(u) weiter auf | u\ < 1 konform
und randstetig abgebildet, so geht die Querschnittsfolge {pn} in die
Querschnittsfolge {rn} des § 5 ùber, von der wir damais zeigten, daB sie

gegen einen Peripheriepunkt v0 konvergiert. Wegen der Randstetigkeit
von z ip(u) entspricht dann v0 ein Punkt £0 auf \z\ 1, gegen den
dann auch die Folgen {pn}, {sn} und {Fn} konvergieren. Wir zeigen dann
wie oben, daB in £0 die Menge H gleich dem Kontinuum G ist.

Nun sehen wir aber auch ein, daB jeder im Gebiete Ox liegende Punkt
m Randwert von w f(z) ist. Da nâmlich die Gebiete (8.1), die fur
n^N ja Teile des Flâchenstlickes SOi sind, gegenGx konvergieren, liegen
ûber w stets unendlich viele Punkte

<*>n0 ^no+l > œn0+2 ,-•> K^ N) (8.3)

von SG wobei œr der auf die Teilflàche Br fallende Punkt ist. Der Index
n0 hângt von der Lage des Punktes co in Gx ab. Die Bildpunkte von (8.3)
in \z\ < 1, die wir mit fr (r^n0) bezeichnen und fur die also f(Cr) Q>

gilt, liegen nach Obigem beziehentlich in den Gebieten Fr und konvergieren

deshalb gegen f0. Damit ist unsere Behauptung bewiesen.
Dieser Beweis gilt, abgesehen von sinngemàBen Erweiterungen, auch

fur die Flâche SZQ, d. h. also im Falle, daB mehrere Gebiete Ot aus Rand-
werten bestehen sollen.

Zwei Beispiele

9. Bevor wir den Fall einer beliebigen abgeschlossenen und beschrànk-
ten Punktmenge behandeln, wollen wir in diesem und den folgenden
Paragraphen auf zwei spezielle Fàlle genauer eingehen, da uns die dabei
verwendeten Methoden im wesentlichen den allgemeinen Beweis liefern
werden.

Die abgeschlossene Menge H bestehe diesmal aus den drei isolierten
Punkten wx, w2 und w3. Wir betrachten die zu diesen Punkten gehôrige
regulâr verzweigte universelle Ûberlagerungsflâche F^ (Modulflàche).
Ùber jedem der ,,Grundpunkte" wx, w2, w3 liegen bekanntlich unendlich
viele logarithmische Windungspunkte L^, L^ und L(zj) (j 1, 2,...).
Wir konstruieren uns auf der Flâche F^ um jeden Windungspunkt 1$
(n=l,2,3;j l,2,...) eine doppelspiralfôrmige stetige Kurve c$,
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deren beideÂste den Punkt L$ unendlich oft in entgegengesetzter Rich-
tung umlaufen und sich ihm dabei asymptotisch nâhern. Ferner sollen
die Projektionen der Kurven cr^ ganz in Kreise K^ um wn fallen, deren
Radien mit wachsendem Index j monoton gegen Null abnehmen. AuBer-
dem liège jeder der drei Kreise K^, K^ und K^ ganz auBerhalb der
anderen zwei.

Zerschneiden wir F^ entlang sâmtlicher Spiralen cr^, so zerfâllt die
Flàche in die einfach zusammenhângende, von den cff begrenzte Flâche

F^ und in unendlich viele weitere Teilflâehen, fur die je einer der obigen
Windungspunkte Randpunkt ist. Bilden wir dureh die analytische Funk-
tion w f(z) die Flâche F^ auf |2|<1 ab, so geht jede der Rand-
kurven c$ stetig in einen gewissen Kreisbogen ô^ auf der Linie | z | 1

ûber. Bekanntlich ist das lineare MaB sâmtlicher Bôgen ô^ gleich 2jr.
Ferner hâufen sich in einem Endpunkte f0 eines beliebigen dieser Bôgen,
etwa ô^, unendlich viele weitere Kreisbogen d%\ sogar unendlich viele

mit festem Index n.
Um zu zeigen, daB die aus den drei Punkten wn bestehende Menge H

die im § 2 angegebene Bedeutung hat, wâhlen wir wieder einen beliebigen
Kreis K% der normalen Ûberdeckungsfolge (2.1) und betrachten die zu-

gehôrige Menge Ax.
Liegt etwa der Grundpunkt wt innerhalb Kt, so von einem gewissen

Index j0 ab auch die unsere Flâche F^ berandenden Spiralen a{^\ deren

Bilder ô^ sich in Co hâufen. Also besitzt die Menge Ax ôp fur jedes p ein

positives lineares MaB und Kt gehôrt nicht der Menge (2.6) an.

Liegen die drei Grundpunkte aber ganz im ÂuBeren von Kx, so werden

nur endlich viele Spiralen a^ Punkte mit diesem Kreise gemein haben.

Deshalb gibt es ein p0, so daB, fur aile p>p0, die Menge Ax ôp leer und
der Kreis Kt Teilmenge der Menge U ist. Wie im § 6 zeigt man dann mit
Hilfe des LindeWfschen Ûberdeckungssatzes, daB U mit der in w1. w2

und w3 punktierten Vollebene zusammenfâllt, woraus unsere Behaup-

tung folgt.

10. Die soeben erhaltene offene Punktmenge U besteht in unserem
speziellen Falle aus einem einzigen, dreifach zusammenhângenden Ge-

biete Gx. Wir beweisen hier aber gleich die allgemeine Aussage des

Satzes II, wonach die Punkte derjenigen unter den Gebieten O{, deren

Begrenzung aus mehr als einem Kontinuum besteht, sâmtlich Randwerte

von f(z) im Punkte £0 sind.
Sei also speziell Oi ein solches Gebiet, dessen Begrenzung aus min-

destens zwei Kontinuen Rx und R2 besteht. Als Teilmengen der ab-
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geschlossenen Menge H sind nach dem Satze I aile ihre Punkte Rand-
werte von f{z) in £0. Ba die Kontinuen Rx und R2 punktfremd sind,
kônnen wir sie durch eine geschlossene Jordankurve jT, die ganz im
Innern von Gio verlàuft, voneinander trennen. Ist Qx ein Punkt von Rl9
Q2 ein Punkt von R2, so gibt es in | z | < 1 zwei gegen f0 konvergierende
Punktfolgen {zf} und {zf}, deren Bildpunktfolgen {wf} und {wf}
in der w-Ebene gegen Qx und Q2 streben. Verbinden wir den Punkt zkl)

und zp durch die Strecke pk, so entspricht dieser ein analytisches Kurven-
stiick qk, das w1^ und wk2) verbindet und die gesehlossene Kurve F in
mindestens einem Punkte œk sehneidet, dem der Punkt Çk auf der Strecke
/pk entspricht. Da F eine abgeschlossene Menge ist, enthâlt die Folge
{wk} mindestens eine Teilfolge {cok}, die gegen einen Hàufungspunkt a>Q

der Folge {œk} konvergiert. Die Bildfolge {Çfk} strebt aber gegen Co?

somit ist a)0 und nach dem Satze I jeder Punkt aus G{ Randwert von
f{z) in Co-

11. Beim zweiten Beispiel bestehe die Menge H aus abzàhlbar vielen
paarweise punktfremden geschlossenen Jordankurven Fn (n 0, ± 1

±2,...) in beliebiger gegenseitiger Lage ; doch mu8, da H nach Satz I
ja stets abgeschlossen ist, eine Hàufungsstelle der Fn Punkte von genau
einer der Jordankurven sein. Der Einfachheit halber nehmen wir an, dafi
sâmtliche Fn im Innern des Kreises | w — 11 ^ liegen, was sich durch
eine Lineartransformation immer erreichen lâBt.

Nun verteilen wir die Kurven Fn in der Weise auf die Blâtter der in
Hull und Unendlich gewundenen Logarithmusflâche, da8 bei deren Ab-
bildung durch t log w in die schlichte punktierte £-Ebene das Bild yn
von Fn ganz ins Innere des von den Geraden 5R(£) log ^, 31 (t) log ^
und %(t) 2nn, %(t) 2(n + l)n gebildeten Rechteckes

Rn (11.1)
zu liegen kommt.

Im Innern jeder Kurve yn wâhlen wir einen beliebigen Punkt tn, ent-
fernen aile tn aus der £-Ebene und konstruieren zu dem verbleibenden,
oo-fach zusammenhângenden Gebiete G die regulâr verzweigte Ûber-
lagerungsflâche Fw. Dies geschieht etwa in folgender Weise.

Wir verbinden, fiir jedes ganze n, den Punkt tn mit tn+1 durch eine
Strecke pn und schneiden das Gebiet G entlang sàmtlicher pn auf, wo-
durch G in zwei Teilgebiete Gx und G2 zerlegt wird. Von jedem dieser
beiden Gebiete denken wir uns unendlich viele Exemplare Gll und Gll+1
(i 0, 1, 2,... ûbereinander gelegt und deren Rànder derart mitein-
ander verheftet, so daB G\ (nullte Génération) entlang jeder Strecke pn
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mit einem der Exem/plare Gf*1 zusammenhangt. Dabei soll kein
entlang mehrerer pn mit 6?° verbunden sein. Dann ist G\ von einem
luckenlosen Kranze von lauter verschiedenen Gf+1 umgeben (erste
Génération). In gleicher Weise verfahren wir mit diesen Gf*1, indem wir
sie entlang jeder ihrer Randstrecken pn mit lauter von 6rJ und unter sich
verschiedenen Exemplaren G^% verheften (zweite Génération). Allgemein
werden die Exemplare der 2i-ten Génération entlang ihrer freien
Randstrecken pn mit lauter von den bereits fruher verwendeten und unter
sich verschiedenen Exemplaren Gl%+1, die der (2i + l)-ten Génération
entsprechend mit Exemplaren G^1 verheftet. Dièses Verfahren, unbe-

grenzt fortgefuhrt, ergibt die gewunschte regular verzweigte Ûberlage-
rungsflache F^. tJber jedem ihrer Grundpunkte tn liegen unendlich viele

logarithmische Windungspunkte 1$ (j 1, 2,.. Sie aile sind, genau
so wie der Punkt Unendlich, Randpunkte der Flache. Auf gleiche Weise
wie in § 4 zeigt man, daB Fœ einfach zusammenhangend und schlicht-
artig ist. Nach dem Hauptsatze der konformen Abbildung laBt sie sich
deshalb durch eine analytische Funktion t cp(z) in die schlichte
z-Ebene ubertragen und da cp{z) z. B. die drei Werte tl9 t2 und t3 auslâBt,
gehôrt F^ nach Picard dem hyperbolischen Typus an.

Schneiden wir die Flache F^ um jeden Windungspunkt L^ (] -
1,2,...) entlang der unendlich oft durchlaufenen Kurve yn auf, so zer-
fâllt sie in die unendlich vielen, paarweise punktfremden Umgebungen
dieser Windungspunkte und in die einfach zusammenhângende Rest-
flâche Fn. Bei der Abbildung t cp (z) von F^ auf | z \ < 1 gehen die

Umgebungen in gewisse einfach zusammenhângende Gebiete H^ (j —

1,2,...) und die Flache Fn in das Komplementargebiet En von | z \ < 1

uber. Wir zeigen, daB jedes der Gebiete H^ genau einen Peripheriepunkt
P$ des Einheitskreises als Randpunkt besitzt und daB die Punkte P*£

(j 1,2,...) auf \z\ 1 dicht liegen.
Da En ein Gebiet, also zusammenhangend ist, kann die auf | z | - 1

liegende Randpunktmenge eines der H^ nicht aus mehr als einem Konti-
nuum bestehen. Bestunde aber dièse Randpunktmenge aus einem Kreis-
bogen ô, so schlieBen wir folgendermaBen :

Wâhlen wir bei dem eben geschilderten ProzeB anstatt yn eine andere

Jordankurve, etwa ym, so erhalten wir entsprechend eine Restflache Fm

und im Einheitskreise | z \ < 1 die Gebiete H^ und Em. Dann ist kein
Punkt des Bogens ô Randpunkt eines der H%. Bei der weiteren Abbildung

von Em auf den Einheitskreis | u \ < 1 gehe der Kreisbogen à in
den Kreisbogen <$' ûber und da | u \ < 1 dann auch Abbild der beschrânk-

ten Restflache Fm ist, existieren nach dem Satze von Fatou in allen

138



Punkten von ô' bis auf eine Nullmenge die radialen Grenzwerte, die aile
gleich tn sein miissen. Dies aber widerspricht dem Satze von F. und
if. Riesz7), wonach eine fur | u\ < 1 beschrânkte analytische Funktion,
deren radiale Grenzwerte auf einer Punktmenge von positivem linearen
MaBe auf \u\ 1 konstant sind, identisch gleich dieser Konstante ist.
Somit besteht die auf \z\ 1 liegende Randpunktmenge jedes der
Gebiete H^ aus einem einzigen Punkte P^.

Wurden die Punkte P^ (j 1,2,...) auf | z \ 1 nicht dicht liegen,
so gâbe es einen Kreisbogen r\, der keinen Punkt P^ enthielte. Bilden wir
En auf | v\ < 1 ab, wobei r\ in r\ ubergeht, so existierten wieder in allen
Punkten von r\ bis auf eine Nullmenge die radialen Grenzwerte, von
denen jeder gleich einem der Wert ti mit i ^ n sein miiBte. Ba die t{
aber eine Nullmenge darstellen, ergàbe sich ebenfalls ein Widerspruch
zum Satze von Riesz.

12. Wir schneiden jetzt die Ûberlagerungsflâche F^ in allen Blâttern
entlang sâmtlicher Jordankurven yn (n 0, ±1, ±2...) auf, wobei sie
in die unendlich vielen Umgebungen der 1$ (w 0, ± 1, ± 2,. ;

jî ~ 1,2,...) und in die einfach zusammenhangende Restflâche F zer-
fâllt. Durch t cp(u) gehen die Umgebungen wieder in die Gebiete
H{1], die Flàche F in das Restgebiet E von | u \ < 1 liber. Die Begrenzung
R^ jedes der Gebiete H$ ist zugleich auch ein Teil der Begrenzung von
E und stellt das Abbild der den Windungspunkt Lty unendlich oft um-
laufenden Jordankurve yn dar. Bilden wir E durch u y>(z) weiter auf
|2)<1 ab, wobei die stetigen Kurven Rf^ in die Kreisbogen 6$ xiber-
gehen, und bezeichnen wir einen Endpunkt eines beliebigen dieser Bôgen,
etwa ô$\ mit Co> so haben wir in

w ew(lf)) eHz) (12.1)

eine analytische Funktion, deren Menge H im Punkte £o genau aus sàmt-
Hchen Jordankurven Fn besteht.

Erstens ist nâmlich, nach Fatou, das lineare MaB der Punktmenge auf
I £ | 1, fiir die keine radialen Grenzwerte existieren, gleich Null. Zwei-
tens liegen, nach den Ûberlegungen des vorigen Paragraphen, auf | z \ 1

in jeder beliebigen Umgebung von Co ^ur jeden Index n unendlich viele
der Kreisbôgen <3^. Daraus folgt aber genau wie in § 6 unter Heran-
ziehung des Lindelôfschen Ûberdeckungssatzes unsere Behauptung. Man
hat dabei nur zu beachten, daB das Bild eines auf einem Bogen è^ enden-

7) R. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S. 197.
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den Radius des Kreises | z | < 1 in der w-Ebene eine analytische Kurve
darstellt, die ineinem bestimmten Punkt der Jordankurve Fn einmûndet.

Auf die Frage nach den Randwerten der Funktion (12.1) im Punkte £y

wollen wir hier nicht weiter eingehen, da sie spâter (§§ 17 bis 19) im Zu-
sammenhange mit dem allgemeinsten Falle ihre Erledigung finden wird.

Allgemeiner Fall

13. Nunmehr wàhlen wir fur die Punktmenge H eine beliebige ab-

geschlossene und nicht die voile w-Ebene uberdeckende Menge A. Nach
Satz I darf A nicht leer sein. Wir kônnen die Menge A sogleich als be-

schrânkt annehmen.
Fur abgeschlossene Punktmengen gelten die beiden allgemeinen

Sâtze 8) :

1) Jede abgeschlossene, beschrànkte Punktmenge kann als eine Ge-

samtheit von paarweise fremden Kontinuen angesehen werden.

2) Jeder abgeschlossenen Punktmenge A kann man mindestens eine

monoton abnehmende Folge

U1RU2^U3^--* (13.1)

von (offenen) Umgebungen Ut von A zuordnen, deren Durchschnitt
gleich A ist.

Jede Umgebung Ut besteht aus hôchstens abzâhlbar vielen, paarweise
fremden Gebieten Vtk (Je 1, 2,... die wir die Umgebungskomponenten
der Punktmenge A nennen wollen. Die Menge samtlicher
Umgebungskomponenten von A ist abzâhlbar, so da8 wir sie als Folge

VO9V19V^19V29V^9... (13.2)

schreiben kônnen. Dabei ist jede Umgebungskomponente Fn gleich einem

bestimmten Vtk. Da die Menge A beschrânkt ist, sind die Gebiete Vn so

wâhlbar, daB die Folge (13.2) gleichmâBig beschrânkt ist. Durch eine

lineare Transformation erreichen wir dann, daB A und sâmtliche Vn ins

Innere des Kreises

\w- 1| =\ (13.3)

fallen. Die Bezeichnungen môgen dabei der Einfachheit halber dieselben

bleiben.
Nachdem wir aus jeder Umgebungskomponente Fw einen festen Punkt

8) C. Carathéodory, Réelle Funktionen, Bd. I, Leipzig-Berlin 1939, §§ 106 und 107.
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wn gewâhlt haben, der zugleich auch Punkt von. A ist, verteilen wir die
Vw entsprechend dem Beispiele in § 11 in der Weise auf die Blàtter der
in Null und Unendlich gewundenen Logarithmusflâche, daB bei deren
Abbildung durch t log w in die schlichte punktierte £-Ebene das Bild
Wn von Vn ganz ins Innere des von den Geraden 91 (t) — log ^, 91 (t)
log § und %(t) 2njr, 3(£) 2(n+l)n: gebildeten Rechteekes

£» (» 0, ±1, ±2,...) (13.4)

zu liegen kommt. Das in Wn liegende Bild von wn bezeiehnen wir mit tn.
Aus der in Unendlich punktierten £-Ebene entfernen wir sàmtliche

Punkte tn und konstruieren zu dem verbleibenden, oo-fach zusammen-
hângenden Gebiete G die regulâr verzweigte Ûberlagerungsflàche F^
(§ 11). Ûber jedem ihrer Grundpunkte tn liegen unendlich viele logarith-
niische Windungspunkte 1$ (y 1, 2,...). Sie aile sind, wie auch der
Punkt Unendlich, Randpunkte der Flàche. Ferner ist F^ einfach zu-
sammenhângend, schlichtartig und gehôrt dem hyperbolischen Typus an.

14. Wir veràndern jetzt die Flache F^ in passender Weise. Àhnlieh
wie in § 9 konstruieren wir auf F^ um jeden der Windungspunkte V^
(w 0, ±^±2,...; j l, 2,.. eine doppelspiralfôrmige stetige
Kurve g^ deren beide Âste den Punkt 1$ unendlich oft in entgegen-
gesetzter Richtung umlaufen und sich ihm dabei asymptotisch nàhern.
Dabei sollen die Projektionen der a^ ganz in Kreise K^ um tn fallen,
die selbst aile im Innern des Rechteekes (13.4) liegen und deren Radien
fur j -\- | n | -> oo gegen Null konvergieren.

Zerschneiden wir F^ entlang sâmtlicher Spiralen a^\ so zerfàllt die
Flache in die einfach zusammenhàngende, von den <J£* und dem Punkte
Unendlich begrenzte FlâchcF^ und in unendlich viele weitere Teilflàchen,
fur die je einer der obigen Windungspunkte 1$ Randpunkt ist. Wird F^
durch die analytische Funktion t y (u) auf das Innere von | u \ < 1

abgèbildet, so geht jede der Randkurven a^ stetig in einen gewissen
Kreisbogen ô^ auf | u \ 1 uber. Von diesen gilt wie im Falle der Modul-
funktion im § 9, daB das lineare MaB aller ô^ gleich 2n ist, ferner, daB
sich in einem Endpunkte £o eines beliebigen dieser Bôgen, etwa ô(q\

unendlich viele weitere Kreisbogen d%\ ja sogar unendlich viele mit festem
Index n hàufen. Dièse Behauptungen beweisen wir kurz folgendermaBen.

Fur jeden Index n wàhlen wir aus der Menge der Kreise K^ (j 1,
2,... um tn den grôBten und bezeiehnen ihn mit K{n). In dessen Inneren
Hegen die Projektionen sâmtlicher Spiralen c$ (j 1, 2,... Zerschneiden

wir dann die tîberlagerungsflâche Fw in allen Blâttern entlang der
Kreise K(n), so zerfàllt F^ in die unendlich vielen Kreisumgebungen der
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logarithmischen Windungspunkte L$ (^ 0, ±1>±2,...; j 1,

2,... und in die einfach zusammenhângende Restflache FK. Bei der
Abbildung der Flàche F^ auf den Einheitskreis | v | < 1 gehen die Kreis-
umgebungen in gewisse einfach zusammenhângende Gebiete H^ und die
Flàche FK in das Restgebiet EK von | v \ < 1 ùber. Bann folgt wie in § 11,
da6 jedes H$ genau einen Peripheriepunkt P^ des Einheitskreises als

Randpunkt besitzt und daB, fur jeden Index n, die Punkte P^ (j 1,

2,... auf | v | 1 dicht liegen. Die auf der Flàche F^ verlaufenden
Doppelspiralen a^ gehen bei der Abbildung in stetige Kurven cr^;) iiber,
die beziehentlich in den Gebieten H^ liegen, in P^ einmùnden 9) und die
einiach zusammenhângenden Gebiete Hr^j) einschlieBen {Hf£j) ist also Teil-
gebiet von H$). Das Komplementârgebiet EG der Gebiete Hr£j) bezûglich
| v | < 1 ist das schlichte Abbild der oben eingefiihrten Flàche F^ Da nun
erstens die Gebiete EK und Ea dieselben Peripheriepunkte des Einheitskreises

als Randpunkte besitzen, zweitens das lineare MaB gegeniiber ein-
eindeutigen konformen Abbildungen invariant ist10), folgen aile unsere
Behauptungen sofort aus dem Ergebnis des § 11 in Verbindung mit dem
Satze von Fatou.

15. Haben wir also die Flàche F^ durch die Funktion t <p(u) kon-
form auf \u\ <1 abgebildet, wobei die Doppelspiralen <$ stetig in die

Bôgen 6$ auf \u\ 1 tibergehen, ist ferner f0 einer der Endpunkte
eines dieser Kreisbôgen, etwa speziell ô§\ so kônnen wir aus der Gesamt-

menge der ô^ eine gegen Co konvergierende Teilfolge ôn (n 0, ± 1,

± 2,... auswâhlen, wo ôn das Bild einer der Doppelspiralen c$ (j 1,

2,...) um den Grundpunkt tn ist. Dièse den Bôgen ôn entsprechenden
Doppelspiralen bezeichnen wir mit an.

Jeder Punkt tn gehôrt nach § 13 einem Gebiete Wn an. Fur jedes
dieèer Gebiete konstruieren wir uns in âhnlicher Weise wie in § 4 ein
Riemannsches Flâchenstûck Sn, welches mit der Flàche F^ entlang eines

gewissen Teilbogens von an verheftet wird. Wir zeigen dièse Konstruk-
tion im einzelnen fur n — 0 ; in den ubrigen Fàllen n ^ 0 erfolgt sie

analog.
Jedem Punkte xt (i 1, 2,... einer auf Wo dicht liegenden und ab-

zâhlbaren Punktmenge ordnen wir eine im Gebiete Wo liegende ab-

geschlossene Kreisscheibe kt zu, die xi als Mittelpunkt besitzt. Die Radien
der Kreise sollen derart gegen Null konvergieren, daB stets

hOki+1 (» 1,2,...) (15.1)

9) Dies folgt aus der Stetigkeit der Abbildung.
l0) B. Nevanlinna, Eindeutige analytische Funktionen, Berlin 1936, S. 37.
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Ferner sollen xx und kx so gewâhlt sein, daB der Grundpunkt t0 nicht
im Inneren von k± liegt.

Auf der Peripherie von kx grenzen wir einen Bogen 6n, auf der von k2

einen Bogen b2Q ab und verbinden die beiden Endpunkte des einen Bo-
gens mit denen des anderen in der Weise durch zwei sich gegenseitig
nicht treffende Jordanbôgen yw und ylt, die mit kx und k2 nur die
Endpunkte gemein haben und ganz im Inneren des Gebietes Wo verlaufen,
so daB die vier Kurvenstiicke 6n, y10, 620> 7n die Begrenzung eines ein-
fach zusammenhângenden, schlichten Flâchenstuekes ergeben, welehes
die Mittelpunkte rt und t2 der beiden Kreise kx und k2 im Inneren ent-
hâlt. In âhnlicher Weise wird k2 mit k3 verbunden und so fort (vgl. § 4).
Das Ergebnis ist ein einfach zusammenhângendes, schlichtartiges Rie-
mannsches Flâchenstiick $0, dessen Projektion ganz auf Wo fàllt. In
gleicher Weise werden die anderen Flâchenstiicke 8n mit n^O gebildet.

Nun betrachten wir wieder die Flâche F^ und wâhlen auf der begren-
zenden Doppelspirale aQ einen Punkt P und einen Kreis kQ mit P als

Mittelpunkt derart, daB erstens k0 innerhalb Wo liegt11), und zweitens,
daB der Kreis kl9 dessen Inneres nach unserer Konstruktion Teilmenge
von So ist, ganz auBerhalb k0 liegt. Dies ist môglieh, da der Kreis kx den
Grundpunkt t0 nach obiger Voraussetzung nicht in seinem Inneren ent-
hàlt, also auch nicht die ganze Doppelspirale a0, die t0 umlâuft, iiber-
decken kann. Unter den Schnittpunkten des Kreises k0 mit a0 existiert
dann mindestens ein Paar Qr und Qf!, fur das der auf k0 liegende Bogen
Qf Qff ganz auBerhalb der Flàche F^ verlâuft. Wir ersetzen das von Qf
und Qrr begrenzte Kurvenstlick von a0 durch diesen Kreisbogen Qf Qn

und erhalten so anstatt F^ eine neue einfach zusammenhângende Flâche

F^ Auf dem Randbogen Qf Q!f dieser Flâche wâhlen wir einen Teilbogen
601 und auf dem Randbogen 6n des Flâchenstiickes So einen Teilbogen
blQ. Dann verbinden wir die Endpunkte von 601 mit denen von fe10 in der
Weise durch zwei sich gegenseitig nicht treffende Jordanbôgen y00 und
y01 y die mit k0 und kx nur die Endpunkte gemein haben und ganz im Ge-
biete Wo verlaufen, so daB die Kurven 601, yQ0, b10, y01 die Begrenzung
eines einfach zusammenhangenden schlichten Flâchenstiickes ergeben,
welehes ganz auBerhalb k0 und kt liegt und die Flâchen F^ und 80 gegenseitig

verbindet.
In derselben Weise fûhren wir diesen ErweiterungsprozeB mit den

ubrigen Flâchenstùcken 8n (n ^ 0) durch und erhalten so schlieBlich

11 Dazu brauchen nur P in geniigender Nâhe des Grundpunktes £0 und der Radius von
&0 genûgend klein gewâhlt werden.
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eine Flâehe F*, die wir durch eine analytische Funktion t y>(z) auf

|z|<l abbilden kônnen. Die Begrenzung von F£ besteht erstens, fiir
jedes n, aus den Randkurven anl und <rn)2> die sich wiederum aus den
zwei Uferu des angehefteten Flàchenstûckes Sn und den zwei sich daran
anschlieBenden Âsten der Doppelspirale on zusammensetzen, zweiteny
aus allen ûbrigen von den an verschiedenen Doppelspiralen o^ und drit-
tens schlieBlich aus dem Punkte Unendlich. Dièse Randkurven an 1?

an2 und o^ gehen durch t yj(z) stetig in Kreisbôgen ônl, ôn2 und
ô^ auf \z\ 1 iiber, deren gesamtes lineares MaB gleich 2jr ist. Letzte-
res sieht man sofort ein, wenn man auf F£ passende Querschnitte qn
(% o, i'i, ±2,...) anbringt, durch welche jF* wieder in die Flâche
F^ und unendlich viele Teilflâchen, die im wesentlichen die Sn darstellen,
zerlegt wird. Die Bildquerschnitte rn, von denen jeder einen Punkt auf
ôn^ mit einem auf ôn2 verbindet, zerlegen | z \ < 1 in ein der Flâche F^
entsprechendes Gebiet Er und in unendlich viele weitere Gebiete. Wendet
man auf letztere die Ûberlegungen des § 5, auf E1 die des § 14 an, so

folgt unmittelbar unsere Behauptung.
Daraus, zusammen mit der Stetigkeit der Randabbildung folgt weiter,

daB erstens die den beiden Randkurven <rn>1 und an 2 entsprechenden
Bildkreisbôgen ônl und àn2t auf \z\ — 1 in einem ihrer Endpunkte zu-
sammenstoBen (dieser ist singulârer Punkt fiir ip(z)), und zweitens dièse

Kreisbogenpaare auf \z\ 1 in derselben Reihenfolge liegen wie die
den Randkurven an entsprechenden Bildkreisbôgen ôn bei der Abbildung
der Flâche F^ durch t <p(u) auf |w|<l im vorigen Paragraphen.
Also werden sich die Bogenpaare ônl) ôn$2 (w 0>=t:l,±2,...) in
einem einzigen Peripheriepunkte Co hâufen, welche nach der zu Anfang
des § 15 gemachten Voraussetzung einer der Endpunkte des Kreisbôgen^
4X) ist.

16. Durch die Abbildung w L(et), wobei L eine passende lineare
Transformation bedeutet, gehen die Gebiete Wn wieder in dieUmgebungs-
komponenten Vn der Folge (13.2) iiber und die Punkte tn in die Punkte
wn, deren Projektionen auf die Punktmenge A fallen. Die Bezeichnungen
fur F*, Sn und a^ behalten wir der Einfachheit halber bei.

Wir kônnen jetzt zeigen, daB die Menge H, die wir fiir die Funktion

w f(z)=L(et) t y>(z), \z\<l (16.1)

im Peripheriepunkte f0 bilden, mit der vorgegebenen abgeschlossenen
Menge A ûbereinstimmt.

Die Menge der Punkte auf | z \ 1, in denen kein radialer Grenzwert
existiert, ist nach § 15 vom linearen MaBe Null. Ferner liegen auf der
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Linie | z | 1 in jeder Umgebung von f0 die Bilder der Rànder von fast
allen Flàchenstiicken Sn, die ihrerseits die Umgebungskomponenten Vn

in der im Sinne des § 15 zu verstehenden Weise approximieren. Dabei
gehôrt zu jeder der Umgebungskomponenten Vn genau ein Sn. Diejenigen
Radien des Einheitskreises, die weder auf einem dem Rande eines 8n
entsprechenden Kreisbogen noch in Punkten enden, in denen kein
radialer Grenzwert existiert, miinden dann in einen Peripheriepunkt, der
einem Punkte auf einer der Doppelspiralen a^ bzw. an entspricht. Dièse

Doppelspiralen sind aber so konstruiert, daB sie sich mit beiden Âsten
asymptotisch dem Punkte wn, dessen Projektion in die w-Ebene der
Menge A angehôrt, nâhern und uberdies ganz in Umgebungen von wn
fallen, deren Durchmesser fur waehsende Werte von j -f- | n | gegen Null
konvergieren. Die entlang dieser Radien gefundenen Grenzwerte haben
also an der Bildung von H nur insoweit Anteil, als sie die Punkte wn er-
geben. Somit ist H =A.

Die Randwerte

17. In diesem und den folgenden Paragraphen werden wir AufschluB
ùber die Randwerte der Funktion f(z) im Punkte f0 erhalten und damit
den Beweis des Satzes II zum AbschluB bringen.

Unter Beibehaltung der friiheren Bezeichnungen schreibt sich die zur
Menge H gehôrende Komplementarmenge U als Summe von hôehstens
abzâhlbar vielen fremden Gebieten Gt. In § 10 sahen wir bereits, daB die
Punkte der mehrfach zusammenhàngenden unter den Gt sâmtlich Randwerte

von f(z) im Punkte f0 sind. Die in den §§ 13 bis 16 konstruierte
Funktion w f(z), welche die Flàche F* auf \z\ <l abbildet, ist in-
sofern noch sehr speziell, als bei ihr auch die Punkte der einfach
zusammenhàngenden unter den Gt Randwerte in £o sind. Wir sehen dies so.

Wir betrachten ein beliebiges Gebiet Gt, etwa Gx. Ist dann co ein be-

liebiger Punkt aus Gx, so liegen auf der Flâche F* unendlich viele Punkte

CO!, CO2, CO3J. (17.1)

ùber co. Wir zeigen, daB die Menge der Bildpunkte

im Punkte f0 einen Hâufungspunkt besitzt, d. h. im Inneren jeder e-Um-
gebung von Co mindestens einer der Punkte (17.2) liegt. Nun bedeutet
es keinerlei Einschrankung, anzunehmen, daB die Schnittpunkte Pt und
P2 des e-Kreises mit \z\ — 1 beide auf zwei Kreisbôgen ô^ und 6%**

fallen, da Co Ja e*n Hâufungspunkt der Bôgen ist. Dann stellt der in
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|2|<1 verlaufende, Pt und P2 verbindende Teil des e-Kreises einen
Querschnitt r des Einheitskreises dar. Der Bildquerschnitt q auf der
Flâche JP* verbindet die zwei auf den Doppelspiralen o^l) und oj*f) (welche
den Grundpunkt wni bzw. wn% umlaufen) liegenden Bildpunkte Qx und
Q2r und zerlegt F* in zwei Teilflâchen Fx und F2. Wir behaupten, da8
jede der beiden Teilflachen mindestens einen Punkt aus (17.1) als inneren
Punkt enthâlt.

Da nâmlich der Querschnitt q (einschlieBlich seiner Endpunkte Qx und
Q2) eine abgeschlossene und beschrànkte Menge darstellt, kann er von
endlich vielen, etwa N schlichten, ganz auf der Flâche F* liegenden
Kreisscheiben tiberdeckt werden12). Dièse N Kreisscheiben liegen aber
in hôchstens N versehiedenen Blàttern von F* Deshalb lâBt sich z. B.
der Punkt Qt durch eine ganz auf der Teilflâche Fx verlaufenden Jordan-
kurve yx mit einem der Punkte (17.1) verbinden. Dazu braucht yx nur,
von Qx ausgehend, den Grundpunkt wni so oft (mindestens i\T-mal) in ent-
sprechender Richtung zu umlaufen, um schlieBlich in ein Blatt zu ge-
langen, welches einen Punkt œk enthâlt. Da dasselbe auch fur eine von
Qt ausgehende und auf der Teilflâche F2 verlaufenden Jordankurve y%

gilt, ist unsere Behauptung bewiesen. Daraus folgt, daB in der e-Um-
gebung von £0 mindestens ein Punkt Cfc existiert, fur den /(Cfc) œk m

ist. Da ûber die Zusammenhangszahl des Gebietes (?1 keine Annahme
gemacht wurde, und da jeder Punkt der Menge H ebenfalls Randwert
von f(z) im Punkte £o ist, so schlieBen wir, daB die Randwerte der in
§ 13 u. f. konstruierten Funktion die voile Ebene ausmachen.

18. Die Frage nach den Randwerten ist fur den Fall, daB H aus
einem einzigen Kontinuum besteht, bereits in § 8 vollstândig beantwor-
tet worden. Wir beschrânken uns deshalb im folgenden auf abgeschlosse-
nen Punktmengen A, die aus mindestens zwei fremden Kontinuen be-
stehen. Durch eine lineare Transformation erreichen wir wieder, daB

erstens A ganz im Kreise | w — 11 \ liegt und zweitens dasjenige der
Gebiete Gt (deren Vereinigung U die Komplementârmenge zu H
darstellt), welches den Punkt Unendlich enthâlt, mehrfach zusammen-
hângend ist, nach dem Ergebnis des § 10 also von vorneherein aus lauter
Randwerten von f(z) in £o besteht.

Seien diejenigen einfach zusammenhângenden unter den Gebieten Ot,

von denen wir fordern, daB sie keinen Randwert enthalten, die Gebiete

Gh,Gh,Gh,... (1^1)
12 In den Endpunkten Qt und Q2 kommen natûrlich nur gewisse auf Fqq liegende Kreis-

segmente in Frage.
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Ihre Anzahl ist hôchstens abzàhlbar. In jedem GiJe wàhlen wir einen
festen Punkt w'ik.

Bei unseren weiteren tîberlegungen knûpfen wir an die Ausfûhrungen
des § 13 an. Aus jeder Umgebungskomponente Vn (n 0, ± 1, ± 2,...
der Menge A wàhlen wir einen festen Punkt wn von der Eigenschaft, daB
seine Projektion auf die Menge A fâllt, jedoch nicht Randpunkt eines
der Gebiete Gik ist. Sollte aber jeder dieser Punkte eines Vn Randpunkt
eines Gik sein (was z. B. zutrifft, wenn A aus zwei konzentrischen Kreisen
besteht und wenn man fordert, daB das Innere des kleineren Kreises
keinen Randwert von f(z) enthalten soll), so unterbleibe fur dièses Vn
im Gegensatze zur Konstruktion im § 13 die Auswahl eines Punktes wn.
Die Punkte wn liegen also jedenfalls stets ganz auBerhalb der Gebiete Gtk.

Wir verteilen dann sàmtliche Umgebungskomponenten Vn in passen-
der Weise auf die Blâtter der in Null und Unendlich gewundenen Loga-
rîthmusflâche und gehen von dort dureh t log w in die schliehte
punktierte £-Ebene, wobei Vn in das im Rechtecke Rn (13.4) gelegene
Gebiet Wn und, gegebenenfalls, der Punkt wn in den Punkt tn c Wn uber-
gehen.

Wir zeichnen in aile JRn, ausgenommen in Ro, die Bildgebiete Gnt
(n ^éz 0) von GH ein. Der in GnH gelegene Bildpunkt des Punktes v/ix sei

tn % In die Rechtecke Rn mit n ^ 0, ± 1 zeichnen wir uberdies auch
noch die Bildgebiete Gn$t% von GH ein. Der in GnH gelegene Bildpunkt
von w\ sei tn t Allgemein zeichnen wir in aile Rechtecke Rn mit n ^ 0,
± 1,..., ±& auch noch die Bildgebiete Gntk von Gtk mit den Bildpunk-
ten tntk des Punktes w[k ein. Dabei kann keiner der in Rn liegenden
Punkte tn lk

(Je 1, 2,..., | n \ mit dem Punkte tn (fails fur diesen Index
n ein solcher vorhanden ist) zusammenfallen, da erstere im Inneren der
Gebiete Gntk liegen, tn dagegen in deren ÂuBerem.

Wir entfernen aus der in Unendlich punktierten £-Ebene sàmtliche
Punkte tn und £n,îfc13) und konstruieren uber dem verbleibenden oo-fach

zusammenhângenden Gebiete die regulâr verzweigte (schlichtartige und
einfach zusammenhângende) Ûberlagerungsflâche 0^ (vgl. § 11). Ûber
dem Grundpunkte tn von 0^ liegen die abzàhlbar vielen logarithmischen
Windungspunkte 1$ (y 1, 2,...)» ^her dem Grundpunkte tntk die
logarithmischen Windungspunkte L{^ik.

19. Dann konstruieren wir auf 0^ in bekannter Weise (§14) um
jeden der Windungspunkte Z#> (n 0, ±1, ±2,... ; j 1, 2,...)14)

13) Aus dem Rechtecke Rn werden dabei die endlich vielen Punkte tU}lk (k 1,
2,..., | n | und tn weggenommen.

u) Im allgememen werden nach § 18 also gewisse Werte des Index n fehlen.
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eine doppelspiralfôrmige stetige Kurve a^\ deren beide Àste den Punkt
1$ unendlich oft in entgegengesetzter Richtung umlaufen und sich ihm
dabei asymptotisch nàhern. Dabei sollen die Projektionen der c$ ganz in
Kreise K(^ um tn fallen, die selbst aile einerseits innerhalb der Rechtecke
Rn, andererseits ganz im ÂuBeren der Gebiete Gntk liegen, und deren
Radien fur j -\-\n\-> oo gegen Null streben.

Um die Windungspunkte L$ik zeichnen wir ebenfalls Doppelspiralen
in folgender Weise. Sei

eine Folge von paarweise punktfremden, im Gebiete Gnlk liegenden ge-
schlossenen Jordanschen Kurven, wobei jede Kurve F^ik die vorher-
gehende F^^ von der nachfolgenden -T*^ trennt. Die Folge strebe mit
wachsendem Index l gegen die Begrenzung von Gntk. Da die Gebiete

@n,i% (n "= ±^> ±(& + !)>•••) aHe unter sich kongruent sind, kônnen
wir weiter voraussetzen, daB dies auch von den Kurven F%\k (n

±i, + (*+l),...) gilt.
Nun konstruieren wir auf der Ûberlagerungsflâche 0^ um jeden der

Windungspunkte L%]ik (n 0, ± 1, ±2,... ; j,k= 1,2,...) eine

doppelspiralfôrmige stetige Kurve ç^ik, deren beide Âste den Punkt L(^)ik

unendlich oft in entgegengesetzter Richtung umlaufen und sich dabei der

Begrenzung von Gntk asymptotisch nâhern. Weiter soll die Projektion
von ç{^ik ganz imlnneren des Gebietes Gntk, dabei aber ganz aufierhalb
der geschlossenen Kurve F(fykn]) 15) liegen. Wir erreichen dadurch, daB

sich sowohl die Projektionen der Doppelspiralen um den festen Grund-

punkt tntk (wachsender Index j) als auch diejenigen der Doppelspiralen
ç(£)ik in den Rechtecken Bn mit w=±fc, ±(^ + 1),... und festen
Indizes j und ik als Ganzes immer besser den Begrenzungen der kon-

gruenten Gebiete GUttk anschmiegen.
Nun zerschneiden wir die Flâche 0^ entlang sâmtlicher Doppelspiralen

<#> und ç%k (n 0,±l,±2,...; j\fc=l,2,...)> wodurch &„ in
die einfach zusammenhângende Restflâche 0^ und in unendlich viele

Teilflâchen, welche je einen der Windungspunkte L\p bzw. I/£]ih als Rand-

punkt besitzen, zerfâllt. Genau wie in § 15 wird die Flâche 0^ durch

,,Anhàngen" der Riemannschen Flâchenstucke Sn (w==0,±1,^:2,.. .)16)

entlang gewisser Bôgen der begrenzenden Doppelspiralen an (die an sind

speziell ausgewâhlte unter den a^) erweitert. So erhalten wir schlieBlich

15) Die Projektionen von ç£ ^. liegt also ganz im Innern des ,,ringformigen" Gebietes,

das von der Begrenzung des Gebietes On,ik und der K^rve F^kn^ eingeschlossen wird.

18) Siehe FuÛnote 14!
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die schlichtartige, einfach zusammenhângende Riemannsohe Flâche 0*.
Sie môge durch die analytische Funktion t ip(z) auf das Innere des

Kreises | z \ < 1 abgebildet werden.
Andererseits wird &* durch w — L(et) auf eine Flâehe ûber der

w-Ebene ùbergefiihrt, wo L eine passende Linearfunktion bedeutet. Da-
bei gehen die Gebiete Wn wieder in die Umgebungskomponenten Vn und
die Grundpunkte tn bzw. tn%k in die Punkte wn bzw. w'ih ûber. Die Be-
zeichnungen fiir die Flâche <Z>* und die Linien cr^, ç^ijfc usw* behalten wir
auch nach dieser Abbildung der Einfachheit halber bei.

Von der Funktion
M f(z) \z\<l (19.2)

lâBt sich dann àhnlich wie in den §§ 13 bis 16 zeigen, daB sie die unsere
Flâche 0* begrenzenden Doppelspiralen o$ (§ 14), die Rânder crn>1, crn 2

der angehângten Flâchenstûcke Sn (§ 15) und die Doppelspiralen ç^ik
stetig inKreisbôgen ô^, ônl und èn 2, und in ô^lk auf derLinie \z\ 1

ûberfuhrt, deren gesamtes lineares Ma8 gleich 2n ist, und daB auf | z \ 1

ein Punkt £0 existiert, in dem die in § 2 definierte Punktmenge H mit der
Punktmenge A identisch ist. Bezliglich des Punktes £0 bemerken wir,
daB sich in ihm sowohl die Kreisbôgen ônl, ôn 2 (wegen des Index n
beachte man wieder die FuBnote 14!) als auch die Bôgen à^ik (n 0,
±1, ±2,... ; k 1,2,...,»; j speziell ausgewâhlt) hâufen. Im ûbri-
gen verzichten wir hier auf die genaue Durchfûhrung der Beweise, da sie
sich unter Beriicksichtigung der Ausfuhrungen dièses Paragraphen ohne

Schwierigkeit aus denen, wie wir sie fur die Flâche F* in den §§ 14 u. f.
fùhrten, ergeben.

Nun sehen wir aber auch sofort ein, daB die Gebiete (18.1) keinen
einzigen Randwert von f(z) in Co enthalten.

Betrachten wir nâmlich einen beliebigen Punkt co in irgendeinem der
Gebiete (18.1), etwa in Gti, und ordnen wir co eine ganz im Inneren von
G%1 liegende Umgebung Uœ zu, so folgt aus der Konstruktion der Rie-
mannschen Flâche @* daB sich ûber U^ hôchstens endlich viele Blâtter
von <P* befinden, da sich die einen Teil der Begrenzung von &* bildenden
Doppelspiralen ç^ als Ganzes sowohl mit wachsendem Index j als
auch n immer besser der Begrenzung des Gebietes G%1 anschmiegen. Dar-
aus schlieBen wir, daB co kein Randwert von / (z) in Co seîn kann.

Damit ist der Satz II in allen Teilen bewiesen.

(Eingegangen den 17. Februar 1948.)
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