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Eine kennzeichnende Eigenschaft
der Schiefkôrper
Von T. Szele, Szeged (Ungarn)

Zweck der folgenden Note ist eine wesentliche Verschârfung der beiden
bekannten Satze :

Ist R ein Ring ohne Nullteiler mit Minimalbedingung fur Rechts- und
Linksideale, so ist R ein Schiefkôrper1).

In einem kommutativen Ring mit Minimalbedingung ist der Rest-
klassenring nach einem Primideal stets ein Korper und daher jedes Prim-
îdeal teilerlos2).

Naeh E.Artin kann im ersten Satz die Minimalbedingung fur Rechts-
ideale entbehrt werden3). Im folgenden soll gezeigt werden, daB man
auch anstatt der Minimalbedingung fur Linksideale durch bloBe Forde-

rung der Existenz eines minimalen Linksideals in R auskommt4). Es
gelten namlich die Satze :

Besitzt ein Ring R ohne Nullteiler ein minimales Linksideal, so ist R ein
Schiefkôrper5).

Besitzt ein kommutativer Ring R ein minimales Idéal, so ist der Rest-

klassenring von R nach einem Primideal stets ein Korper und daher jedes
Primideal in R teilerlos.

Der zweite Satz ist eine unmittelbare Folge des ersten, denn der Rest-
klassenring nach einem Primiçleal ist ein Integritâtsbereich und hat auch
(zugleich mit R) ofïenbar ein minimales Idéal.

x) Siehe B. L. van der Waerden, Moderne Algebra II (1940), S. 141.

2) Ebenda S. 142.

3) Siehe E.Artin, C. J. Nesbitt, R. M. Thiall, Rings with minimum condition
(University of Michigan Publications in Mathematics Number 1), 1946, S. 59, Theorem
6.10 A.

4) Unter einem minimalen (oder mit anderem Ausdruck: emfachen) Linksideal von R
versteht man ubhcherweise ein solches Linksideal m R, welches ;zf (0) ist und kem Linksideal

von R aufier sich selbst und (0) umfaBt. Im kommutativen Falle sprechen wir von
emem minimalen Idéal schlechthm.

5) Daraus folgt : Ein Ring ist dann und nur dann ein Schiefkorper, faits er nullteilerfrei ist
unà ein minimales Linksideal besitzt. Das ist die im Titel angekundigte ,,kennzeichnende
Eigenschaft der Schiefkorper".
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Der erste Satz lâBt sich folgendermaBen beweisen. Sei I ein minimales
Linksideal in R und c ^ 0 ein Elément von I. Dann ist le ein Links -

idéal von R, fur welches nach Voraussetzung l-c £ l, l-c ^ (0), also

I-c X gilt. Jedes Elément von I ist demnach in der Gestalt x-c (x e I)
darstellbar, insbesondere auch c selbst : ce c (e e l, c ^ 0). Daraus
folgt fur das beliebige Elément y e R:

(ye — y)-c yec — y c 0

d. h. y e — y 0, dai2 keinen Nullteiler hat. Folglich ist e ein rechts-
Einselement in R. Insbesondere ist e2 — e. Dann gilt aber fur das

beliebige Elément y e R:

e(e y — y) e2 y — e y 0

d. h. ey — y 0. Somit ist e auch zugleich ein links-Einselement, also

Einselement in R.
Es mu6 noch gezeigt werden, daB irgendein Elément a ^ 0 von E

ein Linksinverses hat. Statt dessen werden wir mehr, nâmlich die Lôsbar-
keit irgendeiner Gleichung xa b in R beweisen. Es gilt zunâchst
I R, da wegen e cl: R Re ÇZl ist. Folglich hat R nur die beiden

(trivialen) Linksideale R und (0). Die Menge Ra aber ist ein Linksideal

in R, d. h. wegen a ^ 0 ist Ra R. Daraus folgt die Richtig-
keit unserer Behauptung.

(Eingegangen den 20. Januar 1948.)
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