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Eine kennzeichnende Eigenschaft
der Schiefkorper

Von T. SzerLk, Szeged (Ungarn)

Zweck der folgenden Note ist eine wesentliche Verschiarfung der beiden
bekannten Sitze :

Ist R ein Ring ohne Nullteiler mit Minimalbedingung fiir Rechts- und
Linksideale, so ist R ein Schiefkorper?).

In einem kommutativen Ring mit Minimalbedingung ist der Rest-
klassenring nach einem Primideal stets ein Korper und daher jedes Prim-
ideal teilerlos?).

Nach K. Artin kann im ersten Satz die Minimalbedingung fiir Rechts-
ideale entbehrt werden?®). Im folgenden soll gezeigt werden, dafl man
auch anstatt der Minimalbedingung fiir Linksideale durch bloBe Forde-
rung der Existenz eines minimalen Linksideals in R auskommt?). Es
gelten nidmlich die Sitze :

Besitzt ein Ring R ohme Nullteiler ein minimales Linksideal, so ist R ein
Schiefkorper®).

Besitzt ein kommutativer Ring R ein minimales Ideal, so ist der Rest-
klassenring von R nach einem Primideal stets ein Korper und daher jedes
Primideal in R teilerlos.

Der zweite Satz ist eine unmittelbare Folge des ersten, denn der Rest-
klassenring nach einem Primideal ist ein Integritéitsbereich und hat auch
(zugleich mit R) offenbar ein minimales Ideal.

1) Siehe B. L.wvan der Waerden, Moderne Algebra II (1940), S. 141.
%) Ebenda S. 142.

8) Siehe E. Artin, C.J. Nesbitt, R. M. Thrall, Rings with minimum condition
(University of Michigan Publications in Mathematics Number 1), 1946, S. 59, Theorem
6.10A.

%) Unter einem minimalen (oder mit anderem Ausdruck: einfachen) Linksideal von R
versteht man tiiblicherweise ein solches Linksideal in R, welches ;Z(0) ist und kein Links-
ideal von R auBer sich selbst und (0) umfaB8t. Im kommutativen Falle sprechen wir von
einem minimalen Ideal schlechthin.

%) Daraus folgt: Bin Ring ist dann und nur dann ein Schiefkorper, falls er nullteilerfrei ist
und ein minimales Linksideal besitzt. Das ist die im Titel angekiindigte ,,kennzeichnende
Eigenschaft der Schiefkérper<.
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Der erste Satz 148t sich folgendermaflen beweisen. Sei [ ein minimales
Linksideal in R und ¢ # 0 ein Element von [. Dann ist [-¢ ein Links-
ideal von R, fiir welches nach Voraussetzung [-c S [, [-¢ # (0), also
[.c =1 gilt. Jedes Element von [ ist demnach in der Gestalt x-c¢ (z ¢f)
darstellbar, insbesondere auch ¢ selbst: e¢c =c¢ (e el, ¢ # 0). Daraus
folgt fiir das beliebige Element vy e R:

(ye —y)c=yec—yc=0,

d.h. ye — y = 0, da R keinen Nullteiler hat. Folglich ist e ein rechts-
Einselement in R. Insbesondere ist e? = e. Dann gilt aber fiir das be-
liebige Element y e R:

efey —y =ey—ey=20,

d.h. ey — y = 0. Somit ist e auch zugleich ein links-Einselement, also
Einselement 1n R.

Es muBl noch gezeigt werden, dall irgendein Element a % 0 von R
ein Linksinverses hat. Statt dessen werden wir mehr, ndmlich die Losbar-
keit irgendeiner Gleichung za = b in R beweisen. Es gilt zunichst
[= R, da wegen eel: R = Re C | ist. Folglich hat R nur die beiden
(trivialen) Linksideale R und (0). Die Menge R-a aber ist ein Links-
ideal in R, d. h. wegen a 5 0 ist Ra = R. Daraus folgt die Richtig-
keit unserer Behauptung.

(Eingegangen den 20. Januar 1948.)
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