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Ein geometrisches Minimumproblem

Von HaNs Bigri, Bern

Ein Problem von Steiner lautet :

,,Zu drei Punkten A4,, 4,, 4, soll ein vierter Punkt P so gefunden
werden, dafl die Summe der Entfernungen P4, + PA, + PA, mog-
lichst klein wird.“?)

Diese schone Aufgabe ruft nach einer Verallgemeinerung. Wir erwei-
tern die Zahl der Punkte auf » und lassen auch Geraden und Ebenen zu.
Gesucht wird also ein Punkt, dessen Gesamtentfernung von n, festen Punk-
ten, n, festen Geraden und n, festen HKbenen mdoglichst klein wird.

Die vorliegende Arbeit fulit auf der Theorie der Extrema einer Funk-
tion mit mehreren unabhéngigen Variablen2). Der Satz von Weierstra(l
gestattet zum vornherein weitgehende Aussagen. Es wird bewiesen, dafl
die Abstandsfunktion im allgemeinen genau ein relatives Minimum be-
sitzt. Dieses Minimum ist hier auch ein absolutes. Auf das Punktproblem
wird genauer eingegangen.

Eine elementare Uberlegung gestattet, diejenigen Fille aufzufinden,
wo sich jegliche Rechnung eriibrigt. Die Verwendung von Vektoren macht
es moglich, die Bedingungen fiir das Extrem in ein geometrisches Gewand
zu kleiden. Aus der Differentialgeometrie brauche ich einige elementare
Formeln 3). Die Bezeichnungen stammen aus W. Blaschke : Vorlesungen
iber Differentialgeometrie 13).

1) Vergleiche R. Courant und D. Hilbert, Methoden der mathematischen Physik I,
2. Auflage, S. 141 und E. Czuber, Vorlesungen iiber Differential- und Integral-
rechnung I, 4. Auflage, S. 288—291. Lésung: Erreicht kein Innenwinkel des Dreiecks
A4,4,4; den Wert 2=/[3, so fallt das Minimum in denjenigen Punkt im Innern, von dem
aus die Seiten unter dem Winkel 2 7 /3 gesehen werden. Andernfalls liefert derjenige Eck-
punkt den kleinsten Funktionswert, fiir welchen die Summe der anstoBenden Dreieck-
seiten am kleinsten ausfallt.

%) Vollstandig dargestellt in C. Carathéodory, Variationsrechnung, 1. Teil, S. 6—17,
2. Teil, S.164—189.

%) 4. Kapitel, S.85—89, S. 114—115. Dazu tritt noch die Indexrechnung.
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§ 1. Die Abstandsfunktion und der Weierstraische Satz

Die Herleitung der Abstandsfunktion ist elementar und mag deshalb
unterbleiben. Man findet ¢):

I. n, Punkte.
ny -
W=x—0q;; =3V — ) (1)
i=1
a; = Stiitzvektor des ¢-ten Punktes.

1I. n, Geraden.

b, x

S b SO=SVE—anF @

b§2)=2€--ai-—-

a, = Stiitzvektor der i-ten Geraden.
b, = Einheitsvektor in Richtung der i-ten Geraden.

II1. n,-Ebenen.

bi x czx s
D) =x—aq,— e bi——5 6 S9=3V(x—aq,blc) (3
i i =1

a; = Stiitzvektor der i-ten Ebene.
b;, ¢; = orthogonale Einheitsvektoren in der ¢-ten Ebene.

S=XVE—a)l+3XVix—a, b2+ SV({x —a,blc)? 4

Wir fassen eine Kugel ins Auge, welche alle n, Punkte im Innern ent-
hilt. Auf dieser beschrinkten und abgeschlossenen Punktmenge K ist S
stetig und nimmt nach dem erwéhnten Satz mindestens ein Minimum
und ein Maximum an. Indem man die Kugel hinreichend gro8 wéhlt,
kann erzwungen werden, daf} auf dem Rande von | kein Minimum liegt.
S ist ferner nur auf & — € stetig differentierbar, wo € aus den gegebenen
Punkten, Geraden und Ebenen besteht. Dieser Umstand muf} scharf im
Auge behalten werden.

§ 2. Die elementaren Fiille

Die vorgegebenen n Elemente verteilen wir auf zwei Klassen. Es be-
deuten :

4) Zur Entlastung des Druckes werden die verschiedenen Stiitz- und Einheitsvektoren
nur dann gesondert bezeichnet, wenn es unvermeidlich ist. Aus dem gleichen Grunde wird
die Summationsbezeichnung kiinftig vereinfacht.
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R, Abgeschlossene Menge der Punkte, fiir welche S seine untere Grenze
beziiglich der Elemente der ersten Klasse erreicht.

M, Dito fiir die zweite Klasse.
® Durchschnitt von M, und IN,.
B

Vereinigungsmenge von M, und IN,.

Man kann folgende Klassifikation vornehmen :

. D=1 Punkt.
a) D nicht leer\ .
« D = unendliche Punktmenge 5).

b) D leer.

Im Falle a) erreicht S seine untere Grenze auf der Punktmenge D.
Von Interesse ist eigentlich nur der Unterfall mit D = 1 Punkt. S be-
sitzt alsdann im Innern der oben eingefiithrten Kugel genau ein eigent-
liches Minimum ¢). Viel anziehender, aber auch ungleich schwieriger zu
realisieren ist der Fall b), besonders dann, wenn kein Punkt von 98
Minimumeigenschaft besitzt.

§ 3. Parameterdarstellung, Formeln

Aus den »n Elementen greifen wir m willkiirlich gewéhlte heraus und
betrachten die Flichen konstanter Abstandssumme von denselben. Ver-
mittelst zweier Parameter %, v geht man zur uniformisierten Darstellung
iber und erhélt :

== x(u,v,’u]) p S:w—f-za/[X(u,'U,w)] * (5)
Die Formeln
ta=T% 1, +Fy N; SE:x.f-i——%'iz-W) (6)
X

8) Der Fall D = endliche Punktmenge kann nicht eintreten.

%) Ungerade Zahl von Punkten auf einer Geraden, eine Anzahl Geraden, deren kiirzeste
Abstande sich in einem Punkte schneiden oder beriihren, eine Ebenenschar durch einen
Punkt u. a. m.

7 _ 0% % ) _a
Yir = Ou; 0wy, ~ dt
E,=E, Eyz=F, Epy=G; Fy=L, F,, =M, F,,=N.

1 (aEm 0En 0Bk )E“

T
T =3 ou, ouy, dua

1 = #ullere Normale.

In der Ebene tritt an die Stelle von %, v der Kurvenparameter ¢.
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wiirden gestatten, die analytischen Bedingungen fiir Extreme von S ohne
Spezialisierung aufzustellen. Im Rahmen der vorliegenden Arbeit ist es
angezeigt, im gegebenen Augenblick Cartesische-, Zylinder-, rdumliche
Polarkoordinaten bzw. gewohnliche Polarkoordinaten einzufiihren.

§ 4. Das riumliche Problem

In Spezialfillen ist die Abstandsfunktion leicht zu iiberblicken ; der
allgemeine Fall liegt nicht komplizierter, gilt doch der

Satz: Entweder besitzt S im Innern von & genau ein eigentliches
relatives Minimum, oder § erreicht auf einer einfach zusammenhéngenden
Teilmenge K], von K, die keine Randpunkte von & enthilt, genau ein
uneigentliches Minimum 8).

Wire dieser Satz nicht richtig, so miifite S infolge der Stetigkeit min-
destens ein relatives Maximum annehmen. Es muf3 also bewiesen werden,
daB keine Maxima vorkommen. Dies geschieht mit Hilfe von zwei Hilfs-
sdtzen.

Hilfssatz 1: S nimmt auf innern Punkten von { — € kein Maximum an.

Gemil der allgemeinen Theorie sind folgende Ausdriicke zu bilden:

(x—a;) < Fus bil[x—a;, b,] ([%,,b:] ¢) ([x—a;, b;] )

Su’: Uk P e ;
Fod ‘/(x"—ai)z & V[x‘—ﬁubi]z T2 V([x—aiabi] c)?
(x—ay) [%,,0;1[x—a;, b,] ([x,,0;]c))([x—a;,b;] ¢)
S, = = Y Yy :
o V(E—a,)? = Vz—a,, b2 V([x—a;, b c;)?
(x—ay) [%,,0;][x—a,,b] ([%,, 0,1 ¢)) ([x—a; b ¢)
So= el e T Vi—abE o Vie—a bl
+1 (7)
(x a) [.xrwbi][x'—ai’bi] ([xrs’bz‘] ci)([ az’ch)
Srs= rs + e -+ T
WETETY =Ty
—a;,b,],[%, 0,11 [[x—a,, 6,],[%,, b;
by Brtenlla,n] o [lrman b [x, B [0, bl 15

w w r
[[3 —a;,b;]¢;,[%,b,] cz‘] [[35 —a;, 0] ¢, [%,D,] Ci]
v )
8) Die Alternative kommt tatsiachlich vor. Sind von 4 Ebenen je 2 parallel, so bleibt

S®) auf dem ganzen Parallelepiped konstant. Ahnlich liegen die Verhaltnisse fiir S@
wenn 3 Geraden ein gleichseitiges Dreieck bilden.

(8)

+X
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Soll ein Extremum eintreten, so miissen die Ausdriicke (7) verschwin-
den. Diese Bedingung wird zweckmiBig so geschrieben :

VE X cos ¢ + 3 Vx,, b, cos i + 3 V([x,, b;] ¢,)? cos & = 0
V@ X cos ¢ + 3 Vx,, b cos 92 + 3 V/([x,,5,] )* cos 17 =0 (9)
VE, 5 cos ¢ + X Ve, b cos 4 + X V[, bl ) cos 1) = — 1 .

Dann vereinfachen sich aber die zweiten Terme von S,,,, S,,, S..., die
allein beriicksichtigt werden miissen, zu
g o St el [r,, b sin® 9 o (1%, b ¢ sin? 24
“ ViE—a) V[x—a;,b,]° V({x—a;,b]¢;)?
in2 o® 12 qin2 (2 T ¢.)2 qing -2
¢ s sm»cﬁ“ s [%,, b;]? sin? ¢} - ([x,, b;] ¢;)? sin? %} ;
V V V
sin2 @ x,, b.12 sin2 (3) X, bi ¢; 2 5in? y®
o i s l%,, B;] Vi s (0 ]¢) i (10)

V_ Py V————_" 2
und bei Wahl cartesischer Koordinaten verschwinden die ersten Terme

der erwiahnten GréBen®). S,,, S,,, S, sind also positiv definit oder
hochstens positiv semidefinit. Damit ist der Hilfssatz bewiesen.

Hilfssatz 2: S nimmt auf € kein Maximum an.
Beweis. Gemif 1) ist:
)2 =22+ y*+22— 24z — 20}y — 2aYz 4 al* .
()2 = 2 (1 — 6" + 9* (1 —bZ") + 22 (1 — bZ) — 2602 - wy
— 2BV - yz— 20808 - 20— 200w —2aBy — 202+
0F) = & (1 — b7 — o) + 92 (1 — 8" — ) + 2 (1 — B3 — 3"
— 22y (653 + cff ¢i) — 292 (63 68 + ¢ ¢ff) — 222 (BF b + ¢ ¢f)
— 2402 — 24y — 2482+ aF" .

Wir schlieBen die elementaren Fiille des § 2 aus?), legen den Nullpunkt
des Koordinatensystems in einen Punkt von & und entwickeln § in der

%) Bei Wahl der in § 3 erwahnten Koordinaten stellt man miihelos fest, daB die 1. Terme
von Syy, Syp und 8,y positiv ausfallen. Man benétigt 8) und 9).

1%) Sonst wiirden namlich Komplikationen entstehen.
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1
T3 ) a{’

Umgebung dieses Punktes nach Potenzen von x, y, 2, was immer mog-
lich ist. Wihrend nun die linearen Glieder bei Wechsel des Nullpunktes
gewisse Modifikationen erleiden, bleiben die Absolutglieder und die qua-
dratischen Glieder formal unveridndert. Das Ergebnis der elementaren
Rechnung lautet :

1 2 3
§=SaP+ o + Tal + - - -

1)2 2 2 2 1)2 1)2
2 (" + ") + ¥ (@ + al") + 2 @ + a’)

2 2 2)2 2 2 2 2 2 2 2 2
| #2[a (0 +b8") -a"]+y [0l (0F" + 6") —al™] + 2°[al” (6" + b)) -]

1
o o

1

2

2 3)2 2 2 2 2 2 2 2 2 2
22[a®” (1-b"- ") -al" 1+ 9 [0l (1-b(}"-c3") —a ]+ 2* (@ (1-03F"-3) -

a

(3)2

i3

]

al”’

Nun betrigt die Summe der Koeffizienten von 22, y2, 22

in der 1. geschweiften Klammer: ¥ ——f()})- >0 ,
a;

; . 1
in der 2. geschweiften Klammer: ¥ —=>0,
a;

in der 3. geschweiften Klammer: O .

Also muBl mindestens einer dieser Koeffizienten positiv sein. Dies hat
aber zur Folge, daB die fiir Extrema von S mafigebende quadratische
Form weder negativ definit noch negativ semidefinit ist. Damit sind Hilfs-
satz und Satz bewiesen!).

Der festgestellte Sachverhalt ist duBerst bequem. Da ndmlich die
Existenz des absoluten Minimums gesichert ist und es genau ein relatives
Minimum gibt, so ist mit dem letzten zugleich das erstere gefunden.

In der Ebene sind selbstredend nur Punkte und Geraden zulissig. Alle

Formeln vereinfachen sich wesentlich. Prinzipiell tritt kein neues Mo-

ment auf.

11y Es erscheint natiirlicher, § in der Umgebung einer vorgegebenen Geraden nach
Potenzen von 7 und z, in der Umgebung eines Punktes aus € nach Potenzen von r allein
zu entwickeln; an dieser Stelle ist dies aber nicht notig, da die Nichtexistenz eines Maxi-

mums schon gesichert ist.
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§ 6. Das Punktproblem in der Ebene

Wir lassen die Geraden und Ebenen in Punkte ausarten und befassen
uns mit dem Problem, die Summe der Abstinde eines Punktes von n
festen Punkten zu einem Minimum zu machen. 4) schreibt sich in Polar-
koordinaten :

S:r—}-);’il/rz—2air~cos(<p—cxi)+a§ Az (4”)
2

Es sei M der Punkt mit der in Frage stehenden Minimaleigenschaft.

Unter welchen Bedingungen fillt M mit einem der Punkte P, aus € zu-

sammen? Diese Fragestellung erfordert Entwicklung von S nach Poten-

zen von r. Das Resultat ist:

sin? (¢ — a;)
a;

2
S=Xa+r h+5 X SERRRT (11')

h=1— XYcos(p — o) .

Fiir ein Minimum von 8 ist demnach notwendig und hinreichend, da8 &
nicht negativ sei. Nun erreicht die genannte Grofle fir

N sin «;

tg p* =
> cos oy

ihren kleinsten Wert

B*=1—V(3 cos o) + (X sin o;)? .

Ist also in P, die Ungleichung

V(> cos o) + (3 sin o,)2 < 1

erfiillt, so nimmt die Funktion ihr Minimum tatséchlich in P, an. Der
Fall r £ 0 ist viel schwieriger zu behandeln. Wegen

L%, =0; E=x=r;, G=3x=1
geht 9) iiber in
rYcosg=0; NcosgdP +1=0, (97)
wahrend (10) sich zu
sin2 oW sin? o®
mh o, 0x Fi
V(i — a,)? Vi — ;)

12) a, =a,; (cosa,, sina;). ¢ —a, ist derjenige Winkel, unter welchem (x — a,) vom
Nullpunkt P, aus gesehen wird.

) Um kein Gleichheitszeichen beriicksichtigen zu missen, ist nur der triviale Fall
auszuschlieBen, wo alle Punkte auf ein und derselben Geraden liegen.

>013)
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vereinfacht. Infolge der Voraussetzung r # 0 richtet sich das Haupt-
augenmerk auf das Gleichungssystem

n n
Scosg®+1=0; Ising® =0 . (9%)
2

2

¢® ist derjenige Winkel, unter welchem a; von M aus erscheint. Diese
Winkel ¢ sind fiir unser Problem charakteristisch.

Wir addieren zur 1. Gleichung (9*) die mit + =) — 1 multiplizierte
2. Gleichung eben daselbst. Die modifizierte Minimumbedingung lautet
dann :

>z+1=0; |2, ] =1 (k=2,3...n) (9%%)

Bei Wechsel des Nullpunktes reproduziert sich die linke Seite von
(9%*) bis auf einen Exponentialfaktor von endlichem Betrag. Es ist also
nichts beizufiigen ).

(9**) 148t folgende Deutung zu:

Die n — 1 Zahlen z, geniigen einer Gleichung vom Grade =n — 1,
der Form

21 + Zn2 + Qp3 2n—3 + R 2T

wobei die n — 2 Koeffizienten der nachfolgenden Potenzen von z so
gewahlt werden miissen, dafl alle 2z, auf dem Einheitskreise liegen. Nun
geben wir n — 3 Wurzeln der genannten Gleichung vor. Es gilt dann
die Zerfillung

zn—1+zn—2+azn-—3+...: (zn—s_plzn—zl +(__, 1)”pn)Q+R
Q =22+2z(1+p) + (@ —ps) ;

p, = l-te elementare symmetrische Funktion.

Das Restpolynom R kann immer identisch zum Verschwinden ge-
bracht werden®). Die fehlenden Werte z miissen nun der quadratischen
Gleichung

2421+ p)+(@—p)=0 (12)

geniigen und natiirlich auf dem Einheitskreise liegen. Die Auflosung von
(12) ist

———e—

14) Vergleiche die entsprechende Stelle in § 6.

15) Seine Koeffizienten gleich Null gesetzt gestatten eindeutige Auflésung nach dn-3s
Gp-4...ay. Diese werden Funktionen der p,, und somit ist die gesuchte Gleichung von
Fall zu Fall festgelegt, sofern a,.3 = a eindeutig bestimmbar ist.
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s (0 LS

z* hat dann und nur dann den Betrag 1, wenn folgende Bedingungen
erfiillt sind :

a) Die komplexe Zahl 2z = — (l———%l)l) liegt nicht im AuBern¢) des
Einheitskreises.

2
b) Die komplexe Zahl 2z} = V(—l—-——j;——p—l) + p, — a ist gleich der halben

Kreissehne im Endpunkte von z* 17).

Damit beherrschen wir die Verteilung der Sehwinkel um M vollstin-
dig, und folgende Behauptung erfolgt zu Recht:

., Zu vorgegebenem M und n — 2 passend gewdihlten Punkten konnen
vmmer weitere zwer Punkte konstrutert werden, so daf} die Abstandsfunk-
tion in M vhr absolutes Minimum annimmt.*

Sind aber umgekehrt alle Punkte vorgegeben und sucht man M, so ist
die Situation weniger giinstig. Das eigentliche Problem ist namlich bei
allgemeiner Lage der Punkte P, nur fir n < 4 losbar?®).

§ 6. Das Punktproblem im Raum

Das rdumliche Problem ist erwartungsgeméfB heikler. Mit rdumlichen
Polarkoordinaten wird

X = 7r (cos %-sin v, sin %-sin v, cos v) ;
a; = a, (cos u;-sin v;, sin u,-sin v;, cos v;) ;

CO8 y, = (coS u,-8in v;-cosu sin v 4 sinu,-sin v,-sinu sinv - cos v, cosv) .

Genau wie in der Ebene ist der Nachweis der Minimaleigenschaft eines
Punktes P, aus € elementar, so daB sich die Wiedergabe eriibrigt. Unter
Weglassung des Faktors r % 0 wird aus (9)

) Gilt |2f | =1, so tritt ein Doppelpunkt auf. Fiir 2§ = 0 bleibt fiir z} ein Freiheits-
grad erhalten.

17) Setzt man etwa z} = sin - €i®, so folgt: a = sin? §. eAi®@ — cos? §. € 2W+T) L p,,
also eindeutige Bestimmung.

18) Ausnahmefille sind die in § 2 namhaft gemachten Punktverteilungen, sowie die fiir

ungerades u nicht trivialen Konstellationen, welche sich auf ein reguliares n-Eck reduzieren
lassen,
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n n n
Ycosv,=0; Ycosu;-sinv,=0; I sinu;-sinv,=0 . (9%**)
i=1 i=1 1=1

Ohne weiteres ist ersichtlich, daBl die Gleichungen (9**) invariant

sind gegeniiber Drehungen des Koordinatensystems, driicken sie doch
das Verschwinden des Vektors ﬁ ﬁjll , also auch seines Betrages aus.
Man kann infolgedessen von jetdzelm beliebigen Punkte P, ausgehen.

Die Komponenten des Vektors w = }7:‘ Jﬁ: beziiglich der z, y, 2-
Achse geniigen der Gleichung n-ten G;a:;(ies

W'+ QG W @y g W Ay = 019)

Nun seien auf der Einheitskugel der Nordpol (0,0, 1) sowie n — 3
weitere Punkte in beliebiger Lage vorgegeben. Die Komponenten der
zwei noch fehlenden Vektoren miissen dann nach den Uberlegungen des
§ 5 der Gleichung

w4 pyw + @,y — Py + P} = 019) (127)

geniigen, wo die p, die gleiche Bedeutung haben wie frither. Die Losung
von (127) ist

Sy V(f") @ns— P2+ 7)) (13)

P
2

\.

Sie kann noch vorteilhaft umgeformt werden :
i) 2 (2) gin2 0
a) B = (@ — P2+ P =0 > @, s — P+ P = g | S
wy = — p, cos? (g) ; wy = — p, sin? (g—) 20y
b P1)? e (P1) Gin 6
) 9 20>0a, 2 — P+ P> — Pt pi=+ 9 tn

wy = — p, Co? (-g) ; wy = p, Gin® (—fj—) %)

19) Gleichung und Lésung gelten selbstredend in der Weise, da jeder Komponente im
allgemeinen verschiedene Werte von p, und p, zukommen.

20) Dje Schreibweise ist symbolisch. Es handelt sich um drei unabhéngige Winkel 6y,
0, 0,.
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Die Losung des Problems zeichnet sich jetzt ab. Die zwei fehlenden
Vektoren sind Einheitsvektoren. Deshalb handelt es sich im Parameter-
raum der 0 um zwei Ellipsoide, die zum Schnitt gebracht werden miissen.
Abschliefend darf folgendes behauptet werden :

.,Zu vorgegebenen m — 2 passend gewdhlten Raumpunkten gibt es immer
eine esnparametrige Schar von Punktepaaren mit der Eigenschaft, daf (9**)
erfullt wst und die Abstandsfunktion in M ihr absolutes Minimum an-
nimmt.“

Das eigentliche Problem ist fiir die regularen Polyeder losbar. LaBt
man das Tetraeder beiseite, so handelt es sich sogar um elementare
Fille?'). Was den letztgenannten Korper betrifit, so ist leicht zu sehen,
daB den Gleichungen (9**) Geniige geleistet wird durch die sechs im
Kugelmittelpunkt angebrachten Vektoren

mI:( 0 ) 0 . ) x,=(1,0,0)
2V2 1 ) .
m2~——( T 0, —3): x=(,1,0)
o (CV2 Ve
3 3 b V—?; ’ 3 b
( V2 V2 1 )
my=\——5—, ——=, -
3 V3 3
Es gelten die sechs Gleichungen m, m, = — !/; mit der Konsequenz
cos y = — 1/,. Damit ist sogar bewiesen, dal bei jedem Korper, dessen

vier Ecken die Koordinaten 4, m;; 0< A, <<co besitzen, derjenige Punkt
Minimaleigenschaft besitzt, von dem aus die sechs Kanten unter ein
und demselben Winkel y = arccos (— !/;) gesehen werden.

SchlieBlich sei noch bemerkt, dal infolge der einfachen Struktur der

Minimumbedingung im R, keine weitern Schwierigkeiten auftreten wer-
den.

§ 7. Ubertragung auf Flichen

Das am Schlufl des § 4 formulierte Problem behilt auf Raumflichen
einen Sinn. Man hat nur die Abstéinde lings geoditischer Linien zu
messen. Es bedeutet dann eine grofle Vereinfachung, die Geraden nicht
durch irgendwelche Flichenkurven, sondern ebenfalls durch geodétische

21) Sie besitzen Diagonalen, die sich im Kugelmittelpunkt schneiden.
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Linien zu ersetzen. Allerdings werden die technischen Schwierigkeiten
immer noch grof} sein. Eine Ausnahmestellung nehmen diejenigen Flidchen
ein, die sich so auf die Ebene abbilden lassen, daf3 die geodétischen Linien
in die Geraden der Ebene iibergehen. Nach einem Satze von Beltrami
besitzen die Flichen mit dieser Eigenschaft konstante GauB3sche Kriim-
mung. Auf der Kugel wird sich also vermittelst der stereographischen
Projektion ebenso viel erreichen lassen wie in der Ebene.

(Eingegangen den 19. Dezember 1947.)
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