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A criterion for divisibility of n-gons into fc-gons

By B. Bernheim and Th. Motzkin, Hebrew University, Jérusalem

1. Introduction. In this paper (§ 5) a simple eriterion is derived by
means of which it can at once be decided, for given n and k, whether a
convex n-gon may or may not be divided into convex &-gons. If at ail,
then the partition ean be effectuated so tbat no vertex of a k-gon is
situated on a side (without end-points) of another k-gon.

The condition of convexity can be replaced by a topological require-
ment. If this condition is entirely dropped the problem becomes trivial :

an n-gon can be divided into triangles, and every triangle by a broken
line into two &-gons.

Similar problems in three dimensions seem very difficult totreat. How-
ever a few initial results are given by Lennes, Hayashi and Schônhardt1).

The problem of the divisibility of a polygon has been dealt with by
Mahlo2). The partial results obtained by Mahlo are specified in foot-
notes 5, 8, 9 of this paper.

2. Définitions and auxiliary relations. We consider a convex n-gon
P, n ^ 33), which is divided into m(^2) convex fc-gons PliP2,.. .,Pm
by a finite number of closed straight segments.

*) N. J. Lennes, Theorems on the simple finite polygon and polyhedron,
Amer. Journ. of Math. 33 (1911) pp. 37—62, esp. pp. 55—62.

T. Hayashi, On division of space, Tôhoku Math. Journ. 24 (1925) pp. 277—286
(Japanese).

E. Schônhardt, Ûber die Zerlegung von Dreieckspolyedern in Tetraeder,
Math. Ann. 98 (1928) pp. 309—312.

2) P. Mahlo, Topologische Untersuchungen uber Zerlegung in ebene und
sphârische Polygone, Diss. (Halle) 1908.

Cf. also B. Bernheim, Partitions of convex polygons into pentagons, Riveon
Lematematika 1 (1947) pp. 95—98 (Hebrew).

Several authors hâve treated the question of finding the number of différent partitions
of a polygon by means of non-intersecting diagonal Unes; cf. Th. Motzkin, Relations
between hypersurface cross-ratios, and a combinatorial formula for
partitions of a polygon, for permanent prépondérance, and for non-associative

products, Bull. Am. Soc. Math. vol. 54 (1948) pp. 352—360, and the références

given there.
3) For the spherical case n 2 and the topological cases n 1 and n 0, see

¦#• Bernheim, Riveon Lematematika, 1. c.



The set of thèse segments (which do not belong to P) consists of t
(1 <g t ^ m — 1) maximal connected parts ealled inner continua.

Those Pf which hâve no segment, though perhaps some vertices, in
common with P are ealled nuclei and their number is denoted by m'.
The sides of a nucleus belong to the same inner continuum.

The set of ail the sides of the i-gons is ealled net.
There are five possible kinds of vertices within a net :

1. Bivalent vertices, i. e., vertices of P where only two sides meet.

2. Proper exterior vertices, i.e., vertices of P and at least two fc-gons Pt.
3. Improper exterior vertices, i. e., points on an open side (without

endpoints) of P, that are vertices of jfc-gons P€.

4. Proper interior vertices, i. e., vertices not on P, that do not lie on

an open side of any Pt.
5. Improper interior vertices, i. e., vertices not on P, that lie on an

open side of some Pt.
The number of vertices of the différent kinds are denoted by a, b,

b — h, <T, c — ~c respectively. Then n a + b ; we put n a -f 6.

The number of segments meeting at a vertex is its valency. The valency
of a vertex minus 3 is its tetravalency ; it equals 1 for points of valency
4 and — 1 for bivalent vertices.

The sum of the tetravalencies of ail the vertices in a net is denoted by

/, while that of the positive teravalencies alone is denoted by / / + a.
The pentagonal équivalent of a polygon is 6 minus the number of its

own vertices and of the improper vertices on its sides.

Lemma 1. m (n + c + ~c — 2) / (k — 2).
This is the Euler-Descartes theorem for nets of the kind considered4).

Theorem 1. m^\ ^-2 \ '5)

([x] means the intégral part oî x.)

Prooî. By c+"c^0, n^n and Lemma 1 we hâve m^(n—2)/(fc—2)
and since m is an integer m ^[{n -\- h — 5)1(k — 2)].

4) This relation occurs in Mahlo's paper (p. 53) and was again found (for c c) by

Hayashi and extended by Kubota. See T. Kubota, Partitioning of the plane by poly-
gons, Tôhoku Math. Journ. 24 (1925) pp. 273—276. For an analogous relation in space

see Hayashi', 1. c. footnote 1.

6) Mahlo had this resuit in the form m ^ (w — 2)/(& — 2). It can be shown that, for

every n and k > 5 allowing partition, [{n -\- k — 5)/(& — 2)] is a possible value of m.
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Lemma 2. The sum of the pentagonal équivalents of P and ail the

]c-gons Pi in a net is
12 + 2/

(Since the tetravalency of bivalent vertices is — 1 and each of them
belongs exactly to two polygons, omission of the bivalent vertices in the
définition of the pentagonal équivalent would give the sum 12 + 2 /.)

The proof is a slight variation (because of the bivalent vertices) of the
proof of the analogous theorem for polyhedra6).

From
(6 - n) + (6 — k) m - (c -~c) 12 + 2/

follows by / / + et, n a + 6, n a + 6

Lemma 3. n 6 + 2 7+ (k — 6) m + c — ~c + b -\- b.
Hence by application of Lemma 5

Lemma 4. n 6 + 2f+(k — 5) m + c — "c + h + t — m1 — 1.

Lemma 5. m — mf b — t+l.
Proof. The number of fc-gons that are not nuclei is m — mf. The

number of connected parts of P that belong to thèse &-gons is 6. It is
seen without difficulty that the latter number exceeds the former by
t~~ 1.

3. The minimal value o! n îor nets with k > 5 that contain nuclei.

Lemma 6. // k>5 then a>k.
Proof. By Lemma 3 and because of a n — b, /^0, m> 1,

b>0, c — c"^0 we hâve a 6 + 2f+(k — 6)m + c — c"+6>6
+ i-6 jfe.

Lemma 7. // $e vertices of a sum of disjoint finite trees are divided
into two classes Ax,..., Ag and B1,..., Bh_g, then u g> v — 2 (g — 1),

A i« the number of the univalent vertices among the Bt and v is the

of valencies of the vertices Ait
Obviously the validity of the inequality for a single tree entails its

validity (even without the sign of equality) for a sum of at least two dis-
joint trees.

E. g. Sainte-Laguë, Géométrie de situation et jeux, Mémorial des se. math.,
&SC.41 (1929) p. 7.
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Prooî for a single tree. If h 2 then u=2 — g g —

v __ 2 (g — 1). Assuming that the lemma holds for 4-1 we prove it
for h. In the given tree there neeessarily exists a univalent vertex. If
u>0, then by deleting a univalent vertex Bj from the given tree we
obtain a tree with h — 1 vertices. If Bi was connected with a vertex
At then w and v decrease by 1, while g remains unchanged. If Bj was
connected with a vertex Bi9 then v and g remain unchanged, while u

may decrease by 1. If u 0, delete a univalent vertex Ajt In case 4i
was connected with a vertex Bt, v decreases by 1, but — 2 (g — 1) in-

creases by 2, whereas u may decrease by 1. If A$ was connected with a

vertex Ai9 u remains unchanged, while v and 2 (g — 1) decrease by 2.

In each of the four possible cases, the induction is thus justified.

The set of sides of the mf nuclei in a net is called the derived net. It
consists of maximal parts called groups of nuclei which may still be

connected at single vertices.

Lemma 8. // k>5 and mr>0 then b^k.
Prooî. We construct a graph G as follows.
As vertices we consider:

1) the groups of nuclei of the derived net ;

2) the vertices that belong to the inner continua containing the nuclei,

but not to the derived net ;

3) the vertices of the groups of nuclei that are situated upon P.

We connect the following pairs of vertices in G :

1) two vertices of the net that are connected by a segment ;

2) a vertex on P and a group of nuclei to which it belongs ;

3) a group of nuclei and a vertex connected with this group by a

segment ;

4) two groups of nuclei with a common vertex7) or connected by a

segment.

The maximal connected parts of G are finite trees since otherwise

there would exist other nuclei than those considered. We may therefore

apply Lemma 1 toG, with the g groups of nuclei as At and ail the other

vertices as B%. The sum v of valencies of the Ai is at least g • k since each

group of nuclei has by Lemma 6 (and if it consists of a single nucleus,

trivially) at least k bivalent vertices and since every such vertex is either

7) The vertex may, in one of the groups, be on a side (without end-points) of a
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on P or on another group of nuclei or connected by a segment with some
other vertex not belonging to the same group of nuclei. By Lemma 7

we therefore hâve u ^ g k — 2 (g — 1) k + (g — l)(lc — 2) ^ k. Now
it is easily seen that each of the u univalent vertices Bt of G représente
a vertex on P. Thèse vertices are thus part of the 6 proper and improper
exterior vertices. Hence 6 ^u ^ k, Q.E.D.

Theorem 2. If k>5 then m'>0 implies n ^k(k — 4).

Prooî. If mf>0 then b > k (Lemma 8) and m ^ k -\- 1 since
there are at least k i-gons adjacent to a nucleus. By Lemma 3 and / ^ 0,
c^~c, 6^0 follows n 6 + 2/~— (6 — k) m + c — c" + b + b ^ 6

+ (ik + 1) (k - 6) + k - Jfc(ifc - 4).

Remark. Equality holds for a net with c=c,/ 0,6 0, m'= 1,
m k -{- 1, b k; and, as verified without difficulty, only then.

Theorem 3. If k>5 and n<k(k — 4) then

Proof. It follows from Theorem 2 that m' 0. Since / ^0, c ^ F,

6^0, ^ ^ 1, Lemma 4 implies (w — 6)1 (k — 5) ^ m.

4. Normal partitions. We now consider spécial types of partitions of
polygons, characterized by certain inner continua and values of b.

Partitions are called normal if the following conditions are satisfied :

1. On P there are the non-bivalent vertices D19..., Dt, Ex,..., Es,
D't, E'8,9 E'9,_19...,Ei, DU, DU,...,!);, in this order, where

D, D2 D3 D4 E,

D, D2 D3 D4 D5 E, E2

Figure 1

8) It can be shown that if there exists at least one partition then there exists a partition
with this maximal value of m. For nl>k(k — 4), explicit formulae for the maximum
°f in, and constructions of the corresponding partitions, hâve been obtained by Bernheim
and shall be published elsewhere ; there is however not a single formula for ail values of n.
For every n the Euler-Descartes theorem yields easily m (n — 6)/(& — 6) ; this, and the
nnmediate conséquence that n > k for k > 5, was already noted by Mahlo.
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s ;> 0 and s' equals either s ot s + 1. Thèse vertices are connectée! by
inner continua as follows. The vertices Dt and D[ are joined by a simple
broken line with the inner vertices FY,. F8+8, (in this order from Dt to
D't). Every vertex Di9 i 1,..., t -~ 1, is connected with D[ by a

single segment, similarly every F2i^x, i 1,. sf, with E\ and FUi
i=l,...,8, with Ei. (See fig. 1, with t 5, * + 1 s' 3, where
P is indicated by a convex curve.)

2. c ~c.

3. 6 0 if s'^0 and 0 ^ 6 ^ 2(m - 1) 6 if « «' 0.
Since each of its polygons has at least one side on P and at most five

proper vertices, every normal partition can be considered as consisting of

&-gons for every given value of k ^ 5. It is easily seen that if a parti-
cular n-gon has a certain normal partition then every other convex n-gon
with the same n can be divided in the same way.

To the normal partitions with a given k, there belong certain values
of n, say n1<n2<n3<... Obviously n1>k+ 1 if k>5, and there may
be gaps (différences greater than 1) between consécutive %. For large i
thèse gaps disappear and every sufficiently great value of n even belongs
to différent normal partitions.

Denoting by n* the value % that follows immediately upon the last

gap, we hâve

Theorem 4. n* (k — 5) [kjS] + 6, and for n* there exists a normal

partition with m m*

Proof. It follows from Lemma 4 (since / 0, c — (T 0, m; 0)

that of two normal partitions with the same m and k, the one that has

the larger t and (or) larger b, also has the larger n. The smallest n for a

given m, nmlQ (m; k), is thus obtained with t 1, 6 0 and by Lemma

4 therefore nmin (m ; k) m(k — 5) + 6 On the other hand the

largest value of n, nmBX(m ; k), is obtained when ail inner continua are

single segments, i. e. t m — 1 and 6 6 2 (m — 1). By Lemma 4

nm&x(m ; i) m(k — 5) + 5 + 3(m — 1). Every w between wmin (wi ; k)

and nmax (m ; k) has a normal partition with the same m and k. There

are gaps between the nt as long, and only as long, as nmin (m ; &)

3(m - 1 - 1)) k + 2 - 3m ^ 2 or m^kfi. Hence m*
and n* rcmin(m* ; Jfc) ra*(& — 5) + 6 [k/S\(k — 5) + 6.
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Corollary 1. For n S> (k — 5)[fc/3] + 6 a convex n-gon is divisible into
convex k-gons (k ^5).

Hence

Corollary 2. // n ^k(k — 4) and k ^ 6 a convex n-gon is divisible
into convex k-gons.

Proof. If k ^ 6 then 0<(2fc + 5)(fc - 6) + 12 whence &2 - 5k
+ 18<3&2 — 12k or (A; — 5)(&/3) + 6<&(jfc — 4).

5. Criterion of divisibility.
Theorem 5. A convex n-gon can be divided into convex k-gons

1) for k ^ 6, if and only if
l(n - 6)/(i - 5)] ^ [(n + k - 5)/(fc - 2)] ;

2) for &<6, always9).
(The undivided n-gon is not considered as a partition.)

Proof. 1. The case k 3 is trivial. So are the cases k 4 and
£ 5 : divide first into triangles and each triangle into 3 quadrangles
or 9 pentagons respectively as shown in fig. 210).

2. k^6.
For n ^ k(k — 4) we hâve n ^ (&2 — 44 -f- 13)/3 if k ^ 6 whence

(n — 6)/(& — 5) ^ (w + A: — 5)1(k — 2). On the other hand we saw in

Figure 2

Corollary 2 to Theorem 4 that, for every n ^k(k — é), partitions do
exist.

From Theorems 1 and 3 follows for n<k(k — 4), k ^ 6, that
[(n — Q)/(k ~ 5)] ^ m ^[(n + k — 5)j(k — 2] whenever a partition
exists.

That partitions always exist when the inequality of Theorem 5 holds,

9) The cases k 3, 4, 5 were obtained by Mahlo.
10) The value of m obtained by this method is in gênerai much greater than the minimal

m.
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will be proved by showing that within the gaps and for n<nx always
[(n _ 6)/(É - 5)]<[(w + k - 5)/(fc - 2)].

We hâve seen in the proof of Theorem 4 that for any value of m, say
m0, no nmax(m0; k) has a normal partition with m0 — 1 inner
continua consisting of a single segment each and 6 6 2t 2(ra0 — 1).
Since c + c" 0, n n we hâve by Lemma 1, m0 (n0 — 2)/(fc — 2)

=[(wo+]fc—5)/(ife—2)]. By Lemma 4 we hâve mo=(nQ—6—(3t— l))/(ifc—5)

since / 0, c — <T 0, mf 0 and 6 2£. If ra0 ^ m* — 1 then
j m0 — 1 ^ m* — 2 ^ fc/3 — 2 (Theorem 4) and hence M — 1 g
* —7<fc —5 whence mo= (»0 — 6 - (3<—l))/(ifc—5)=[(no-6)/(fc-5)].
Therefore m0 [(% — 6)/(fc — 5)] [(w0 + & — 5)/(Jk — 2)] if m0 g
m* — 1 and n0 7imax (m0 ; fc).

From mQ (w0 - 2)/(Jfe - 2) follows (n0 + fc - 5)/(fc — 2) -
[(n0 + i - 5)/(* - 2)] (Jfc - 3)/(Jk - 2) whence [((n0 + 1) + * - 5)/
(Jb - 2)]> [K + k - 5)/(i - 2)]. But [((»0 + 1) - 6)/(fc - 5)]

- 5)] since (n0 - 6)/(fc » 5) - [(w0 - 6)/(fc - 5)]
— 5)<1 for mo<m*. It follows that for ti n0 + 1 (where

a gap begins) [{n — 6)/(ik — 5)]< [(n + k - 5)1 (k - 2)]. The function
[(n — 6)1 (k — 5)] of w only increases again at the end of the gap since

for n nmîn (m0 + 1 ; k) there exists a normal partition with / 0,

c — F 0, 6 0, £=1, m/=0 and hence, by Lemma 4, [(n — 6)/
(jfc - 5)] (n - 6)1 (k - 5) m0 + 1. Thus indeed [(w - 6)1(k - 5)]
< [(n + & — 5)/(& — 2)] for every n within a gap.

If n ^ k then [(n - 6)/(Jfc - 5)] 0 but [(n + k - 5)/(fc - 2)] 1

since n ^ 3 ; andif i<7i<n1 nmin (2 ; k) 2(ifc — 5) + 6 2k — 4,

then [(rc - 6)/(fe - 5)] 1 but [(w- + k - 5)/(Jfc - 2)] 2. Hence

[(n - 6)/(Jfe — 5)]< [(n + k — 5)/(ifc - 2)] if n<nx.
Since the proof of Theorem 5 shows that if a convex w-gon can be

divided into convex &-gons, k > 5, then this can be done by a normal

partition, we hâve

Corollary 1. Whenever a convex n-gon can be divided into convex k-gons
with k>5, this can be done without nuclei.

The same is easily seen to be true for k 3 and k 4, and, by use

of normal partitions, for k 5, n>k. On the other hand, by Lemma 4

and because of / 2^ 0, c — F ^ 0, 6^0, £^1, nuclei are needed for
k 5 and n fg k11).

11 Mahlo states that he tried unsuccessfully to prove the latter fact which he needs

in the proof of his theorem on the minimal m for k 5, n <; &.
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Similarly the proof of Theorem 5 implies :

Corollary 2. Whenever a convex n-gon can be divided into convex k-gons,
is can be done so that c — ~c 0.

At the same time we may require that / 0.
It can be shown that : a) in addition to partitions without nuclei there

exist for n ^k(k — 4), k>5, partitions with nuclei; b) for given n
and k > 5, and for c — ~c — 0, the maximal number of nuclei appears
in ail partitions with maximal m ; c) for given n and k > 5, and for
c — ~c 0, ail values of m between its maximum and minimum may be
attained, and the same holds for m1.

The part of Theorem 5 that concerns k>5 can also be stated as
follows.

Corollary 3. For k>5, a convex n-gon can be divided into convex
k-gons if and only if r < 3g, where n — 3 (q -{- l)(k — 2) — r,
0<r ^k - 2.

Thus, for a given k > 5, the values of n allowing partition are

2k — 4 ^,n ^2k — 2

3&— 9 ^ ^ 3fc — 4

4Jfc — 14 ^n ^ 4& — 6

(q + l)k — 5q+ 1 ^ n ^ (q + l) k — 2q

For a given n, the number l l(n) of values of k allowing partition
is finite (in particular l(n) 3 for n<8). For n>5, the number
l(n) can be determined in the foliowing way. For k — 2 ^ 3 g the crite-
rion of Corollary 3 is obviously fulfilled. Let k0 be the smallest value of k
for which k — 2>3g, with q q0 and r r0.

Every g <£ q0 belongs to some k. The values of r corresponding to
consécutive k that belong to the same q difïer by q + 1. For the smallest

of thèse values we hâve 1 ^ r ^ q + 1. Hence r ^ 3g. Further
r + g + 1 ^ 3g except if g 1, r 2. Finally r + 2(g + 1) ^ 3g
except if r g + 4- p, p 3, 4, 5. The next value r + 3 (g + 1)
is certainly greater than 3g. As long as r ^ 3g, r belongs to the same
value of g since 3g<& — 2.
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Thus in gênerai every q ^ g0 occurs three times. To find the number d
of exceptions, note that n — p (k — 3) (g + !)• Hence d is the num-
ber of divisors of n — 3, n — 4 and n — 5 that are greater than 1 and
smaller than q0 + 2. For odd n, 2 is to be counted twice.

To exemplify the method take n 1000. Hère Jc0 57, qQ 18,

r0 48. To q0 there belong also k0 — 1 and &0 — 2. The value d is

in this case 6 since 997 has no divisors smaller than qQ + 2, while 996
has the divisors 2,3,4,6,12, and 995 has the divisor 5. Thus altogether
j!(1000) 55 + 3-18 — 3 — 6 100.

Theorem 6. The number l(n) of values k, for which a partition of a

convex n-gon into convex k-gons exists, is asymptotically equal to (I2np

Prooî. If q0 belongs to e values less or equal to k0 (e 1,2,3) then,
for n>5, l(n) (k0 — 2) + 3qQ — e — d. Hence lf1 + 1-1-0 2.

(Eingegangen den 16. Oktober 1947.)
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