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A criterion for divisibility of n-gons into k-gons

By B. BErnNHEIM and Tu. MoTzrIN, Hebrew University, Jerusalem

1. Introduction. In this paper (§ 5) a simple criterion is derived by
means of which it can at once be decided, for given n and k&, whether a
convex n-gon may or may not be divided into convex k-gons. If at all,
then the partition can be effectuated so that no vertex of a k-gon is
situated on a side (without end-points) of another k-gon.

The condition of convexity can be replaced by a topological require-
ment. If this condition is entirely dropped the problem becomes trivial :
an n-gon can be divided into triangles, and every triangle by a broken
line into two k-gons.

Similar problems in three dimensions seem very difficult to treat. How-
ever a few initial results are given by Lennes, Hayashi and Schonhardt?).

The problem of the divisibility of a polygon has been dealt with by
Mahlo®). The partial results obtained by Mahlo are specified in foot-
notes 5, 8, 9 of this paper.

2. Definitions and auxiliary relations. We consider a convex n-gon
P, n = 33), which is divided into m(=2) convex k-gons P,,P,,...,P
by a finite number of closed straight segments.

m

') N.J. Lennes, Theorems on the simple finite polygon and polyhedron,
Amer. Journ. of Math. 33 (1911) pp. 37—62, esp. pp. 55—62.

T. Hayashi, On division of space, Téhoku Math. Journ. 24 (1925) pp. 277—286
(Japanese). ,

E. Schénhardt, Uber die Zerlegung von Dreieckspolyedern in Tetraeder,
Math. Ann. 98 (1928) pp. 309—312.

%) P. Mahlo, Topologische Untersuchungen iitber Zerlegung in ebene und
sphéarische Polygone, Diss. (Halle) 1908.

Cf. also B. Bernheim, Partitions of convex polygons into pentagons, Riveon
Lematematika 1 (1947) pp. 95—98 (Hebrew).

Several authors have treated the question of finding the number of different partitions
of a polygon by means of non-intersecting diagonal lines; cf. Th. Motzkin, Relations
between hypersurface cross-ratios, and a combinatorial formula for
Partitions of a polygon, for permanent preponderance, and for non-asso-

ciative products, Bull. Am. Soc. Math. vol. 54 (1948) pp. 352—360, and the referen-
ces given there.

%) For the spherical case n = 2 and the topological cases » =1 and n = 0, see
B. Bernheim, Riveon Lematematika, 1. c.
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The set of these segments (which do not belong to P) consists of ¢
(1 =t <m — 1) maximal connected parts called inner continua.

Those P; which have no segment, though perhaps some vertices, in
common with P are called nuclet and their number is denoted by m/'.
The sides of a nucleus belong to the same inner continuum.

The set of all the sides of the k-gons is called net.

There are five possible kinds of vertices within a net:

1. Bivalent vertices, i.e., vertices of P where only two sides meet.
2. Proper exterior vertices, i.e., vertices of P and at least two k-gons P,.

3. Improper exterior vertices, i.e., points on an open side (without
endpoints) of P, that are vertices of k-gons P,.

4. Proper interior vertices, i. e., vertices not on P, that do not lie on
an open side of any P;.

5. Improper interior vertices, i.e., vertices not on P, that lie on an
open side of some P,.

The number of vertices of the different kinds are denoted by a, 5,
b—b,c,c—¢c respectively. Then 7 = a +b; we put n =a +b.

The number of segments meeting at a vertex is its valency. The valency
of a vertex minus 3 is its tetravalency ; it equals 1 for points of valency
4 and —1 for bivalent vertices.

The sum of the tetravalencies of all the vertices in a net is denoted by
f, while that of the positive teravalencies alone is denoted by 7== f+a.

The pentagonal equivalent of a polygon is 6 minus the number of its
own vertices and of the improper vertices on its sides.

Lemma 1. m= (n+c¢+ ¢ — 2)/(k — 2).
This is the Euler-Descartes theorem for nets of the kind considered 4).

Theorem 1. m = [W] . 5)

({z] means the integral part of z.)

Proof. By c+¢=0, n=n and Lemma 1 we have m= (n—2)/(k—2)
and since m is an integer m =[(n + k — 5)/(k — 2)].

4) This relation occurs in Mahlo’s paper (p. 53) and was again found (for ¢ = c¢) by
Hayashi and extended by Kubota. See T'. Kubota, Partitioning of the plane by poly-
gons, Té6hoku Math. Journ. 24 (1925) pp. 273—276. For an analogous relation in space
see Hayashi, 1. c. footnote 1.

5) Mahlo had this result in the form m = (n — 2)/(k — 2). It can be shown that, for
every n and k> 5 allowing partition, [(n + k— B5)/(k — 2)] is a possible value of m-
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Lemma 2. The sum of the pentagonal equivalents of P and all the
kgons P; in a net is

12+ 2 .

(Since the tetravalency of bivalent vertices is — 1 and each of them
belongs exactly to two polygons, omission of the bivalent vertices in the
definition of the pentagonal equivalent would give the sum 12 + 2 f.)

The proof is a slight variation (because of the bivalent vertices) of the
proof of the analogous theorem for polyhedra ®).

From

(6 —m)+ (6 —k)m — (c—¢c)=12 + 2f
follows by 7=f+a, n=a-+b, n———a—}—-b-

Lemma 3. n=6-+2f+(k —6)m-+c—c+b-+b.
Hence by application of Lemma 5

Lemma 4. n=6+2f+(k —5)m+c—c+b+t—m —1.
Lemmab. m —m/ =b —1¢t 4+ 1.

Proof. The number of k-gons that are not nuclei is m — m’. The
number of connected parts of P that belong to these k-gons is b. It is

seen without difficulty that the latter number exceeds the former by
t—1,

3. The minimal value of n for nets with % > b that contain nuclei.

Lemma 6. If k>5 then a>k.

Proof. By Lemma 3 and because of a =n —b, =0, m>1,

b>0, ¢ —¢=0 we have a =6+ 2f+ (k—6)m+c—c+ b>6
+k—6="L.

Lemma 7. If the vertices of a sum of disjoint finite trees are divided
into two classes A,,...,A, and By,..., B,_,, then u=v—2(g—1),
where u is the number of the univalent vertices among the B; and v is the
sum of valencies of the vertices A;.

Obviously the validity of the inequality for a single tree entails its

_Validity (even without the sign of equality) for a sum of at least two dis-
Joint, trees.

’) E. g. Sainte- Lagué, Géométrie de situation et jeux, Mémorial des sc. math.,,
fase. 41 (1929) p. 7.
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Proof for a single tree. If h =2 then u =2 —g=9 — 2(9 — 1) =
v — 2(g — 1). Assuming that the lemma holds for A — 1 we prove it
for k. In the given tree there necessarily exists a univalent vertex. If
u>0, then by deleting a univalent vertex B; from the given tree we
obtain a tree with A — 1 vertices. If B; was connected with a vertex
A; then w and v decrease by 1, while g remains unchanged. If B, was
connected with a vertex B,, then v and g remain unchanged, while «
may decrease by 1. If » = 0, delete a univalent vertex A4;. In case 4,
was connected with a vertex B,, v decreases by 1, but —2(g — 1) in-
creases by 2, whereas v may decrease by 1. If 4, was connected with a
vertex A,, v remains unchanged, while v and 2(9 — 1) decrease by 2.
In each of the four possible cases, the induction is thus justified.

The set of sides of the m’ nuclei in a net is called the derived net. It
consists of maximal parts called groups of nuclet which may still be
connected at single vertices.

Lemma 8. If k>5 and m'>0 then b= k.

Proof. We construct a graph G as follows.
As vertices we consider:

1) the groups of nuclei of the derived net;

2) the vertices that belong to the inner continua containing the nuclei,
but not to the derived net;

3) the vertices of the groups of nuclei that are situated upon P.

We connect the following pairs of vertices in G :

1) two vertices of the net that are connected by a segment ;

2) a vertex on P and a group of nuclei to which it belongs;

3) a group of nuclei and a vertex connected with this group by a
segment ;

4) two groups of nuclei with a common vertex’) or connected by &
segment.

The maximal connected parts of @ are finite trees since otherwise
there would exist other nuclei than those considered. We may therefore
apply Lemma 7 to G, with the g groups of nuclei as 4, and all the other
vertices as B;. The sum v of valencies of the A4, is at least ¢-k since each
group of nuclei has by Lemma 6 (and if it consists of a single nucleus;
trivially) at least k bivalent vertices and since every such vertex is either

7) The vertex may, in one of the groups, be on a side (without end-points) of & nucleus:
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on P or on another group of nuclei or connected by a segment with some
other vertex not belonging to the same group of nuclei. By Lemma 7
we therefore have w =gk — 2(9 — 1) =k 4 (g — 1)(k — 2) = k. Now
it is easily seen that each of the u univalent vertices B; of G represents
a vertex on P. These vertices are thus part of the b proper and improper
exterior vertices. Hence b = u =k, Q.E.D.

Theorem 2. If k>5 then m'>0 implies n = k(k — 4).

Proof. If m' >0 then b =k _(Lemma 8) and m =k 4 1 since
there are at least k k-gons adjacent to a nucleus. By Lemma 3 and 7 =0,
¢=c, b =0 follows n=6+42f — (6 —k)m+c—c+b-+b=6
+(+1)(k—6)+ k= k(k — 4).

Remark. Equality holds for a net with ¢ =¢, f_: 0, b = 0, m' =1,
m==Fk+ 1, b=1k; and, as verified without difficulty, only then.

Theorem 3. If k>5 and n<k(k — 4) then

m=[i=s]

Proof. It follows from Theorem 2 that m’ = 0. Since 72 0, c
b=0, t =1, Lemma 4 implies (n — 6)/(k — 5) = m.

c,

v

4. Normal partitions. We now consider special types of partitions of

polygons, characterized by certain inner continua and values of b.
Partitions are called normal if the following conditions are satisfied :

1. On P there are the non-bivalent vertices D,,...,D,, E,,..., E,,
D, E.,, E._,,...,E, D,_,, D,,, ..,D!, in this order, where

s’

D, D, D; D, E E, E;

Fy Fy

D, D, D; D, D; E E:

Figure 1

%) It can be shown that if there exists at least one partition then there exists a partition
with this maximal value of m. For n = k(k — 4), explicit formulae for the maximum
of m, and constructions of the corresponding partitions, have been obtained by Bernheim
and shall be published elsewhere; there is however not a single formula for all values of n.
For every n the Euler-Descartes theorem yields easily m = (n — 6)/(k — 6); this, and the
Immediate consequence that n >k for k> 5, was already noted by Mahlo.
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8 = 0 and s’ equals either s or s 4 1. These vertices are connected by
inner continua as follows. The vertices D, and D, are joined by a simple

broken line with the inner vertices F,,..., F, , (in this order from D, to
D;). Every vertex D;, 1 =1,...,t — 1, is connected with D by a
single segment, similarly every F,, ,, ¢ =1,...,s’, with E: and F,,,

t=1,...,8, with E,. (See fig. 1, with t =5, s+ 1 =s"= 3, where
P is indicated by a convex curve.)

2. c=c=c.

3. b=0 if s’ %0 and O§5§2(m——1)::b if s=¢ =0.

Since each of its polygons has at least one side on P and at most five
proper vertices, every normal partition can be considered as consisting of
k-gons for every given value of £ = 5. It is easily seen that if a parti-
cular n-gon has a certain normal partition then every other convex n-gon
with the same » can be divided in the same way.

To the normal partitions with a given k, there belong certain values
of n, say n, <n,<n;<....Obviously n,>k -+ 1 if £>5, and there may
be gaps (differences greater than 1) between consecutive n,. For large ¢
these gaps disappear and every sufficiently great value of # even belongs
to different normal partitions.

Denoting by n* the value n; that follows immediately upon the last
gap, we have

Theorem 4. n* = (k — 5)[k/3] + 6, and for n* there exists a normal
partition with m = m* = [k/3].

Proof. It follows from Lemma 4 (since 7= 0, c—c=0, m"=0)
that of two normal partitions with the same m and k, the one that has
the larger ¢ and (or) larger b, also has the larger n. The smallest n for a
given m, n,,;, (m; k), is thus obtained with ¢ =1, b= 0 and by Lem-
ma 4 therefore n_;, (m;k) = m(k — 5) + 6. On the other hand the
largest value of n, n,,.(m; k), is obtained when all inner continua are
single segments,i.e. t=m — 1 and b=0b= 2(m — 1). By Lemma 4
Noag (M3 k) = m(k — 5) + 5 + 3(m — 1). Every n between ny, (m;#)
and 7, (m;k) has a normal partition with the same m and k. There
are gaps between the =; as long, and only as long, as 7y, (m;¥k)
— Ny (m — 13 k) =22, ie, mk—5)+6—(m—1)(k—5)+5+
3m —1—1)=%k+2—3m =2 or m =< k/3. Hence m* = (k3]
and n* = n;, (m*; k) = m*(k — 5) + 6 = [k/3](k — 5) + 6.
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Corollary 1. For n = (k — 5)[k/3] + 6 a convex n-gon is divisible into
convex k-gons (k = 5).
Hence

Corollary 2. If n =k(k — 4) and k = 6 a convex n-gon is divisible
wnto convex k-gons.

Proof. If k£ =6 then 0<(2k 4 5)(k — 6) + 12 whence k* — 5k
+ 18 <3k? — 12k or (k — 5)(k/3) + 6 <k(k — 4).

5. Criterion of divisibility.
Theorem 5. A convex n-gon can be divided into convex k-gons
1) for k =6, if and only if

[(n — 6)/(k — 5)] =[(n + k& — 5)/(k — 2)] ;
2) for k<6, always?).
(The undivided n-gon is not considered as a partition.)

Proof. 1. The case k = 3 is trivial. So are the cases &k =4 and
k = 5: divide first into triangles and each triangle into 3 quadrangles
or 9 pentagons respectively as shown in fig. 210).

2. k=6.

For n = k(k — 4) we have n = (k* — 4k + 13)/3 if £ = 6 whence
(n — 6)/(k — 5) = (n + k — 5)/(k — 2). On the other hand we saw in

Figure 2

Corollary 2 to Theorem 4 that, for every n = k(k — 4), partitions do
exist.

From Theorems 1 and 3 follows for n<k(k —4), k =6, that
[ — 6)/(k — 5)] =m =[(n + k — 5)/(k — 2] whenever a partition
exists.

That partitions always exist when the inequality of Theorem 5 holds,

®) The cases k = 3,4,5 were obtained by Mahlo.
19) The value of m obtained by this method is in general much greater than the mini-
mal m,
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will be proved by showing that within the gaps and for n <, always
[(n — 6)/(k — 5)]<[(n + &k — 5)/(k — 2)].

We have seen in the proof of Theorem 4 that for any value of m, say
My, Mg = Ny, (My; k) has a normal partition with m; — 1 inner con-
tinua consisting of a single segment each and b=b=2t=2(m,— 1).
Since ¢ + ¢ = 0, » = n we have by Lemma 1, m, = (n, — 2)/(k — 2)
=[(no+%—>5)/(k—2)]. By Lemma 4 we have m,= (ne—6—(3t—1))/(k—5)
since f_aO c—¢c=0, m =0 and b=2¢. If my =< m* — 1 then
t=myg— 1 <m* —2 <Fk/3 -2 (Theorem 4) and hence 3¢t —1 <
k—7<k—5 whence my=(n,—6— (3t—1))/(k—5)=[(n,—6)/(k—5)].
Therefore my = [(ny — 6)/(k — 5)] = [(ne + k — 5)[(k — 2)] if m, <
m* — 1 and n, = n,,, (m,y; k).

From my= (ny — 2)/(k — 2) follows (n,+ k — 5)/(k — 2) —
[(ny + & — 5)/(k — 2)] = (k — 3)/(k — 2) whence [((n0 + 1) + k& — 5)/
(k—2)]>[(ne + & — 5)/(k — 2)]. But [((ny+ 1) — 6)/(k —5)]=
[(ny — 6)/(k — 5)]  since no—fi/(k-——o)—[ ——6/10——5)]_
(3t — 1)/(k — 5)< 1 for my<m*. It follows that for n = ny, + 1 (where
a gap begins) [(n — 6)/(k — 5)]<[(n + k& — 5)/(k — 2)]. The function
[(» — 6)/(k — 5)] of n only increases again at the end of the gap since
for n = mn,, (m,+ 1;k) there exists a normal partition with f=0,
c—¢=0,b=0, t = 1, m' = 0 and hence, by Lemma 4, [(n — 6)/
(k — 5)]= (n — 6)/(k — 5) = my + 1. Thus indeed [(n — 6)/(k — 5)]
<[(n + k& — 5)/(k — 2)] for every » within a gap.

If » <k then [(n — 6)/(k — 5)]=0 but [(n + k — 5)/(k — 2)]=1
since n = 3; andif k<n<n,=n_, (2;k) = 2(k —5) + 6 =2k — 4,
then [(n — 6)/(k —5)]=1 but [(n+ k — 5)/(k —2)] = 2. Hence
[(n — 6)/(k — 5)]<[(n + k& — B)/(k — 2)] if n<n,.

Since the proof of Theorem 5 shows that if a convex n-gon can be
divided into convex k-gons, k>5, then this can be done by a normal
partition, we have

Corollary 1. Whenever a convex n-gon can be divided into convex k-gons
with k>5, this can be done without nucles.

The same is easily seen to be true for £ = 3 and k£ = 4, and, by use
of normal partitions, for £ = 5, n>k. On the other hand, by Lemma 4
and because of 7% 0, c—¢=0,b=0, t =1, nuclei are needed for
k=5 and n < k).

11) Mahlo states that he tried unsuccessfully to prove the latter fact which he needs
in the proof of his theorem on the minimal m for k=5, n<k.
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Similarly the proof of Theorem 5 implies :

Corollary 2. Whenever a convex n-gon can be divided into convex k-gons,
this can be done so that ¢ — ¢ = 0.

At the same time we may require that 7 = 0.

It can be shown that : a) in addition to partitions without nuclei there
exist for n = k(k — 4), k>5, partitions with nuclei; b) for given =»
and k>5, and for ¢ — ¢ = 0, the maximal number of nuclei appears
in all partitions with maximal m ; c¢) for given n and k>5, and for
¢ — ¢ = 0, all values of m between its maximum and minimum may be
attained, and the same holds for m’.

The part of Theorem 5 that concerns k4£>5 can also be stated as
follows.

Corollary 3. For k>5, a convex n-gon can be divided into conmvex
k-gons if and only if r < 3q, where n—3=(q+ 1)(k — 2) —r,
O<r <k — 2.

Thus, for a given k>5, the values of » allowing partition are
2k — 4 <n<2k—2
3k — 9n<3k—4,
4k — 14 <n < 4k — 6

@+ 1Hk—56g+1=n=(@q+1k—2q,

For a given n, the number ! = I(n) of values of k allowing partition
is finite (in particular I(n) = 3 for n<8). For n>5, the number
I(n) can be determined in the following way. For k£ — 2 < 3¢ the crite-
rion of Corollary 3 is obviously fulfilled. Let k, be the smallest value of k&
for which & — 2>3¢q, with ¢ =¢, and r =r,.

Every g < q, belongs to some k. The values of r corresponding to
consecutive k that belong to the same ¢ differ by ¢ + 1. For the smal-
lest of these values we have 1 <r < ¢+ 1. Hence r < 3q. Further
r+qg+4+1=<3q except if ¢g=1, r=2. Finally r 4 2(¢ + 1) < 3¢
except if r =q 4+ 4 —p, p=3,4,5. The next value r + 3(¢ + 1)
is certainly greater than 3¢. As long as r < 3¢q, 7 belongs to the same
value of ¢ since 3gq<k — 2.
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Thus in general every ¢ < q, occurs three times. To find the number d
of exceptions, note that » — p = (k — 3)(¢ 4+ 1). Hence d is the num-
ber of divisors of » — 3, n — 4 and n — 5 that are greater than 1 and
smaller than ¢, + 2. For odd =, 2 is to be counted twice.

To exemplify the method take n = 1000. Here k,= 57, ¢, = 18,
ro = 48. To g, there belong also k, — 1 and %k, — 2. The value d is
in this case 6 since 997 has no divisors smaller than ¢, + 2, while 996
has the divisors 2, 3, 4, 6, 12, and 995 has the divisor 5. Thus altogether
1(1000) = 55 4- 3.18 — 3 — 6 = 100.

Theorem 6. The number l(n) of values k, for which a partition of a
convex n-gon into convex k-gons exists, is asymptotically equal to (l2n)%.

Proof. If g, belongs to e values less or equal to k, (¢ = 1, 2, 3) then,
for n>5, In)=(ky—2)+3¢q,—e—d. Hence I(n)/ (37@)%r -
14+14+0=2.

(Eingegangen den 16. Oktober 1947.)
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