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Eigenschaften harmonischer Reihen
mit zeichenfester Summe in Rdumen héherer
Stufenzahl

Von LoTtHAR KOSCHMIEDER, Graz
Herrn JOHANN RADON zum sechzigsten Geburtstage

1. Yon den Reihenabschnitten selbst

Konvergente harmonische Entwicklungen einer im Einheitskreise oder
in der Einheitskugel harmonischen und positiven Funktion besitzen
folgende Eigenschaften : Thre Abschnitte sind gleichfalls positiv in einem
Kreise mit dem Halbmesser 1, einer Kugel mit dem Halbmesser 1 um
dieselbe Mitte !-1). Hiernach 14t sich bei einem Raume von N + 2
Ausdehnungen vermuten, da3, auch wenn N >1 ist, die Abschnitte der
inder (N + 1)-stufigen Einheits-(Uber-) Kugel K konvergenten harmonischen
Entwicklung einer dort harmonischen und positiven Funktion in der gleich-
mattigen Kugel mit dem Halbmesser (N -+ 2)~1 sdmtlich positiv sind.

1.1. Dem Beweise dafiir sei folgendes vorausgeschickt. Man bediene
sich der (iiber-)sphirischen Polarkoordinaten-*') R, ¥9,,...,%y, ¢,
kurz R, O, ¢ eines Punktes P und ¢, 74,..., 7y, 9, kurz o, T', y eines
Punktes @ . Q2 bedeute die Oberfliche der Kugel K (um den Ursprung O),
dw ihr Teilchen im Schnitte mit 0@, y den Winkel POQ. Dann 148t sich
die harmonische Funktion (R, @, ¢) = h(P) des Satzes durch das
Poissonsche Integral ausdriicken: wenn R<p<1 und g zunichst fest
ist, gilt™1?)

1,1) Uber die Literatur dieser Siétze unterrichtet L. Fejér, Mh. Math. Phys. 35 (1928),
305—344 (siehe dort die Satze X und XI, S. 322). Diese Abhandlung Fejérs ist auch der
Fundort der weiteren Satze des R, und R,, dieich hier auf Euklidische Ry 19 zu libertragen
vorhabe.

1.1,1) Vgl. P. Appell-J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques.
Polynomes d’Hermite, Paris 1926 (weiterhin mit A.-K. angefiihrt), S. 202. Die dortige
Schreibweise der Stufenzahl ist mit N - 2 hier iibernommen,

1.1,2) Vgl, A.-K., S. 198, (26) und §. 196, Z - 9.
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0 — R?
d
(0® ~—29Rcosy+R2)%(N+2) @

+
h(R,0,¢) = %fh(e,
K

oder mit R = pr, 0<r<1,

(N+1)

1
h(Qr:@’(P):Ef h(Q’T’W)

1 — 72

(1—2r cosy-}-rz)%(N“Lz)

do . (1.1,1)

Es seien A%LN (cosy), kurz A, (cosy), die von dem Ausdruck

1 0,00

— N4 B 11,2
(1—2rcos;z+¢2)%N % p(COSy)r ( )

erzeugten Gegenbauerschen Polynome ; dann ist bekanntlich®-*:?)

1 — 72

(1—2rcosy+rz)%(N+2)

10,0
L(r,y)= =3 2 (2p+N)4,(cosy)rt. (1.1,3)
“

Setzt man diese Reihe im Integranden von (1.1,1) an Stelle von L(r, y),
so darf man dort gliedweise integrieren, weil (1.1,3), wenn P festliegt
und @ auf der Kugel um O vom Halbmesser ¢ wandert, im Bereiche
0=y=n gleichmidBig konvergiert. Man erhilt

(N +1)
1 0,00

h(or,0,p) = N_QE’”‘ 2u+N) f h(o,T,y)Ay(cosy)dew . (1.1,4)

Das u-te Glied dieser Potenzreihe in 7 ist in den Cartesischen Koordi-
naten 2z, (x =1,2,..., N+ 2) des Punktes P ein homogenes Poly-
nom H, von pu-tem Grade; es strebt mit ¢ -1 zu

H,(2,,...,25) =1 X,(0,9) , Wwo

(N +1)

X,(0,9) = Q(2,u+N)hm hig,T,y) A, (cosy)dw . (1.1,5)

e->1

1.1,3) vgl. A.-K., S. 206, (17).
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Liauft ¢ in (1.1,4) gegen 1, so darf man das Zeichen dieses Grenziiber-
gangs nach einem bekannten Satze der Reihenlehre mit dem Summen-
zeichen vertauschen, und es ergibt sich

0,0
hir,0,9)= XrX,(0,9) (1.1,6)
P

mit den Werten (1.1,5) der X, als die im Satze genannte konvergente
harmonische Entwicklung der Funktion A(p) im Punkte p mit den
Polarkoordinaten r, @, ¢ ; sie bietet die Gestalt dar, in der man sie fiir
N =0, N =1 im Schrifttum verwendet findet!»*). — Es sei noch-
mals erwihnt, daB » weiterhin stets als positiv in K vorausgesetzt wird.
1.2. Mit den Hilfsmitteln der Nr. 1.1 bilde ich jetzt den Beweis des
in Nr. 1 ausgesprochenen Satzes dem von Fejér in den Fillen N = 0,
N =1 gefiihrten!-!) nach. Der m-te Abschnitt s,(r, @, ¢) der Reihe
(1.1,6) ist ein Polynom m-ten Grades in r mit den Vorzahlen ¢, =
X, 0,9) [u=0,1,...,m], das nicht identisch verschwindet, weil
co=h<0)>0. Fir die Cesaroschen Mittel (N 4 1)-ter Ordnung
[die (C, N + 1)-Mittel] O¥*? der Folge ¢, (v,n =0,1,2,...) gilt

(N+1)
1

OV =zlim [ ke, T,y) By (cosy)do , (1.2,1)
e~>1

wo B{Y+Y dieselben mit der Folge b, = (2» + N) 4,(cos y) gebildeten

Mittel bezeichnen. Nun sind die BY+" aber sdmtlich nichtnegativ'-2);

folglich trifft das nach (1.2,1) wegen A>0 auch auf die C{"*? zu.

Hier greift ein Satz von Fejér'-*:?) ein: Sind bei dem nicht identisch
0,m

verschwindenden Polynom g¢(r) = X ¢, 7 mit reellen Vorzahlen ¢, die

®
m + 1 ersten (C, k)-Mittel der (endlichen Folge der) ¢, sdmtlich nicht-

negativ, so ist g(r)>0 fir 0<r<(k + 1)7'. Mit k= N 4 1 folgt
hieraus, da auch s,¢(0) = c,=h(0) positiv ist, dafl in der Kugel
r<(N + 2)-! tatsdchlich s,(r, @, p)>0 ist.

1.1,4) Vgl. G. Szegs, Math. Ann. 96 (1927), 601—632; siehe dort S. 602.
) Vg

1.2,1) Nach E. Kogbetliantz, J. Math. pur. appl. (9) 3 (1924), S. 107—187; siehe dort
S. 179.

' 1
1.2,2) Fejérl,1), Satz VI, S. 317. In der letzten Zeile dieses Satzes muf es statt ™ offen-

sichtlich heiflen.

1
k+ 1
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1.3. Diese Kugel lifit sich durch keine groBere um O ersetzen ; in
der Entwicklung (1.1,3) ist némlich, da nach (1.1,2) A,(cosy) = A4,
=1, A, = Ncosy ist, der erste Abschnitt

1
8 = Ao+“ﬁ(2 + N)rd,=1+4 (N + 2)rcosy ,
und dieser wird bei y = = negativ, wenn (N + 2)-1<r.

2. Reihen nach Didonschen Polynomen in der (/N—1)-stufigen Uberkugel

Hervorgehoben sei ein — von mir in einer fritheren Arbeit?:1) nach
anderer Richtung behandelter — Sonderfall, der ins klarste Licht tritt,
wenn man statt der sphirischen Polarkoordinaten R,#,,...,0,,¢
eines Punktes P und g, 7,,..., Ty, ¢ eines andern ) ihre zonalen Koor-

dinaten R, z,,...,2y,¢ und o, ¥y;,..., Yy, einfiihrt. Dabei wird
1,N

do = dydy mit dn = IT dyg. Jetzt sei die Funktion % (Nr. 1) in allen

Punkten P von ¢ unabhdngig, kurz h{(P) = w(R, E); E stellt den In-
begriff der Verénderlichen z,,...,xy vor, und entsprechend steht H
statt y,,..., yy. Die Annahme iiber & fithrt zu einer besonderen Art
der Reihe (1.1,6), ndmlich zu

0,00
wr,5)=XrrW,(E) , (2,1)
®

wo nach (1.1,5)
y)

2m
1 :
WF(E)zm(zy—{-N)hm dnw(g,H)fAM(cosy)dtp
e~>1
Yy=0 0

1,N
mit ¥y =1— X y;. Das innere Integral rechts hat aber den Wert

8

27T 2n _

fAIL(COS’)/)dTp: ;—Q— Z lul! b luN ! U}LI...}LN(‘:')V}LI...[LN(H) ’
FHyt et py=p

0 (2,21)

wenn U, . (H),V, ., (H) die Gesamtheiten der in Yy =0 bi-
orthogonalen Didonschen Polynome bezeichnen. Ebenso ist es dem Aus-

2,1) L. Koschmieder, Math. Ann. 104 (1931), 387—402; siehe dort namentlich S. 395/96.
Da man an dieser Stelle alle in Nr. 2 benutzten Hilfsformeln beisammen und auch die
ndtigen Quellen genannt findet, brauche ich hier beides nicht einzeln anzufiihren.
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druck (2,22) gleich, der aus (2,21) durch Vertauschung von &£ und H
entsteht. Somit nimmt (2,1) eine der beiden Formen an

0,00
U=2w‘ z B}l-l...P:NU}Ll...[l.N(E) ’ (2?31)
- L S e 9 A
w(r,Z) = oo
szr,u. 2 Ayl...pNVpl...yN(E) ; (2a32)
B Mt py=p

darin ist, wenn J = z*” [N+ 1)]-* den N-stufigen Rauminhalt
der Einheitskugel Yy =0 bedeutet 2-2),
2u+ N e
2 .
Bpl...yNz NJu! pal. . py!lim w(QsH)Vpl...,u.N(H)dn ’

e>1 J
Yy=o0

und A4, . geht aus B, . hervor, indem man rechts V, . (H)

durch U, .. (H) ersetzt. Nach dem in Nr. 1 bewiesenen Satze sind

die Abschnitte der Reihen U und V, die man erhilt, wenn man u von 0
bis zu irgendeiner ganzen Zahl m =0 aufsteigen 148t, fir r <(V 4 2)-1
alle positiv.

3. Der Unterfall der Legendreschen Reihe

Ist N =1, so fallen die beiden Reihen (2,31), (2,32) in eine zu-
sammen, nédmlich, wenn P, (x) die Legendreschen Polynome bedeuten, in

+1

lim | w(e,y)F,(y)dy

e->1
-1

2p+1
2

0,00
w(r,z) =X r*4,P, () mit 4, =
®

oder, nach Art von (1.1,6) mit = = cos® in Polarkoordinaten ge-
schrieben,

w

PF(COS??)EE; h(o,7) B, (cosT)sintdr . (3,1)
0

1

0,00 2
b, ) = S =T
"

In der Aussage, dafl alle Abschnitte dieser Reihe in der Kugel <1}
positiv sind, bestétigt sich, was man aus Fejérs Satze!!), XI ohnehin

2,2) Vgl. A.-K., 8. 203, (4) und FuBnote 1. Es ist dort N durch N — 2 zu ersetzen.
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weil} : (3,1) ist ja ein Sonderfall der nach diesem Satze dort mit lauter
positiven Abschnitten begabten Reihe (1.1,6)

0,0

h(r,d,9) =X X, (9,9
®

— der Fall, in dem die Funktion % nicht von der geographischen Linge ¢
abhéingt.

4, Bemerkung zur Literatur

Die Begegnung mit den Legendreschen Polynomen in Nr. 3 gibt mir
Anlaf3, auf einen sie betreffenden, den Inhalt der vorliegenden Arbeit
allerdings nicht beriihrenden Umstand hinzuweisen, der mir in einer
fritheren Abhandlung *!) entgangen war. Ich habe dort nebenher die

0, 00

bilineare Reihe 3 P, (cos®d)P,(cos 7) durch ein vollstindiges ellipti-
®
sches Integral erster Gattung summiert [S. 340, (10a- 5)]. Meine Formel
war aber nicht neu, sie ist vielmehr — in noch allgemeinerer Gestalt,
0,00

nimlich als Wert der Reihe X P, (cosd)P,(cos7) — ,80 old as

n
Legendre‘‘. Das erfuhr ich aus einer Arbeit von Watson ¢2), in der der
Verf. — ohne Beziehung zu 4!) — erzeugende Funktionen der Legendre-
schen und der Gegenbauerschen Polynome aufstellt.

b. Schranken des ersten Beiwerts der harmonischen Reihe

Aus dem Ergebnisse der Nr. 1 entspringt ebenso, wie es Fejér a.a.0.1:1),
S. 323 fir N = 1 gezeigt hat, folgender auf die in K positiven A beziig-
liche Satz von Pick ) : Bei einer Reihe der Art (1.1,6), deren nullter
— fester — Beiwert X, gleich 1 ist, gilt auf ganz K

| X1(@,9) [=N + 2. (5,1)

Zum Beweise geniigt der Vermerk, daBl der Abschnitt s; der in Rede
stehenden Entwicklung fiir = (N -+ 2)~! nichtnegativ ist,

s$il(N+2)%,60,¢9] =1+ (N + 2)71X,(0,9)20;

4’1) L. Koschmieder, Mh. Math. Phys. 39 (1932), 321—344.
4,2) Q. N. Watson, J. London math. Soc. 8 (1933), 289—292; siehe dort S. 290.
5,1) @. Pick, Jber. Deutsche Math.-Verein. 24 (1915), 329—332; siehe dort Nr. 5.
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daraus folgt ndmlich
Xl(@’ ¢)2 "‘(N + 2) .

rX, ist aber eine lineare homogene Funktion der Cartesischen Koordi-
naten z, (x =1,..., N + 2) des Punktes p 52), hat also in seinem
Gegenpunkte p mit den Koordinaten — z, den entgegengesetzten Wert
zu dem in p; folglich gilt auch X, <N +4 2, mithin auf ganz K die
Behauptung.

6. Schranken ihrer iibrigen Beiwerte

(5,1) ist Sonderfall einer Abschitzung aller Beiwerte X, einer Reihe
(1.1,8) met dem Anfangsgliede X, =1,

I'(u+ N) I(p+N)
N P ) Pty =X P A = Qe N FR s R
(6,1)

Sie rithrt fiir N = 1 von Szego ®!) her ; seinen Beweis kann man, an
(1.1,5) ankniipfend, wie folgt auf den Ry, verallgemeinern. Von dem
Bestandteil A, (cos y) des Integranden in (1.1,5) kennt man Schranken
G und g nach oben und unten, da sich

I'(N + u)
I'(N)I'(x+ 1)

| Ay (cosy) | = 4, (1) = (6,2)

abschitzen 1iBt ¢2); wegen A>0 gilt dann nach dem Mittelwertsatze
vielfacher Integrale

(N+1) (N+1) (N+1)

1 [ heTndos [ he T ndusndos6 [ e T ndo. (69
K K K

Nun liefern aber (1.1,6) und (1.1,1) mit » = 0 wegen der Annahme, daf
Xo = 1 P 4
’ (N+1)

1
Xo_—zh<0>=:o—f hio,T,v)do =1 ;
K

5,2) p trat gegen Ende der Nr. 1.1 auf.
8,1) Siehe Szegs 1.1:4), 8. 617.
6,2) Vgl. A.-K., S.390.
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aus (6,3) ergibt sich somit

(N+1)

gQ_S_f k(o,T,y) A, (cosy)do = G2 . (6,4)
K

Wenn man nach (6,2) hierin G = I'(u + N)[I'(N)I'(« + 1)] und
g = — G wihlt und (6,4) mit (24 + N)/NQ malnimmt, erhdlt man

(N+1)
T(p+N) 2u+N I'(p+N)
-2 F DT D) S N @ fh(e,T,w)Au(cosy)dw—S—(ZﬂfN) T(N+1)T'(u+1)
K

und hieraus mit ¢ — 1 nach (1.1,5) die Behauptung (6,1). — Die damit
gefundene obere Schranke der X, wird von den Beiwerten X, 6 =
(24 + N) A, (cos y)/N der Reihe (1.1,3) nach (6,2) an der Stelle y = 0
erreicht ; die untere — wegen der Ungeradheit A,, ,(—¢t) = —4,,.,(f) —
von ihren Beiwerten X,  ;, ungeraden Zeigers, und zwar an der Stelle
y =,

7. Yon den (C,1)-, (C,?)-, (C,3)-Mitteln
der harmonischen Reihe des R,

Im R,, wenn also N = 1, sind die (C, 2)-Mittel der Reihe (1.1,6) ;1)
in der ganzen Kugel r <1 positiv, ihre (C', 1)-Mittel sind es in der Kugel
r<%72), jhre Abschnitte selbst haben diese Eigenschaft in der Kugel
r<}. Man wird es danach fiir wahrscheinlich halten, daB bei beliebigem
N die (C, )-Mittel der Reihe (1.1,6) in der Kugel r< gy—*_‘—_lz (6 =
=0,1,..., N+ 1) positiv sind. Fiir § = 0 ist das in Nr. 1 bewiesen ;
um die iibrigen N 4 1 Teile dieser Vermutung zu bestiitigen, bedarf es
anscheinend eines bedeutenden Rechenaufwandes, wie schon der Wert
N =2, d.h. der R, zeigt. Diesem wende ich mich jetzt zu, indem ich
beweise : Bei der — zu einer wie stets in r<1 positiven Funktion &
gehodrigen — harmonischen Reihe (1.1,6) des R, sind die (C, 1)-Mittel der
Glieder in der Kugel r<1% positiv, die (C, 2)-Mittel sind es in der Kugel
r<{, ihre (C, 3)-Mittel sind es in der ganzen Einheitskugel. Ich werde
allgemeiner von einem nicht identisch verschwindenden Polynome m-ten

;’1) Genauer: der Folge ihrer Glieder cprl" (w=20,1,2,...) [siche Nr.1.2].
'?) Siehe Fejérl,1), §.330, Satz XVIL
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0,m
Grades g(r) = X c,r* mit reellen Vorzahlen c, zeigen, dall seine m-te

(C, 1)-Summe 7"”‘L) s im Gebiete r<}, seine m-te (C, 2)-Summe s in
r<32, seine m-te (C, 3)-Summe s& in r<1 positiv ist, wenn die m + 1
ersten (C,3)-Summen U, (u = 0,1,...,m) ") der c, nmichinegativ sind *-°).
Die letzte Voraussetzung ist ja bei jedem Abschnitte der Reihe (1.1,6)
im R, erfiillt, wie im Anschluf3 an (1.2,1) hervorgehoben wurde ; die hier

mit U, bezeichneten Summen sind die (‘u T 3) mal genommenen 7-3)
dortigen CP. 3

Der Beweis des auf das Polynom ¢ (r) beziiglichen Satzes gliedert sich
von selbst in drei Teile ; in jedem von ihnen machen wir davon Gebrauch,
daB sich die n-te (C, 6)-Summe sﬁ?’ einer Folge von m + 1 Zahlen a,
(n<m) als lineare Verbindung von ay,a,,...,a, darstellen 1aBt 7-%),

0,n _
8§’=E(n+§ v)ay :

sind also a, die Glieder c,r* des Polynoms g(r), so gilt

7
S 0,m
S = 0p =X 1,0, (7,1)
N 1z
S —
mit den Werten Ay = (m +6 ‘u)rﬂ' ; (7,2)

Um die Voraussetzung auszunutzen, wird man in einem — iibrigens
keineswegs an die Wahl (7,2) der 4, gebundenen — Ausdruck der Gestalt
(7,1) statt der ¢, durch wiermalige Abelsche Umformung die U, ein-
filhren. Dazu gehe man von einer Formel Fejérs 7-7) aus, in der diese

7,3) D. h. die m-te aus der (endlichen) Folge seiner Glieder ¢, 7* (u = 0,1,...,m)
gebildete (C, 1)-Summe usw. — Eine — hier bequeme — u-te (C, §)-Summe unterscheidet

sich vom p-ten (C, d)-Mittel nur um das Malteil (‘u —;_ 6) , vgl. K. Knopp, Theorie und
Anwendung der unendlichen Reihen, Berlin 1924, S. 466. — Angemerkt sei, da} der
Gebrauch des C-Verfahrens zu besonders kurzer und glatter Rechnung fiihrt.

7,4) Die Zeichen U hier und in Nr. 2 kénnen nicht verwechselt werden.

7,5) Bildet einen Satz Fejérs [a. a. O.1,1), 8, 319, FuBinote 12] weiter, der voraussetzt,
daB die m 4 1 ersten (C, 1)-Mittel der Cy nichtnegativ sind.

7,8) Vgl. Knopp7,3), S. 466.

7,7) Siehe Fejérl:l), 8. 312, (34). — Zusatz bei der Druckprobe. Der folgende Ubergang
zu der Hilfsformel (7, 4) in wenigen Zeilen bleibe hier stehen, obwohl man das Ergebnis

viermaliger Abelscher Umformung in einer andern Arbeit Fejérs [Trans. Amer. math.
Soc. 39 (1936), 18 — 59] findet ; siehe dort S. 35, (11).
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Umformung dreimal vorgenommen ist: bedeutet 7', die u-te (C, 2)-

Summe der Cp> SO ist
o,m
Op =2 (}*p, — 3}”#+1 + 3]‘p+2 - Ap,+3) Tp.
i3
mit (7,3) =0, wenn u>m.

Nun ist 7-8)
T,=U0,—-U,, (w=0,....m; U_;=0);
folglich wird
0,m
Om = X (lp. —3 A;z+1 + 3 z’p-}-z — 2’;1.-}-3) Uy.
I
o,m—1
- X (Ap,+1 — 3 lp,+2 + 3 l“+3 - ]'y+4) Uy.
n
oder, wie gewiinscht,

o,m
Om =E (}'p. - 4]';1,—{-1 + 62’11.-&-2 - 4:Z'y,+3 + ﬁ'p.+4) Up. (7:4)
»

mit den Werten (7,3) — und, wenn es sich um das Polynom g¢(r) handelt,
(7,2) der 4, - Dabei wiirde die Ausartung, daB U,,..., U, simtlich ver-
schwidnden, besagen, dafl auch c¢,,...,c, alle null wiren, g(r) also
identisch verschwinde. Das tritt aber bei den besonderen g (r)=s,, (7,0, )
niemals ein, da sich dort, wie in Nr. 1.2 vermerkt, mindestens ¢, von 0
unterscheidet.

7.1. Ist erstens 6 = 1, so hat man nach (7,2), (7,3), (7,4)

O = 8
0,m—4
= X [m-p+1-4(m-p)r+6(m-pu-1)r*—4(m-pu-2)r*+ (m-u-3)r1jreU,
I

4+ (4 — 127 + 129% — 493)ym30, . + (3 — 87 + 642) ym2U, _,
+ 2 — 47r)yrmr ¥y, _,+rmU,, ,

und diesen Ausdruck formt man leicht in
0,m—4

=X [m—p—3)1—rp+41—rprU,+ 41 — rprm3U,_,
'3

1 2 1
+- —3~[18 (—?—; — 1')2 + 1] rm2U, .+ 4 (—5 — r) U, +rmU,,
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um — eine Gestalt, an der man sogleich erkennt, daBl er, wie behauptet,
auf der Strecke r <<} positiv ist. — Die Schranke r = } ist scharf, wie
das Polynom g*(r) = rm1 — 4y™ lehrt. Es liefert ndmlich, wie man
leicht nachpriift,

Ty—=...=T, ,—0, T, ,—1, T,——1;
Uo——-:...=U,m_2=O, Um__]_:l, U.m=0 5

mithin wird s’ = 4(} — 7)™ und daher negativ, wenn r>1}.

In den Abschnitten der Reihe (1.1,6) ist, abweichend vom vorigen
Beispiel, ¢,>0. DaB gleichwohl in diesem Sonderfalle g(r)=s,(r,@,¢)
die Kugel r =1 eine scharfe Raumschranke der Aussage iiber die
sW(r, @, ¢) ist, zeigt die mit N = 2 genommene Reihe (1.1,3). Thre
Abschnitte s,, s; und die (C, 1)-Summen s{", s{" ergeben sich nach
Nr.1.3 zu

8o=1,8=1+4rcosy, &P =3s,=1, sV =8, + 8, =2 + 4rcosy ;
somit ist s an der Stelle y = n negativ, wenn r>}.

7.2, Ist zweitens 6 = 2, so folgt aus (7,2), (7,3), (7,4)

O = 82
ST )T T
[G) 13} o) -s(a) st [ ()4G0 o) e
+ [(2) —4 (z) r] ™10, _,+rmU, .

s :f)’mz_4[(m“g‘“2) (1—r)4+4(m";‘_2) (1-7)3+6 (1—7')2] U,

®

+

Umgeformt in

+[4(1—r)3+6(1~r)2]r’””3 U, s+ 6(1-r2r"2U,_,+ 4(2—7') ™0, _,+rU,

erweist sich s® >0 auf der Strecke r<% — und auf keiner lingeren ;
denn dem Polynome g*(r) der Nr. 7.1 gehort s = 4(3 — r)rm-1 zu,
wird also negativ, wenn r>$%. — Ebenso 148t sich in dem Satze iiber die
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s®(r, @, ¢) der Kugelhalbmesser r nicht groBer als $ wihlen ; denn die
Reihe (1.1,3) fiilhrt mit N =2 zu
sP=8V=1, sP=sP4s=3+4rcosy ,

und somit ist &® an der Stelle y = &z negativ, wenn r>3 .
1 14 g

7.3. Ist drittens 6 = 3, so liefern (7,2), (7,3), (7,4)

O =83

0,%_.4[ (m—gw 3) 4 (m—g+2) - (m—g+ 1) 4 (m;y) e (m—g-l)r4]erF
e e (T S
-+ [(;) -4 (2) r] rm1y, 4+ U,

oder, wie man leicht bestétigt,

WS 4[ (m"’;"l) (1-)%+4 (m";‘ "1) (1-r)%+6 (m_f _l) (1-r)2+4 (1—r)]rF‘U,L
m

I

+ 4[(1-7)2+3(1-1)2+ 1-r] ™30, _,+2[3(1-7)2+2(1-7)]r™2U,,_,
+4(1-7r)yrm-0,_,+™U, .

Hieraus ersieht man, daB in der Tat s® >0 auf der Strecke r<1.

8. Noch eine im Ry . s mogliche Aussage iiber die Abschnitte s, der
Entwicklung einer in K positiven harmonischen Funktion

Ich werde zeigen, da8 s,,(r, @, ¢) auf etnem Halbmesser von K hich-
stens (N -+ 1)-mal verschwinden kann — wie das fiir N =1 bekannt
ist 81), In diesem Sonderfalle folgert es Fejér aus einem von ihm auf-
gestellten Satze iiber Polynome m-ten Grades 8:?), der die m + 1 ersten
(C, 2)-Mittel der Vorzahlen eines solchen als nichtnegativ voraussetzt.
Auf beliebige NV verallgemeinert, lautet dieser Satz, wenn E die Strecke

8,1) Satz von Rogosinski und Szegs, Math. Z. 28 (1928), S. 93.
8,2) Siehe Fejérl,l), Satz XVI, S.326—329.
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r <1 bedeutet: Sind ber dem micht identisch verschwindenden Polynom
o,m

g(r) =X c,r* mit reellen Vorzahlen c, deren m + 1 erste (C', N + 1)-

Miitel ;L‘ichtnegativ, 80 kann g(r) auf E micht ofter als (N + 1)-mal ver-
schwinden. Ist dies bewiesen, so folgt daraus sogleich die obige Aussage
iiber die Abschnitte s, der Reihe (1.1,6), weil die s,,, wie am Schlusse
der Nr. 7 betont, nicht identisch verschwinden, und weil die (C, N + 1)-
Mittel (1.2,1) ihrer ¢, nichtnegativ sind.

Ich beweise den Satz iiber g(r) bei beliebigem N auf demselben Wege
wie Fejér fir N = 1 82), Man stiitze sich wie er auf die Laguerresche
Zeichenregel, nach der die Summe einer auf £ konvergenten Potenzreihe

0,0

X y,r* mit reellen Vorzahlen y, dort nicht ofter verschwinden kann,

p
als es Zeichenwechsel in der unendlichen Folge der y, gibt. Der Voraus-
setzung zuliebe betrachte man die Reihe

X(") = (1 f_(:;N-i% = ,EwSE.LN-i.l)T” ’ (8’1)
s

deren Vorzahlen 8{'+? bekanntlich ¢-2) die (C', N 4 1)-Summen der y,,
sind. Nun ist bei einem Polynom g(r) von m-tem Grade y,,,, = 0, wenn
=1,2,..., und also

1,k
8O, = 8© S(+k—8(1)+28(n22;-;= W+ 380 =80 + kS,
i

(+DEgo.

1,k
Sy r =S+ ESS.EL, =80+ S (87 +785) =8 + kS +——
7
allgemein
%
an+) k= 2 (

i

1+ k—

1 .
; )s;,?f—” (M=0,1,2,...), (8,2

wie man durch vollstdndige Induktion in bezug auf M bestitigt : Es wird

S(M+1) S(M+1) + 2 QM)

m+j

1,k 0,M

— SS:LH)_}_ o 2 (7’ - 7 )S(M-—-z) S(M-}-l) + z S(M—z)g (7/“" 7 - 1) .
i 7 )
(8,3)

8,3) Vgl. Knopp7:3), S. 467.
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Mit leichter vollstindiger Induktion in bezug auf k£, die unausgefiihrt
bleibe, bewahrheitet sich, daB

LE (G4 j—1\ (it k B
),.( : )“(H—l) (k=1,2,...)

j ]

ist. In den Endausdruck von (8,3) eingesetzt, liefert das

S(M+1) S(M+1) + 2 (z ;l: I;) S(M - S(M+1) +1 Dﬁrl(z + ]::_ 1) Ss:l-{—l-i)
oder
S =:0’J§l(z + ’;_ I)Sﬁﬁ”l“i) , w.z.b.w. .

Um auf die Reihe (8, 1) die Laguerresche Zeichenregel anzuwenden,
bemerkt man, daB ihre m + 1 ersten Vorzahlen S,“N o (u=0,
1,...,m) nach Voraussetzung keinen Zeichenwechsel darbieten; ihre
weiteren Vorzahlen S{Y;" (¥ =1,2,...) bilden aber nach der Formel
(8, 2) [mit M = N + 1] eine arithmetische Reihe (N + 1)-ter Ordnung,
daher weist ihre Folge hochstens N -4 1 Zeichenwechsel auf. Mithin
kann yx(r) auf E nicht 6fter als (N + 1)-mal verschwinden ; nach (8, 1)
gilt dasselbe von g¢g(r).

(Eingegangen den 6. Mai 1947.)
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