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A Theorem on the Relative Norm of an ldeal

By Lapisras Fucas in Budapest

From the theory of the algebraic numbers it is well known that for the
norm of an ideal the following theorem holds?):

Supposing that a is an ideal in an over-field of degree n of the field of the
rational numbers, and (x,,...,x,) @S a basis of a and (w,,..., w,) s that
of the unit ideal o with respect to the rational integers, then ?)

denoting by N (a) the norm of a defined?®) as the number of the classes in-
congruent mod q.

In the present paper we intend to give the proof of an entirely anal-
ogous theorem on the relative norm of an ideal.

The proof in whole generality presents difficulties and complications
which do not arise in the case of the rational numbers. Namely, in the
general case the ideals may have their basis containing elements in num-
ber more than the degree n of the over-field, and therefore, the basis-
elements of the unit ideal and those of the over-field are different ones.
Essentially, however, the method of Hilbert 4) will be applied even to the
general case, but in a far-reaching generality.

In demonstrating the truth of the generalized theorem stated at the
end of the present paper the first step is the introduction of the ideals
R, (a). Now we have to take into account that the ideals R;(0) need not
be necessarily equal to the unit ideal ; this would be the case only if the
basis of p would be at the same time a basis of the over-field, so e. g.
in the case of the rational numbers.

1) See Hecke [1], theorem 76, p. 98; Hilbert[1], § 7, theorem 19; Landaw [1], theorem 103,
p. 31. The works referred to are given at the end of the present paper.

2) a(v) denote the conjugates of a. The square of the determinant l a)(f)l standing on
the right side of the equation is called the discriminant of the over-field.

3) The definition of the ideal-norm is due to Dedekind, see Dedekind [1], p. 564.
4) See Hilbert [1].

29



Then, for the sake of brief expressibility the definition of an array-
ideal of 7 columns and of more than or just » rows is given. The notion
of the array-ideal can be considered as a generalization of a principal ideal
with a determinant as basis to the case if the ring is not a principal-ideal-
ring.

After these we shall discuss the product of the ideals R,(a) and give
a representation of it as an array-ideal R(a) made up of coefficients
determined by the basis of a. This representation is of much importance,
R (a)
R (o)
on a, but neither on the basis of a nor on that of the over-field.

The following step is to give for M (a) in a certain sense similar repres-
entation to that of N (a) in the quoted theorem ; namely, Mt (a) will be
proved to be expressible as the quotient of two array-ideals made up of
the conjugates of the basis-elements of a and o. After proving that IR (a)
and the Hilbertian relative norm 9t(a) have the same norm, we shall
justify the identity of IR(a) and N(a) by showing that N(a) is a
multiple of M (a). And this will complete the proof.

for it involves the possibility of the proof of

= M (a) depending

Be the fundamental domain 2 a five-axioms-ring?), i.e., a ring in
which the principal theorem of the theory of ideals holds: every ideal
other than (0) is the product of uniquely determined prime-ideal-powers.
It is further assumed that the residue-class-ring X/% [U different from
(0)] consists only of a finite number of elements ¢).

We shall denote by 2 the quotient-field of X' and by P a separable
algebraic over-field of degree n of 2. Let further I' be the ring of the
integral elements of P with respect to 2. The principal theorem of the
theory of ideals holds, of course, even in I'.

In the field P there exist n linearly independent elements,

Wyse .oy O,

such that every element of P can be uniquely expressed as a linear com-
bination of w; with coefficients in £, i.e., in the form?)

n
W= 3 a;; (@€ 9).

5) E. Noether proved (see her paper [1]) that the principal theorem of the theory of
ideals is equivalent to five axioms: 1) the maximal condition, 2) the minimal condition
3) the existence of a unit element, 4) deficiency of divisors of zero, 5) the ring being
integrally-closed in its quotient-field. All of these axioms will be made use.

8) The number of the elements of 2’/ will be called as usual the (absolute) norm of Y.

7) See Waerden [1], p. 107.
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The system w, is said to be a basis of P with respect to 2. Although the
order of the basis-elements is irrelevant, we shall speak about an ordered
basis of P understanding a set of basis-elements given together with their
order.

Consider all the elements of an ideal a which are of the type

!
6= ¥ r o, A<Ii<n,; r,eQ).
i=1
The I coefficients 7, form an ideal of X, which will be denoted by
R;(a). Indeed?), the difference of two r,, and the product of an r, with
an element of X belong also to the set of the r,, further there exists in X
an element d differing from 0 such that the elements of d-R,;(a) are al-
ready contained in X'9).
That a % (0) implies R,(a) 7% (0) we wish to prove immediately. The
field P has certainly an element w of the form
l
0= X tlw; (£, +0) .

b=

et

An element g 7= 0 of X and an element a % 0 of a can always be chosen
to be gw in I''% and a in X respectively ; thus agw is contained in a,
i. e., a has an element x of the form

l
& = E (agtz) W;
i=1
where agt, = 0, X having no divisor of zero. This means, R;(a) has a
non-vanishing element, which proves the statement.
The above process shows that any ideal a in I'" has » corresponding
ideals in X', namely

ERI(C(),. R 9{n(a) ’

none of which is equal to (0). In particular, the ideals corresponding to
the unit ideal o are R,(0),..., R,(0). The ideals R;(a) are uniquely
determined by the ideal a and by the ordered basis of P at the same time.

8) The R;(a) are not necessarily integral ideals. — We have only to prove that R;(a)
is a module with a finite basis; see Hecke [1], p. 113 and also Waerden [2], p. 91.
%) The proof of the existence of such a d runs by a similar reasoning to that of e. g.
k
Waerden [2], pp. 80—81; take for instance d = 4%(w,,..., w,) = l w(,;)i"‘.

10) See Waerden [2], p. 80.
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We observe that b = 0(a) implies
R, (b) = 0(R;(a)) .

This remark need not be proved, because it is from the construction
evident. As a consequence of this we get the congruence

Ri(a) = 0(9{,(0)) (1)

holding for any ideal a of I'.

Without restricting the generality we may assume that the ideals
R,(o0) are integral. This case being simply a matter of convenience can
be reached by a suitable choosing of w,,..., w,. Then, for every a,
R,(a) are also integral.

Now remember the well-known fact that any ideal a of I" has a basis
consisting of the elements of the type!?)

---------

! 0‘!’-1 = rl"ll Wy
Fpt1 = Tyi41,1 0 e Tui+1,2 W3
..................... (7,0 € Q) 2)
Xps Ty 1 1 + Ty 2 W2
Fpa+1 = Ty 41,101 -+ Ty 11,0 Wy
Kpr = Tprq1 Wy + ...... + Tirn On

Every element « of a is linearly expressible by means of these basis-
elements with coefficients in X, i. e., « is of the form

M
x= 3 a0, (@, X) .
n=1

In consequence of the definition of R, (a), the basis-elements of R, (a)
are evidently 7, . .,...,7y,, that is to say,

mn(a) = (rp.n_l«l-l,n" . "rMn) .

11) For the statement in this general form, cf. Waerden [2], pp. 75—76; in the special
case if 2 is the principal-ideal-ring of the rational integers, see also Hecke [1], p. 41 and
Landau [1], p. 30; (2], p. 117.

32



We have similarly

mn—l (a) = (ryn_z H1,n=1s o s Ty, o n-1) 5
ete., finally
Rya) = (ryys -+ Tyy1) -
Before going to examine the product of the ideals R,(a),..., R,(a),
we define the notion of an array-ideal ; this will simplify somewhat our
statements.

The ideal, the basis-elements of which are all the determinants of
order n exhibited by the matrix

Qyy Qg9 Ay n
Qg Agg Aop
........... (N =n)
aNl a‘Nz . o aAYn

will be called an array-ideal and denoted by two parentheses: ((a,)).
We shall deal only with array-ideals consisting of n columns and of at
least n rows.

Now, it is easy to show that any basis-element of R,(a)...R,(a) can
be found among the basis-elements of the array-ideal

11
T
r r
R(a) = padl bt (3)
Tpg1 Tpg2
751 2 Ton

made up of the coefficients of w,; in (2). In fact, the basis-elements of
R,(a)...R, (a) are just the determinants of order » having their first
row among the rows 1,...,u,, their second row among the rows
pur+1,..., u,, ete., finally, their n'* row among the rows u, ,+1,...,M

of the matrix of the array-ideal R(a). Moreover, we can state the
following theorem.
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Theorem 1. The array-ideal R (a) ts equal to the product R,(a)... R, (a).

It will clearly be sufficient to prove that any basis-element of the
array-ideal in question is contained in R,(a)...R,(a).

Now assume that every determinant of order « — 1 containing only
elements of the last « — 1 columns of the matrix of the array-ideal
R(a) is an element of the ideal R, .. .(a)...R,(a), i.e.,

P o ispit = ~ = Py
Levsosnnnnssens = 0(R,_2(a) ... R, (a)) ,
Py —K+2 * ri’x—l"‘
anyhow the subscripts p,,..., p,_, are chosenfrom 1,..., M. We have

this statement in the case of « = 2 quite clear. Be

Ti,(,n——x+1 se ri,c’n

any determinant consisting of elements occuring in the last « columns of
the matrix in question and let the elements x, be chosen to satisfy the
following system of homogeneous linear equations

ril,nxl"i— ‘+rzxnxx =0
............................ (4)
Tiym—xt2 it T nonia®e=0.
The xz, will be more specified later.
Now we have to take into account that in
a=ai1 w1+..’+(xin xn
the coefficients of w,_,.5,..., ®, are zeros, therefore, by definition, the
coefficient of ®,_,,, is an element of R,_. . ,(a):
ril, n—x+1%1 + M + ri,‘,n—x+1 z, = 0 (mn—x+1 (Q)) (5)

From the above system of equations for x, we obtain as solution the
ratio
zyi.o.ix. =R, ... R,

R, being the first minor in R belonging to 7, , ...
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The ideals &, of X may be taken to satisfy the conditions

A) RI:"':‘RK:RI:"’:RK
and

B) (Rla'--aRx):(l):

Let further & # (0) be subject to the postulates!2)
) (6 mn—x—H a) ) =
II) for one and hence for allq: (S-Rq 18 a principal ideal, - K, = (x,).

These z, satisfy the equations (4), so, from the hypothesis of R, being
contained in R,_, ..(a)...R,(a), on using (5) we easily see that

Rq'ril,n-—lﬁ—lxl + e + Rq'rix,n—x+1xx =0 (mn—x+l ((l) - SRn (a)) (6)

Remember that the equality
.Rq’ qu B xq' th

holds by giving ¢ and ¢’ any values out of 1,...,x. Thus we may write
Ty (Batiynorrr ++ Belinesr) = 2o B =0 (Roipa(a). . . Ry(a))
involving that also
G R=(zy,..., %) BR=0 (Ro_s1(0). .. R, (a)) .

Now recall that ® was chosen to have no common divisor with
R,—ri1(a)...R,(a), therefore the last congruence requires

R = 0 (ER.,,_K+1 (a) L3 -%n(a)) *

This completes the proof of theorem 1.
We pass now to the proof of

Theorem 2. Supposing that

n
Oy = X Ty @ (w=1,....,.M; r

pi
i=1

e Q)

18 a basis of the ideal a; the array-ideal

oooooooooo

ooooooooo

18 tndependent of the basts of a.

12) See Waerden [2], p. 90.
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Indeed, employ

n
* .
“o*=zraiwi (6=1’000,S’ 'ra*iEQ)
1=1

as a basis of a in place of &, and use the familiar fact that the two systems

x, and aF are related by such linear equations :
M n M
* - — :
aF =S cop,=S(Zeouru)o; (6=1,...,8; ¢;, ¢ X) .
Therefore o
ok

2 CopTpi= To; -
p=1

A basis-element of the array-ideal R*(a) is evidently1?)

« M M
%*
ro'l 1 ral n E col n rpl ¢ E co’u.c rp.'n
=1 p=1
* M M
%
rUn 1 TO'”” 2160'” [ r[&l Elcan [ rp. n
p= p=
00'11 canl 7.11 . er

---------
........

---------

the summation being extended over all possible combinations of the sub-
scripts 4. The determinants

Tyt -+ Tuga
R

offer just the basis-elements of R (a), consequently, the basis-elements
of R*(a) are contained in R(a), i.e.,

R*(a) = 0 (R(a)) .

18) Cf. G. Kowalewski, Determinantentheorie, p. 72.
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Changing the roles of R*(a) and R(a), the same reasoning shows that
also

R(a) = 0 (R*(a)) .
The two last congruences give together the equality
R(a) = R*(a) , q.e.d.

Combining the theorems 1 and 2 we have the result that any array-
ideal R(a) is just equal to the idealproduct R,(a)...R,(a). In parti-
cular, denoting by

n
0, =X 8,;w; wv=1,...,N; s8,,¢e8)
i=1

a basis of the unit ideal p, the array-ideal

ooooooo

.......

SN1---SNn

is always equal to R,(0)...R,(0).
Next we introduce another system of linearly independent basis-
elements,

ol .o,
in place of w,,..., »,, and denote by R’(a) the array-ideal correspond-

g to R(a).
The two systems of basis-elements are connected by the equations

n
w5=2bi,~w;~ (i=1,...,n;b,~j8Q),

i=1

where the determinant

differs from 014).

14) If the elements w; are a permutation of w;, then there exist also equations of this
kind and the determinant b is equal to 1 or to —1.
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Since the basis-elements of q are of the form

n

14 4

Hy = 21 Tuj @f
7:

and at the same time of the form

1 j=1 1=1
we have
, n
Ty = o Tui bu
t=1

’ /

r/.cll ry,ln rp,ll y rp,nl bll bﬂl
.......... _ e o s e o e 8 s e L I R T I} ,
r ! b b

Hnl T,unn rp,ln ‘ r,u,,pn in nn

in other words, every basis-element of R’(a) is b-times the corresponding
basis-element of R(a). Hence we find

R (a)

Theorem 3. The ideal R (0)

does not depend on the field-basis w;, but

only on the ideal a.
Indeed, it follows from the above that

R(a)  R@-b _ R
R R):b  R) ’

b differing from 0.

In particular, if o is a permutation of w,, then the determinant b is
equal either to 1 or to —1; both cases determine entirely the same
array-ideals, i. e., R(a) is independent of the order of the basis-elements
of the field P.

It should be observed that —g{—{—((g—;— is already an integral ideal. This is
an obvious consequence of the congruence (1).

. R (a)
1

The idea R (o) '

of a nor on that of the field P will be denoted by I (a).

depending only on the ideal a but neither on the basis
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In order to deduce another representation of I (a), let us consider the

array-ideal Al L A

----------

oooooooooo

This is an ideal in a Galois-over-field of 2 containing P. A basis-element
of a* is

n: |
§)) (n) 1 (n)
Ky oo Cpy Zr“‘iwi...Zrﬂliwi
=1 1=1
(0 " M o (n)
1 (n) n
L A N 2 Tupi @ -0 X Ty Oy
=1 1=1
1 1
P o ... oP|
TT= | e e o e s e & e @ ® | e e« ¢ o o o s o a .
(n (n)
7#1" r#nﬂ o 1) 'y
where the determinant
o® ... oW

---------

is different from 0 because of w,,..., w, being linearly independent.
Hence we infer that

oD .. o®
a* s (a) ......... "

o ...o{M

--------

oooooooo

is equal to

15) We make a point of the interesting fact that the square of p* is already an ideal of
Z' and in the case of algebraic numbers it is just equal to the relative discriminant of P

with respect to £ (cf. footnote?)). For the definition of the relative discriminant see
Hilbert (1], § 14.
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In connection with the preceding theorem, we are led to formulate the
following theorem.

%
Theorem 4. The tdeal M (a) = %?:? being the quotient of two array-
tdeals depends only on the ideal a.

Next we pass to the proof of
Theorem 58). The norm of a in I' is equal to that of M(a) in X:

n(a) = N (M(a)) .

Consider the set of the elements of the residue-class-ring X'/ R, (a) ; this
can be regarded as a set of elements of X', no two of which are congruent
mod R;(a), but every element of 2 is congruent with one of them
mod R;(a). [We remember that it was assumed that in X'/ R,(a) there
exist elements only in a finite number.]

Let s,e¢2 denote the elements of the residue-class-ring Z/R,(a),
which are = 0 (R,(0)). An element

1
0 = X 8y W (S1c € 82)
k=1
of I' may be taken to be subjected to the postulate s,, =s,. Take
further to every s, one o, of this type and fix them. If

n n
p= X o, and B = X g
=1 =1
are two elements of I', then from the congruence

g = p(a),

i. e.,

n n—1
ﬂ "”'ﬂ, = El (Gl - G;) = f‘:l bew, + (8,1--—-8;) W, = O(G)

' . indeed, by definition

3, = 8, (R, (a)) ,

and s, and s/, are elements of the residue-class-ring X~/R,,(a). Thus for
the corresponding o, and ¢/, also equality holds: o, = o,. Proceeding

it is not difficult to conclude that s, =s

18) The ideal-norm will be denoted in X' by N and in I" by n.
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in this way, we obtain successively o,_; = o,_;,..., finally we arrive at

0, = o,. Therefore § = B’. This means, no two different of the elements
n

of the form X o, are congruent mod q.
1=1

On the other hand, if # = ¥ b,w, is an element of I', then b, =
1=1

0(R,(0)) involves that b, is congruent with an s, mod R,(a), say,

b, = sy (R.(a)),

and so evidently for o) corresponding to s} we get

n—1
n-02‘EkEbkwk()-
=1

Similarly, putting b;,_, = s} _,(R,_,(a)) we have

77‘_0':—-1““ _:-Eb” « (@)

and likewise let us continue until this process comes to an end. As result

n
n= X of (a)
1=1
is obtained, which establishes that each element of I' is congruent with

n
one and only one of the elements of the type X o,. The finite number of

1=1
the different s, is evidently
N(Ri(@) ( )
N(R, (n)) R, (0)
thus the norm of a is equal to the product of N ( g ) . “This leads us

to the result

o= (ge) =¥ (w6 we) =Y (ww)

that is to say,
n(a) = N (M(a)) , q. e. d17).

17) The proved theorem also involves that the residue-class-ring I'/a contains but &
finite number of elements.
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Since the same relation

n(a) = N (R(a))

is true also for the Hilbertian relative norm of a defined as the product of
its conjugates

m(a) —_ a(l). . .a(’n) ,
we have got the relation

N (B(a)) = N (R(a)) .

In order to prove the equality of I (a) and N(a), let us take such
elements «, and «, in a that their norms?8)

n(a) =@ ... &P and (o) = a® ... a®
could be considered as a basis of the relative norm 9(a):
N(a) = (n(xy), n(xg)) -
The ideal a* contains both the array-ideal1?)

a® o . o

=a® . a®. p* = n(x)- 0¥

--------------

a® o) ... a® ol

18) There is no difficulty in extending the proof of the corresponding theorem on absolute
norm given in Hilbert [1] (theorem 21) to our case: be a,& N(a) and choose ay so that

then also
(a 1 (ay) ) -
3 17 R(a)
Hence
) (a;'s “(az)) = N(a),
i. e.
(n(a1)s n(az)) = N(a)
is implied.

%) If a is an element of a, then all of a0, ,. . .,a0y arein a, hence (a;, ..., ay,004,...a0y)
is a basis of a, provided (a,,..., ay) is a basis too. Therefore, the array-ideal q* made
up of the conjugates of ay,...,ay, ao;,..., aoy is equal to a*. Among the basis-elements
of a*, however, the basis-elements of ((a(i) o(,,i))) occur; this means, ((a(i)o(f,))) is con-
tained in q*, indeed. '
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and the array-ideal

--------------

= o® ... a® . 0% = n(ony) 0¥ .

--------------

a*
o* ’

Therefore RN(a) = (n(x;), n(xy)) is a multiple of M(a) =
N(a) =0 (V(a)) -

Now remember that M (a) and RN(a) have the same norm, so the
equality of MM (a) and N(a) is necessarily implied :

PM(a) = N(a) .

To sum up our results, we have proved :

Theorem 6. The relative norm of an ideal a is the quotient of the array-
ideals a* = ((«) ) and o* = ((o})):

*
91(a)=%—*~ .

(Eingegangen den 10. Februar 1947.)
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