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Grundziige

einer Zahlentheorie der quadratischen Formen
im rationalen Zahlkorper II.

Von MarTiN EicHLER, Gottingen

I11. Die Darstellung von Zahlen durch Systeme definiter Formen

§ 10. Die Beziehungen zwischen Idealen und Vektoren

1. In den beiden folgenden Paragraphen werden die Formen des vor-
liegenden Systems grundsétzlich als definit angenommen. Sie besitzen
dann endlich viele Einheiten, die Anzahl der Einheiten von §; sei e;. Es
gibt ferner endlich viele ganze primitive halbnormale Transformatoren
T, gegebener Norm ¢, welche links zu §; und rechts zu §, gehoren. Ihre
Anzahl werde mit =, (f) bezeichnet. Hierbei werde verabredet, dafl in
dieser Anzahl nur dann halbnormale Transformatoren mitgezihlt werden
sollen, wenn es keine normalen dieser Norm gibt, und zwar genauer : fir
jede in ¢t aufgehende Primzahl p sei der mittlere Elementarteiler moglichst

wenig oft durch p teilbar. Also fiir gerade Variablenzahl und (—?—) =1
% Elementarteiler durch p* teilbar, fiir gerade Variablenzahl

und (g) = — 1 seien 2 Elementarteiler genau durch p* und je n ;— 2

durch p° und p?* teilbar, und fiir ungerade Variablenzahl sei ein
n—1
2
Da mit T, auch N(T,,)I;;" ein ganzer primitiver halbnormaler Trans-
formator der bezeichneten Art ist, welcher rechts zu §, und links zu §,
gehort, und da diese Beziehung umkehrbar eindeutig ist, gilt

seien genau

Elementarteiler durch p* und je

durch p° und p2* teilbar.

7o (8) = 7045 (8) - (106)

Die Anzahl der ganzen primitiven halbnormalen Linksideale fiir §,,
deren rechts zugehorige Form §, ist, werde mit g,,(!) bezeichnet, wobei
fiir ihre Abzihlung dasselbe gilt wie fiir n;,(f). Es ist offenbar

0 (t) = m(t);f; . (107)
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Die Matrizen

R(E) = (Qik(t))

haben eine wichtige multiplikative Eigenschaft :
R(t) Rto) = Rt ty)  fir (¢,8)=1. (108)

Diese Formel driickt die Eindeutigkeit der Zerlegung ganzer Transforma-
toren in primére aus und 146t sich sehr einfach beweisen : es sei I, (¢,8,)%)
ein Transformator, wie er in das Abzéhlung vorkommen darf. Er 148t sich
als ein Produkt

Tty b)) = Ly (t4) Ezjlc (t5) (109)

schreiben. Diese Zerlegung ist nach § 6, Nr. 1 durch ¢,, ¢, bis auf Einheiten
eindeutig bestimmt, da ja (¢;,%) =1 sein sollte. Umgekehrt hat ein
Produkt (109) aus zwei Faktoren dieser Art auch wieder die Eigenschaft,
die fiir die Aufzéhlung oben verlangt wurden, und zwar ebenfalls wegen
der Teilerfremdheit von ¢, und ¢,. Mithin ist die Anzahl der I,, (¢, £,) in

(109) 735 (1) 705 (L)
Tix (b1 85) = 2 e

i
was nach (107) mit der Behauptung identisch ist.

Hilfssatz 10. Jeder kommutative durch Matrizen R (t) erzeugte Ring
P ist halbeinfach.
Beweis. Setzt man =
Ve,
M =
Ve,
so ist nach (107)

WM R (1) M = (-““‘(t)) ,

Ve, e,

das ist nach (106) eine symmetrische Matrix. Ein kommutativer durch
Matrizen R(t) erzeugter Ring P liBt sich also durch symmetrische
Matrizen darstellen, und da kommutierbare symmetrische Matrizen si-
multan auf Diagonalform transformierbar sind, gestattet P auch eine
Darstellung durch Diagonalematrizen, womit die Behauptung zum Aus-
druck kommt.

21) Sofern es praktisch erscheint, setze ich im folgenden bei Transformatoren, Idealen
und Vektoren die Norm in Klammern hinzu: [T, (N), (T ()], V).
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2. Es bezeichne ¢ die einzeilige Matrix mit den Elementen%, cees —e}- ,
dann gilt ! .
e R(E) = o(t)e , (110)
WO A -
e(t) =k§1 0ir(?) (111)

die von ¢ nicht mehr abhingige Anzahl der ganzen primitiven halbnor-
malen Linksideale in dem oben genannten Sinne fiir eine der Formen §,
ist. Dal3 die Anzahl (111) von ¢ nicht mehr abhingt, folgt schon daraus,
daB sie nur von dem Verhalten von §; mod ¢ abhéngt ; fiir zu 2 D teiler-
fremde Primzahlen p, nach denen D ein quadratischer Rest ist, wurde sie
in § 8, Nr. 6, Gleichung (77) berechnet. Die Formel (110) folgt nun leicht
aus (106) und (107). Nach (108), (110) ist

e(t) o(t) = o(tyty)  fur (4,8)=1. (112)

Die Formel (110) gestattet eine Verallgemeinerung : die verschiedenen
Geschlechter des vorliegenden Formensystems mogen von 1 bis g durch-
numeriert werden, fiir das j-te Geschlecht sei e; die einzeilige Matrix mit

den Elementen —:—bzw. 0, je nachdem ¥, zu diesem Geschlecht gehort

oder nicht. Alle Transformatoren derselben Norm gehoren jeweils zum
gleichen Geschlecht ; wenn also , simtliche Klassen des j-ten Geschlechts
durchlduft, so gehort ¢ &, einem durch § und ¢ wohlbestimmten Ge-
schlecht an, es sei das k-te. Jetzt gilt

e; R(t) = o(t) & - (113)

3. Die Anzahl der Darstellungen einer Zahl ¢ durch die Form §,, d. h.
die Anzahl der Vektoren t; der Norm ¢ in dem Gitter J, sei 4,(f), die
Anzahl der primitiven Vektoren t; der Norm ¢ in J; sei 4 (¢). Diese
Anzahlen mogen zu einspaltigen Matrizen d(f) und bd*(f) vereinigt
werden ; sie stehen mit den R(f) in Beziehung.

Es seien zunéchst ¢, und ¢, teilerfremde ganze Zahlen, und in ¢, mégen
nur solche Primzahlen p aufgehen, fiir welche

-

ist ; die Variablenzahl sei gerade. Dann gilt
R(t,) 0*(t2) = v () D* (1 2,) . (114)



Zum Beweise betrachte man die Gleichung
Tin (1) 8 (la) = 1, (8 8) ) (115)

wo T;.(t;) sdmtliche ganzen primitiven normalen Transformatoren der
Norm ¢, durchlaufen moge, die links zu §; und rechts zu &, gehoren, und
t,(t,) simtliche ganzen primitiven Vektoren der Norm #, aus dem Gitter
S, der Index k durchlaufe dabei die ganze Reihe von 1 bis k. Auf diese
Weise entstehen ganze Vektoren {i,(t,%,) des Gitters J,, ihre Norm ist
t,t,. Diese Vektoren sind primitiv, wire namlich t;(¢,¢,) durch eine
Primzahl p teilbar, so miite offenbar p in | T,.(¢4;) |, d.h. in ¢; auf-
gehen. Durch geeigneten Basiswechsel kann man erreichen (vgl. § 8), daf3

=% =" modp und

T () = (ﬁ) mod p
D 2

ist. Wenn nun t, (¢, ¢,) durch p teilbar wire, so mii8ten die g ersten Koef-

fizienten von t,(f,) durch p teilbar sein ; dann wire aber N (t,(f,)) = ¢,
durch p teilbar, im Gegensatz zu der gemachten Voraussetzung.

Jeder ganzzahlige primitive Vektor t,(¢, ¢,) 148t sich in der Form (115)
schreiben, und zwar auf »(¢;) wesentlich verschiedene Weisen, niamlich
nach § 8, Nr. 5 gibt es »(t,) Ideale (T (¢,)], welche t;(¢,t,) teilen, wo-
mit (114) bewiesen ist.

Setzt man

Sl =3 ——— R(ts?) | (116)

s27; V(E87?)

und summiert in (114) iiber simtliche quadratischen Teiler, so ist wegen

S b*(ts?) = d(f): (117)

8%/ ¢

S(¢)d () = (it t,) fir (¢,%)=1. (118)

4. Diese Formel ist nun nach verschiedenen Richtungen hin zu ver-
allgemeinern ; zunéchst sei weiterhin ¢, zu D prim und als Norm eines
ganzen primitiven normalen Transformators moglich, jedoch diirfen £,
und ¢, einen gemeinsamen Teiler besitzen. Um (118) auf diesen Fall zu
iibertragen, geniigt es wegen (108),

h=p% t=p8t (t,p=1, &a>0, B>0



anzunehmen. Ohne Beschrinkung der Allgemeinheit darf ferner voraus-
gesetzt werden, daB simtliche Formen §,; der Form F§$™ mod p*+# kon-
gruent sind. Alle ganzen primitiven normalen Linksideale (T (p%)]
haben dann die Gestalt (W B3], vgl. § 5, Nrn. 3, 4.

Es sei I,;.(p*) t,.(pPt) durch p teilbar, dann setze man

Ti(p) = U Py B (119)

mit zwei unimodularen Matrizen i, B. Esist also U PI Bt (pf¢) durch
p teilbar, folglich ist es auch

PBo B tk(PB t)=1p %,tj(pﬁ_l t) ,

wo OB’ eine unimodulare Matrix bedeutet, welche p'— ‘i&?,"’ll.l&u B *
in eine der Formen ,,..., §, transformiert, etwa in ;. Man erhilt
somit

Tir (™) 1 (PP 1) = W PGS Bt (pPt) = pUPF ™ B't; (pP-11) =
= pZ,;(p* )1, (pﬂ —1t) . (120)

Das Ideal (T;;(p*1)] ist eindeutig festgelegt als der einzige Linksteiler
von (T, (p*)] dieser Norm. Ist umgekehrt ein Vektor t;(pf—1¢) gegeben,
so kann man pX;;(p* 1) t,(pf-1t) in der Form (120) immer darstellen.

Zur Ubertragung von (114) auf den vorliegenden Fall gehe man wieder
von (115) aus, wobei t,(p*t) nicht auf primitive Vektoren beschrinkt
sei. Durch die Produkte (115) werden zwar auch jetzt noch sdmtliche
primitiven Vektoren t,(p**#t) und jeder von ihnen »(p*)-mal geliefert,
jedoch treten auch noch imprimitive Vektoren auf, deren Vielfachheit
man aus (120) leicht erkennen kann : es durchlaufe [ ein System von
Einheiten von F™ mod p* derart, daB (U P5] sédmtliche p(p*) ganzen
primitiven normalen Linksideale der Norm p* durchlduft. Dann durch-
lauft auch (U P3~'] sédmtliche ganzen normalen primitiven Linksideale
e (®*)
e(®*)
wobei im Falle « =1 p(1) =1 zu nehmen ist. Folglich liefert die

Abzdhlung simtlicher Produkte (115)

der Norm p*-!, und zwar jedes offenbar gleich oft, also -mal,

R (p)d(2F 1) = o(p%)d* (p=+B1) + Q‘f]‘offl) R (p*-1) b(ph-12)

oder (wenn man »(1) = 1 nimmt)

R(p*) b(pﬁ £)== b*(pcx+ﬂ t) + o(p¥) v(p*?) 1

V@) o) S RPN,

1
v(p%)



das ist nach (76):

1 1
| t) °‘+Bt | ~1 € -1y (pB-1t
1 W(p ) pﬂ ) (p + ) ,p(pa__]_) (pﬁ )
mit & — (O fir o >1 ,
= |1 fiir x=1.
Man nehme diese Gleichung auch noch mit « — 2, « — 4,... an Stelle
von «, die letzte der so entstehenden Gleichungen ist dann
7(1237 R (p) b (pPt) = d*(p *+Pt) 4+ (p™ 1+ 1) b (pP-1t) fiir x=1 mod 2,
R(p?) b (pPt) =
s RN D N =

= b*(p*+ht) 4+ pm-1 R (p) b (pf-1¢) fiir x=0 mod 2 ;

1
»(p)
im letzteren Falle fiige man noch

b(pPt) = d*(pP) + d(pP21)

an. Addiert man alle diese Gleichungen, so erhilt man nach (116)

(p*) b (pPt) = D (p>+Pt) + pm 1 S (p* 1) D (pP1 1)

woraus sich unmittelbar

Min (a, 8)

Y@t = X pmned(piey)
=0

ergibt oder allgemeiner :

SEt)dlt) = X s™1d(tit,877) ; (121)

s/(tl’tﬁ)

es sei nochmals daran erinnert, da@ in ¢, nur solche Primzahlen aufgehen
diirfen, nach denen D ein quadratischer Rest ist, und die Variablenzahl
ist gerade: n = 2m.

Ganz #dhnlich wie die Matrizen &(¢) verhalten sich die folgenden

- Matrizen :
[z =em
X(p) =CS(p), (122)
| 2 = 2@ ) S(@) — prr Xy ;



man bestétigt leicht durch vollsténdige Induktion beziiglich « unter Be-

nutzung von (121), dal3
Min (x, B8)

X(@)o(pft)= X poimbp(pr+h-2oy) (123)

=0

gilt.
5. Es soll nun (118) und (123) auf den Fall

t,=pt, t,=pBt, (t,p)=1 und (%):-1

bei gerader Variablenzahl iibertragen werden. Man betrachte dazu die
Produkte I;,(p?) t,(pPt) bei festgehaltenem Index ¢, die T, (p?) seien
ganz, primitiv und halbnormal, die t,(p®t) ganzzahlig, primitiv oder
imprimitiv. In dieser Gesamtheit kommen zunéchst die primitiven
t,(p2+B t) vor, jeder dieser Vektoren (p2?)-mal. Dann treten wiederum
imprimitive Vektoren auf, und zwar sowohl fiir = 0 wie fir §>0;
zu deren Abzdhlung ist eine kleine Vorbereitung notwendig.

Es sei 4;,(p?; N) die Anzahl der ganzen primitiven und halbnormalen
T (p?), welche mit einem festen primitiven t,(N) in der Beziehung

T (?) (V) = p t,(N) (124)
stehen (1, () sei ganzzahlig). Man fithre die Matrizen

L(p*; N) = (A (p®; N))

ein. Die einfache Abzéhlungsformel (101) aus § 9, Nr. 4 gilt offenbar auch
fir die Anzahlen A,.(p; N), 0;.(p?) an Stelle von A(p%; N), o(p?,7),

also
#(p?; N)

L(p%; N) = Wm(f’z) ,

(125)

wo x(p?; N), O(p; N) aus (103) und (104) zu entnehmen sind. Die
einzelnen Zeilensummen von L(p?; N) ergeben fiir alle Zeilen dasselbe
Resultat A(p?; N).

Nach dieser Vorbereitung kann man nun leicht zeigen:
R(p*) d(pP 1) = »(p?, 1) D* (p**F 1) + L(p*; PP 1) D (PR )
+ (e(p?, ) €™ — Q(p*; PP 1)) D (pP-21) ,  (126)

wo der letzte Term im Falle 8 <2 zu streichen ist. Zum Beweis von (126)
braucht man nur noch die Terme



L(p?; pBt) (b(pft) — D(pA-21))= Q(p?; PP 1) D*(PP1), o(p? 7) D(pP-21)

zu erkliren. Der erstere gibt simtliche Produkte (124) mit N = pf¢ und
primitivem t;(pft) wieder, deren Anzahl ist bei gegebenem t;(p? ¢) nach
der getroffenen Definition gleich 4,,(p?; pft). Endlich soll o (p2,7) d(pP-2t)
die Anzahl der Produkte

Tin (P?) 1 (PB t) = p? ti(pﬂ—z t) (127)

sein. In der Tat tritt jedes p%t;(pP—2t) in dieser Gesamtheit auf, und
zwar so oft, wie es ganze primitive halbnormale Rechtsideale [ZT,;(p?))
gibt, d. h. o(p? r)-mal. Man setze ndmlich fiir ein solches Rechtsideal

te (PP 8) = Ty (p?) ti(PP21)
dann gilt (127) mit

T (p?) = P> Ty (P?) 1
Damit ist (126) bewiesen.

Setzt man
X0 = 5o (R0 — 2073 1) + €%
X(pmx) — [ 1 ( m(pZ) — 2( _',. @(h)] x 2<x——2) _ (128)
v(p% r)
— [Q (p* 7) R pz 0) } X( 2a—4) ’
- v(p?, 7) v(
so gilt
XEo@) =d@=1) | (129)
X(@®) d(pt) = d(p=+1t) |

(fiir (¢, p) = 1; bei ungerader Variablenzahl muf3 ¢ eine Quadratzahl
sein), wie man mit Hilfe von (126) und (128) durch vollsténdige Induktion
beziiglich « ganz leicht bestétigt.

Als das Hauptergebnis dieses Paragraphen formuliere ich den

Satz 9. Aus den in Nr. 1 definierten Matrizen R () werden fiir zu D
teilerfremde Primzahlpotenzen ¢ = p* bzw. p»2*, und zwar je nachdem
ob p oder erst p? Idealnorm ist, durch (116), (122) bzw. (128), (125), (103),
(104)22) und allgemein fiir zu D teilerfremde Zahlen, die als Idealnormen
auftreten kénnen, durch

22) Sofern Primideale 2. Grades in Betracht kommen, setze ich die Variablenzahl gré@er
als 2 voraus. Sonst wiirde es keine ganzen primitiven halbnormalen Primtransformatoren
geben und die Resultate wiirden trivial. In den Beweisen wurde fiir diesen Fall ferner
p > 2 angenommen; die Ubertragung auf p = 2 diirfte nicht schwierig sein.
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X(PTpt...) = X(p") X(p3?). .. (130)
Matrizen X(t) gebildet. Mit ihnen gilt
X () X(t) = X(tto) , X(E)D(t) =d(t,ty) fir (4,5)=1;

sie erzeugen einen kommutativen halbeinfachen Ring =.
Die Kommutativitidt folgt aus den Definitionsgleichungen und (108),
die Halbeinfachheit aus Hilfssatz 10.

§ 11. Der Satz von Hecke und das Darstellungsmall
1. Es seien X(¢,) und X(f,) zwei Matrizen aus dem in Satz 9 er-
wihnten Ring &. Dann gilt

X(t)d(t) = X(t) X () D (1) = X (&) X(8) (1) = X() D (E,) .

Diese Gleichung lautet ausgeschrieben, unter &,, die Elemente von X
verstanden :

h h
IEJ &ix(b1) 05 (L) :kf‘sl Eik(tz)ak(tl) . (131)

u

Wenn ¢, simtliche zu D teilerfremden Idealnormen durchlduft, so
mogen die b (f,) einen Raum der Dimension f aufspannen. Man kann
dieses auch so ausdriicken : unter den Anzahlen é,(t,) seien f linear unab-
hingig, etwa 6,(t,),..., d,(t,), die iibrigen J,(f,) lassen sich aus ihnen
linear kombinieren, wobei die Koeffizienten von £, nicht abhéingen. Man
bringe (131) nun fiir so viele Werte ¢; von ¢, zum Ansatz, dal} der Rang
der Matrix (6,(¢;)) gleich f ist. Es entsteht (fiir jedes ) ein lineares
Gleichungssystem fiir die Unbekannten &,,(f,), dessen rechte Seite linear

und homogen in den §,(¢,) ist. Die Auflosung wird also folgende Gestalt
haben :

x(h) = xlal(tl) g ils o xfaf(tl) + 2)(“*1) ’ (132)

wo X,,...,%, konstante Matrizen sind und 9({,) dem zu (131) ge-
horigen homogenen Gleichungssystem

D (1) D (£;) = oV (133)

geniigt. Simtliche Losungen ¥) von (133) bilden offenbar ein Ideal Y in &,
und dieses ist ein direkter Summand, da £ halbeinfach ist. Der komple-
mentire direkte Summand heifle Z, man darf annehmen, dal in (132)
die Matrix



) =X, 6,(y) +---+ xf 0,(t,) (134)
in Z enthalten ist.
Der Rang von Z ist hochstens f. Andererseits ist wegen (133)

) d(t) =d(t:ity) fir (4, 8)=1. (135)

Nun spannen die Vektoren d(¢) = 3 (!) (1) einen Raum der Dimension f
auf, daraus folgt, dafl Z den Rang f hat.

Satz 10. ¢, und t, mogen beliebige zu D teilerfremde Idealnormen sein.
Es gebe unter den Anzahlen 6,(t,) genau f linear unabhdingige, d. h. 2w:i-
schen f + 1 dieser Anzahlen bestehe stets eine Qleichung o, 6,(t,) +- - -
4+ &gy Oppq(t) = O mit von t, unabhingigen Konstanten «, .

Es gibt f linear unabhdngige Matrizen X,,..., X, von der Art, dafy die
Matrizen (134) die Gleichungen

3t) 3() = 3 ly)  fir (8, 8) =1, (136)
und 1m Primzahlpotenzfalle
3(@*) = 3@ 3(p) — p" 1t (@3 (137)

bei gerader Variablenzahl und <—€-> =1,

" )
3(p™) = J(p*) 5w 30 — —L5 €| +
7

p

1-r 1-r
+ 3(292“"“2’)[ & Hw 3 @) — (P pmtrt + 1) + £ o | €
() r—(5)
p
bei gerader Variablenzahl (r=2) und (i—:—) = —1, sowte bei ungerader
Variablenzahl (r = 1) erfillen??).
Es ist nur noch (137) und (138) zu beweisen. (137) ergibt sich aus (122),

wenn man dort X (p*) durch X(p) ausdriickt und dann die Komponente

3(p*) von X(p*) in Z nimmt. Ebenso folgt (138) aus (128), wobei man
(125), (103), (104) benutzen muB.
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Die Bedeutung des Satzes 10 ist die, daBl man nur die Zahlen 4,(p) fiir
(—‘g) =1 und 9,(p?) fir (—g) = — 1 zu kennen braucht, um die d,(t)

fiir eine beliebige zu D teilerfremde Idealnorm ¢ ausrechnen zu konnen.
Allgemeine Zusammenhinge dieser Art bei geradem n wurden von
Hecke?) gefunden, darunter die Formel (137), die hiermit auf einem

neuen Wege bewiesen wurde. Fiir die Primzahlen p mit (—?) = —1 ist

mir der Anschluf3 an die Ergebnisse von Hecke bisher noch nicht gelungen.
2. Multipliziert man (122), (128), (130) und
X(@)d(1) = d(?)

von links mit einer der Matrizen e oder ¢, (vgl. § 10, Nr. 2), so kommt
man nach leichter Rechnung zu folgendem Formelsystem :

e, X(t) = x(t) e,

mit
p(a-!-l) (m—1) _ 1 . B D
x(p*) = = — fir » =0 mod 2 , = =1, (139)
(2a+l)m __

x(p2°‘)=ppm_T_11 fir » =0 mod 2 , (—g—>=-—122),

(140)
a(2m—1) __

z(p**) =1+ pm~1 (P"“‘(%)) ppzm-—l — 11 fir n=1 mod 2 %),
(141)
z(pf* pet- - +) = x(py") @ (p?). .. (142)
e;D(t) = x(t) e, d(1) . (143)

Hier ist e, d(¢) das Darstellungsma@ fiir die Zahl ¢ durch die Formen des
t-ten Geschlechtes und e, d (1) das Darstellungsma@ der Zahl 1 durch die
Formen des k-ten Geschlechtes, wobei dieses nach der Regel von § 10,
Nr. 2 zu bestimmen ist. Es ist bemerkenswert, wie sich hier die multiplika-
tive Eigenschaft (142) des wesentlichen Teiles x(f) des Darstellungs-
mafes auf die Primzerlegung der Transformatoren und Ideale griindet,
wihrend bei Siegel®) diese Eigenschaft aus formal ganz anderen Vor-
stellungen hergeleitet wird.
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1V. Haupttransformatoren
und Einheiten, insbesondere bei indefiniten Formen

§ 12. Quadratische Formen und algebraische Zahlkorper; der Satz von
Wedderburn

1. Wie die einfachen nichtkommutativen Algebren stehen auch die
quadratischen Formen mit algebraischen Zahlkérpern in Beziehung, und
zwar auf eine zweifache Art. Das gilt besonders fiir gerade Variablenzahl.
Ein algebraischer Zahlkorper k& heille ein Zerfdllungskéorper der Form
™, wenn in k: Fem ~ FE™ wird. Es gilt der

Satz 11. Ein algebraischer Zahlkérper k ist dann und nur dann Zer-
fallungskorper einer Form § in » = 2m Variablen, wenn

1) VD) in k enthalten ist,

2) jedes Primideal in %, welches in der Kerndiskriminante von § auf-
geht, entweder geraden Grad oder gerade Verzweigungsordnung hat,

3) k im Falle nicht verschwindender Signatur total imaginér ist.

Beweis. Ein algebraischer Zahlkorper ist offenbar Zerfallungskorper
fiir alle Formen eines Typs gleichzeitig. Ein Typ X gerader Variablenzahl
werde gemdf Satz 3 in der Form (37) dargestellt. Dann sind die Bedin-
gungen 1) und 2) fiir die Zerfillung der Typen X, und X, durch % not-
wendig und hinreichend bei verschwindender Signatur ; hinsichtlich X,
und der Bedingung 2) hat man dabei die bekannten Zerfillungsbedingun-
gen fir Quaternionenalgebren heranzuziehen, denn X, ist die Normen-
form einer Quaternionenalgebra. Die Bedingung 3) kommt bei nicht ver-
schwindender Signatur hinzu, sie ist gleichzeitig die Bedingung fiir die
Zerfillung von V.

2. Eine andere Beziehung zwischen quadratischen Formen und alge-
braischen Zahlkoérpern griindet sich auf die Haupttransformatoren. Zu-
néchst gilt der

Hilfssatz 11. Ein Haupttransformator ¥ fiir eine Form § 148t sich in
einem Korper £ der Charakteristik £ 2 vollstindig ausreduzieren, d. h.
auf folgende Normalgestalt transformieren :

C1IC = (Z, T ) ,
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wo die T, Matrizen mit in k irreduziblen charakteristischen Glei-
chungen sind. Die Form & geht dabei in eine Summe von Teilformen ohne
gemeinsame Variable iiber :

EFC=( &

Der Beweis folgt einem bekannten Gedankengang??). Zunichst ist I
in ,halbreduzierte” Gestalt transformierbar. Darauf transformiere man

die Form € ¥ € durch eine Dreiecksmatrix ¢’ in eine Form &', deren
Matrix nur Diagonalenelemente enthilt. ' = C'-1C-1FTEE’ behilt
dabei die halbreduzierte Gestalt bei. Andererseits ist T’ ein Haupt-
transformator fir §’, das ist nur dann méglich, wenn I’ sogar voll-
stindig ausreduziert ist.

Man kann leicht Haupttransformatoren der Norm ¢ bilden, indem man
die Form @ mittels einer Substitution € in eine ,,Diagonalform“ §, trans-
formiert. Haupttransformatoren der Norm ¢ fiir §, sind

+ Vi B
%1;-( in. )

also T = G I, S sind solche fiir die Form §. Jedoch sind diese trivial.
Ich definiere daher : ein Haupttransformator der Norm ¢ heille regulir,
wenn hochstens einer seiner Eigenwerte gleich - V't ist, sonst singulir.
Es wird sich zeigen, daf ein regulirer Haupttransformator bei ungerader
Variablenzahl stets einen Eigenwert -4 V't hat.

Es soll ferner im Anschluf3 an Hilfssatz 11 zwischen ,,reduziblen und
wdirreduziblen® Haupttransformatoren unterschieden werden. Ein irre-
duzibler Haupttransformator ist offenbar auch stets regulir, auller even-
tuell bei der Variablenzahl 2, wo es irreduzible Haupttransformatoren mit
den Eigenwerten -+ ¥'t geben kann.

3. - Es sei T ein irreduzibler Haupttransformator der Norm ¢ fiir die
Form §. Der Korper K entstehe durch Adjunktion sdmtlicher Eigen-

werte 7,,..., 7, von I zum rationalen Zahlkorper k. Es gibt nach Hilfs-
satz 11 in K eine Matrix ¢, so daf
(51
C13TC = Ty (144)

23) A.Speiser, Die Gruppen von endlicher Ordnung, 3. Aufl. Berlin 1937, § 51.
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ist ; dabei ist in bekannter Weise die :-te Spalte ¢; von ¢ als eine nicht
triviale Losung des linearen Gleichungssystems

(T — 7, €™) ¢, = oD

definiert. Man darf ohne Beschrinkung der Allgemeinheit annehmen, da8
die ¢, algebraisch konjugiert sind.
Setzt man

F=CFC=(fir) ,
so ist T’ ein Haupttransformator fiir §’, also

lek T, T = tfo;lk .

Da ¥ irreduzibel sein sollte, sind alle 7, voneinander verschieden, also hat
diese Gleichung zur Folge, daf} es fiir jedes ¢ genau ein k = @ (¢) gibt, so
daB f;, # 0 ist; dabei ist

TiToy = U - (145)

Ist fiir ein ¢: ¢@(¢) = ¢, so folgt aus (145) v, =+ V't. Von jetzt ab
moge T als reguldr angenommen werden, dann entfillt also diese Moglich-
keit, d. h. es ist stets @(i) #4. Nach (145) ist aber auch ¢ (p (7)) = ¢,
folglich muB} die Variablenzahl gerade sein. Bei geeigneter Numerierung
ist nun ¢@(¢) =i+ m, und § hat die Gestalt

141

F/ = m (146)

mit gewissen von Null verschiedenen Zahlen »,,...,v, in K. Ich be-

haupte: k, =k, (ri -+ —;—) , k;=Fky(r;) sind Korper der Grade m und

2m tber k,,v, ist in k; enthalten. Der Beweis ist ganz einfach:
t . . ; . L.
T To) = ist ein Automorphismus von K beziiglich k,, daher ist k;

1

ein Unterkérper vom Index 2 in k{. Sdmtliche Automorphismen ¢ von
K |k, permutieren die Spalten von §, sie erzeugen also eine Permu-
tation der Zeilen und Spalten von §’, d.h. eine Permutation der »,.
Ist o ein solcher Automorphismus, der 7, fest 1iBt (1 <m), so liBt er auch
Tirm f€st. Also liBt o die i-te und die (¢ 4+ m)-te Spalte von € fest, also
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auch die i-te und die (¢ 4+ m)-te Spalte von &', d.h. die Zahl »,,
Wenn o die Eigenwerte r; und 7,,,, vertauscht, so wird in §’ die i-te
und (¢ + m)-te Zeile und die ¢-te und (¢ 4 m)-te Spalte vertauscht,
also bleibt », ebenfalls fest, d. h. », liegt in k,, was zu beweisen war.

Wenn die einzelnen Spalten von € algebraisch konjugiert sind, so sind
es auch die Zeilen von €. Die Zahlen ,,,..., w,, mogen die i-te Zeile
von ¢! bilden (2 <m), sie liegen in k,, und es ist

. m
’%x Fr= X v (0y2 +- -+ w4 ) @spppn Ty o Dy Ty) -
1=1

Hierfiir kann man kiirzer schreiben :
%i‘{yx—-:Sp(vn(wlxl—l—.n—f— w, %)) , (147)

wenn folgendes festgesetzt wird : es sei w; = w,;, » = », n die Norm
von k' =k, beziiglich k = k, und 8, die Spur von k beziiglich k.

Die Ausfithrung des Haupttransformators I geschieht nun einfach
durch Multiplikation von w, 2, +---+ w, x, mit der Zahl 7 = 1,.

Ist T nicht irreduzibel, aber regulir, so wird ¥ nach Hilfssatz 11 bei
geeigneter Variablentransformation eine Summe von Formen ; ohne
gemeinsame Variable, und T entspricht einem System regulérer irredu-
zibler Haupttransformatoren I ; der ;. Man bekommt also eine Dar-
stellung von § in der allgemeinen Form

F:8r= X Sp(rin(opzn+- -+ w0, 25)) +for, (148)
7
wo das Glied fa? nur bei ungerader Variablenzahl steht ; es entspricht
dem in diesem Falle einzigen Eigenwert + V't .
Es liegt nahe, einen Korper k&’ einen Darstellungskorper fiir § zu nennen,
wenn eine Darstellung (148) in ihm moglich ist, wobei wj,,..., w;, nj die

Basis eines Unterkorpers &} von &’ bilden und die », einem Unterkorper k;
von k; vom Index 2 angehoren. Mit dieser Begriffsbezeichnung konnen
die letzten Ergebnisse folgendermaflen formuliert werden :

Satz 12. Der Ring aller rationalen mit einem reguliren Haupttrans-
formator I vertauschbaren Matrizen ist eine direkte Summe von Kor-
pern ; deren Kompositum ist ein Darstellungskdrper. Der Korper aller
Eigenwerte von T ist ein Zerfallungskorper.

Die Darstellung (147) bzw. (148) hat gewisse Ahnlichkeit mit der Dar-
stellung einer einfachen nicht kommutativen Algebra als ein verschrink-
tes Produkt. Auch der Satz 12 erinnert an ein dhnliches Verhalten solcher
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Algebren : maximale kommutative Unterkoérper sind gleichzeitig Zer-
fallungskorper.

4. In diesen Zusammenhang gehort die Verallgemeinerung eines be-
kannten Satzes von Wedderburn :

Satz 13. Sind T,, I, zwei Haupttransformatoren evner Form § in einem
Korper k, der Charakteristik +# 2 mit denselben Eigenwerten, so gibt es in
etnem Erweiterungskorper k von k, esnen Haupttransformator S von § der-

ard, dofs T =G, G (149)

i1st. Sind alle Eigenwerte verschieden, und ist ky etn endlicher Korper, so gibt
es ein solches S bereits in k.

Bewers. Nach Hilfssatz 11 einerseits und dem Satz von Wedderburn
andererseits gibt es eine Matrix R in k&, so daB

z]_ = ER"I zg m (150)

gilt. I, ist dann ein Haupttransformator fiir die beiden Formen § und
S1=RTR.

Es seien zunichst alle Eigenwerte von I, verschieden. Wird T, mittels
einer Matrix € auf die Diagonalform (144) transformiert, so haben nach

der SchluBweise von Nr. 3 die Matrizen ' =C FE und § =C F, C
in jeder Zeile an genau einer Stelle einen von Null verschiedenen Koef-
fizienten, und zwar an derselben Stelle. Folglich gibt es eine Diagonal-

matrix D, dal} .
F=2HD (151)

ist. Nun ist © mit der Matrix (144) vertauschbar, E D1 also mit I, . Nach
(151) ist S = RECDCE! ein Haupttransformator fiir §, und da €DE?
mit I, vertauschbar ist, folgt (149) aus (150).

Wenn nicht alle Eigenwerte verschieden sind, so zerfallen & und ;
in gleicher Weise in , Kistchen* : sind f/, die Koeffizienten von §’, so ist
flo #0 fir 4,<:¢<¢, und k,<k<k,; dagegen f/, = 0 fiir +<i, oder
1>1, und k,<k<k, sowie fir i;<¢=<1, und k<k, oder k>k,. Da-
bei sind diese Indexintervalle die grofiten der Art, daBl bei geeigneter
Numerierung der Eigenwerte 7, =-.-=1,, 1, =+ .= 7, usw. ist.
Wie im Falle von lauter verschiedenen Eigenwerten kann man ] mittels
einer Matrix D in §’ iiberfithren, welche aus lauter quadratischen Kést-
chen lings der Hauptdiagonalen besteht, deren Kantenldngen 2,—1,+1,
ky — k, + 1 usw. sind. Die Matrix D ist dann wieder mit ] vertauschbar,
und der Beweis kann wie oben zu Ende gefiihrt werden.
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Nun sei £, ein endlicher Kérper und alle 7, seien verschieden. Zuniichst
werde T in k, geméf Hilfssatz 11 vollstéindig ausreduziert, wobei gleich-
zeitig ¥ eine Summe von variablenfremden Teilformen wird. Dabei zer-
fallt auch §, automatisch in gleicher Weise in variablenfremde Teilfor-
men, wie man sofort einsieht, wenn man die einzelnen irreduziblen Be-
standteile von I; kistchenweise auf Diagonalform transformiert und
dann feststellt, daB §’ und §; nur an entsprechenden Stellen von Null
verschiedene Koeffizienten haben. Aus diesem Grunde geniigt es, die
letzte Behauptung von Satz 13 fiir irreduzible Transformatoren zu be-
weisen.

Es moge sich zuerst um irreduzible reguldre Transformatoren handeln.
Man transformiere , mittels einer Matrix ¢, deren Spalten als alge-
braisch konjugiert beziiglich k, angenommen werden diirfen, in die Ge-
stalt (144). Dann kann man ' nach Nr. 3 in der Gestalt (146) voraus-
setzen, und auch J; hat diese Gestalt mit »* an Stelle von »,. Da k, ein

endlicher Korper sein sollte, ist jetzt -’% die Norm einer Zahl u; aus
:

k = ko(7;) beziiglich k, =k, (1:,. + %) . Dann leistet die Matrix

4“1.
D — "Um .
M1
L
Mm

wo u} zu u, beziiglich k; konjugiert ist, die Transformation (151). €DE-?
hat Koeffizienten in k,, da die Spalten von € beziiglich k, konjugiert
sind, die Koeffizienten der oben konstruierten Matrix S fallen also in %,.

Endlich moge ¥, die Eigenwerte -- V¢ haben. Wenn ¢ eine Quadrat-
zahl in k, ist, so haben ¥, und I, als irreduzible Transformatoren die
Reihenzahl 1, so daB nichts mehr zu beweisen ist. Ist { keine Quadratzahl,
so haben T, und T, die Reihenzahl 2. Jetzt ist § =~ x? — ¢ 2. Sdmtliche
Transformatoren dieser Form sind von der Art, daB sie & = x + yV't
mit einer Zahl r + s V¢ multiplizieren und eventuell V¢ mit — V¢
vertauschen. Die einzigen Transformatoren mit den Eigenwerten

+ V't sind
(2™
b1 )

fir welche man die Behauptung direkt verifizieren kann.
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§ 13. Die Einheiten indefiniter Formen

1. Von hier ab bis zum Schluf} folge ich einem schon friiher skizzierten
Gedankengang 2¢), der aber in einigen Punkten zu berichtigen ist. Gefragt
wird nach dem Restverhalten der Einheiten indefiniter Stammformen
nach Primzahlen und nach der Klassenzahl der Transformatoren oder der
Formen. Beide Fragen stehen in engem Zusammenhang. Im Falle von
Quaternionenalgebren und ihren Normenformen handelt es sich um eine
Fragestellung, die sowohl in der Sprache der Algebrentheorie wie in der
Sprache der Formentheorie formuliert und gelost werden kann. Bekannt-
lich wurde zuerst in der Formentheorie bewiesen, daf3 die Klassenzahl in
einem Geschlecht gleich eins ist 8). Auf die Anregung von Herrn Brandt
hin wurde dann von mir ein neuer Beweis mit Mitteln der Algebrentheorie
gesucht und gefunden, der sich als tragfiahig fiir alle normalen einfachen
Algebren erwies. Dieser Beweisgedanke soll nun in die Sprache der For-
mentheorie zuriickiibersetzt werden. Dafl dieses, wenn auch noch mit
einigen Schwierigkeiten moglich ist, ist eine schone Bestétigung der mehr-
fach ausgesprochenen These, da3 Algebrentheorie und Formentheorie eng
verwandt sind.

Die Einheiten U, von F mod p (s. §8, Nr.1) mit |U,| =1 modp
bilden eine Gruppe O (), die im wesentlichen einfach ist. Im einzelnen
gilt folgendes?): p sei teilerfremd zu 2D (J¥), die Variablenzahl » sei
stets groBler als 2. Dann besteht das Zentrum Z, von O(¥) aus den
Matrizen 4 E™ bei geradem », sonst nur aus dem Einselement. Die
Einheiten mod p permutieren die , Punkte* der ,Fliche” 1 Fx=1
mod p. Diejenigen U, welche eine gerade Permutation dieser Punkte
hervorrufen, bilden eine Untergruppe O, (&) vom Index 2 in O (). Wenn
n>4 ist, so ist die Faktorgruppe O,(F)/(Z,~ 0,(%F)) einfach.

Fir » = 3 und n = 4 herrschen besondere Verhiltnisse. Fir » = 4

werde <;) = 1 angenommen, was besonders bequem aber nicht un-

bedingt notwendig ist ; § ist dann der Form «, , — 2, , mod p &qui-
valent. Es bezeichne L, die Gruppe der nichtsinguliren zweireihigen
Matrizen It (2 mod p, L, die Gruppe derjenigen M (2, deren Determinante
mod p ein quadratischer Rest ist, £, die Gruppe der M mit |IN? | =1
mod p, Z, die Gruppe der M = u E® modp. Es ist offenbar
Ly=>~Z, x 8,.

) A, a. 0.19), Zur Zeit der Abfassung dieser Note war ich Soldat und von jeder Lite-
ratur abgeschnitten. Dabei habe ich einen Satz tiber die Einfachheit der orthogonalen
Gruppen mod p aus dem Gedichtnis falsch zitiert. Die Uberlegungen von damals sind

daher nur als grobe Skizze aufrechtzuerhalten und werden hier nun liickenlos ausgefiihrt.
%) 5. %), §§ 6, 7.
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Mit diesen Bezeichnungen ist fiir n =3 : O(%) =~ L,/ Z,, 0,(¥) =~ L,/ Z,
~ ®,. Fir n=4ist O(F) isomorph mit der Gruppe von Paaren ‘>,
M? aus L,, deren Determinanten das Produkt 1 mod p ergeben. Eine
Untergruppe O'(§) vom Index 2 erhiilt man, wenn IN® und MP aus
L, genommen werden, und dann ist O/ (&) = £, X &,. Es ist 0/(¥) =
0, () ; denn sowohl O’ () wie O,(F) enthalten die Quadrate simtlicher
Elemente aus O(F), und da O’(F) das direkte Produkt zweier einfacher
Gruppen ist, wird O'(¥) durch die Quadrate simtlicher Elemente von
O (&) erzeugt ; es gilt also O () 20, (§F) und folglich O'(F) = 0,(F), da
0,(F) in O(F) den Index 2 hat. Fir n =4 ist also 0,(¥) das direkte
Produkt zweier einfacher Gruppen, die beide mit der orthogonalen Gruppe
0,(%) fir n = 3 isomorph sind.

Das nédchste Ziel ist nun der folgende wichtige

Hilfssatz 12. Es sei § eine indefinite Stammform der Diskriminante D
m n>2 Variablen, p eine zu 2 D teilerfremde Primzahl und W, eine Einheit

von §& mod p aus der Untergruppe O,(F); fir n = 4 werde noch (—g—) |

vorausgesetzt. Nimmt man eventuell endlich viele Primzahlen p aus, so gibt es
jetzt eine Einheit U von §, welche der Kongruenz

genigt. U=U, modp

Es bleibt die Frage offen, welche der Voraussetzungen wohl entbehr-
lich sein koénnten. Zunédchst darf man die Einschrinkung fallen lassen,
daB die Behauptung fiir endlich viele Ausnahmeprimzahlen nicht zu-
treffen konnte. Jedoch miilte man dazu ein tiefer eindringendes Beweis-
verfahren verwenden, wihrend hier gerade besonderer Wert auf Kiirze

gelegt wird. Wahrscheinlich ist <—§) = 1 im Falle n = 4 entbehrlich,

ohne diese Voraussetzung wird nur die Struktur der Gruppe O (&) noch
uniibersichtlicher. Vermutlich gilt der Satz auch dann, wenn p in D auf-
geht. Dagegen kann die Voraussetzung, dal der Untergruppe O, (%) an-
gehoren soll, zwar gegebenenfalls durch eine andere ersetzt aber nicht ein-
fach fallen gelassen werden 26).

2. Zur Vorbereitung auf den Beweis dient der folgende

Hilfssatz 13. Es sei p eine zu 2D teilerfremde Primzahl und U, eine
Einheit mod p. Dann gibt es einen Transformator I von § der Norm 1 mit

T=U, modp .

26) Fiir n = 3 gilt: diese Voraussetzung ist dann und nur dann entbehrlich, wenn es
unter den Primteilern der Diskriminante und der Zahl —1 einen quadratischen Nichtrest
mod p gibt.
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Beweis. Ich kniipfe an eine bekannte Parameterdarstellung der Ein-
heiten quadratischer Formen an. Fiihrt man mittels

M = F M F
eine allgemeine Matrizenoperation ein, so gilt
U, ' =U* mod p . (152)
U, moge nicht den Eigenwert — 1 mod p haben, dann 148t sich
C,= (€ —U,)C + U,)* modp
bilden, und aus (152) folgt '

€ =—C, modp
und

U=C+¢C)(E —-C,) modp .

Es sei nun € = ¢, mod p eine Matrix mit rationalen Koeffizienten,
welche der Gleichung €* = — € geniigt. Dann ist

T=(C+C(E—-0C)

ein Transformator von { der im Hilfssatz verlangten Art.
Jetzt moge U, den Eigenwert —1 mod p genau a-mal haben. Dann
gibt es nach Hilfssatz 11 eine Matrix &, so dal3

) R(n—a) , . G (-
e H,GE( p——‘E““) mod p , & =63GE( 5(‘“) mod p

(153)
ist, wo B~ eine Einheit von G™~* mod p ist. Es sei

dabei ist 55‘16 = p‘@:."=2) mod p. Man kann nun & durch &’ ersetzen ;
die erste Kongruenz (153) bleibt dabei bestehen, an Stelle der zweiten
tritt sogar die Gleichheit :
. G (n—a)
536 = (

g(a))

Nach dem bereits Bewiesenen gibt es jetzt einen Transformator F(n—e)
fir G»-2 mit
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T = B&» mod p ,
und jetzt ist

F (n—a)
T =MW = S ( . (E(a)) e

ein Transformator von § der verlangten Art.

3. Nun der Beweis fiir Hilfssatz 12, zunidchst im Falle n % 4. Es
durchlaufe [, die Gruppe O({), ¥;,..., Ty seien die hierzu gemil
Hilfssatz 13 konstruierten Transformatoren von § und 7' eine ganze Zahl
derart, dal 7'%,,..., T T, ganz sind.

Die Gruppe E der Einheiten von § ist bekanntlich unendlich. Die
,Hauptkongruenzuntergruppe E , der Einheiten U = €™ mod 7" hat
in E einen endlichen Index, sie ist also auch eine unendliche Gruppe. Es
gibt nun hochstens endlich viele Primzahlen p derart, dafl jede Einheit i
aus €, einer der Kongruenzen il = 4 €™ mod p geniigt. Es sei p eine
Primzahl, fiir welche dies nicht zutrifft und [ eine Einheit von &, welche
den Kongruenzen

Us£E+LE® modp, U=E™ mod ™ (154)

geniigt. Dann erzeugt U mitsamt allen Konjugierten U, = IT;' U T, und
eventuell —E™ die ganze Gruppe O({) oder wenigstens O,(g), da
letztere, mod ihrem Zentrum genommen, einfach ist. Wegen (154) sind
die U, ganz, womit der Hilfssatz 12 fiir n 5 4 bewiesen ist.

4. Um den Hilfssatz 12 auch fiir » = 4 zu beweisen, mache ich zu-
néchst auf Folgendes aufmerksam : wird die Zahl 7' in Nr. 3 noch mit
einer ganzen Zahl S multipliziert, so ergibt die SchluBweise die Existenz
einer Einheit il von §, welche bei gegebenem U, den beiden Kongruenzen

U=U, modp , U = E™ mod S
gentigt.

Es sei nun § eine Stammform in 4 Variablen. Es gibt eine Substitution
S, welche § in eine Diagonalform transformiert. Durch Streichung einer
Variablen kann man auf mindestens zwei Arten eine ternire indefinite
Form erhalten, diese werden durch ein &’ in ein Vielfaches einer Stamm-
form transformiert, so daB S, = G &’ folgendes leistet :

ave— (%)

wo §, eine indefinite Stammform ist. Es gibt also mindestens zwei solche
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Transformationen S, , S,, welche auf die beschriebene Art je eine ternire
indefinite Stammform §&,, &, abspalten, und zwar so, daBl &, und &,
nicht drei gemeinsame Variable haben.

Nun sei s eine ganze Zahl der Art, daBl s&; und s&, ganzzahlig sind,
und 8 sei das Produkt der Determinanten |sS, | und | sS,|. Nachdem
der Hilfssatz 12 fiir ternéire Formen schon bewiesen ist und sogar mit der
eben erwihnten Erweiterung, liefern die Restklassen mod p der Ein-
heiten 2U,, U, von &,, §., welche den Kongruenzen

U, =U, = CE® mod S (155)

genﬁgen, bereits die vollen Gruppen O,(&,), O,(&.).
Wegen (155) sind

%1: 61 (ull) 6;1 ’ QB2 - 62 (u21) G2—1

Einheiten von §. Die B,, B, erzeugen, mod p genommen, mit O, ()
bzw. O,({.) isomorphe Untergruppen O,, O, von O(g), und zwar sind O,
und O, verschieden. Da nun O, (§) ein direktes Produkt zweier einfachen
Gruppen ist, erzeugen 0, und O, die Gruppe O, (§), wenn nicht sogar die
ganze Gruppe O(%F). Damit ist der Hilfssatz 12 vollstdndig bewiesen.

§ 14. Das Normeniiquivalenzkriterium und der Satz von A. Meyer

1. Als das Normendquivalenzkriterium bezeichne ich den

Satz 14. Zwei Transformatoren T, T,5,welche links zu derselben in-
definiten Stammform & in n>3 Variablen gehiren, sind dann und nur
dann dquivalent, wenn sie zum gleichen Geschlecht gehoren.

Wann die Voraussetzung des Satzes zutrifft, kann man nach §7
(G1. (59)) durch Vergleich des quadratischen Restverhaltens der Normen
nach den ungeraden Diskriminantenprimteilern erster Art feststellen,
womit der Name des Satzes gerechtfertigt ist. Gleichzeitig soll er an den
oben erwihnten Satz aus der Algebrentheorie erinnern. Mit dem Normen-
dquivalenzkriterium gleichbedeutend ist der Satz von A. Meyer 8):

Satz 15. Zwer indefinite Stammformen des gleichen Geschlechts in n >3
Variablen sind dquivalent.

Meyer beweist diesen Satz zwar fiir eine weitere Gesamtheit von For-
men, jedoch haben seine einschrinkenden Voraussetzungen iiber die Ord-
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nungsinvarianten zur Folge, dall der Beweis fiir Stammform nicht giiltig
ist. Er beweist den Satz zunéchst fiir » = 3 und iibertrigt das Ergebnis
dann von n auf n 4+ 1.

In diesem Zusammenhang besteht die Moglichkeit, den Beweis auf
zweierlei Art zu fiithren. Erstens kann man den Satz zunéchst fir » = 3
auf Grund des bekannten Zusammenhanges zwischen Quaternionen--
algebren und terniren Formen?®') auf das Normeniquivalenzkriterium
fir Quaternionenalgebren stiitzen und dann mit Meyer vollstindige In-
duktion durchfithren. Will man aber das Normeniquivalenzkriterium im
hyperkomplexen Falle nicht voraussetzen, so kann man einen zweiten
Weg gehlen, den ich auch hier einschlagen werde : der Satz wird gleich fiir
beliebiges gerades n bewiesen. Fiir ungerades n >4 ist dann wieder voll-
stindige Induktion anzuwenden, fiir die ich auf Meyer verweise 28). Fiir
n = 3 kann der bekannte Zusammenhang zwischen terndren Formen der
Diskriminante D und quaterniren Formen der Diskriminante D? aus-
genutzt werden 7).

2. Dem Beweis der Siatze 14 und 15 ist ein Hilfssatz vorauszuschicken ;
es mogen dabei alle ungeraden Primzahlen p mit (—‘3) =1, p=3mod 4

zuldssig heilen, die nicht in der in Hilfssatz 12 genannten Ausnahmemenge
vorkommen.

Hilfssatz 14. Fiir zwei verwandte Stammformen {,, &, der gemein-
samen Diskriminante D und der geraden Variablenzahl n = 2 m gibt es
eine Substitution S mit

F=65GC, (156)

deren Koeffizienten nur zulédssige Primzahlen und Potenzprodukte von
solchen als Nenner haben (im Falle n = 2 sei D #% —4).

Beweis. Es sei zundchst m = 1. Dann stellen §, und §, die Normen
der Ideale aus je einer Idealklasse des quadratischen Zahlkorpers k,(V D)
dar, diese beiden Klassen gehoren dem gleichen Geschlecht an. Die Ideale

f1, . mégen diese Klassen reprisentieren, dann gilt nach dem Haupt-
geschlechtssatz
fi~fost, (157)

27y H.Brandt, Zur Zahlentheorie der Quaternionen, Jahresbericht Deutsche
Math.-Vereing. 563 (1943), S. 23—57.

28) g. die letzte unter 8) zitierte Arbeit. Ich setze dabei voraus, daB sich Meyers Schlufl-
weise, die zundchst nicht fir Stammformen ausgefiihrt wird, auf diese ubertragen laBt.
Leider ist mir die Arbeit nicht zugénglich. Jedoch habe ich selber einen Gedankengang fir
die vollstandige Induktion, der das Verlangte leistet.
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wo o der Automorphismus von k,(VD) ist, der VD und — VD ver-
tauscht. Zu zeigen ist, dal (157) mit einem ganzen Ideal s gilt, dessen
Norm aus lauter zuldssigen Primzahlen zusammengesetzt ist. Die durch
das Ideal s bestimmte Klasse enthidlt nun unendlich viele Primideale
ersten Grades. Wird s als ein solches genommen, nach welchem —1 ein
quadratischer Nichtrest ist, und das zu den endlich vielen Ausnahmen

nicht gehort, so ist seine Norm eine zuldssige Primzahl, denn es ist ja
(%} = 1, und der Hilfssatz ist fiir m = 1 bewiesen.

Allgemein wird der Beweis mittels vollstdndiger Induktion beziiglich m
gefiithrt. Ich benutze dabei, dafl jede primitive bindre Form unendlich
viele Primzahlen darstellt ; und dieses sieht man bekanntlich so ein : die
Form stellt die Normen von Ringidealen fiir einen (eventuell von der
Hauptordnung verschiedenen) Ring ganzer Zahlen aus einem quadrati-
schen Zahlkorper dar. Die Ringideale bilden eine Gruppe #), ihre Klassen
bilden eine endliche Gruppe, und die analytische Schlulweise, da jede
Idealklasse unendlich viele Primideale ersten Grades enthilt, ist all-
gemein fiir Ringideale giiltig. Da offenbar jede primitive Form in n>=2
Variablen eine primitive bindre Form darstellt, so stellt eine jede solche
Form in n=2 Variablen unendlich viele Primzahlen dar. Bei indefiniten
Formen kann man auch noch deren Vorzeichen vorschreiben.

Einer Form in » Variablen wird folgendermaf@len eine adjungrerte Form
& zugeordnet : die Matrix { ist die Matrix der (n — 1)-reihigen Unter-
determinanten von &, falls n gerade ist, bei ungeradem n dagegen die
doppelt genommene Matrix der (n — 1)-reihigen Unterdeterminanten.

Es ist also ‘f”y =|F| & bzw. = 4| F| &, je nachdem ob » gerade oder
ungerade ist. Die adjungierte Form einer Stammform ist stets ganzzahlig

und primitiv. Zu jeder Darstellung einer Zahl d durch § gehort eine Dar-

stellung einer Form (& in n — 1 Variablen durch §, deren Diskriminante
) n—1

— (=1)2d baw. (—1) 2 d ist.

Wenn nun g,, &, die beiden gegebenen Stammformen in n Variablen
sind, so stellen ihre adjungierten Formen je eine ungerade Primzahl dar,
sie stellen selbst also je eine Form F{* Y, F*V in n — 1 Variablen
von Primzahldiskr minante dar. Sind §,, &, indefinit, so kann man durch
geeignete Vorgabe des Vorzeichens der Diskriminanten von gV,
Fr-D  erreichen, daBl diese Formen wieder indefinit sind. Sind jedoch

29) Dirichlet-Dedekind, Vorlesungen iber Zahlentheorie, 4. Aufl. Braunschweig
1894, § 187.
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&1, &, definit, so sind auch F*~V, F{*~V definit, jedoch von gleichem

TN—— -
Vorzeichen. Die Formen F*V, F*V sind wieder primitiv, also

stellen F Y, F" Y je eine Form F 2, 2 in n —2 Va-
riablen und von Primzahldiskriminante dar, usw. Man kommt so zu zwei
terniren Formen FP, F mit den Diskriminanten gq,, ¢,, wo |q,],
| 2| zwei verschiedene ungerade Primzahlen sind. Es beschrinkt die
Allgemeinheit nicht, wenn man annimmt, daB ¥, F& nicht definit
von entgegengesetztem Vorzeichen sind.

Dieselbe SchluBweise zeigt, daB F, F je eine bindre Form ®,,
®, darstellen, deren Diskriminanten ungerade Primzahlen sind. Dann
stellen ®,, ®, je eine Primzahl p,, p, % p, dar, wobei

P19 = P29, =1 mod 4 (158)

ist. Die Zahlen p,, p, werden auch durch , FP dargestellt. Somit

~~/

stellen IS je eine bindire Form §,, $, der Diskriminanten
—4p,q9,, —4p,q, dar, das sind nach (158) Stammdiskriminanten, §),,
9, sind also Stammformen. Wieder darf man ohne Beschrinkung der
Allgemeinheit annehmen, dal ®,, ®, und $,, $H, nicht definit von ent-
gegengesetztem Vorzeichen sind.

Jetzt behaupte ich, §,, $, stellen gemeinsam eine zuldssige Primzahl p
dar: Die durch §,, 9, dargestellten ungeraden Zahlen sind als negativ
genommene bindre Diskriminanten = 3 mod 4, mithin gehoren $,, $,
einem der 2-adischen Typen 62, @; an. Die Form

~~y
3)
1

D (X, Ty, T3, Tg) = H1(x1, 22) — Do (X5, Ty)

gehort also nicht dem Typ 72 an. Da die ungeraden Diskriminanten-
primteiler von §,, ©, verschieden sind, gehort § fiir kein p zum Typ 72.
Da $,, 9, nicht definit von entgegengesetztem Vorzeichen sind, ist $
indefinit. §) ist also fiir jede Primstelle mit einer Form in weniger als 4 Va-
riablen dhnlich und stellt daher nach dem II. Hauptsatz die Null eigent-
lich dar, Es gibt folglich eine durch §),, §, gemeinsam dargestellte ganze
Zahl k.

Nun stellen §),, $, die Normen der Ideale aus je einer Idealklasse der
quadratischen Zahlkorper

by =ko(VD(®,) , ky=ko(VD($))

dar. Es gibt je einen Représentanten §,, f), dieser Klassen in k,, k,, wobei
n(h,) =n(h,) =k ist. Essei
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bhy="nag,, by =1yg, ,

wo h,, h, ganze rationale Zahlen und g,, g, ganze primitive Ideale sind.
Durch einen gemeinsamen rationalen Teiler darf man ),, , ohne Be-
schrinkung der Allgemeinheit teilen und folglich (,, ,) = 1 annehmen.
Jetzt behaupte ich, dal es in dem Vereinigungskorper k =k, k, ein
Ideal j gibt, dessen Normen beziiglich k,, k, gleich b,, b, sind. Man setze
zum Beweise die obige Zerlegung von §,, b, fort :

blzhlfgll’ I)zzhzfglzs
wobei

Nryik, ) =4, , My lkeq (f) =h, , LWIR 1) = Rgolk, (Io)

ist, was sich durch Normenvergleich ergibt. Ersichtlich gibt es in £ ein
Ideal I mit

Pk, H=1L, Pk, H=1L,

und das verlangte Ideal | ist
hb=%LI.

In der Klasse von ) in k gibt es nun endlich viele Primideale p ersten
Grades, nach welchen die Zahl D ein quadratischer Rest und —1 ein
quadratischer Nichtrest ist, ihre Normen sind bis auf endlich viele Aus-
nahmen zuldssige Primzahlen p. Die Primideale ersten Grades

Pr= (D) » P2 = Ny, (V) (n (P) = n(p2) = p)

sind mit B,, b, dquivalent, also stellen §,, §, wirklich eine (ja sogar un-
endlich viele) zuldssige Primzahl p gemeinsam dar.

Damit stellen auch P, FP eine zuldssige Primzahl p gemeinsam
dar, also FP, FP und damit auch F,, §, stellen je eine binire Form
F@, FP derselben Primzahldiskriminante p dar. Sind &, &, indefinit,
so kann man wiederum das Vorzeichen von p so festlegen, dafl auch diese
bindren Formen indefinit sind ; sonst sind sie zusammen mit §,, &, definit
von gleichem Vorzeichen. F{¥, F® gehoren als bindire Formen derselben
Primzahldiskriminante und derselben Signatur demselben Geschlecht an.

Es sei

3&2) f(lz,n-—2) 5}(2) f(zz,n——2)
8‘1 = ( f @ (»—D) ’ 8‘2 = 7T-2 G-
1 1 2 2

26



Nun transformiere man §,, &, mit

o (€ =@M (6 (@) g
1 E(n—2) TR )
in
3:(2) , . %(2)

3 - 61 3}1 ( (5;(,1_2) ’ 82 = 62 3}2 62 = 2 (5;("—2)) .
Dabei sind ;"2 , ;™2 nach dem I. Hauptsatz verwandt. Nach
der Induktionsannahme sind §;, &; durch ein & ineinander transfor-
mierbar, wobei nur zuldssige Primzahlen als Nenner auftreten. S =
S, &' S ! leistet dann die Transformation (156), auch hierbei kommen

nur zulidssige Nenner vor, da | | = | FP| eine zulissige Primzahl
sein sollte. Damit ist der Hilfssatz 14 bewiesen.

3. Der Beweis fiir die Sétze 14 und 15 verlduft nun folgendermafen :
es sei S die in Hilfssatz 14 genannte Substitution und 7' der Hauptnenner
ihrer Koeffizienten. Dann ist T,;, = ST ein ganzer Transformator der
Norm 72, und T ist aus lauter zuldssigen Primzahlen zusammengesetzt.
I,, gestattet also eine Zerlegung

I21 = ;‘szl ‘By‘l iy sBil is ‘sz igtt*
in lauter Primtransformatoren ersten Grades, von denen je zwei auf-
einanderfolgende immer gleiche Norm haben :

(%221 %9’1 U] N(%zljz (‘Byz ig) > usw.

Ich werde beweisen, dal die Formen , und §; , zu denen B,; und B,
links und rechts gehéren, dquivalent sind. Wiederholung der gleichen
SchluBweise ergibt dann die Behauptung.

Es ist also zu beweisen, dal die beiden Linksideale (B, ], (B;.]
dquivalent sind, wo PB; , = N (Py; ) Py, ist. Hierzu wird der Hilfssatz 6
herangezogen, demzufolge gibt es eine Kinheit U, von §; mod p =
N (P,;,) derart, daB

(B, ] = U, B, (159)

ist. Die Einheit [, ist hierdurch noch nicht eindeutig festgelegt, sondern
nur bis auf rechtsseitige Multiplikation mit einer weiteren Einheit B,

fiir welche
(‘Bp'z] = (Q}p ‘lez]

gilt. Nimmt man
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i},-l = 382"") mod p , “Ba‘12 = P,

an (vgl. § 8, Nr. 3), was die Allgemeinheit nicht beeintrichtigt, so hat
also B, die Gestalt

%,,E(% SI%) mod p ,

wo B, S, W n-reihige Matrizen sind. Ein spezielles B, dieser Art ist

—1
(m~—1)
B, — R , (160)
E(m-1

es gehort nicht zu der in § 13, Nr. 1 definierten Gruppe O, (g, ). Némlich
auf der Fliche 1%{, x =1 mod p liegt stets eine gerade Anzahl von
Punkten mit gegebenen Koordinaten x,, z,,,, ausgenommen wenn
%y %, = 1 mod p ist; denn die Punkte lassen sich zu Paaren anordnen,
deren Koordinaten ,,...,%,, @,.2,.-., %, entgegengesetzt gleich
mod p sind, dabei ist allein z,, 0,...,0, x,,,., O,...,0 nicht mit er-
faf3t. Die Anzahl dieser Ausnahmepunkte ist p — 1. Die Einheit (160)
vertauscht nun simtliche Punkte, deren 1-te und (m -+ 1)-te Koordina-
ten z,, «,,.,; sind, mit denjenigen, deren entsprechende Koordinaten
—,, —%n,,, sind. Als Permutation geschrieben zerfillt also B, in

-g—— -+ eine gerade Anzahl von Zweierzyklen. Das ist eine ungerade

Anzahl, da p als zuldssige Primzahl = 3 mod 4 ist. B gehort also in der
Tat nicht zu O,(%F,;,). Jetzt kann man gegebenenfalls durch Multiplika-
tion von U, mit B, erreichen, dal U, stets zu O,(F; ) gehort. Dann gibt
es nach Hilfssatz 12 stets eine wirkliche Einheit [ von § mit

U=U, mod p ,
mit ihr gilt ebenfalls (159), es ist also
p %il = sBa‘lz‘l %jl qsilz‘l e %1,2 8’11 ‘By‘lz =p&:

was zu beweisen war.

(Eingegangen den 19. September 1946.)
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