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Uber die Stirlingsche Reihe

Von F. V. AtkinsoN, Oxford

1. Wegen ihrer mannigfaltigen Anwendungen ist eine einfache Her-
leitung der Stirlingschen Reihe sehr zu wiinschen. Deshalb mag die Her-
leitungsweise, die ich im folgenden mitteile, nicht ganz ohne Interesse
erscheinen. Ich habe mich auf den Fall der Gamma-Funktion beschrinkt,
doch 148t sich die Methode leicht auf allgemeinere Fille des Summations-
problems iibertragen.!) Es wird gezeigt, dall die Euler-Maclaurinsche
Summenformel als eine Art Umkehrung der Taylorschen Reihe betrachtet
werden kann.

Ich beweise den folgenden

Satz. Es sei
h=h(z)=min {|z|,|z+1|,|2+2],...}

und ferner 2>3. Dann ist

log I'(z) = logz—2+ 04 S (1 D" _anip
ogl'(z) =(2— %) logz — 2 52(—)mz + R, (2) ,

wobei
| B(@) | <oy | 2| homet .

Hier bedeuten C, die c,, und spéter a,,, b,, gewisse positive Konstan-
ten; B, ist die n-te Bernoullische Zahl. In der Tat ist

B,
n!

xE@—1D1r=14+3 T2,
n=1
Der Wert von lgz werde durch die Forderung

| arcz | <=

bestimmt. Es wird folgendes iiber die Gamma-Funktion benutzt :

1y Vgl. E. Pascal, Repertorium der héheren Analysis (Teubner, Leipzig 1929,
Bd.I 3, S. 1221 ff.).
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(I) I'(z) ist eindeutig regulér, auBler den Punkten 0, —1, —2,...
Iy I'z+1)==z21I(2),

-]

d \ 2
@ () 1o e = X @+ n

n=0

(IV) TI'(z) reell fiir reelle z

Bekanntlich ist Gleichung (III) durch die schwichere Bedingung

d\2
(%) logI'z) -0 als 2z-—>o0

ersetzbar.

Da die Gamma-Funktion durch diese vier Eigenschaften nur bis auf
einen konstanten Faktor bestimmt wird, so mufl man die Bestimmung
der Konstante C' auf anderen Uberlegungen beruhen lassen. Zu diesem
Zwecke kann z. B. jede der beiden Gleichungen

7

eI —2) =— , T'R)T(z+ ) =222t (22)

sSmmmw=z

dienen.
2. Der Kiirze halber bezeichne ich log I'(z) mit F(z) und mit
F™ (2) deren n-te Ableitung. Dann ist

F(z + 1)——F(z)=§i'F‘”)(z)=logz )

n=1 n'

vorausgesetzt, dafl h(z)>1 ist. Daraus folgt

F(z) +2——F(""1’(z) =zlogz —z+C

nez n!

durch Integration lings einer Kurve, worauf stets h(z)>1 ist. Durch
r-malige Differentiation ergibt sich ferner

oo 1 d r
—— F(n+r 1) —_—
‘:_,‘ - +r+1) (2) (dz) log 2

und daher fir beliebige o, ay,...,

‘ 1 max (m,n) O )

?n+1 + r‘::l m+1—n!)

Fe) + ™

m r—1
=zlogz——z+0+§:ar(—g—) logz .
r=1 2
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Nun wihle ich die «,, «y, a;,... derart, da fir n > 1

1 ” o,
mFD) A mELI=7

Es ist somit

!=O.

und zwar

Es entsteht nach einiger Umformung

R,(:) = log I'c) — (zlogz — 2) — O + }logz — 3 (-‘?-)"‘1 log 2

7=2 dz
- 1 m B,
== 2 e eyt EweT i)

3. Der Beweis wird mit einer Abschidtzung der GroBen F(™ (z) be-
schlossen. Es ist, mit Beriicksichtigung von Gleichung (III)

IF @) <n— 1! S |z24s]" .
=0
Es ist jedenfalls
IZ—!—S'}‘SI*—!Z' ’
und falls s > 0 ist

|z4+ 8| >h(z)=h>1,
woraus

IPOEIS@ - _ 3 Jzteltt S lz+el™

<s e>2|z141

<G -zt S e

<(n—1)!(4]|z|h"+ 27 lfly"“ﬂly)
21z
<Am—N1!|z|h ™,
wobei A eine Weltkonstante ist. Folglich ist
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o 1 - | B, | —-n
B 1<zl 2 =0 (Gt )

o0

<4z £ (gagy+ £

n=m+1 n + 1) n r=2 r!

o
<anlz| X hnm.

n=m+1
Schlieflich sei noch bemerkt, daf es ein b,, gibt, derart, da fiir » > 1
nm < b, 2"

gilt. Man hat hiernach mit A>3

| Bo(2) | <ambyn|z] 3 (—’i)

n=m+1 2

— -1
—anbalzl(3)  (3-1)

| Bp(2) | <emlz| b

so daB

wie behauptet.

(Eingegangen den 14. November 1947.)
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