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Ûber die Stirlingsche Reihe

Von F. V. Atkinson, Oxford

1. Wegen ihrer mannigfaltigen Anwendungen ist eine einfache Her-
leitung der Stirlingschen Reihe sehr zu wiinschen. Deshalb mag die Her-
leitungsweise, die ich im folgenden mitteile, nicht ganz ohne Interesse
erscheinen. Ich habe mich auf den Fall der Gamma-Funktion beschrânkt,
doch lâfit sich die Méthode leicht auf allgemeinere Fàlle des Summations-
problems ûbertragen.1) Es wird gezeigt, da8 die Euler-Maclaurinsche
Summenformel als eine Art Umkehrung der Taylorschen Reihe betrachtet
werden kann.

Ieh beweise den folgenden

Satz. Es sei

h h (z) min {| z |, | z + 1 |, | z + 2 |,...}
und ferner A>3. Dann ist

log J» (z - |) log 2 - z + C + J: (- 1)" n{^n_ z1-" + Rm (z)

wobei

Hier bedeuten C, die cm und spàter am, bm gewisse positive Konstan-
ten ; Bn ist die n-te Bernoullische Zahl. In der Tat ist

Der Wert von lg z werde durch die Forderung

| are z \ <n

bestimmt. Es wird folgendes iiber die Gamma-Funktion benutzt :

1) Vgl. E. Pascal, Repertorium der hôheren Analysis (Teubner, Leipzig 1929,

Bd. I 3, S. 1221 ff.).
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(I) F(z) ist eindeutig regulâr, auBer den Punkten 0, — 1, — 2,...,
(II) F(z+l) zF(z)

(iii) (A)2 iog /» !;(* + ^)"2
\ »Z / n=0

(IV) r(») reell fur réelle z.

Bekanntlich ist Gleichung (III) durch die schwâchere Bedingung

(d \2
-T-1 Iog /"(s) -> 0 als 2 -> oo

ersetzbar.
Da die Gamma-Funktion durch dièse vier Eigenschaften nur bis auf

einen konstanten Faktor bestimmt wird, so mu6 man die Bestimmung
der Konstante C auf anderen Ûberlegungen beruhen lassen. Zu diesem
Zwecke kann z. B. jede der beiden Gleichungen

r(z) r{\ -z) ~
si

dienen.
2. Der Kiirze halber bezeichne ich Iog F(z) mit F(z) und mit

F(n)(z) deren n-te Ableitung. Dann ist

oo l
F(z + 1) — F(z) v —^tt> (2) Iog z

vorausgesetzt, daB h(z)>l ist. Daraus folgt

F(z) + ^ -i-^«"-«(z) zlogz~z + G

durch Intégration lângs einer Kurve, worauf stets h(z)>\ ist. Durch
r-malige Differentiation ergibt sich ferner

und daher fur beliebige at, a2,..., ocm

oo 1 max(m,n) „

z Iog z — z + G
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Nun wâhle ich die a1,a2)a3,.,, derart, da8 flir n

(n + 1)! yiTi (n + 1 — r)!

Es ist somit

und zwar
Br

Es entsteht nach einiger Umformung

Bm(z) log r(z) -(zlogz-z)-C+ £log z -
1 w J9VT_ y +l)l ^rèi r\ (n + 1 - r)

3. Der Beweis wird mit einer Abschâtzung der GrôBen Fin)(z) be-
schlossen. Es ist, mit Beriicksichtigung von Gleichung (III)|(|| |

Es ist jedenfalls
\z + s\^\s\~\z\

und fails s > 0 ist
| z + s\ ^h(z) h>\

woraus

<(n-1)1(4 |a|A-"

< (n - 1)! (4 | z | A-w + 2" J îtw
2|z|

wobei A eine Weltkonstante ist. Folglich ist
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- ¦)¦¦)¦

< « I I X

SchlieBlich sei noch bemerkt, daB es ein 6TO gibt, derart, daB fur n

rc™ < 6m 2n

gilt. Man hat hiernach mit h>3

\BJz)\<ambm\z\ S
n=m+l

so daB

wie behauptet.

(Eingegangen den 14. November 1947.)
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