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Sur les répartitions des suites de nombres réels

Par A. AMMANN, Genéve

Résumé d’une thése
présentée a I'Université de Geneéve

1) Définition 1. Nous dirons qu’une suite de fonctions convexes crois-
santes x;(t), définies sur le segment 01, forme une suite normale, si la
dérivée a droite x,* (0) tend vers Uinfini.

Par exemple, a, tendant vers I'infini, la suite a,¢ est une suite normale.
Les suites normales jouissent de la propriété suivante:

Propriété 1. o étant un nombre du segment 01 et P(x) une fonction
périodique intégrablel) quelconque de période w on a

lim —i—‘f Pz (t)] dt= 1 fP(x)dx .

w

Pour abréger I’écriture, nous poserons :

P,(t) = P[z:()] et [P]:%fp(x)dx,

0

de sorte qu’on pourra écrire la relation précédente sous la forme plus
simple :

lim -i-fP,, t) dt=[P] . (1)

D’une maniére plus générale on pourrait appeler suite normale toute
suite de fonctions x;(f) qui vérifie 'égalité (1).

!) Nous entendons par 1& une fonction bornée, intégrable au sens de Riemann.
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En posant

1
F(t:—:;

2:: P,

on voit facilement qu’elle entraine celle-ci :

lim 7}; f F, () dt=[P] . )

2) A chaque valeur de ¢ il correspond une suite de nombres réels z, =
x,;(t), etlasuite P, = P(z,) est déterminée completement par sa répar-
tition module w. En effet, lorsque x; et y, ne different que par un
multiple entier de w, on a P(zx;) = P(y,) en vertu de la périodicité
de P(x). La moyenne arithmétique ¥, des n premiers nombres P,
en tant que moyenne des valeurs prises par la.fonction P (x) aux points
d’abscisse z; (¢ =1,...,n), peut étre rapprochée de la valeur moyenne
[P] de cette fonction.

Définition 2. Lorsqu’on a pour toute fonction intégrable P(x) de pe-

riode w
limF, =[P], (3)

la suite x; est dite équirépartie (au point t) selon w. Les suites normales
généralement ne sont pas équiréparties pour toutes les valeurs de ¢.

Définition 3. On dira qu’une suite x, est unifiante au point t selon w s
pour toute fonction P(x) intégrable et de période w, on a

liminf 7/, <[P] <limsup?#, . (4)

Indépendamment de toute suite z;, on peut définir une suite infinie
P® () de fonctions intégrables de période w, donnant lieu & la propriété
suivante :

Propriété 2. Pour que la suite x; soit unifiante, il suffit que les inégalités
(4) sotent vérifides pour toutes les fonctions P (x).

A chaque fonction P%)(z) il correspond, comme nous ’allons voir, un
ensemble 7'®) de valeurs de ¢ qui est de mesure nulle, et hors duquel les
relations (4) sont vérifiées relativement & la fonction PW (z).

A cause de la propriété 2, les relations (4) sont vérifiées pour toute
fonction P(x) hors de la réunion M des ensembles 7'®, qui est encore
de mesure nulle. Hors de M la suite x; est donc unifiante.
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Théoréme 1. Une suite normale xz,(t) est unmifiante presque partout.

3) Il reste & démontrer qu’il correspond & chaque fonction P® (z),
ou plus généralement & chaque fonction intégrable P (x) de période w,
un ensemble 7' de valeurs de ¢ qui est de mesure nulle et hors duquel les
relations (4) sont vérifiées pour la fonction P (z).

P(x) étant maintenant une fonction déterminée, posons

F} ) =F, @) — [P] .
L’égalité (2) pourra s’écrire ainsi:
lim { Fy (¢)dt =0 . (5)
0

La suite des fonctions FJ () jouit de propriétés remarquables :

1° Les fonctions FJ(t) sont bornées dans leur ensemble.

20 Elles vérifient I’égalité (5) quel que soit le nombre « du segment 01.
On peut leur appliquer le lemme suivant :

Lemme 1. Etant donné une suite infinve de fonctions sommables réelles
F,(t) qui admettent sur le segment 01 une majorante fixe sommable, si U'on
a pour tout o de ce segment

x
liijn(t) dt =0 ,
0
les inégalités suivantes sont alors vérifies presque partout :
liminf F, () <0 <limsup F,(I) . (6)

L’application de ce lemme aux fonctions F* (t) envisagées plus haut
fournit ces inégalités:

liminf F,(t) <[P] <limsup?,(t) . (4)

Comme les précédentes, elles sont valables presque partout, et ceci
achéve de démontrer le théoréme 1.

4)  Quel que soit Pentier m, une suite z,, unifiante pour le module w,
Pest aussi pour le module -—;% . Si les inégalités (4) sont vérifiées pour
toute fonction de période w, elles le sont & plus forte raison pour toutes

. - w
les fonctions de période el
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Définition 4. Une suite x; est unifiante totalement su elle U'est par rapport
aux modules 1,2,3,... Elle est alors aussi unifiante par rapport & tout
module w rationnel.

Théoréme 2. Tout suite normale x,(t) est umifiante totalement hors d’un
ensemble de mesure nulle.

D’apres le théoréme 1 il y a un ensemble de mesure nulle M, corres-
pondant & chaque période. Si nous formons la réunion des ensembles M,
w parcourant la suite des nombres entiers, I’ensemble obtenu, qui est tou-
jours de mesure nulle, contient tous les points ¢ pour lesquels la suite
x,(t) n’est pas unifiante totalement.

On peut définir également I’équirépartition totale:

Définition b. Une suite équirépartie par rapport aux modules 1, 2, 3,. ..
sera dite équirépartie totalement. Elle est alors équirépartie par rapport
tous les modules w rationnels.

Pour les suites normales particuliéres x,;(f) = a,f, on a le théoreme
suivant :

Théoréme 3. Si la suite a,;t est équirépartie presque partout module 1,
elle est équirépartie totalement presque partout. St elle n’est pas équirépartie
module 1 presque partout, elle n’est équirépartie totalement que sur un en-
semble de.mesure nulle.

En particulier, une suite a;t ne peut étre équirépartie totalement que
sur un ensemble de mesure 0 ou 1. On peut déduire ce théoréme de
quelques lemmes élémentaires.

Lemme 22). Sur le segment 01 un ensemble homogéne mesurable (c’est-
a-dire d’égale mesure spécifique) a toujours la mesure 0 ou 1.

Lemme 3. Un ensemble mesurable qui se transforme en lui-méme lors-
qu’on multiplie ses éléments par un nombre rationnel quelconque est homo-
géne.

Lemme 4. Si une suite x, est équirépartie totalement, la suite rx,; Uest

ausst, r étant rationnel.

6) Remarque 1. On peut construire une suite normale a,f qui ne
soit équirépartie nulle part et qui ne soit pas unifiante module 1 sur l’en-
semble de Cantor.

2) Voir J. F. Koksma, Diophantische Approximationen. Erg. IV (4) pp. 43—44
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Remarque 2. Si les suites F,(t) considérées dans le lemme 1 satis-
font pour chaque valeur de ¢ & la condition supplémentaire

lim (F,,, —F,) =0,

les nombres F,(t) admettent pour point d’accumulation toute valeur
comprise entre leur plus grande et leur plus petite limite.

D’apres la conclusion du lemme, on pourra donc extraire pour chaque
t une suite F,_(t) qui converge vers 0. La suite F', choisie peut dépendre
effectivement de ¢. En d’autres termes, on peut donner ’exemple d’une
suite F,(t) pour laquelle on ait les propriétés suivantes :

1) Quel que soit ¢, il est possible d’extraire une suite ¥, (f) qui converge
vers 0 au point 7 ;

2) Aucune suite F,_ (¢) ne converge vers 0 pour deux valeurs différentes
de ¢.

(Regu le 15 novembre 1947))
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