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Newtonian Approximations to a Zéro
of a Function

By Philip Hartman, Baltimore (U. S. A.)

This note is concernée! with conditions required for the convergence
of the Newtonian approximations to a zéro of a function, f(x). Thèse

approximations are given by the recursion formula

*Wi *n -fMIf'M > n 0, 1, 2,..., (1)

where x0 is arbitrary and f'(x) dénotes the derivative of f(x) The
convergence of the numbers (1) to a zéro of f(x) is usually proved under
the assumptions that f(x) has a continuous second derivative, that the
derivative f(x) is bounded away from zéro,

\f'(x)\ >m>0, (2)

and that x0 is chosen sufficiently near a zéro of f(x) For such a proof,
see Runge [3]. The "sufficiently near to a zéro of /(#)" is usually defined
in terms of upper and lower bounds of \f'{x)\ and the least upper
bound of \f"(x) |

For reasons of local convexity, there is considérable simplification in
case f(x) is a polynomial, cf., e.g., Friche [1]. It may be noted that, in
this case, the standard requirement that f(x) hâve no multiple roots
is superfluous.

It is known (cf., e.g., Ostrowski [2]) that the convergence statement
can be so formulated that the existence of a zéro of f(x) is not presup-
posed and that the condition of the proximity of x0 to a zéro can be
replaced by a condition to the effect that f(x0) be sufficiently small.
The "sufficiently small" in this case is defined in terms of bounds of the
first and second derivatives of f(x) and the greatest lower bound of
the absolute value of f'(x), which is required to be différent from zéro.

It will be shown below that the séquence of numbers (1) converges to
a zéro of f(x) even if the standard condition involving the existence of
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a second derivative is dropped, that is, if it is only assumed that f(x) has

a continuous first derivative satisfying (2), and that x0 is chosen suffi-
ciently near a zéro of f(x) The "suffieiently near" is defîned in terms
of the "modulus of continuity of /'(#)". Also, this condition on x0 can
be transcribed in terms of the smallness of | f(x0) | Needless to say,
the results obtained for the problem in one dimension can be extended
to higher dimensions without additional effort, so that only first order
partial derivatives are needed for convergence statements.

This raises the question as to the possibility of improving the assump-
tions still further. The existence of a derivative fr(x) must, of course,
be assumed (at least for every x near to, but distinct from, the root) in
order to define the recursion formula (1) at ail.

As to the other conditions imposed on f(x), a négative resuit, (ii)
below, will show that condition (2) cannot be omitted. In other words,
if f(x) is defined and has a continuous derivative on | x | ^ 1 and

if f(0) 0, and f'(x) > 0 for x ^é 0 then the séquence need not
converge for ail x0 suffieiently near x 0

On the other hand, (i) below will show that the continuity of the
derivative fr(x) at the zéro of f(x) cannot be omitted; that is, if f{x) is

defined and possesses a derivative on | x | <£ 1, and if /(O) 0, and

f(x) is continuous for ail x ^ 0 and satisfies 0 <m<f'(x) < M on
| x | ^ 1 then the séquence of numbers (1) need not converge for ail

x0 suffieiently near x 0

Thus, in a certain sensé, the following theorem is the "best":

(I) Let f(x) be defined on \ x | <£ 1 and possess a derivative ff(x)
satisfying (2). Let /(O) 0 and ff(x) be continuous at x 0 Then
the séquence of numbers defined by (1) converges to zéro whenever \ xQ\ is

suffieiently small.

Let 0 be arbitrarily chosen in the interval 0 < 6 < 1 In virtue of
the continuity1) of fr(x) at x 0 there exists a number ô > 0 such

that
Ifix1) -f(x2) \^6m, whenever | x1 \ ^ ô and | x2 \ ^ à (3)

*) Professor Ostrowski has pointed out to me that the proof of the theorem (I) does

not use fully the assumption that f'(x) is continuous at x 0 but merely the fact that
the oscillation of f'{x) at x 0 is less than m, that is, that (3) holds for some pair of
numbers 6 and <5, where 0 < 0 < 1 and ô > 0 On the other hand, in the example
constructed to prove (i), the oscillation of /'(a?) at x 0 is exactly m, but the New-

tonian approximations do not converge for ail suffieiently small | x0 \
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where m is the positive number occurring in (2). It will be shown that
séquence (1) converges to zéro whenever

I *o I ^ à (4)

By the mean value theorem,

/(0) /(*„) - xj'(xn) + xn{f'{xn) -/'(£„)) (5)

n 0,1,2,..., where £n is a number between 0 and xn; so that, in
particular,

If.l<l*.|. (6)

Dividing (5) by ff(xn), using (1) and the fact that /(0) 0, one
obtains

'{xn), n= 0,1,2,... (7)

Placing n 0 in (7), the inequalities (2), (3), (4) and (6) imply
| xx | ^ 6 | xQ\ ; in particular, \ xx\^ à and so, by induction,

n+1 \^ 0, 1,... (8)

This complètes the proof of (I).
It may be remarked that, in the standard proofs requiring the existence

of a continuous second derivative, the estimate (8) can be replaced
by

K | xn | / 2m ^ (K | x0 | / 2m)2* n 1, 2,... (9)

where m, as above, is a lower bound for | fr(x) | and K is an upper bound
for \f"{x) | Actually, the above proof of (8) implies

| xn\^ | xn^\ œ(\ Vil)/w, w= 1,2,... (10)

where co(<5) is the modulus of continuity of ff(x) at x 0, that is,

co((5) 1. u. b. Ifix1) -f(x*) | for | x1 \ ^ (5, \x*\^ô
Thus,if f'(x) satisfies a Lipschitz condition at x 0 (for instance, if
it is differentiable at x 0), then there exists a constant C > 0 such
that
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In this case, (10) becomes

\xn\^C\xn^1^lm9 n= 1,2,...,
or

C\xn\lm£{C\ xQ\jmYn, n= 1,2,... (9 bis)

In order to avoid a condition involving the proximity of x0 to a zéro
of f(x), one can restate (I) as follows:

(II) Let f(x) be defined for | x | fg a and possess a continuons dériva-
tive ff(x) satisfying (2). Let à > 0 be such that, for some 0 < 1,

Iffa1) — f(x2) | ^ dm whenever | x1 — x2 | ^ ô (11)

ie^ a:0 6e a^2/ number such ihat

| /(a?0) | < ^ m and | o;o | < a - 2 ô (12)

Then the séquence of numbers (1) déterminée by this x0 converges to a zéro

of f(x)

It is clear that conditions (12), (2) and the continuity of ff(x) imply
the existence of a zéro within a distance ô of x0. The proof is now an

immédiate conséquence of (I).
The two négative results mentioned above will now be set forth.

(i) // f(x), where \ x | ^ 1, has the properties that /(O) 0 that

f(x) is différentielle for \ x \ ^ 1 that the derivative ff(x) is continuons

for every x =fi 0 and is such that there exist constants m, M satisfying

M >f(x) ^ m > 0 | x | < 1

then the séquence of numbers (1) need not converge for ail sufficiently small

Kl-
Let ^ < a0 <«!<••• be a séquence of increasing numbers such that

cxn-> 1 as n-> oo Let an 2-2"o^, 6M 2~2^, ^ 0,1,2,.... For
| a; | fg 1 define the function f(x) as follows :

/(O) 0

/(#) 2-^+!^ if an ^ x ^ 6W

For the moment, f(x) remains undefined if bn+1 < | x \ < an
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Consider the séquence of numbers (l) if x0 is chosen on the interval
an ^ x ^ bn From the case n 0 of (1)

xx x0 - 2-*+1£0* / 2-™x% - x0

But x2 — #! #0, since /(x) —f{—x) so that the séquence
defined by (1) is #0, — x0, x0,..., which does not converge.

It remains to be shown that the définition of f(x) can be extended for
ail # in | x | ^ 1, so that f(x) will hâve the stated properties. First, if
an â x ^ bn

f(x) 2~nx~^

so that
1 <£/'(*) ^o.-1;

in addition

The définition of /(x) will be extended in such a way that

/'(0) lim/(a;) / x 2 (11)

and that, for x ^ 0, /;(^) exists, is continuous and is not less than 1.

The mean value of ff(x) on the interval bn+1 ^ x ^ an

is seen to be

2(4an-l)/(4aB2-l);

and has, therefore, the limit 2 as n -> oo Let ôx, ô2,... be a séquence
of numbers which tends to zéro so rapidly that ônjbn-+O as n -> oo
Then a séquence of numbers m1, m2,... can be determined in such a
way that mn->2 + 0 as n->oo, and that, if f (x) is defined to be
the constant mn on the interval bn+1 + ôn^ x ^an -— ôn and linear
on the intervais 6n+1 ^ x ^ bn+1 + ôn, an — <3W ^ a? ^ an, then the
fonction f(x), obtained by intégration, has the required smoothness.
In the two intervais of length <5W, the derivative ff{x) will increase from
1 to mn and decrease from mn to a~\ respectively; while
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The existence and continuity of îr(x) for ail x ^ 0 is clear, as is, also,
the inequality f(x) ;> 1 The limit relation (11) follows from mn->2
and àjbn -> 0 as n ->¦ oo

This complètes the proof of (i).

(ii) If f(x), where \ x | ^ 1, has the properties that /(0) 0, that

ff(x) exists and is continuons for \ x | ^ 1, and that fr(x) > 0 if x ^ 0

then the séquence of numbers (1) need not converge for ail sufficiently small

ii
Let an 2-4"-2 and &„ 2-4wfor n 0, 1,..., and, for | x \ ^ 1, let

/(0) 0
a

2-4w-2x?, if an^x^bn, n 0, 1,...,

For a moment, /(x) remains undefined for bn+1 < | x \ < an

It is clear from the proof in the last example that, if x0 is chosen on
the interval an^ x^bn, then the séquence of numbers (1) becomes

xo, — #o> #(>>••• an(l *s> therefore, divergent.
In order to complète the définition off(x) with the stated properties,

note that, if an ^ x ^ bn

0 <f(x) 2-^
and

0 </(»;) / x

The mean value of f'(x) on the interval bn+1 ^ x ^an is seen to be

(2-4w~2 — 2~4w-4) 2-27l~4 31/3

which has the limit 0 as n -> oo The construction may now be carried

out as before ; in this case, mn -> + 0 as w -> oo

(Reçu le 13 novembre 1947.)
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