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Relations between
cohamology groups in a complex

By SamueL EiLenBerG, New York

In a recent paper [4] the author and S. MacLane have established a
rather peculiar isomorphism in the cohomology theory of groups. The
isomorphism asserts that

H"(@,G*) ~ H"+*(Q,G) , n>0 (*)

where @ is any (multiplicative) group, G is an abelian group with ¢ as
operators. The group G* is defined, in terms of a representation @ = F/R
where F is a free group and R is an invariant subgroup, as the group of
all homomorphisms R — G with suitable operators of ¢ on G*. Next,
both F and R are factored by the commutator group of R and there
results a representation @ = F,/R, with R, abelian. This is a group
extension which defines a cohomology class f, e H2(Q, R,) with @ sui-
tably operating on R,. The groups R, and G* are suitably paired to &,
and the isomorphism (*) is then defined for each fe H"(Q,G*) as the
cup-product f, U fe H"*+2(Q, G).

Let now K be a simplicial complex and @ = &, (K) the fundamental
group of K. If suitable homotopy groups of K vanish then the cohomo-
logy groups of @ are isomorphic with the cohomology groups of K (see
[3], [1], [2]). Since @ operates on the coefficient groups, local coefficient
systems have to be used in K. Thus (*) becomes an isomorphism of the
cohomology groups of K.

In this paper we show how this isomorphism can be set up intrinsi-
cally in the complex K using the cup-product with a suitable 2-dimen-
sional cocycle in K. The proof of the isomorphism still utilizes (*). It
would be desirable to make this proof intrinsic.

The particular 2-dimensional cocycle in K used, is one of a sequence
of characteristic cocycles that we define in this paper and that should
find other applications.
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1. Local systems of groups in a simplicial complex.

This section gives a brief review of Steenrod’s local coefficient theory
[5] for simplicial complexes, with minor modifications.

Let K be a connected simplicial complex. A local system G ={G',,y 45}
of groups in K consists of two functions ; the first assigns to each vertex
A of K a group G, the second to each pair A, B of vertices of K, which
are contained in a simplex of K, an isomorphism

vap:Gp—> Gy
subject to the condition

YaB YBc = Y4ac

for A, B, C in a simplex of K. It follows that

Y44 = ldentity , Y4B = VB4 "

A homomorphism ¥ of the system G = {G,,y,p} into the system
G’ = {@,,v,z} is a family of homomorphisms

v G~ Q)
defined for each vertex of K, such that in the diagram

YaB
GB I GA

¥z l l Ya
Qy — G,
VB
the commutativity relation

Y4 YaB— ?;B Y

holds. If each y, is an isomorphism (onto) then ¥ is called an isomor-
phism
Y.6~G'.

A typical example of a local system is obtained by taking G, to be
the n-th homotopy group =z,(K, A) relative to the vertex A as base
point. The isomorphisms y 4, 5 are then the well known isomorphisms o 5
used to prove that ‘the homotopy group is independent of the base
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point”’. The resulting local system will be denoted by 17, (K) ={n, (K ,4),

Q4B -
An edge-path (Kantenzug) in K is a sequence

P=A,,... A,

of vertices of K such that each pair 4, , and 4, is in a simplex of K
for 1 =1,...,r. If G= {G4,y,5} is a local system in K, then

Yp="Yay4, Y4, 4,
is an isomorphism
vp Gy, —> Gy, .

In particular if 4, = A, = A then y, is an automorphism of G, . This
leads to the definition of the automorphisms

y(!:GA—_) GA

for each aen,(K,4). These automorphisms have the following pro-
perties

Yooy = Yoy Yo, > V1= identit’y

YapVe = Va I o'emy(K,A) and oYpo' =o.

In view of these properties we say that the local system I7,(K) operates
on the local system G. If ¥ = {y,} is a homomorphism G — G’ then
each v, : @, — @), is an operator homomorphism. Conversely any ope-
rator homomorphism v, : G, — @G, given for a particular vertex 4 of
K extends uniquely to a homomorphism ¥ :G — G’.

If for a vertex A of K, y, = identity for all «en,(K,A4), then the
same holds at all the vertices of K and the system G is called simple.
A simple system is isomorphic with a local system G’ = {G',, 75}
in which the groups G/, are all equal and 9/, ; = identity. Thus a simple
local system may be treated as a single group.

Let G={G,,y,5} be a local system of abelian groups in K. A
g-cochain ¢ of K over G is a function which to every sequence A4°,...,4°
of vertices of K, all contained is a simplex of K, assigns an element
@(4°,..., A% of G4,. The g-cochains form an abelian group C%(K, G).
The coboundary d¢ is a (¢ + 1)-cochain defined by

(5(])) (Ao, .o .,Aq+1) = 7’4041‘?(‘41:- . .’AQ+1)

g=1 ~
+ E ("" l)i¢(“40s' .. 9Ai:- . "Aq+1)

t=1
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It is easy to verify that éd¢ = 0. The group of cocycles Z%(K, Q) is
then defined as the kernel of & : C? — C?+! while the group of coboun-
daries BY(K, G) is the image group of 6 : C“! — ('?. The ¢-th coho-
mology group of K over G is

HY(K,G)=Z'(K, G)| BYK, G) .

If ¥ = {p,} is a homomorphism of the local system G into the local
system G’ then

g (4°,...,49) =y p(4°,...,49

yields a homomorphism C*(K, G) - C*(K, G') which commutes with
6. This in turn induces a homomorphism

. YK, G) > H (K, G') .

If ¥is an isomorphism G ~ G’ then ¥? also is an isomorphism onto.
Consequently if G is simple H?(K, G) is isomorphic with an ordinary
cohomology group H?(K, @), with a single coefficient group G.

An alternative description of the cohomology groups of K over G can
be obtained by passing to the universal covering complex K of K. The
fundamental group =, (K) (relative to the base point V) acts on K asa
group of transformations (covering transformations) and also acts as a
group of operators on the group G = @,,. The equivariant cohomology
group Hg(ff , @) is then defined and is isomorphic with H(K, G), as
is shown in detail in [2].

Let T : K, - K be a simplicial mapping. Given any local system of
groups G = {G,,y,5} in K define a local system 7* G of groups in
K, as follows

T*G = {Qpuys Yruayrs)

for vertices 4, B in K.
If G is abelian and ¢ e C?(K, G) then setting

T* p(A°,..., 4% = (T(49),..., T(49)

we find that 7* ¢ e C?(K,, T* G). Clearly 6T* ¢ = T* dp so that a
homomorphism

T* : HY(K, G) - HY(K,, T* G)
is obtained.

Let G = {G,,v435}, G’Z{GQ:VQB} and G"={G,Yip} be
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three local systems of abelian groups in K. We shall say that the systems
G’ and G’ are paired to the system G provided for every g’eG’, and
9" «@, an element of g’ Ug” ¢@, is defined such that

91+ 9)Ug" =9g'Ug"+9,Ug" , g'U(gi+9:)=9"Ugi +¢ Ug}
va5(@'VU9") =49 Ui 9") .

A pairing of the groups C?(K,G’) and C%K, G”) to the group
C?+9(K, G) is then defined as follows

(' Ug”)(4°,. .., AP+9) = ¢/ (4°,..., A?) U0 10 ¢"(47,..., AP+9)
for ¢’ eC?(K,G'), ¢" e CY(K, G"). The usual coboundary formula

S(p'Ug") = (dp")U@" + (— 1)? 9" U 8p”
follows by computation. It follows that, if ¢/ and ¢” are cocycles, ¢’U¢”
is a cocycle, and if in addition either ¢’ or ¢” is a coboundary then
@’Ug¢” is a coboundary. There results a pairing of the cohomology
groups H?(K, G’) and H*(K, G") to the group HP*+?(K, G).

If T:K,— K is simplicial and G’, G”, G are abelian local systems
in K with G’, G” paired to G then T*G’, T*G” are paired to T*G
and

T* (p,U T (p// - T*((p'U(p”) .

2. The effect of the fundamental group on higher ¢ohomology groups.

In this section we state the theorem on the influence of the funda-
mental group upon the higher cohomology groups. In the case of simple
coefficients the theorem was first proved by Eilenberg and MacLane [3],
and independently by Eckmann [1]. For local coefficients the theorem
was established by the author [2]. The statement of the relationship has
been altered formally to suit the applications in the later sections.

Let a vertex V of K be selected as base point. We shall write G and
n,(K) instead of G, and =, (K,V).

For each vertex A of K select an edge-path (= Kantenzug) P(4)
leading from V to 4, with P (V) being the identity path. If A and B
are vertices in a simplex of K then

W(A, B) = P(4) AB P(B)
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is an edge-path from ¥V to V and determines an element of =z, (K) that
we shall denote by w(4, B). It is easy to see that

(4, B)o(B, () = (4, C) (2.1)
for vertices A, B, C in a simplex of K.

Let G = {G,,v45} be alocal system of abelian groups in K. Since
7, (K) acts as a group of operators on G = (I, we may consider the
cohomology theory of x,(K) with coefficients in G. We shall use the
non-homogenous description of cochains [4]. Given a cochain

feCi(m (K), @)
for the group =,(K), consider the cochain
xfeCYK, G)
for the complex K, defined by
% f(A°%. .., A% = y5iao [ (0 (4% 4Y),..., (471, 49) . (2.2)
Since for z,,..., %, €7, (K)
(81) @1re - os Tarr) = 7oy (@ -, Tgn)
-+ qu,‘l(~— D) f(@yse e ey &y Tipqyevns Tgpq)
+ (= 1) f(21,. .., 7))

and since Ypigo) Yw (40,41 = Y4041 Ypay it follows from (2.2) and
(2.1) that

(% 6f) (AO,' . -;Aq+1) = Y4041 %f(Al,. . _,AQ-H)

q+1 A
+ S (— 1) f(A°,..., A%,. .., A1) = (dxf) (4°,..., A9+ .
l=1

Thus %6 = éx and consequently a homomorphism

»:H(n,(K),Q) > HYK, G) (2.3)
is defined.

Although the definition of » for cochains depends upon the choice of
the path system {P(4)} we shall show that the homomorphism (2.3) is
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independent of this choice. In fact let {13 (4)} be another path system

and let w, % be defined from {P(4)} in the same way as w and x were
defined from {P(4)}. For every vertex A of K, let v(4) be the element

of #,(K) determined by the closed path P(4)P(4)-!. Then

w(4,B)t(B)=1(4) w(4, B) . (2.4)
For every cochain
fe 0 (n,(K), )
define the cochain
DfeCyK, G)
by setting
Df)°,..., 49

¢
=3 (— VP(AO)f(w (4° AY),..., (A1, A7), t(AY), (A%, 4%+Y),.. .,
1=0
Aq

( 1 Aq))

Using (2.4), we find by a straightforward computation that
0Df=uf—=f— Dof .
Hence »f— = f= 6 Df if f is a cocycle and thus

wf=unf for feH'(n(K),@G).

A cocycle feZ‘K,G) will be called a spherical annihilator if for
every simplicial map 7 : 8? — K, where §? is any simplicial division
of the g-sphere, the cocycle T* feZ(S?, T* G) is a coboundary. The
spherical annihilators form a subgroup of Z¢(K, G) containing the
group of coboundaries B?(K, G). The subgroup of H?(K, G) deter-
mined by the spherical annihilators is denoted by 4K, G).

We shall now prove that

x(H(n,(K),@))c AY(K, G) for g=2. (2.5)

Indeed let feZ?(m,(K),@): it was proved in [4], § 6 that we may
assume that f is normalized, i. e. that f(z,,..., x,) = 0 if at least one
of the arguments =z,,...,z, is 1. Let 7 :8?— K be simplicial ;
without loss of generality we may assume that the base point V of K is
of the form V = T(U) where U is a vertex of 8¢. Select the path
system {P(4)} in K in such a way that if 4 ¢ 7(S?% then P(4) is the
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T-image of a path in §? (with U as base point). Then for any vertices A9,
A! in a simplex of §¢ the path

W(T(4°, T(4Y) = P(T(4°) T(4° T(AY) P(T(4Y))!

is the T-image of a closed path in §?¢. Since ¢ = 2 we have #,(S%) =0
so that W is nullhomotopic. Thus

o (T(4°), TAY)=1.
Now

(T* % f) (4°,. .., A% = = f(T'(4°),..., T(49))
= yrian [ (0 (T (4%, T (4Y),. . .,0 (T (42Y), T (49)))
= yoianf(1,...,1) =0

Hence T*xf= 0 and »f is a spherical annihilator.
The main theorem on the effect of x,(K) wupon the cohomology
groups of K can now be formulated.

Theorem I. If K is a connected simplicial complex such that
7,(K)=0 for 1<i<g

then for every local system G = {@,,y,5} of abelian groups in K the
following isomorphisms hold

x: H (n(K),G) ~ H (K, G) for 1< gq
x:H*(n (K),Q)~ A" (K, G)

where G = G,, V is the base point of K, and the operators of =, (K)
on G are defined by the local system G.

If the local systems G’ = {G',, 7,3} and G”" = {@", 9"z} are paired
20 G then the groups @' =@, and G”" = @, are operator paired
o =@,

Vo

Ya(g'Ug") = (79" )U (0 9")
for every «es,(K). A pairing of the groups OP(w,(K),G’) and
C(n,(K), G" ) to the group C?+¢(m,(K),G) is then defined as follows
(see [4])

(PO @0 ey pig) = F (@15 oo @) U g I (@ pirse o Tpig) -
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The usual formula
O(f'Uf")y = (of YU+ (— 1) f'U 6f"

is then valid and therefore a pairing of the cohomology groups
H?(n,(K),G’) and H?(n,(K),G”) to the group H?+(n,(K),G) is
obtained.

From the definitions it follows that

x2(f'Uf") (4°,. .., AP+9)
= Ypiao (f'Uf") (0(4°, 47),..., o (4P+i-2, 4P+9))
= yrunl (@(4°%4%),.. ., 0 (4771 A7) U5 o Vo, an) I (0 (47, 4741),. ..
w(AP+e1 AP+)) = % f/(A°,..., AP)U 9y, o2 [ (4P,. .., AP+9)
— (' Uxf") (4O, .., AP+a)

thus
x(f'Uf")=nf'Uxf" (2.5)

i. e. % preserves the cup-product.

3. Characteristic cocycles y"*'(n >1).

Let K® (n>0) be the n-dimensional skeleton of the complex K. For
each vertex 4 of K the homotopy groups of K, of K*, and the relative
homotopy groups of K and K", form a sequence

, 0
7, (K, A) < 7, (K*, A) <, (K, K", 4) < - - -
0
~n(K,K" A)« 7, (K, A) « 7, (K", A) <7, (K, K", A) <+ - -

which is exact, in the sense that the kernel of each homomorphism is the
image of the next one. If 4 and B are vertices in a simplex of K then
the isomorphism g, ; of the homotopy sequence at B onto the homotopy
sequence at 4 is defined in the usual way, and satisfies

044 = identity, o,p = 054

Now assume that n>1. If 4, B, C are vertices in a simplex of K,
then 4, B, C are also vertices of a simplex of K* and therefore

94BCPBc = Q4c -

310



Thus the groups of the homotopy sequence are local systems of groups
in K. There results an exact sequence of local systems

?
II,(K) < IT,(K™) < IT,(K, K*) < - - -
« II(K,K") « IT,(K) < IT,(K") < IT, ., (K, K™) <+ - -

Observe that I1,(K, K") = 0 for r<n and therefore I1,(K) ~ II,.(K™).
We shall be particularly interested in the homomorphisms

0
Hn+1(K’ Kﬂ)‘*ﬂn(Kn) _>Hn(K) .

The image system under 9 will be denoted by 0, = {#,(4)}.
Let A°,..., A™+! be vertices of K contained in a simplex of K. Let
A"+ be an (n + 1)-dimensional simplex with vertices d,,...,d, ., and

let L:A"+t1 - K be a simplicial map such that L(d;,) = 4% ¢ =

0,...,n + 1. The boundary A™+1 of A"+ is then mapped into K*. Thus
L is a map of triples

L: (4", A"+, dy) — (K, K™, A% .

With A"+ oriented by the ordering of its vertices, this map determines
an element

x4, .., A" em, (K, K", A°)

and we may regard y"+! as a cochain of K over the local system
nn+1 (K ’ K n).

Theorem II,. x"+! is a cocycle
" eZ"(K,IT, (K, K"))

its cohomology class will be denoted by y"+.

Indeed, let A°,..., A*+2 be vertices of K contained in a simplex of
K and let L:A"?-—>K be a simplicial map of an (n -+ 2)-simplex
A"+2 with vertices d,,...,d,,, such that L(d;,) = A%, + =0,...n + 2.

N

Let A, be the face of A™+2 with vertices dyye oy ;5. ..y dys. The maps
L:(4,,4,,d)—~ (K, K, A%, i=1,...,n+2
determine the elements

N\

20, .. A, .. A™) eI, (K, K™, A%)
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while the map .
L:(4,, 4,,d,) - (K, K", A)

determines the element

(AL, .., A" eIl (K, K", AY) .
Also the map .
L :(4ar+2, 4°, A%) — (K, K", K")

determines an element « ez, ,(K, K", A°). By a general additivity
theorem in homotopy theory

n+2 A

o= 04041 xn+1(A1,. . .,An+2) + 2 (— l)ixn'*'l(AO,. . .,Ai,. . .,A"+2)
i=1
— SyHI(AD,. .., A" |

However o« = 0 since L is defined throughout all of A"+? and thus
dx"*tt = 0.
Combining the cocycle y"+! with the map

0:11, ,(K,K") -0,
yields a cocycle
§n+1 —_ axn+1 € Zn+1 (K, on)

whose cohomology class will be denoted by &"+1.

Assume now that z,(K)= 0. The local systems 7, ,(K, K") and
6, are then simple and can be replaced by the single groups =, (K, K")
and ¢,. Thus y"+! and £"+! become cocycles in the ordinary sense

y"tL e ZmH1 (K, Tpi1 (K, K")) , gl e Zn (K, 9,) .
Assume further that

n;,(K)= 0 for t=1,...,n—1.

It follows that
7w, (K") = 0 for t=1,...,n—1

and from the exactness of the sequence
0
veie> 7 (K, K" > 7n,(K") > 7, (K) >7,(K,K") =0

it follows that =, (K") maps onto x,(K) with kernel 4,,. Further from &
theorem of Hurewicz

7. (K) ~ H,(K)
7, (K") ~ H,(K") = Z,,(K") = Z,(K) .
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The map =z,(K") - =,(K) may thus be replaced by the natural homo-
morphism Z,(K) - H,(K) and under this substitution the group 4,
is replaced by the group B, (K) of boundaries. Thus £”+! may be regar-
ded as a cocycle

ngnt1 c Znn (K, B, (K)) .

This last cocycle could of course be defined directly in terms of homology,
without any assumption on K and without local systems.
Indeed, consider the boundary homomorphism

2 :C,p1(K) - B,(K)
which may be regarded as a cochain
deC"1(K, B,(K)) .

Then 0 is a cocycle and is equal to 2&"+1,

We may observe that the cocycle £"+! may be regarded as the ,,obstruc-
tion” against retracting K"+! to K", and x"t! as the ,,obstruction”
against retracting K"+! to K™ by deformation.

4. The coeyeles y* and &2

We now turn to the discussion of the case n» = 1. The relation
048 0po = Q4¢ is then not always valid and the groups involved will
have to be modified before they form local systems.

Let y,(4) be the commutator subgroup of =,(K, K!, A) and let
#,(4A) be the kernel of the homomorphism

iy oy (KL, A) - m, (K, A) . (4.1)

Since 7, is a mapping onto, x%,(4) is an invariant subgroup of =z, (K3, 4)
and by exactness, x,(A4)= on,(K, K, A). It follows that

0y (A) = [#,(4), #,(4)]

18 the commutator subgroup of x,(4) and is an invariant subgroup of
both 2, (4) and =, (K?, A). Define

m (K, K1, A) = m,(K, K2, A) | y,(A) (4.2)
m (Kt ) = my (KY, A) | [#,(A), %, (4)] (4.3)
9, (4) — omy (K, K, 4) = 1, (4) | [ (4), ()] (4.4)
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and consider the sequence
0~
$(A)<m(K, K, 4) <« 7, (K, A) <~ - - (4.5)

The definition of the isomorphisms g, p carries over to the groups of the
sequence (4.5). We shall show that the groups of the sequence (4.5) form
a sequence of local systems

0 ~
0, < I, (K, K') < IL,(K) «---

Indeed, let A, B, C be vertices in a simplex of K and let « be the element
of =,(K', A) determined by the path ABCA. The automorphism
O4B Opc O0ca 18 then equivalent with operating with the element o on
the groups of (4.5). Since « maps into the unit element of =, (K, 4) it
follows from exactness that « = df for some fen, (K, K, 4). It is
known that operating with « on =, (K, K!, 4) is equivalent with con-
jugation by 8, while operating with « on the higher groups of the sequence

is trivial. Thus « operates trivially on a;z(K , K1, A) and therefore also
on #,(4). It follows that 9,5 050 = 040¢-
The cocycle x? is then defined exactly as in the previous section except

that »42(4° A%, A2) is considered as an element of ;zz (K, K1, A°). The
same proof as before yields

Theorem II,. y? is a cocycle
<22 (K, I, (K, KY))
its cohomology class will be denoted by »>.
Combining y? with the map @ :ﬁz (K, K') - 6, we obtain a cocycle
&2 =0y*eZ?(K, 0,

whose cohomology class will be denoted by &2.
Consider now the homomorphism

® : 7, (KY) - m, (K)

(both groups taken at the base point V)induced by (4.1). @ maps ;51 (K)
onto 7, (K) with the abelian group 4, as kernel. Thus the pair (7;1 (KY), D)
is a group extension of m,(K) by #,. This extension induces operators of
7, (K) on &#,. We shall show that these operators agree with the opera-
tors resulting from the local system 6,. What needs to be proved is that

for , )
Q@ € 7Ty ﬁe 1 Q¢(¢)ﬂ=aﬁ“"l~ (4.6)
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If P and @ are closed edge-paths (about the base point V) representing

the elements « and g of ;1 then g4, B = 0pf and from the definition of
op it follows directly that g, § is represented by the path PQP-1. This
proves (4.6).

The extension (n,(K!), ®) determines a cohomology class
fo e H? (ﬂl(K), 791)
Theorem III. x f, = &2.

Proof. Let {P(A4)} be the path system used in defining ». For each
pair of vertices 4, B of a simplex of K let

w(d, B) e, (K) , Q(4, B) e 7, (KY)
be the elements determined by the closed path

W(,B)= P(4)ABP(B)! .
Clearly
PQ4,B)=w(4, B) . (4.7)

Let A°, A1, A? be vertices of K in a simplex of K. From the definition
of 22(A4°, A1, 4%) e 7, (K, K*, A°) and from the definition of the map
9: 7 (K, K, A) - 9,(4) it follows that £2(A4°, A1, 42) is the element
of 9#,(4,) determined by the closed path A° 4* 42 4°. Thus the ele-
ment gp 40 £2(A4°, 42, A2%) of ¥, is determined by the path

P (A% A° A A2 A° P(A°)! .
Since this path is homotopic in K! with the path

W (4°, AY) W (A1, A2) W (4°, A%)1 .
It follows that

Q(A4°, A*) (A4, A%) = gp40) §2(4°, 41, A2) Q(A°, 4%) . (4.8)
Now select for each z em,(K) a representative wu(x) e 7;1 (K1) so that

Du(x)==x .
Then for z, y e m, (K)

u(x) u(y) = fo(, y) u(zy)
where the factor set f, is a cocycle f, € Z2(n,(K), #,) in the cohomology

class Jo-
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From (4.7) we deduce that
Q(A,B)="h(4, B)u(w(4, B))
for some h(A4, B) ed#,. The left hand side of (4.8) then yields
Q(A° AY) Q(AY, A%) = h(4° AY) u(w(4° A7) h(A42, A%) u(w(4Y, 4?))
— B(A%, A)[0u 0 41 h(AY, 47)] u(w(4°, AY) u (0 (A4Y, 47))
— B(A®, AY) [0uao, 4 (4, 42)] fo (@ (4%, A7), 0 (41, 49) u (o (49, 47))
while the right hand side gives

Op(ao) &? (40, 41, A%) h(A°, A%) u (w (4°, A2))
and thus
h(AO: Al) [Qw(AO,Al) h’(Ala A2)] fo (w (AO; A1)7 w(Al’ AZ))

= 0po £3(4° AY, A%) B (A, 4?) .

Since all the elements involved are in 4, we can pass to additive nota-
tion. Applying gp{4s Will place all the elements in the group #,(4°):

0panh (4°, Al) + 05 40) Owiao, a1y b (41, A?)
+ oplan fo (@ (4%, 4Y), 0 (4, A7) = £2(4°, A1, 4%) + 0pia0)h (4%, 47) .

Now observe that i
Op(40)Pw(40,41) = Q4041 QP(AI)

and by (2.2)
epan fo(0 (4% AY), w(A4Y, A%)) = « f(4°, A1, 4?) .

Define the cochain ¢ ¢ C1(K, 0,) by setting

(49, 41) = g;}Ao)h(AO, AY) e,(4°) .
Then
@ (4% AY) 4 04041 9 (A%, A2) 4 % [, (A0, AL, 4?)

e §2(A0’ Al’ A2) + w(AO, A2)
or E=uxf,+ dp

which proves the theorem.
From Theorems I and III we deduce

Corollary IV. &%2¢ A%(K, 6,).
This fact could easily be established directly.
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5. The reduction theorems.

Given two local systems G = {G,,y,p}, H={H,,n,5} of abelian
groups in K define a new system

G = {TA’ TAB}

where 7', is the group of all homomorphisms of H, into G, while 7,
is defined for each ¢t €Ty as

Tagt = YaplNis -

Setting UL = t(h)

for heHg, teTy we find
Yap(hUt) =y, gt (h) =y pt (77:1113 Naph)
= (t4p5t) Maph) = naphUTtypt

so that H and GH are paired to G.
In particular if we consider the local system G®' then the mapping
@ > &Ugp for @eH"(K, G*) defines a homomorphism

£U: H"(K, G®) - H"+*(K, G) . (5.1)

Let Gt be the group of the system G°: at the base point V. Then G*:
is the group of all homomorphisms ¢:¢, -G with operators

Tat:yatgt;—l .

Then the correspondence f— f,Uf for fe H"(n,(K),G*), «enm,(K)
yields a homomorphism

£oU : Ho (ny(K), G%) - H™2 (m, (K), G) .

This is precisely the homomorphism used in [4], § 10 to establish the cup
product reduction theorem. Indeed setting

F = 7, (KY) R = on,(K, K%)

we find that F is free and that F is mapped onto x, (K) with R as kernel.
Thus
7, (K)=F|R ,

Further by (4.3) and (4.4)
R(): -R/[Ra R]:ﬁl
F, =F|[R, R) =,
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so that 7, (K) = m,[9, = Fy[R, (5.2)

and f; is the cohomology class in H2(n,(K), #,) = H2?(n,(K), R,) deter-
mined by the extension (5.2). Hence the reduction theorem of [4] im-
plies that

foU : H* (2, (K), G%) ~ H™+2(n,(K), Q) ,  for n>0. (5.3)
Further from (2.5) and Theorem IIT we deduce that

2x(foUf)==nfoUxf= EUxf. (5.4)
Combining (5.3), (5.4) and Theorem I yields
Theorem V. If ¢>0 and
7, (K)=0 for 1<i<q-+ 2
then the following isomorphisms hold
EU:H*(K,G) ~ H" (K, G) for 0<i<gq
E2U.:HY (K, G%) ~ A+ (K, G) .
Since in this theorem it is assumed that x,(K) = 0 it follows that the

local systems 6, and ]~72 (K, K') are isomorphic under ¢ and therefore

in the theorem &2 can be replaced by y2 with G® replaced by G,
Before we proceed with a discussion of the homomorphism (5.1) for
n =0, we must examine more closely the groups H°(K, G) and
H°(n,(K),@). Let @ e C°(K, G) be any 0-cochain of K over G. Then
Op(A°, A1) = 9 40419 (4% — @(4'). Hence ¢ is a cocycle if and only if

(A% = ¥ 4041 9(4Y) .

This implies that if P is any edge-path joining vertices 4 and B of K then

¢(4) = yp @(B) .

Since K is connected it follows that the value ¢(V) of ¢ at the base
point V, determines the cocycle ¢. Moreover the element ¢ (V)G is
invariant under the operators y,, «em;(K). Let G% denote the sub-
group of G 4 consisting of the elements invariant under the operators. The
groups G% form a simple subsystem G° of G. Thus G° may be identified
with the group G° (at the base point) and

HY(K,G)= H (K, G =G .
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Now consider feC°(z,(K),G). Then feQ@ and (6f)(z) = y,f — f for
every z ez, (K). Hence fis a cocycle if and only if f is in the subgroup
G°. Thus

HO (7, (K), Q) = H(m,(K),G°) = G° .
With these conventions the mapping x : H° (%, (K), Q) - H°(K, G) be-
comes the identity map of G° onto G°.

Now consider a 0-cocycle ¢ €Z°(K, G°). The coboundary formula
then gives @(4) = v,5¢(B) = y4p5 ¢(B) 045, or

¢ (4)oap = van®(B) .

Thus @ is simply a homomorphism 6, - G of the local system 0, into G.
This homomorphism is determined by an operator homomorphism

p(V):9, -G .
Further

(62U @) (40, 41, A%) = £2(A4°, A%, A®) Ut 042 9(47)
= §2(4°, 4, 4*) U p(4°) = p(4°) (£2(4°, 4%, 4?)) .
Thus &2U¢g is the image of the cohomology class &2 under the homo-
morphism
H*(K,6,) - H*(K, G)
induced by the homomorphism

p:0,>6G .

Similarly if we consider @{V) as a cohomology class in H°(x,(K), G*)
then f,Uq(V) is the image of f, under the homomorphism

H? (nl(K)a 791) - H? (nl(K), G)
induced by the operator homomorphism
p(V):9, >0 .

Since » maps H2(m,(K), @) isomorphically onto A%(K, G). Theorem
13.1 of [4] yields
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Theorem VI. Let Hom (6,, G) be the group of all homomorphisms ¢
of the local system 0, into the local system G. The mapping

Hom(6,, G) - H*(K, G) (5.5)
which to each ¢ assigns the image of &2 under the induced homomorphism
H*(K, 0,) - H*(K, G)

maps Hom(6,, G) onto A2(K, G). The kernel of (5.5) consists of those
homomorphisms ¢, for which the operator homomorphism ¢ (V) : 4; -G

can be extended to a crossed homomorphism E 1oy (KY) -G
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