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Beitrage zur Theorie der singuldren Integrale
bei Funktionen von mehreren Variablen 11"

Von RoLr CoNZELMANN, Basel

§ 1. Einleitung

1. Die vorliegende Arbeit befaf3t sich mit Anwendungen der im ersten
Teil dieser Beitrige gewonnenen Sitze auf die bekanntesten Kerne sin-
guldrer Integrale.

Zum Verstindnis dieses zweiten Teils geniigt es, vom ersten Teil die
Einleitung, die Sétze V bis VIII, sowie die Kriterien I und IT in § 13 sich
in Erinnerung zu rufen. Uber die in beiden Teilen verwendeten besonde-
ren Bezeichnungen und Begriffe orientiert ein Verzeichnis am Ende
dieser Arbeit. Wenn im folgenden Aussagen des ersten Teils zitiert wer-
den, so geschieht dies unter Verwendung der leicht versténdlichen Sym-
bolik: (1; 6.3) fiir Formel (6.3); 1,V fiir Satz V; 1,Va) fir Voraus-
setzung Va ) usw. Die romischen Zahlen hinter den Autorennamen in den
FuBnoten verweisen auf das beiden Teilen gemeinsame Literaturverzeich-
nis am Schlusse des ersten.

2. Fiir jeden Typus eindimensionaler klassischer Kerne!) gibt es
,,Differentiationssitze’’, d. h. es gelten — abgesehen von besonders kom-
plizierten Kernen — die Relationen (1; 1.2) fiir alle Funktionen einer
bestimmten Klasse 2).

Im Falle mehrerer Variablen wird man, um sich die Integrationsarbeit
moglichst zu erleichtern, zunichst etwa Kerne untersuchen, die gleich
einem Produkt von eindimensionalen Kernen des gleichen Typus sind.
Auf solche Kerne werden im folgenden die im ersten Teil aufgestellten
Sitze angewandt. Dabei ergeben sich verschiedene Moglichkeiten je
nach den iiber die darzustellende Funktion getroffenen Differenzierbar-
keitsvoraussetzungen (Totales Differential, O-Ableitung, H-Ableitung).

*) Siehe Comm. Math. Helv., Vol. 19 (1946/47), Fasc. IV, pp. 279—315.

1) Darunter sind im folgenden die allgemein bekannten Kerne zu verstehen, welche
nach der in H. Hahn (1) gegebenen Klassifikation in die Kerne vom Stieltjesschen, Poisson:
schen und WeierstrafBschen Typus zerfallen.

2) H. Hahn (I).
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3. Im Falle der O-Ableitung zeigt sich ein unerwarteter und eigen-
tiimlicher Sachverhalt, fiir den es in einer Dimension kein Analogon gibt,
und auf den erstmals Herr Ostrowsk: aufmerksam gemacht hat. Es scheint
niamlich fiir m = 2 iiberhaupt keine m-dimensionalen Kerne zu geben,
die gleich einem Produkt von m klassischen eindimensionalen Kernen
desselben Typus sind, so daB3 eine beliebige der Relationen (1 ; 1.4)fiir
jede stetige Funktion f gilt, die im ,,singuldren Punkt blo8 O-differen-
zierbar nach der betreffenden Variablen vorausgesetzt wird 3).

Ein Beweis der Richtigkeit dieser Vermutung fiir sehr allgemeine Stielt-
jessche und Poissonsche Kerne ist enthalten in den beiden auf diese Kerne
beziiglichen Sdtzen VII und VIII (in den Nummern 22 bzw. 47) dieser
Arbeit. Der Beweis obiger Vermutung fiir Kerne vom Weierstrafschen

Typus wird sich bei spiterer Gelegenheit in anderem Zusammenhang
ergeben.

4. Herr Ostrowsk: *) hat einen neuen, formal sehr einfachen Kern an-
gegeben, welcher den oben beschriebenen Mangel der klassischen Kerne
nicht aufweist, und der z. B. fiir die in FuBBnote 4 zitierte Arbeit von
ganz fundamentaler Bedeutung ist. Weitere Untersuchungen iiber Kerne
mit analogen Eigenschaften bleiben einer spiteren Arbeit vorbehalten.

Wie bereits im ersten Teil habe ich auch hier fiir die Darstellung stets
m = 2 Variable gewdhlt. Wo die Verhiltnisse fiir mehr als zwei Variable
nicht ganz analog liegen, wird jeweils besonders darauf hingewiesen wer-
den.

Fiir die vielseitige Unterstiitzung, die mir Herr Prof. Dr. A. Ostrowsk:
auch bei der Bearbeitung dieses zweiten Teils gewéhrt hat, bin ich meinem
verehrten Lehrer zu groBem Dank verpflichtet.

§ 2. Hilfssitze

5. Mit einer beliebig vorgegebenen Grofle I >0 bilden wir das (offene)
Intervall (—1,7) = (L). Unter einem Einerkern auf (L) soll dann im
folgenden eine Funktionenfolge w(u,n) m =1, 2,... verstanden wer-
den, deren Glieder bis auf Nullmengen R, auf (L) definiert und iiber L
integrabel sind. Wir wollen sagen, der Einerkern y auf (L) sei totalstetig,

%) A. Ostrowski (I), p.269. In der zitierten Arbeit beziehen sich die Aussagen iiber
diesen Punkt zwar auf eine Relation, die sich von der unter (1; 1.4) notierten dadurch
unterscheidet, daB die Operationen der Integration und der Differentiation miteinander
Vertauscht sind. Wir werden jedoch in den Nummern 30 und 46 nachweisen, dal diese
beiden Relationen fiir die zur Diskussion stehenden klassischen Kerne miteinander aqui-
valent sind.

Y) A. Ostrowski (I), p. 2170.
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wenn w(u,n) fir jedes n in jedem (abgeschlossenen) Teilintervall
L’ < (L) totalstetig ist.
Gilt fiir jedes hinreichend kleine A >0

h h
lim f:p(u,n)duzg, f{w(u,n)]du<N (n=1,2,...),
~h

—h

so werden wir sagen, p sei p-strebig im Ursprung bzw. geniige einer
N-Ungleichung im Ursprung.

Wir bezeichnen mit (R,;(0)) ein offenes achsenparalleles Quadrat mit
der Seitenldnge 27, dessen Zentrum O ist. SchlieBlich heiBle (%, n) ¢ (v,n)
n=1,2,... ein Produktkern auf ( B, (0)), wobei y(u,n) und ¢(v, n)
Einerkerne auf (L) sind, wenn der erste Faktor dieses Produkts total-
stetig ist und wenn

p(u,n)ew,n) =0 (P(u,v)< R*< (Ry;(0)), n—>o0) % (2.1)

gilt, und zwar gleichmafig fiir alle Punkte P(u,v) eines beliebigen
achsenparallelen, abgeschlossenen Rechtecks R* < (R,,(0)), das den
Nullpunkt nicht enthélt. Ist ¢ =y, so sprechen wir von einem sym-
metrischen Produktkern.

6. Unter Benutzung des in den Nummern 28 und 29 im ersten Teil
definierten Begriffs des Verschiebungskerns konnen wir jetzt einen Hilfs-
satz wie folgt formulieren :

Hilfssatz 1. Jeder Produktkern auf (Ry,(0)) ist ein Verschiebungskern
auf (R,,(0)).

Die Relation (2.1) ist offenbar dquivalent mit (1; 6.3), und der Be-
weis ist erbracht, sobald wir wissen, daf} die Produkte @=v(u, n) ¢ (v, %),
@, =y'(u,n) p(v,n) iber jedes Rechteck R’< (R, (0)) integrabel
sind.

5) Da es sich in dieser Nummer durchwegs um Produkte von Einerkernen handelt, wére
es wiinschenswert, alle Voraussetzungen in Relationen zu fassen, die blo von je einer
Variablen abhéngen. Wollte man dieser Forderung konsequent entsprechen, so héatte man
jedenfalls oft sehr komplizierte Bedingungen in Kauf zu nehmen.

Es ist besonders bemerkenswert, da3 die Relation (2.1) im Falle ¢ = ¢ eine fiir y (%, n)
dimensionsabhéngige Bedingung ist. Es kann n#émlich sehr wohl sein, da8 (2.1) fir ¢ =¥
gilt, wiahrend die entsprechende Bedingung fiir drei und mehr Variable fiir denselben
Einerkern g nicht erfiillt ist. Eine entsprechende ,,Verschlechterung* ist natiirlich bereits
beim Ubergang von einer zu zwei und mehr Dimensijonen zu beobachten.
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Nach (1; 7.2) ist

ll

[wem d=T, (-0,  (0<V<,

-1’

wo T,(—1',1) die Totalvariation von y(u,n) im Intervall {(—1I’, 1’
bedeutet. Zusammen mit der Existenz der Integrale

14 4

[1y@mldu, [lp@mn)]d (0<l'<))

-l -

crgibt sich die Existenz von

.‘1 |p(u,n) (v, n)|dudy , fl v (u,n) (v, n)| dudv
R’ R’

und somit die Integrabilitit von @ und @, . —

7. Hilfssatz 2. Ist y(u,n)@(v,n) ein Produktkern auf (R, (0))
und ist @(v,n) firem o # 0 g-strebig im Ursprung, so gilt fir jedes hin-
reichend kleine h>0:

p(h,n) =0 (n —>o0) .

Wiire die Behauptung falsch, so existierten zu beliebig kleinen % >0
jeein x>0 und eine Folgen, (v =1,2,...),s0daB |y(k,n,)|>p fir
alle v gilte. Wegen (2. 1) wire dann ¢(v,n,) nach 0 konvergent, und

zwar gleichmiBig fiir alle v< {(—#&, k), was aber der p-Strebigkeit von
@ widerspriche. —

§ 3. Differentiationssiitze im Falle des totalen Differentials und der
H-Ableitung fiir Produktkerne

8. Unter Benutzung des Hilfssatzes 1 ergibt sich aus Satz 1,VI, wie
man sich sofort tiberzeugt, der folgende :

Satz I. Es sei y(u,n) (v, n) ein Produktkern auf (R, (0)) und
Qo(x, y) ein beliebiger aber fester Punkt aus dem Inneren eines vorgegebenen
Quadrates R, der &v-Ebene.

Damit fir jede Funktion f(€,n), die auf R, zu F; (i = 1, 2) gehért und
i Q, ein totales Differential besitzt, die Relationen
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f(,y) =lim [f(&, gy —z,n)en—y,n)dédy (3.1

> oo
Ry

d T Wy
) =tim [fe,n PE=2
Ry

¢(n—y,n)dédy (3.2)

. gelten, 1st notwendig und hinreichend :
a) (oder a°)). Fir den zu @, = y'(u,n) p(v,n) gehorigen gelochten
Kern gilt 1,Va) (bzw. 1,Va®))®).

b,) und b,). Es existieren positive Konstanten N und b, so daf fir alle n

h

h
b,) fluzp’(u,n)[du- [lo@,n)du <N,
et

—h

h h
b,) fltp’(u,n)ldu-flu(p(u,n)]du<N
gil. B -
c,) und c,) Ks existiert eine Konstante o % 0, so daf3 y g-strebig und
@ —el——— strebig ist im Ursprung.

9. Fir ¢ = v nimmt dieser Satz, wie wir sogleich beweisen werden,
die etwas einfachere Gestalt an:

Satz II. Es ses y(u,n)y(v,n) ein symmetrischer Produktkern auf
(BRy;(0)) und Qo(z,y) ein beliebiger aber fester Punkt aus dem Inneren
etnes vorgegebenen Quadrates R, der &n-Ebene.

Damat fiir jede Funktion f(£,n), die auf R, zu F, (¢ = 1, 2) gehort und
in Q, etn totales Differential besitzt, die Relationen

f(x,y) =lLm | f(&,n)pE—2z,n) p(n—y,n)dédy  (3.3)

n -> o
Ry

a T W
few) =lim [ e, 2E—20
Ry

pn—y,n)dédy (3.4)

gelten, ist notwendrg und hinreichend :

8) a) (oder a°)) bedeutet hier und in den folgenden Satzen, da die Voraussetzung a),
welche sich auf 1, Va) a. p. 298 bezieht, nach Belieben durch die Voraussetzung a°) ersetzt
werden kann, welche auf 1, Va°) a. p. 299 Bezug nimmt.
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a) (oder a°)) Fir den zu D, =y (u,n)yp(v,n) gehirigen gelochten
Kern gilt 1,Va) (bzw. 1,Va®))®).

b,) u v’ (u,n) geniigt esner N-Ungleichung tm Ursprung.

b,) Es existieren positive Konstanten N und h, so daf fir alle n

) )
f| v (u,n)|du - f | uy(w,n) | du<N
gilt.
c) v st eins-strebig im Ursprung.

Beweis. Wir haben offenbar bloB nachzuweisen, da Ib,) fiir p = v
erfiillt und IIb,) notwendig ist.
In der Tat erhidlt man durch partielle Integration

h

h h
—uflw(u n)|du=u|y(u,n) _‘ J}: v/ (u,n)sgnydu ,

wobei sgny =1 fir y =20 und sgny = — 1 fir p<0 ist.

Wegen Hilfssatz 2 strebt der ausintegrierte Bestandteil mit n —oco
nach 0, wihrend das letzte Integral zufolge IIb,) absolut beschrinkt
ist. Also ist auch die linke Seite absolut beschrinkt, und zusammen mit
IIb,) folgt hieraus die Giiltigkeit von Ib,). —

Wire I1b,) nicht erfiillt, so wiirde fiir jedes hinreichend kleine % >0
und eine gewisse von k abhingige Folge n, (v = 1, 2,...) die rechte und
daher auch die linke Seite der Ungleichung

h

k h
| ) | du - ,m,) | dv = "(w,n,)|du -
{1uy'@, )Iu_fklw(vn)!v __j;lu«pu |

h

fy)(v, n,)dv

iy } —h

liber alle Grenzen wachsen, da der zweite Faktor rechts nach 1 strebt.
Also konnte Ib,) fiir ¢ = y nicht gelten. —

10. Ganz analog wie die Sdtze I und II ergeben sich, jetzt unter Be-
rufung auf Satz 1,VII, die beiden folgenden :

Satz ITI. Es sei y(u,n) p(v,n) ein Produktkern auf (Ry(0)) und
Qo(, y) ein beliebiger aber fester Punkt aus dem Inneren eines vorgegebe-

nen Quadrates R, der &n-Ebene.
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Damit fir jede Funktion f(&,n), die auf R, zu F, (: = 1, 2) gehort und
in Q, stetrg und H-differenzierbar nach & ist, die Relationen (3.1), (3.2)
gelten, ist notwendig und hinreichend, daf die Voraussetzungen Ia) (oder
a®)), by), ¢,), ¢,) erfillt sind.

Die Voraussetzung Ib,) kommt also in Wegfall.

Satz IV. Es set y(u,n)p(v,n) ein symmetrischer Produktkern auf
(R2,(0)) und Qy(x,y) ein beliebiger aber fester Punkt aus dem Inneren
etnes vorgegebenen Quadrates R, der &n-Ebene.

Damit fir jede Funktion f(&,7n), die auf R, zu F, (v = 1, 2) gehort und
in Q, stetig und H-differenzierbar nach & ist, die Relationen (3.3), (3.4)
gelten, ist notwendig und hinreichend, daf3 die Voraussetzungen I1a) (oder
a®)), by), c) erfallt sind.

§ 4. Differentiationssitze im Falle der O-Ableitung fiir Produktkerne

11. Der nichste Satz verlangt die Einfiihrung speziellerer Einerkerne.
Es sei fast iiberall in einer Umgebung U (0) des Nullpunktes fiir den
Einerkern ¢ :

pv,n) =0, @(—v,n)=9¢@n) @EUQO), n=1,2,..) (4.1)

Ein solcher Kern heilein i[(0) ein positiver gerader Einerkern. —
Ist y ein totalstetiger Einerkern und gilt fast iiberall in U (0)

up'(u,n) <0, p(—u,n)=yp,n) (u<UO), n=1,2,...) (4.2)

so wollen wir sagen, p sei in W (0) ein gerader Glockenkern?).

Satz V. Es sei p(u,n)g(v,n) ein Produktkern auf (Ry(0)), undin
U (0) sei ¢ ein positiver gerader Einerkern und vy ein gerader Glockenkern.
Qo(x, y) bezeichne einen beliebigen aber festen Punkt aus dem Inneren eines
vorgegebenen Quadrates R, der £n-Ebene.

Damit fiir jede Funktion f(&,n), die auf R zu F, (¢ = 1, 2) gehért und
in Q, stetig und O-differenzierbar nach & ist, die Relationen (3.1), (3.2)
gelten, ist notwendig und hinreichend :

a) (oder a°)) Fir den zu @,= y’(u,n) @(v,n) gehérigen gelochien
Kern gilt 1,Va) (bzw. 1,Va®)).

7) Die Wahl von Glockenkernen scheint fiir das Folgende eine besonders einschneidende
Beschriankung zu sein. Es wird sich aber erweisen, da8 die klassischen Kerne (vgl. FuB-
note 1), abgesehen von den kompliziertesten Fallen, Glockenkerne sind.
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b;) und b,) Es existiert eine Konstante o > 0, so daf vy o-strebig und ¢
1 C e,
— - strebig 1st tm Ursprung.
Y

c) Es exuistiert eine Konstante M,, so daf fir jedes hinreichend kleine

h>0 und alle n
h

E, EJ¢(v,n){w(O,n) — p(v, )} do<M, (4.3)
gilt.

12. Beweis. Wir beweisen die Aquivalenz obiger Voraussetzungen
mit jenen von Satz 1,VIII.

1,VIIIa) und 1,VIIIc) sind dquivalent mit a) bzw. b,) und b,). —
1,VIIIDb) ist sicher erfiillt, wenn wu ¢’(u,n) ¢(v,n) im Ursprung sogar
einer N-Ungleichung geniigt. Wir weisen daher jetzt Ib,) als erfiillt nach :

Wegen (4.2) ist fiir jedes hinreichend kleine A>0

f|u1p(u n)|du = —uy(u,n) l-i—fzpund

.

Unter Beachtung des Hilfssatzes 2 und der p-Strebigkeit von y erkennt
man, dafl das Integral linker Hand fiir n — oo beschrinkt bleibt. Ande-
rerseits ist f | | dv fiir hinreichend kleine A>0 in n gleichméfBig

beschrinkt wegen der Positivitit und der —E - Strebigkeit von ¢ . Also
ist Ib;) und somit auch 1,VIIIb) erfiillt.

13. Es bleibt noch einzusehen, daf3 1,VIIId) dquivalent ist mit ¢). In
der Tat ist, wenn y(u), @(v) anstatt y(u,n), p(v,n) geschrieben wird,

Vr(0) 0 —v

0 —v h v
[1v'@ o) duds = [ [19/@) g@) | dudo+ ] [ |9 @) ()| dudo =
—h v

0 0

= _i ? () [v'(w) dudv — Ljﬁ'cp(v) bf v/ (u) du dv +

v

—

h 0 % .
+ [ o) f'/"(’“) dudv — [ p(v) [ 9/ (w)dudo =

= (20 [p(0) — p(©)] &0 + [ p(0) [p(0) — p(— 0)] dv +
- - (4.4)

A h
+ f‘l’(v) [w(0) — p(— v) ] dv + fqy(v)[w(()) —p()] dv .
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Zufolge der Geradheit von y, ¢ in U (O) ist fiir jedes hinreichend kleine
h>0 die letzte Summe gleich der wegen (4.1), (4.2) positiven GrofBle

h

4 6[ o (@)[w(0) — p(©)] dv .

Dies ist gerade das Vierfache des Ausdrucks, von dem wir unter c) die
Beschrinktheit vorausgesetzt haben. Damit ist bewiesen, daf} die Bedin-
gungen a), b;), b,), ¢) notwendig und hinreichend sind.

14. Anmerkung. Will man darauf verzichten, in den Voraus-
setzungen dieses Satzes p und ¢ in U (O) als gerade anzunehmen, so hat
man offenbar c) durch die Forderung zu ersetzen, daf} jedes einzelne der
vier Integrale in (4.4) fiir n — oo beschrinkt bleibt. Diese Forderung
ist nimlich auch notwendig, weil alle vier Integrale nicht negativ sind.

15. Fir ¢ = y erhdlt man aus Satz V sofort den folgenden:

Satz VI. Es set y(u,n)p(v,n) ein symmetrischer Produktkern auf
(Ry;(0)), und w(u,n) sei in W(0) ein positiver gerader Glockenkern.
Qo(z, y) bezeichne einen beliebigen aber festen Punkt aus dem Inneren
eines vorgegebenen Quadrates R, der Evn-Ebene.

Damit fiir jede Funktion f(&,7), die auf R, zu F, (t = 1, 2) gehort und
in Q, stetig und O-differenzierbar nach & ist, die Relationen (3.3), (3.4)
gelten, ist notwendig und hinreichend :

a) (oder a°)) Fir den zu D, = y'(u,n)y(v,n) gehdrigen gelochten
Kern gilt 1,V a) (bzw. 1,Va®)).

b) v st exns-strebig im Ursprung.

c) Es existiert eine Konstante M,, so daf fir jedes hinreichend kleine
h>0 und alle n
h

D, EJw(u,n)[w(O,n) — ylu,n)] du< M, (4.5)

18t —
16. SchlieBlich sei noch bemerkt, daB auf Grund der Sitze 1,VI* bis
1,VIII* ohne weiteres ersichtlich ist, wie die den Sitzen I bis VI ent-

sprechenden, unter Beriicksichtigung der gleichmdfigen Konvergenz zu
formulierenden Sétze lauten.

278



§ . Bemerkungen zu den Siitzen V und VI

17. Wihrend sich die Sétze I bis VIII im ersten Teil und daher hier
die Sétze I bis IV analog fiir mehr als zwei Dimensionen formulieren und
beweisen lassen, ist in den Sdtzen V und VI wegen der Voraussetzung c)
eine solche Analogie nicht offensichtlich. Wir wollen daher im Falle von
m>2 Dimensionen Bedingungen angeben, die den Voraussetzungen V c)
und VIe) entsprechen.

Es sei y,(u,n) auf (L) ein totalstetiger Einerkern, der in i (0) ein
gerader Glockenkern ist, und es seien Y (w,n) (u=2,...,m) Einer-
kerne auf (L), die alle in U (O) positiv und gerade sind. Es mogen ferner m

m
Konstanten g, (x = 1,..., m) mit H1 0. = 1 existieren, so dafl y,(w,n)
p=
(0 =1,...,m) g,-strebig ist im Ursprung.

Wir betrachten sodann den m-dimensionalen Produktkern

D(yse vy T3 0) = Iy, (2, M) (lz, |<l, u=1,...,m)

in den m Variablen x, (x = 1,..., m) und bezeichnen fir ein beliebiges
h>0 mit U,(O) jetzt den Bereich

|z, | =h (u=1,...,m), |z, | =], ] (v =2,...,m)

und mit V,(0) den Bereich R,,(0) — U,(0O), wobei R,,(0) hier ein um
den Ursprung als Zentrum gelegtes, achsenparalleles m-dimensionales
Intervall mit der Seitenlinge 2k bedeutet.

Die Losung unseres Problems gibt der folgende Satz, worin (5.1) jene
Voraussetzung ist, die der Voraussetzung 1,VIIId) im Fall von m = 2
Dimensionen entspricht.

18. Satz. Damit eine Konstante M, und ein h >0 existieren, so daf
fir alle n

f | @] (%15e .-, 2y n) | dP<M, (AP = dz,...dz,) (5.1)
V4(0)

gult, ist notwendig und hinreichend, daf fir v = y,(x,,n) und ¢ =
=y.(x,,n) (1=2,...,m) die sich so ergebenden m — 1 Relationen (4.3)
erfilll sind. — Hieraus folgt offenbar, daB im Falle y, =y, =y
(k=2,...,m) die Giiltigkeit von VIc) zu fordern ist.
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19. Beweis. Mit 4, (4 = 2,..., m) sei fiir ein festes u jener in der
x, z,-Koordinatenebene liegende (nicht abgeschlossene) Bereich bezeich-
net, fiir dessen Punkte P(z,, z,)

lel’lxpléh’ |x1l<!xy'
gilt.
Um die Notwendigkeit unserer Behauptung zu beweisen, beachte man
jetzt, daB der m-dimensionale Bereich AF , welcher durch die Gesamtheit
der Punkte P(z,,...,z,) mit

P(z,, z5) < 4,, prléh (r=3,...,m)
festgelegt wird, ein Teilbereich von V,(0) ist. Daher folgt aus (5.1),

wenn wir iteriert, zuerst nach «, und z, und sodann nach den iibrigen
Variablen integrieren

m
(194, 14P = [ | pi(21, n) pa(s, m) | dary davy [ 1T |, (2, m) | daty. .. dvyy < M,y
A* p=3

4y Q: (5. 2)

fir alle », wobei @, das durch |z,| <k (u=3,...,m) definierte
(m — 2)-dimensionale Intervall bezeichnet. Das iiber ¢, erstreckte Inte-
gral in (5.2) strebt mit n—>oco gegen eine feste, von 0 verschiedene
Konstante, da

m h
1| 9 (5 0) | A2y Az = 1T [, (2,
—h

" n=3 n=3

ist und die y, (1 = 1,..., m) g,-strebig sind.

Wire jetzt Relation (4.3), welche ja, wie wir in Nummer 13 gesehen
haben, mit 1, VIIId) dquivalent ist, nicht erfiillt fiir p = y,, ¢ = y,, s0
wire das Integral iiber 4, in (5.2) fiir 7 — oo nicht beschrinkt und (5.2)
koénnte nicht gelten‘. — Indem man z, mit «,(z=3,..., m) permutiert,
erkennt man die Notwendigkeit aller aufgestellten Bedingungen.

Daf} die Voraussetzungen auch hinreichend sind, geht aus den an
(5.2) angekniipften Uberlegungen hervor, wenn man beriicksichtigt, daf
die m — 1 Bereiche A} (u = 2,...,m) den Bereich V,(0) iiberdecken.

§ 6. Produktkerne vom Stieltjes-Hahnschen Typus

20. Mit H. Hahn nennen wir y einen Stieltjesschen Einerkern, wenn
p die folgende Gestalt hat : Es sei fiir jeden Parameterwert £ = 1:
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pu,k)=Ck? | yw)* (u<(—1,)=D);

1

2-I(3)
1) =1—o|ul? + o(u) |u|? lim w(w) =0 .
u—>0

Ferner sei Sup| y(u) | <1 fiir jedes Teilintervall L* < (L), das den
Nullpunkt nicht enthéilt, und es sei w(u) mebar auf L 8).

Hahn ®) hat insbesondere gezeigt, daB fir jede Funktion f(&) (£ < (L))
aus der Klasse F'; in einem Stetigkeitspunkt die Relation (1; 1.1) mit
J = L und einem Stieltjesschen Einerkern K = (& — z,k), n=£k?)
gilt.

Einen Stieltjesschen Einerkern wollen wir insbesondere einen Streltjes-
Hahnschen Einerkern nennen, wenn y(u) in jedem (abgeschlossenen)
Intervall L’< (L) totalstetig ist und bis auf eine Nullmenge die Un-
gleichung

| ' (u) | <4 |w|?? (u< L', A = Const.) (6.1)
befriedigt.

Ist y(u, k) ein Einerkern von letzterer Art, so gelten nach Hahn 8)
insbesondere die Relationen (1; 1.2) mit K =¢(é — z,k), n=~F,
J =1L, s=1 injedem Punkt z < (L) einer beliebigen Funktion f(&),
die auf L zu F, gehort und fiir & = = differenzierbar ist.

21. Im Falle von zwei Dimensionen stellen wir jetzt als Beispiel zu
den Sitzen II, IV, V den folgenden Satz auf:

Satz VII). Es sei y(u, k) ein Stieltjes-Hahnscher Einerkern auf (L)
und @Q.(x,y) ein beliebiger aber fester Punkt aus dem Inneren eines vor-
gegebenen Quadrates R, der £n-Ebene.

8) H. Hahn (I), pp. 623—643. Der Einfachheit halber hat Hahn solche Einerkerne nur
fir den Fall benutzt, daB % iiber die Werte der natiirlichen Zahlenreihe nach unendlich
strebt. Von dieser unwesentlichen Beschrankung wollen wir absehen und k stetig nach
unendlich wachsen lassen. Ferner wurde x(u) bei Hahn als eine nicht-negative Funktion
Vorausgesetzt, eine Forderung, auf die man bei den von Hahn hier noch zu zitierenden
Sétzen verzichten kann.

%) Hier und im folgenden soll n = k bedeuten, daB in den betreffenden Ausdriicken an
Stelle des diskreten Parameters n der stetig nach unendlich wachsende Parameter k zu
setzen ist,

. 19) Wie oben sind auch die Satze VII und VIII der Einfachheit halber fiir zwei Dimen-
sionen formuliert worden. Aus ihren Beweisen ist aber ersichtlich, da sich ohne neue
Sehwierigkeiten ahnliche Satze auch fiir mehrere Dimensionen beweisen lassen.
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o) Damit far jede Funktion f(&,7n), die auf R, zu F, gehort, und in @,
stetig st und daselbst ein totales Differential oder eine H-Ablettung
_ nach & besitzt, die Relationen (3.3), (3.4) mit n = k gelten, ist hinreichend,
dafl p =1 istl?),

B) Drese letzte Voraussetzung ist notwendig, wenn
vow'(u) >0 (u—>0, u{RN) (6.2)

gilt, wobes u fiir Punkte einer Nullmenge W aufer acht gelassen wird.

y) Ersetzt man in «) die Klasse F, durch die Klasse F,, so ist (bereits)
p>0 hinreichend.

8) Es ser yo(u, k) ein weiterer Einerkern auf (L) jedoch blof vom Stielt-
jesschen Typus, der im einzelnen durch die Gréflen C,, Py, %o Xo> @o
charakterisiert ses. — Unter den Voraussetzungen p, = p und (6.2) kann
die Relation (3.2) mit ¢ = y,, n =k nicht fir jede auf R, stetige Funk-
tion f(&,n) gelten, die in Q, (blof) eine O-Ableitung nach & besitzt.

22. Folgerungen aus d). Ist f(&,n) nach einer beliebigen der bei-
den Variablen &, 7 O-differenzierbar in @,, und soll die entsprechende
partielle Ableitung von f in @, durch ein singuldres Integral mit einem
Produktkern approximiert werden, der aus zwei Stieltjes-Hahnschen
Einerkernen gebildet ist, fiir welche (6.2) gilt, so darf laut Satz ) weder
Po=p mnoch p=p, sein. Es existiert also kein Produktkern mit der
gewiinschten Eigenschaft, womit die in Nummer 3 iiber Stieltjessche
Kerne aufgestellte Behauptung im Fall m = 2 bewiesen ist. Fir m>2
ist aber jene Behauptung auch wahr. Andernfalls miiBten zufolge des
Satzes in Nummer 18 fiir die m Hahn-Stieltjesschen Einerkerne die Rela-
tionen (4.3) gelten. Die Unmoglichkeit dieser Ungleichungen wird aber
gerade im Beweis zu Satz ¢) erkannt werden.

23. Beim Beweis des Satzes VII wird das Verhalten der Integrale von
der Gestalt

h
Ky(B.h,p, @) = [wt(l—Busfedu (8,h,p>0; ¢>—1) (6.3)

fir £ — oo eine entscheidende Rolle spielen. Eine fiir unsere Zwecke ge-

11) Ein Beweis fiir die Behauptung a), soweit es sich um das totale Differential handelt,
fiir den Fall a =1, p = 2, w(u) =0, jedoch fiir n Variable, findet sich in O. Haupt und
G. Aumann (I), pp. 164—169.
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eignete asymptotische Auswertung ist bereits von Hakn vorgenommen
worden. Nach Hahn!?) gilt fir gh?<1:

_atl
. Ki(B:h,p,9) ~Cp,q,6)-k * (k- oo), (6.4)
wobei
1 "q”;*l g+ 1
ist.

Dem Beweis unseres Satzes sei noch die Bemerkung vorausgeschickt,
daB der Buchstabe C', mit diversen Indizes versehen, im folgenden aus-
schlieBlich fiir Grof8en benutzt wird, die blo von gewissen Parametern,
und zwar nur solchen abhédngen konnen, welche im Laufe der Diskussion
konstant gehalten werden.

§ 7. Beweis des Satzes VII: Behauptungen «) und B)

24. Beweis. Es wird geniigen, unsere Behauptungen fiir den Fall zu
beweisen, daf3 der Parameter k iiber eine beliebige Zahlenfolge k,>1
(n =1, 2,...) nach unendlich strebt.

Zunichst iiberzeugen wir uns, daBl y(u, k,) wegen Sup]| y(u)|<1
(u< L*) die Relation (2.1) mit ¢ =y fir jedes p>0 erfiillt.
v(u, k,) p(v, k,) ist also ein symmetrischer Produktkern.

Behauptung «) wird bewiesen sein, wenn die Voraussetzungen des
Satzes II fiir die Klasse F', als zutreffend erkannt sind. Mit den Voraus-
setzungen von Satz II treffen ndmlich fiir den Kern auch die Voraus-
setzungen des Satzes IV zu, wie ein Vergleich der Sitze II und 1V zeigt.

ITa®) fir F, ist erfiillt: In der Tat gilt fast iiberall

| x)|"=z'(w)sgny (< L'< (L)) (7.1)
und also unter Beachtung von (6.1)

1 Ep—1 -

14 — p—1
|9 (w, k) | < Or B P |2(w)] - |u (u< L'< (L)) . (7.2)

12) H. Hahn (1), pp- 628—629. An jener Stelle ist die Formel, die hier unter (6.4) steht,

;loB fir ¢ > 0 angegeben. Sie gilt aber auch fiir alle ¢ > —1, was aus der bekannten
‘ormel
1

21 wyg D@+ Ty+1)
6{:(1 Ol =g

(x>—1,y>—1)

analog wie bei Hahn folgt.
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Dabher gilt in jedem Rechteck R’ < (R,;(0)) mit Ausnahme einer Null-
menge N, fir jedes k,, :
2
v @ k) 9o, k)| < Cokey 7| z@) [ 2@ T (Pa,v)< BY)
(7.3)
Ist p=1, soist derletzte Ausdruck fiir £, —>oco in jedem den Nullpunkt
nicht enthaltenden Rechteck R* < (R, (0)) gleichmiBig beschrinkt.
Also ist I1a°) fiir F, erfiillt. — Es sei noch besonders darauf hingewiesen,
daB p=1 beim Beweis von «) nur an dieser Stelle benutzt wird.

Die Voraussetzungen IIb,) und IIc) sind bereits von Hahn'®) (bei der
Behandlung des Problems in einer Dimension) fiir alle p>0 als erfiillt
nachgewiesen worden.

25. Wir weisen jetzt I1b,) nach. Wegen w — 0(u — 0) kann man zu
jedem &>0 ein h'>0 angeben, so daB fiir alle u <{—h’,r")

0<1—(wte) |ul?<yg(w)<l—(a—e)|u]? (u<{—h',B'>) (1.9)

ist. Setzt man « — ¢ = B, so gilt daher fiir ¢=0, s=1 und hinreichend

kleine >0
h h

(|u|q | x(u) |*du<<2 fu‘l(l — Bur) du .

Unter Beachtung von (7.3) ergibt sich daher

k

h
! /(uakn) du - ”'P(Uakn)ldvé
Y
by et

=h
.g. ’% — ]Cn—-— Q kn
< Gy 7 [0’ (1—pu) " du [o(1—po”) "y,
b 0
und dies ist wegen (6.3), (6.4) fiir hinreichend kleine % >0 #quivalent

2
1 2

Cuky Py —1) kP ~Cp (k> o) -
" Da C, eine von %, unabhingige Konstante bedeutet, ist ILb,) erfiillt und
damit auch die Behauptung «) bewiesen.

26. Die Behauptung ) beweisen wir, indem wir zeigen, daf3 der zu
v (u, k,) p(v, k,) gehorige gelochte Kern auf R’'< (Ry(0)) fir p<l1

) H. Hahn (I), pp. 628—629, 631—632.
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nicht fast beschrankt ist und also ITa°) fiir #', nicht erfiillt sein kann. In
der Tat gilt, wie man leicht fiir ¥ =0 und % <0 verifiziert, fast iiberall

o) _ o'W
& xp

|7 ()| =aplulr~t1— (x<L'< (L)),
und wegen (7.1) und (6.2) ist daher fiir hinreichend kleine |u | fast
iiberall

[lx@ V| =17 @]>F jupt (a<U(©0), (1.5

wobei U (O) eine gewisse Umgebung des Nullpunktes bezeichnet.
Sei p<1l. Wir wihlen jetzt A>0 so klein, dal neben (7.5) auch

|2 ()| = x(w) = % (v < {—h, kD) (7.6)

gilt. Ferner sei R* ein achsenparalleles Rechteck, welches in (R, (0))
gelegen ist, von der v-Achse halbiert wird und den Nullpunkt weder im
Inneren noch auf dem Rande enthilt. Wegen (7.5) und (7.6) kann man
sodann fiir jedes n ein symmetrisch zur v-Achse liegendes, von » abhéngi-
ges Teilrechteck R} < R* finden, fiir dessen Punkte — bis auf eine
Nullmenge —

kn 1
Tz =

9 () 9 (0, k)| = Cs b 2 |z | " | 2(0)]

ist. Daher kann v’(u, k,) (v, k,) auf R* unmoglich fast beschrinkt
sein. Der dazugehorige gelochte Kern erfiillt also die Voraussetzung I1a°)
fiir F', nicht. Damit ist Behauptung ) bewiesen.

§ 8. Fortsetzung des Beweises: Behauptungen y) und 6)

27. Um y) zu beweisen, braucht jetzt bloB noch unter der Voraus-
setzung 0<p<1 die Eigenschaft IIa°) fiir ¥,, d. h. die gleichgradige
Totalstetigkeit des zu v’(u, k,) (v, k,) gehorigen gelochten Kerns auf
R’ < (R, (0)) nachgewiesen zu werden. Der Beweis wird erbracht sein,
wenn gezeigt werden kann, daB fiir jedes Rechteck R* < (R, (0)), das
den Nullpunkt nicht enthiilt,

Jo= (19", k) p(, k,) [dudo >0 (k, o)
R*
gilt.
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Seien a, b und ¢, d (e <b, c<d) die u- bzw. v-Koordinaten der Eck-
punkte von R*. Wegen (7.2) ist

b

b 1
Su= [ |9/ (. k) | du < Oy (6,7 Juf 7 x| du = 8%

n
a a

Fir 04 (a, b) strebt der Integrand des letzten Integrals mit %, — oo
gleichmiBig nach 0. Also gilt

8¥ >0, 8,50 (mn—>o0). (8.1)

Fir a<0<b oder a<0<b ist wegen (7.4) fiir jedes hinreichend
kleine A>0 und ein geeignetes >0 unter Beachtung von (8.1)

LY .
S:<S:* = C, kif” {' \ulp 1(1—ﬂ|u!p)k 1du+en (6,0, n—>00),

.—-02

wobei 0, =0,=1 oder 0, =0, 0, =1 oder o, =1, 0, = 0 ist und
¢, ein oder zwei Integrale vom Typus S darstellt. Mit Hilfe von (6.3),
(6.4) erkennt man, daB fir hinreichend kleine A >0

% % 1+ = o 1
S ~Cok, ?(k,—1) ~Cek?  (n—> oo) (8.2)

ist.
Andererseits setzen wir

i .
=17, fir 0<c<d oder c<d<0
T,,Ef]@p(v,kn)]dv

=e, fir c<0=d oder ¢c=£0<d,
wobei im ersten Fall

1
SOk 9" (0<d<l; n=1,2,...) (8.3)

und im zweiten Fall wegen der Eins-Strebigkeit von ¢ in O, der Positivi-
tét von ¢ und (8.3)
0<e, <0, (n=1,2,...) (8.4)
gilt.
Falls jetzt R* die v-Achse trifft, so gilt wegen (8.2) und (8.3)

1

% %k P
Jp=8,T, <8, TnNCGknrnn-)O (n— oo0) .
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Trifftt B* jedoch die u-Achse, so gilt wegen (8.1) und (8. 4)
J,=8,T,=8,¢e,—>0 (n —o0) .

Trifftt R* keine der beiden Achsen, so strebt J, erst recht nach 0. Also gilt
in jedem Fall J, — 0 (n — oo0), womit y) bewiesen ist.

28. Wir wenden uns jetzt der Behauptung 6) zu und zeigen zunéchst, daf3
es fiir deren Beweis geniigt, die Bedingung c) von Satz V als nicht erfiillt
nachzuweisen. Satz V bezieht sich auf Funktionen aus der Klasse F; bzw.
F,. Wir haben aber bereits in Nummer 1,55 darauf hingewiesen, daf3 die
Voraussetzung 1,VIIId), mit welcher ja Vc) dquivalent ist, fiir die Giil-
tigkeit von (1; 10.2) notwendig ist, sogar wenn an die Stelle von F,
(v =1, 2) blof} die Klasse der auf R, durchweg stetigen Funktionen zur
Konkurrenz zugelassen wird.

Ferner beachte man, dal auf Grund der Anmerkung in Nummer 14 die
Voraussetzung V¢) auch im Falle von nicht geraden Glockenkernen not-
wendig ist.

Da in jedem Intervall L* < (L), das den Nullpunkt nicht enthilt,
Sup | x| <1, Sup]| x| <1 gilt, ist (2.1) fiir unsere Einerkerne o, y,
erfiillt. Somit ist v (u, k,) y,(v, k,) ein Produktkern auf (R,,(0)). Nach
Definition ist >0, y,>0, und wir haben blol noch nachzuweisen, da3
v in U (O0) ein Glockenkern ist.

In der Tat gilt, wie man fir =0 und %<0 sofort verifiziert, fast
tberall in L' < (L):

1 — /
wy' (u,k,) = — Cocpk:fp Ix(u)|k ' ‘uip(l—%——-fiz) )

Dies ist aber in U (O) wegen (6. 2) sicherlich bis auf eine Nullmenge nicht
positiv. Also ist y(u, k,) in U (0) ein positiver Glockenkern.

29. Wir zeigen jetzt, dafl Ve) nicht zutrifft. Zu diesem Zweck bilden
wir fiir ein kleines %2 >0 den Ausdruck £, :

1,1 &
n= 00k, 7 [{| 7o) — |5 w) () [} du =
0

et B
=00y k,» " !{| 1— oouP?+ wou?®[*r— | 1— (x4 o u? ™) uP+ Q2 (u)u? |** } du .
(8.5)
Wegen p,=p gilt Q(u) -0 (u — 0).
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Zunichst behandeln wir den Fall p,>p. Es sei ein positives &<«
vorgegeben. Sodann wihle man ein A>0 so klein, daB3

1,1 ( & h
E,,%C'Cokn;+”°gf(l—-—(ao+ e)u”“)""du———J (1*(06—8)up)kndug
b

1 1
ist. Die Produkte dieser beiden Integrale mit %,? "0 sind zufolge (6. 3),
(6.4) dquivalent

1

1
» bzw. Cyk,? (Cs,Cyg>0, n—o0) .

08 kn

Da unter der Annahme p,>p diese Ausdriicke fiir #» — oo einander
nicht dquivalent sind und ihre Differenz nach unendlich strebt, folgt
E,— oo (n—o0).

Ist hingegen p, = p, so wihleman ¢>0 soklein,dall &« + xy — £>0
und

1 1
— > ; (8.6)

(o + 3); (¢ + g — 3);

ist. Dann folgt fiir jedes hinreichend kleine >0 aus (8.5) fiir p, = p:

B,

v

2 ( h h
CC,k,? 2 f(l—(zxo—{—e) u”)k”du——f(l—(oc—}-oco—s)u”)"”dus.

2
Die Produkte dieser beiden Integrale mit k,? sind vermoge (6.3), (6.4),
(6.5) dquivalent

1 £
ceC, _*‘L”T %I‘(%) k,» bzw. CC, > - —%—F(—%«)ku Z
(% + &)? (4 org— )7 '
(n—>00).

Diese Ausdriicke sind fiir n —co wegen (8.6) einander nicht éiquivalent,
und da ihre Differenz nach unendlich strebt, folgt wiederum E, —>o
(n— o0). — Damit ist der Satz in allen Teilen bewiesen.

30. Anmerkung. Sdimtliche Behauptungen des Satzes VII lassen sich
aufrecht erhalten, wenn (3.4) bzw. (3.2) unter Vertauschung von Integration
und Differentiation angesetzt wird.

Fiir den Beweis ziehen wir die im ersten Teil in § 13 aufgestellten Ver-
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tauschbarkeitskriterien heran. Bezeichnet i, einen beliebigen Stieltjes-
schen und v einen beliebigen Stieltjes-Hahnschen Einerkern auf (L), so
folgt unter Benutzung von (7.2) fiir fast alle Punkte irgendeines Recht-
ecks R’ < (R,(0))

1+ 41 kn— kn
n

o+ — 1
19 (&) 9o (v, k)| S C,Cok, P 7z @)| " |20(®)]

»—1

v

Zu jedem Wertepaar p,p,>0 und jedem Index = existiert eine
GroBe C,,, so daB der letzte Ausdruck iiberall auf R’ kleiner ist als C, fiir
p=1 und kleiner als C, |« |?~! fir 0<p<1l. Daher ist im ersten
dieser beiden Fille (1; 13. 2) und im zweiten (1 ; 13. 9) mit &, (u,v;n)=
=y’ (u, k,)p,(v, k,) fast iiberall auf R’'< (R,,(0)) erfiillt. Auf Grund
der Kriterien I und 1I in den Nummern 58 und 61 des ersten Teils erkennt

man jetzt die Richtigkeit obiger Behauptung fiir jeden der Teilsitze
VII &) bis 9).

§ 9. Produktkerne vom Poisson-Hahnschen Typus

31. Als Poissonsche Einerkerne bezeichnen wir mit Hahn Einerkerne
von folgendem Typus: Es sei fiir jeden Parameterwert k=1

1
d 1
y)(u,k)r—Ckpm,
l o0
o du
sz, x>0, p>1, Q(Z’):.rm’

0

v =alul?+ o@lul]?, u<l(—L)=(D),

lim w(u) =0 .
u->0

@ sei meBbar auf L, und es gelte in jedem Teilintervall L* < (L), das
den Nullpunkt nicht enthélt

Inf v(u)>0 1) .

Hahn'4) hat insbesondere gezeigt, daB fiir jede Funktion f(&) (&< (L))
aus der Klasse F, in jedem Stetigkeitspunkt die Relation (1; 1.1) mit
J = L und dem Poissonschen Einerkern K = y(§ — x, k), n =k gilt.

") H. Hahn (1), pp. 647—8655.
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Ist y(u, k) ein Poissonscher Einerkern, fiir welchen in jedem (ab-
geschlossenen) Intervall L’ < (L) die Funktion 7(u) totalstetig ist und
fast iiberall der Ungleichung

|7/ (u) | <4 |u|?? (< L', A= Const.) (9.1)

geniigt, so wollen wir y einen Poisson-Hahnschen Einerkern nennen.

Fiir einen Einerkern letzterer Art gelten nach Hahn %) insbesondere die
Relationen (1; 1.2) mit K =y(¢é —2,k), n=k, J=L, s=1 in
jedem Punkt z < (L) einer beliebigen Funktion f(§), die auf L zu F,
gehort und fir £ = x differenzierbar ist.

32. Es seien jetzt mit y,, y, Poissonsche Einerkerne bezeichnet, zu
welchen bzw. die GréBen C,, p;, 7,(¢), x;, w;(u) (: = 1, 2) gehoren mogen.
Im Falle von zwei Variablen wollen wir nunmehr als Beispiel zu den
Satzen I, 111, V iiber beliebige (nicht notwendig symmetrische) Produkt-
kerne den folgenden Satz beweisen :

Satz VIII. Es set y,(v, k) ein Poissonscher und v, (u, k) ein Hahn-
Poissonscher Einerkern auf (L). Q.(x, y) bezeichne einen beliebigen aber

festen Punkt aus dem Inmeren eines vorgegebenen Quadrates R, der &v-
Ebene.

«) Damsit fir jede Funktion f(&¢,7n), die auf R, zu F, (i = 1, 2) gehort
und in Q, ein totales Differential besitzt, die Relationen (3.1), (3.2) mut
Y=1,, ¢ =1y, n==Fk gelten, ist hinreichend :

Al fur F,: Esist p, = p, und —2——1——1'g1;
y41 P2

Bl fiur F,: Esuist p, =p, und -—1——|——1—<1.
P Dq

B) Die beiden Voraussetzungen A] bzw. B] sind notwendig, wenn
vl >0 (60, ug N) 9.2)

gilt, wobei u fiir Punkte einer Nullmenge N aufer acht gelassen wird.

y) Damit fir jede Funktion f(£,7), die auf R 2u F; (i = 1, 2) gehort
und in Q, stetig und H-differenzierbar nach & ist, die Relationen (3.1),
(3.2) mit v = p,, ¢ = y,, n ==Kk gelten, ist unter der Annahme (9.2)
notwendig und hinreichend, daf —2% -+ 3;-— <1 im Falle von F, und

1 1 2

e 1 < 1 wm Falle von F, ist.
y 21 D:
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0) Damit fiir jede Funktion f(&,7n), die auf R,zuF,(i = 1,2) gehort
und in Q, stetig und O-differenzierbar nach £ ist, die Relationen (3.1),
(3.2) mit y=1v,, ¢ =1vy,, n==Fk gelten, st unter den Annahmen
w; () = w;(—u) @<UQO); +=1, 2) und (9.2) notwendig und hin-
reichend :

C] fur F,: Bsgit —+ <1 wnd —+Pr<1.

= ’

D1 D2 D2 P

, , 1 1 1 P
D wr F,: Hsqit —+—<1 und —+22<51.
17 2 4 D1 T Y2 P2 T Y51

Zusatz zu 0). Die Voraussetzung —1—-|- Yl

Do Y41
wenn ;(u) # w;(— u) st und wenn an die Stelle von F; (1 = 1, 2) die

Klasse der auf R, stetigen Funktionen tritt.

< 1 st auch notwendig,

33. Vorgingig dem Beweis des Satzes VIII sollen in dieser und der
nichsten Nummer einige darin oft vorkommende Integrale abgeschétzt
werden. Dabei werden wir immer wieder Integrale von der Gestalt

h
u4
J :f(l—{-kﬁup)m du (9.3)
0

vermoge der Substitution z = 1 + kBu? iiberfiihren in

O 1+k5hp( l)l_*._l_. 1
2 — p p
J=—" zm dz  (C>0) . 9.4)
kr» 1

Allgemein werden hier und im folgenden mit C, C;, €} usw. GroBen
bezeichnet, die nur von Parametern abhiingen, welche im Laufe unserer
Diskussion konstant gehalten werden. Insbesondere seien diese GroBen
stets von den mit A~ und k bezeichneten Parametern unabhingig.

34. Zu jedem hinreichend kleinen ¢>0 existiert ein 2’ >0, so da8
fir alle wu<(—A’,h’> und alle k=1

1 < 1 - 1
14 k(o +6) |ul™ 14 kri(w) 1+ k(o — e) |u]™
(u<{—H,1F); i=1,2) (9.5)

gilt. Daher ist fiir alle hinreichend kleinen A >0
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h h
jujp
J1= d 22
J T+En@y “ zf“

yr—1

o Icﬁu”l)g du ?

worin = bedeuten soll, daB fiir eine geeignete Konstante g >0 das obere
und fiir eine andere Konstante f>0 das untere Zeichen fiir alle £>1
gilt. Unter Benutzung von (9.3), (9.4) ergibt sich daher fiir geeignete
Konstanten O

1+ k3aP1

c! dz C, k B h¥r
= —_— T —— _ ———
iz f 7z = 5 900, gk 1+ kBhn °

1

wobei g(h,k) fir A>0, k=1 positivund <1 ist. Wir notieren noch,
dagB fiir jedes feste A >0

limg(h, k) =1 (9.6)
gllt k> oo
Es seien wiederum &£>0 und A'(¢) = A’ so gewihlt, daB (9.5) gilt.
Mit Hilfe obiger Substitution und unter Verwendung geeigneter Konstan-
ten erhilt man sodann fiir irgendein % < (0, 2/):

h (o] A 21+k5h1’2( 1)_:___1
= v =o(— Y  gu—=0C'k 7 P =
I~ [Tk @22 g ook [ S
—h 0 1
3 o 1+ kBAP2 2
=Cyk 72 4+Cyk ™ f (z'“lz)p dz . (9.7)

2

Wir schiitzen J, zuerst nach unten ab und erhalten fiir ein gewisses C
und alle k>k, (k) =B 1h " :

t2

0<Cl'k P< J, (k> k(b)) - (9.8)

Eine Abschétzung nach oben fiihren wir fiir £ <k, und k>k, ge-
2

trennt durch. Im ersten Fall ist J,< Clk ?* fiir ein passendes Cj , und
im zweiten ist der Ausdruck (9.7) kleiner als

2 14+ kB hP2 —2-_ 2
k ”’(C;'+0; f (z — 1) dz)=

2

2 2 ‘
L ?: (CD + s, (h) kP ”1) fiir s ¢2Q
k1(sy (k) + Cy 1g k) fiir p,=2
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Somit ergibt sich als eine obere Schranke von J, fiir jedes k < (0, 2’)

und alle k=1
A<A-Mm<iw—L).

2

¥ kpe

Hierin bedeutet y eine beliebige Zahl aus dem Intervall (0, 1) und 4 eine
Grole, die von ¢, b und p, abhéngt.
Analog erhilt man, wieder unter Verwendung von (9.3), (9.4) fiir alle

p>1:
h

J3 = | u<2f ¢ du =
(1+krl(u )? (14 kpur)?
0
1+kBhP 1 ,
03 (Z——l)pl 03
=1 f i #<——7
Bre ¢ ETm
und fiir alle p,>1:
- d ; dv Y hm 1) 7 C)
. v . Z'—' ﬂz 4
= [Trine <2f1+kﬂvm - el L
s Da 1 kpe

Bezeichnen schlieBlich ¢, d GroSen, fiir welche |c|, |d]| <!, 0 { <¢c, d>
ist, so gilt, wie man sich an Hand der Definition von 7,(v) direkt iiber-
legt : d

dv C
— = s —
Is fl-f—krz(’u)“k >0

[4

§ 10. Beweis des Satzes VIII, erste Hiilfte

35. Wieder wird es geniigen, unsere Behauptungen fiir den Fall zu
beweisen, daB k iiber eine beliebige Zahlenfolge k,=1 (n =1, 2,...)
nach unendlich strebt.

Aus den Voraussetzungen in «), ) oder 9) fiir irgendeine der Funktions-

klassen F', (i = 1, 2) folgt, daB in jedem dieser Fille —5—— + —i}— <1 gilt.

1 2
Daher gilt gleichmiBig in jedem den Nullpunkt nicht enthaltenden
Rechteck R* < (R, (0)):

1 1 1

== %* -_1—+——; 2 1 . frome
VLl Ba) 1y (0, Ba) = O* k1 2 1+k, 7, (u) 14 k,7,(v) >0 (ky>co).
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(2.1) ist also fiir y=vy, und p=1y, erfiillt, und somit ist v, (u,%,)y,(v,k,)
ein Produktkern auf (R,,(0)).

36. Beweis der Behauptungen «) und ). Um Satz I fiir den
Beweis von «) anwenden zu konnen, werden jetzt die Voraussetzungen
dieses Satzes unter den Annahmen von «) als erfiillt nachgewiesen.

Wir beginnen mit Ia°) fiir #, und haben also zu zeigen, dall der zu
vi(u, k,)p,(v, k,) gehorige gelochte Kern auf jedem Rechteck
R’ < (R,,(0)) fast beschrinkt ist, oder — was dasselbe bedeutet — daf
vi(u, k,) v, (v, k,) diese Eigenschaft auf jedem den Nullpunkt nicht ent-
haltenden Rechteck R* < (R,,(0)) besitzt. Fir v, (u,k,) ergibt sich
mit Hilfe von (9.1) die fast iiberall in L’< (L) giiltige Abschéitzung

| 71 ()|
(1 + kn Tl(u) )2

l u lpl"'l

(1+kn Tl(u) )2 .

14—
<Clk, ™

1
|9l (w, k)| = Cy b, P

Dabher gilt fiir jedes Rechteck R’ < (R, (0)) fast iiberall

1,1 | [Pt 1

14—+
T, k) w, (v, k) | < Cok, Pt P2 . k,=1) .
l"/’1( ) s ( )| 0 (l—I—k,,“rl(u))z 1+kn12(v)(

(10.1)

Der letzte Ausdruck ist wegen % + % <1 gleichméBig beschrinkt

1 2
fiir alle k, =1 und alle Punkte jedes Rechtecks R* < (Ry(0)), das
die v-Achse nicht trifft. Also ist fast iiberall

|vr(u, kL) pe (v, k,) | <Cp  (P(u,v) < R*, P(0,0) € R*, k,=1). (10.2)

Wir diirfen uns daher auf Rechtecke Rf beschrinken, deren Ecken die
Koordinaten

(—h,a), (h,a), (k,b), (—h,b) (04<a,b);|al,|b]<l) (10.3)

fiir ein kleines %>>0 besitzen. In einem derartigen Rechteck ist die
rechte Seite von (10.1) kleiner als _

1 1 l u Ipl—l

Cl g, P
(I+k, B |ul")?

fiir geeignete Konstanten B, Cy>0. Durch Nullsetzen der Ableitung
dieses Ausdrucks nach || erhdlt man fiir | % |?* den einzigen von 0

(10.4)
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verschiedenen Wert C¢) Ic:l , durch den die Ableitung selbst fallend hin-
durchgeht, so dal diesem Wert das absolute Maximum des Bruchfaktors
in (10.4) entspricht. Der Wert des Maximums von (10.4) ergibt sich

daher zu
2

1
cOp T m (10.5)
und dies ist wegen der zweiten Voraussetzung A] gleichméBig beschrinkt
fir alle k,=1. Daher ist die linke Seite von (10.1) auf R} fast be-
schrinkt, und damit ist bewiesen, daB Ia°) fiir F'; zutrifft.

37. Wir schlieBen hier gleich den Beweis der Behauptung in ) an,
dal im Falle von F, die zweite Voraussetzung A] notwendig ist.

Es gilt fast iiberall in L’ < (L), wie man fiir ¥u=0 und %<0 leicht
verifiziert :
o (¥) | o (u)

*q *1 Dy

|t ()| = oy [uf |1+

Unter Benutzung von (9.2) folgt hieraus, dal in einer gewissen Um-
gebung des Nullpunktes fast iiberall

|7 | > F g fuf

ist. Daher gilt fast iiberall in einem Rechteck R¥ von der Gestalt (10.3)
mit hinreichend kleinem % >0:

S L 1

/ ,k ,k 0(5) k1+;; ¥ .
| ¥a(u, k) 9 (v, k) | >0 By (It k() 1+, 75 (v)

(kp21),

(10.6)

wobei C{ eine von » unabhingige Konstante ist. Dabei mogen fiir R¥
die Grofen |a| und | b| von vornherein so klein angenommen werden,
daB |7,(v) | <const. fir v< (a,b) gilt. Fiir geeignete B, Ch >0 ist
sodann (10.4) auf RY kleiner als der letzte Ausdruck, und fiir eine ge-
eignete Konstante C stellt (10.5) wieder das Maximum der bei konstant
gehaltenem k,, stetigen Funktion (10.4) in | »| dar. Unter der Voraus-

setzung 2 -+ 1 >1 wichst aber dieses Maximum mit %, — oo iiber

1 2
alle Grenzen, so daB also | v, v, | auf B¥ nicht gleichmiBig fiir fast alle
Punkte und alle k,=1 beschrinkt sein kann. Daraus ergibt sich die
Notwendigkeit der zweiten Voraussetzung in A].
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38. Wir beweisen jetzt, dafl ;}— -+ % < 1 fiir das Zutreffen von Ia°)
1 2
fiir F, hinreichend und notwendig ist. 1a°) fiir ', ist mit der Forderung

gleichbedeutend, da8 j‘ | i (u, k,) 9 (v, k,) | dP gleichgradig totalstetig
ist auf jedem Rechteck R* < (R,;(0)), das den Nullpunkt nicht ent-
hélt. Diese Eigenschaft ist wegen (10.2) sicher auf jedem Rechteck
R* < (Ry;(0)) erfiillt, das die v-Achse nicht trifft. Wir konnen uns daher
von vornherein auf das Rechteck R} von der Gestalt (10.3) beschrinken.
Unsere Voraussetzungen sind also als hinreichend erkannt, wenn wir
zeigen kénnen, dafl zu jedem x>0 ein k(h, u) existiert, so daB fiir alle
k,>k(h, 1) ’

&= (19 k) po(v, ko) | dudo<p  (b,>k(h, p)) (10.7)
7
gilt.
Ein Blick auf (10.1) lehrt, da3

1

1
G, <Cok, 1 72, J,

ist, so dal man unter Beriicksichtigung der in Nummer 34 fir J,, J;
gefundenen Abschétzungen
1 1

’ 14+—4+-— —2
Gh<0001059(h’k'n) kn b1 P2 kn (kngl)

erhilt. Wegen—z%— + %— <1 und der gleichméfigen Beschrianktheit von
1 2
gh,k,) folgt @,—0 (k,—> o0), womit (10.7) bewiesen ist.

39. Um die Notwendigkeit der Bedingung %-{— %< 1 zu be-
1 2

. . 1 1 . .
weisen, werden wir unter der Annahme — + — =1 zeigen, dal} es ein

1 2
u>0 und Rechtecke RY beliebig kleinen Inhaltes gibt, fiir welche (10.7)
nicht erfiillt ist. Zu diesem Zweck mogen die Koordinaten a, b in (10.3)
konstant gehalten werden, wihrend wir 2 nach 0 abnehmen lassen.
Wegen (10.6) ist

1 1 1

1
G>Co ke P T >0 Oy Cag(h, k) b P (ke Z 1)

und zufolge (9.6) existiert eine von A abhiingige Grofe ky(h), so daB

man unter Beachtung von 1 -+ 1 1=0 fir alle k,>k,

1 Y2
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Gh > _CSJS) 0;. 05

(k,,>k0(h))

erhilt. Fir u= 3} C®C] Cy ist (10.7) nicht erfiillt, wie klein auch >0

gewihlt wurde. Also ist ;}— + —;— <1 eine notwendige Bedingung.
1 2
Das Erfiilltsein von Ic,) und ¢,) fiir p=1 und p,>1 (¢ =1, 2) ist

bereits von Hahn'®) (bei der Diskussion des eindimensionalen Problems)
nachgewiesen worden.

40. Wir beweisen nunmehr das Zutreffen von Ib,) und b,). Unter Be-
achtung von (10.1) erhdlt man fiir alle k£, =1

1 1
ﬁu% (0, k) 9y (0, k) | dudv < Cok, 7 P2 J, (k2 1),
“h =
und dies ist fiir k£, — oo beschrinkt. — Andererseits erhdlt man wieder
wegen (10.1) fiir alle £, =1

h h 1 1
[ [ i, k) s (0, k) | dudo < Ok, 74 P2, T, <
—h —h
_.1_+__1_ / 1 l
<k, 72C,C,9(h,k,) A-Max | — ; (k, =1) .
Kk,

n

Wihlt man jetzt y so, dal —25— + ; <y<1 ist, so ist der letzte Aus-

druck wegen (9.6) und p, =p, beschrinkt, gleichméfig fir alle k,=1.
Damit ist Ib;) und b,), und somit auch Behauptung «) unseres Satzes
bewiesen. — Wir wollen noch bemerken, daB hier beim Nachweis von
Ib,) zum erstenmal p,=p, benotigt wurde.

41. Behauptung f) wird vollstdndig bewiesen sein, wenn noch die
Notwendigkeit der Bedingung p,=p, erkannt ist. Da (10.6) auch auf
einem Quadrat R,,(0) mit einem hinreichend kleinen >0 richtig ist,
erhdlt man unter Beachtung von (9:8):

h A 1 1 1 1
| [ 1w, k) oo, k) | dudos> 0y k2 5 5,0, > 08 g(ho k) kP 70
<k X

(k'n > kl) ¢

Fir k, - oo gilt g(h, k,) = 1, und somit strebt der ganze Ausdruck
nach unendlich, so daB Ib,) nicht gelten koénnte.

18) H. Hahn (I), pp. 647—649.
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§ 11. Beweis des Satzes VIII, zweite Hiilfte

42. Beweis der Behauptungen y) und 4). Fiir den Beweis von y)
haben wir uns auf Satz III zu beziehen. Da im obigen Ia°), b,), ¢,), ¢,)

als zutreffend befunden wurden, und zwar ohne Benutzung der Voraus-

setzung p,= p, und da andererseits, wie gezeigt wurde, 1 + —1—<1 ,

- 1 P2
-3— - pi <1 fiir die Giiltigkeit von Ia°) im Falle von F, bzw. ¥, not-
1 2

wendig ist, ist Behauptung y) somit bewiesen.

Um 4d) zu beweisen, haben wir Satz V anzuwenden. Zunichst wollen
wir feststellen, dal (4.1), (4.2) fir y, bzw. g, erfillt ist. Die Geradheit
dieser Einerkerne in X (0) haben wir vorausgesetzt. Nach Definition ist
P2 =0.

Andererseits gilt fast iiberall in L’< (L), wie man fir «=0 und
u < 0 verifiziert :

, L o k1+—pl—1 [ u|P (l W, w{ )
uy(u,k,) = 1% D1 Ky (1+kﬂ11(u))2 + x + apu )

und dies ist fast iiberall in U (O) wegen (9.2) nicht positiv. yp, ist also in
U(0) positiv und gerade und v, ein gerader Glockenkern, wie in Satz V
verlangt wird.

43. DaB Va®) fiir F, und F, sowie Vb,) und b,) zutreffen, wurde be-
reits unter «) bewiesen. Wir haben dort allerdings p, =p, vorausgesetzt,
eine Relation, die jetzt aus der zweiten Voraussetzung in C] bzw. D] folgt.
Es ist also noch Vc¢) nachzuweisen, wozu wir das Konvergenzverhalten von

h
E, =fw2(u,kﬂ> [92(0, k) — 91 (u, k,)] du

zu untersuchen haben.
Es gilt

"Pl(()’ kn) %(’M, kn) - "pl(u: kn) 'Pz(% kn) =

1 1

=0*k”57+5;{ ! :

14 kyz, (14 knt)(Q+ k1)

—C ki kn 7y

(1 +kpty) (1 4 k&, 7p) .
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Wir wihlen jetzt ein ¢ >0. Dann kann fiir hinreichend kleine »>0 ver-
moge (9.5) stets erreicht werden, daf3 £, fiir gewisse positive Konstanten

Bi, Be» Cg grofler bzw. fiir andere positive Konstanten §,, 8,, Cq kleiner
ist als

1+i+i h upl
Cokn, ™+ P2 > —du .
J U ko fyw®) (U koByu™)

Die Substitution

fiihrt diesen Ausdruck iiber in

1 kn hP1 —
N

! ;— zpl
Cs k, J —
0 1+ 8,2 (1 + Bokn ™ zm)
so dall wir schreiben kénnen :
! _!'__}.ﬂ._]_kn A1 z;’l—l—
B, = Cek,” ™ f m dz. (11.1)

(6™ 4 o)
A+ A2 \ET 4 fa2™
Das letzte Integral ist kleiner als

kn AP1

? 1
Sn:J Pa—1 dz .

0 Bo(1+ P2z ™

Aus 2 4 P =1 folgt erstens, daBl 0 < Pl <1 gilt und also S,
Po ™ y 4

beschrinkt ist fiir &, — co, und zweitens, daB daher die rechte Seite von
(11.1) ebenfalls beschrinkt ist fiir %, — co. Die Voraussetzungen in )
sind also fiir die Behauptung §) hinreichend.

44. Die Notwendigkeit der ersten Bedingung in C] bzw. D] fiir die

Giiltigkeit von Va°) ist bereits unter ) bewiesen worden. — Wire die
zweite Bedingung C] bzw. D] nicht erfiillt und also %— + % >1, so be-
2 1

trachte man zunichst den Fall p,=p,. Unter dieser Annahme ist der
Wert des Integrals in (11.1) groBer als
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kn hP1 il
" 71

Ty =

0 (14 B,2) (07 + B z%f)

Da lim 7T, # 0 ist, divergiert die rechte Seite von (11.1) nach unend-

7> o0
lich und daher fiir geeignete Konstanten auch ¥, , so daB3 Vc) nicht erfiillt
sein kann.
Sei endlich p,>p,. Das Integral in (11.1) ist jetzt fiir hinreichend
grofle k, groBer als

2 R ’
* P
2 Cs
Co | — o= — 2
s -53—1 -1’-;3-1
1 1
kn kn

und daher ist die rechte Seite von (11.1) und somit fiir geeignete Kon-
1

stanten auch K, wenigstens wie Const. - kn}; divergent. Wieder konnte
Ve) nicht erfiillt sein. —

45. Beweis des Zusatzes zu ). Wir haben soeben festgestellt, daB

1 + P2 <1 fiir das Bestehen von Ve) notwendig ist, und nach Nummer

P D
14 ist dies auch noch der Fall, wenn w;(u) 5% w,(— u) gilt. Ferner sei

daran erinnert, daBl Vc¢) mit 1,VIIId) dquivalent ist. In Nummer 1, 55
haben wir aber festgestellt, da3 1,VIIId) fiir das Bestehen von (1; 10.2)
bzw. (3.2) auch dann notwendig ist, wenn F; (¢ = 1, 2) durch die Klasse
der auf R, stetigen Funktionen ersetzt wird. — Damit ist Satz VIII in
allen Teilen bewiesen.

46. Anmerkung. Alle Behauptungen des Satzes VIII bleiben wahr,
wenn in (3.4) die Integration mit der Differentiation vertauscht angesetzt
wird. Dies ergibt sich sofort daraus, daBl (1; 13.2) mit @ (u,v;n)=
=y, (u,k,) (v, k,) wegen (10.1) und p,>1 erfiillt ist und somit das
Kriterium I in Nummer 58 des ersten Teils Anwendung findet.

47. Folgerungen aus ). Ist f(&,7n) auf R, stetig und nach einer
beliebigen der beiden Variablen &,# O-differenzierbar in @, so héitte man
fiir einen in bezug auf & und # symmetrisch formulierten Satz 8) neben
1 o Pz <1 auch 1 -+ ¥ie¥ <1 vorauszusetzen, was offenbar nicht

P P Py P _
miteinander vertriglich ist. Es existiert also kein aus zwei Poisson-
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Hahnschen Einerkernen gebildeter Produktkern mit der gewiinschten
Eigenschaft.

Analog verhalten sich auch drei- und mehrdimensionale Poisson-
Hahnsche Produktkerne. Es seien z. B. im Falle von m = 3 Dimensionen
die Einerkerne mit y,, y,, 9, bezeichnet. Fir die Giiltigkeit des dem
Satze 8) entsprechenden Differentiationssatzes mii3te die Relation (5.1)
mit m = 3 vorausgesetzt werden, oder — wie der Satz in Nummer 18
besagt — zwei Relationen (4.3), ndmlich mit y =v;, ¢ =y, und
p = v;, @ = y;. Diese Ungleichungen konnten aber, wie wir in Nummer
44 fiir die eine von ihnen gesehen haben, nur gelten, wenn 1 -+ Pz <1,

Y3

1 . . % .
7 + %g 1 ist. Fir einen in bezug auf drei Variable symmetrischen
3 1

Differentiationssatz im Falle der O-Ableitung miilte man daher die simt-

lichen Relationen % -+ %— =<1 (¢,k=1,2,3) voraussetzen. Da sich
i k
diese aber teilweise widersprechen, ist unser Ansatz zum Scheitern ver-

urteilt.

Yerzeichnis der besonderen Termini

Die Zahlenpaare hinter den angefiihrten Bezeichnungen sind so zu verstehen, daB die erste
Zahl auf den 1. oder 2. Teil dieser Beitrige verweist, withrend die zweite sich auf die
Nummer am Rande des Textes bezieht.

Einerkern 2,5 2,11

F,,F, 1,4

fast beschrankt 1, 10
Fundamentallemma 1, 13

gelochte Funktion 1, 24

gelochter Kern 1,14 1,29

gleichgradig totalstetig 1, 11
gleichmiBig eine H-Ableitung 1, 49
gleichméBig eine O-Ableitung 1, 56
gleichméBig ein totales Differential 1, 26
Glockenkern (gerader) 2, 11
H-Ableitung, H-Differenzierbarkeit 1, 8
integrieren, FuBnote 1, 10

Kern 1,10 2,5 2,17

klassische Kerne, Fufnote 2, 1

limitar orthogonal 1, 12

nullstrebig 1, 12

N-Ungleichung 1,15 1,29 2,5
O-Ableitung, O-Differenzierbarkeit 1, 7

Poisson-Hahnscher Einerkern 2, 31
Poissonscher Produktkern 2, 31
positiver gerader Einerkern 2, 11
Produktkern 2,5 2,17
Quadrat R; 1, 28 und Fupfnote 1, 12
(R) 1,10; Rj(Q) 1, 14;
(R21(0)) 1,28 2,5
o-strebig 1,14 1,29 2,5
Stieltjes-Hahnscher Produktkern 2, 20
Stieltjesscher Produktkern 2, 20
symmetrischer Produktkern 2, 5
totales Differential 1, 6
totalstetiger Einerkern 2, 5
Totalstetigkeit des Lebesgueschen Inte-
grals 1, 11
U-Ungleichung 1, 51
Verschiebungseigenschaft 1, 30
Verschiebungskern 1,28 1,29
V-Ungleichung 1, 51

(Eingegangen den 20. Oktober 1947.)

301



	Beiträge zur Theorie der singulären Integrale bei Funktionen von mehreren Variablen. II.

