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Beitrâge zur Théorie der singulâren Intégrale
bei Funktionen von mehreren Variablen II *)

Von Rolf Conzelmann, Basel

§ 1. Einleitung
1. Die vorliegende Arbeit befaBt sich mit Anwendungen der im ersten

Teil dieser Beitrâge gewonnenen Sâtze auf die bekanntesten Kerne sin-

gulârer Intégrale.
Zum Verstândnis dièses zweiten Teils gentigt es, vom ersten Teil die

Einleitung, die Sâtze V bis VIII, sowie die Kriterien I und II in § 13 sich

in Erinnerung zu rufen. Ûber die in beiden Teilen verwendeten besonde-

ren Bezeichnungen und Begriffe orientiert ein Verzeichnis am Ende
dieser Arbeit. Wenn im folgenden Aussagen des ersten Teils zitiert wer-
den, so geschieht dies unter Verwendung der leicht verstândlichen Sym-
bolik: (1 ; 6.3) fur Formel (6.3); 1,V fur Satz V; l,Va) fur Voraus-

setzung Va usw. Die rômischen Zahlen hinter den Autorennamen in den

FuBnoten verweisen auf das beiden Teilen gemeinsame Literaturverzeichnis

am Schlusse des ersten.

2. Fur jeden Typus eindimensionaler klassischer Kerne1) gibt es

,,Differentiationssâtze", d. h. es gelten — abgesehen von besonders kom-

plizierten Kernen — die Relationen (1 ; 1.2) fur aile Funktionen einer
bestimmten Klasse2).

Im Falle mehrerer Variablen wird man, um sich die Integrationsarbeit
môglichst zu erleichtern, zunâchst etwa Kerne untersuchen, die gleich
einem Produkt von eindimensionalen Kernen des gleichen Typus sind.

Auf solche Kerne werden im folgenden die im ersten Teil aufgestellten
Sâtze angewandt. Dabei ergeben sich verschiedene Môglichkeiten je
nach den uber die darzustellende Funktion getroffenen Differenzierbar-
keitsvoraussetzungen (Totales Differential, O-Ableitung, £T-Ableitung).

*) Siehe Comm. Math. Helv., Vol. 19 (1946/47), Fasc. IV, pp. 279—315.

2) Darunter sind im folgenden die allgemein bekannten Kerne zu verstehen, welche

nach der in H. Hahn (I) gegebenen Klassifikation in die Kerne vom Stieltjesschen, Poisson'
schen und Weierstrafischen Typus zerfallen.

2) H. Hahn (I).
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3. Im Falle der (9-Ableitung zeigt sich ein unerwarteter und eigen-
tiimlicher Sachverhalt, fur den es in einer Dimension kein Analogon gibt,
und auf den erstmals Herr Ostrowski aufmerksam gemacht hat. Es scheint
nâmlich fur m ^ 2 iiberhaupt keine m-dimensionalen Kerne zu geben,
die gleich einem Produkt von m klassischen eindimensionalen Kernen
desselben Typus sind, so daB eine beliebige der Relationen (1 ; 1.4) fur
jede stetige Funktion / gilt, die im ,,singulâren Punkt" bloB O-differen-
zierbar nach der betreffenden Variablen vorausgesetzt wird3).

Ein Beweis der Richtigkeit dieser Vermutung fur sehr allgemeine Stielt-
jessche und Poissonsche Kerne ist enthalten in den beiden auf dièse Kerne
bezûglichen Sàtzen VII und VIII (in den Nummern 22 bzw. 47) dieser
Arbeit. Der Beweis obiger Vermutung fur Kerne vom Weierstraflschen
Typus wird sich bei spâterer Gelegenheit in anderem Zusammenhang
ergeben.

4. Herr Ostrowski4) hat einen neuen, formai sehr einfachen Kern an-
gegeben, welcher den oben beschriebenen Mangel der klassischen Kerne
nicht aufweist, und der z. B. fur die in FuBnote 4 zitierte Arbeit von
ganz fundamentaler Bedeutung ist. Weitere Untersuchungen ùber Kerne
mit analogen Eigenschaften bleiben einer spâteren Arbeit vorbehalten.

Wie bereits im ersten Teil habe ich auch hier fur die Darstellung stets
m 2 Variable gewahlt. Wo die Verhâltnisse fur mehr als zwei Variable
nicht ganz analog liegen, wird jeweils besonders darauf hingewiesen wer-
den.

Fur die vielseitige Unterstutzung, die mir Herr Prof. Dr. A. Ostrowski
auch bei der Bearbeitung dièses zweiten Teils gewàhrt hat, bin ich meinem
verehrten Lehrer zu groBem Dank verpflichtet.

§ 2. Hilfssâtze

5. Mit einer beliebig vorgegebenen GrôBe l > 0 bilden wir das (offene)
Intervall (—1,1)— (L). Unter einem Einerkern auf (L) solldannim
folgenden eine Funktionenfolge ip(u,n) n 1, 2,... verstanden wer-
den, deren Glieder bis auf Nullmengen 5Rn auf (L) definiert und uber L
integrabel sind. Wir wollen sagen, der Einerkern^ auf (L) sei totalstetig,

8) A. Ostrowski (I), p. 269. In der zitierten Arbeit beziehen sich die Aussagen ûber
diesen Punkt zwar auf eine Relation, die sich von der unter 1 ; 1.4) notierten dadurch
unterscheidet, daB die Operationen der Intégration und der Differentiation miteinander
vertauseht sind. Wir werden jedoch in den Nummern 30 und 46 nachweisen, daû dièse
beiden Relationen fur die zur Diskussion stehenden klassischen Kerne miteinander âqui-
valent sind.

*) A. Ostrowski (I), p. 270.
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wenn ip(u,n) fur jedes n in jedem (abgeschlossenen) TeilintervaU
Lr ^ (L) totalstetig ist.

Gilt fur jedes hinreichend kleine h > 0

h h

lim » ip(u, n) du — q I | y)(u, n) | du<N (n 1, 2,.

so werden wir sagen, y sei ^-strebig im Ursprung bzw. genuge einer

JV-Ungleichung im Ursprung.
Wir bezeichnen mit (R2l(0)) ein ofïenes achsenparalleles Quadrat mit

der Seitenlange 21, dessen Zentrum0 ist. SehlieBlich heifie ip(u,n) cp(v,n)

?i=l, 2,... ein Produktkern auf (R2i(O)) wobei tp(u9n) und <p(v,n)
Einerkerne auf (L) sind, wenn der erste Faktor dièses Produkts
totalstetig ist und wenn

V(u,n)<p(v,n)=>0 (P(u,v)<R*<(R2l(O)), rc-^oo)s) (2.1)

gilt, und zwar gleichmaBig fur aile Punkte P(u, v) eines beliebigen
achsenparallelen, abgeschlossenen Rechtecks iî* «( (i22ï(0)), das den

Nullpunkt nicht enthalt. Ist cp tp, so sprechen wir von einem sym-
metrischen Produktkern.

6. Unter Benutzung des in den Nummern 28 und 29 im ersten Teil
definierten Begriffs des Verschiebungskerns konnen wir jetzt einen Hilfs-
satz wie folgt formulieren :

Hilfssatz 1. Jeder Produktkern auf (R2l(0)) ist ein Verschiebungskern

auf (R2l(0)).

Die Relation (2.1) ist offenbar aquivalent mit (1 ; 6.3), und der Be-

weis ist erbracht, sobald wir wissen, da8 die Produkte &=ip(u,n) q)(v,n),
0ru y)r{u, n) cp(v, n) uber jedes Rechteck Rr <( (R2l(0)) integrabel
sind.

6) Da es sich m dieser Nummer durchwegs um Produkte von Emerkernen handelt, ware
es wunschenswert, aile Voraussetzungen m Relationen zu fassen, die bloÔ von je einer
Vanablen abhangen. Wollte man dieser Forderung konsequent entsprechen, so hâtte man
jedenfalls oft sehr komplizierte Bedmgungen m Kauf zu nehmen.

Es ist besonders bemerkenswert, dafi die Relation (2 1) im Falle <p — ip eine fur \p{u,n)
dimensionsabhangige Bedmgung ist Es kann namhch sehr wohl sem, dafi (2 1) fur cp V

gilt, wahrend die entsprechende Bedmgung fur drei und mehr Variable fur denselben
Emerkern yt nicht erfullt ist. Eme entsprechende ,,Verschlechterung" ist naturhch bereits
beun Ûbergang von emer zu zwei und mehr Dimensionen zu beobachten.
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Nach (1; 7.2) ist

vi \v'{u, n)\du Tn(- V, V)

wo Tn(—V,V) die Totalvariation von ip(u,n) im Intervall (—V,lr}
bedeutet. Zusammen mit der Existenz der Intégrale

K v
I | xp{uy n) | du f | cp(v, n) | dv (0<V<l)

ergibt sich die Existenz von

j | ip(u, n) cp(v, n) | dudv I | y)'(u, n) q>(v, n) \ dudv
â' à'

und somit die Integrabilitât von 0 und 0ru —

7. Hilfssatz 2. Ist f(u,n)(p(v,n) ein Produktkern auf (i?2i(O))
und ist cp(v,n) fur ein q ^ 0 q-strebig im Ursjyrung, so gilt fur jedes hin-
reichend kleine h > 0 :

ip(h,n) -> 0 (n ->oo)

Wàre die Behauptung falsch, so existierten zu beliebig kleinen h > 0

je ein ju > 0 und eine Folge nv (v 1, 2,...), so daB | ip(h, nv) \ >ju fiir
aile v gàlte. Wegen (2.1) wàre dann <p(v, nv) nach 0 konvergent, und
zwar gleichmàBig fiir aile v <^ — h, h}, was aber der ^-Strebigkeit von
<p widerspràche. —

§ 3. Differentiationssâtze im Falle des totalen Differentials und der

H-Ableitung fiir Produktkerne

8. Unter Benutzung des Hilfssatzes 1 ergibt sich aus Satz 1,VI, wie
man sich sofort iiberzeugt, der folgende :

Satz I. Es sei tp(u,n) cp(v,ri) ein Produktkern auf (R2l(O)) und
Qo(x, y) zin beliebiger aber fester Punkt aus dem Inneren eines vorgegebenen
Quadrates Rt der Çrj-Ebene.

Damit fur jede Funktion /(f, rj), die auf Bt zu Fi (i 1, 2) gehort und
in Qo ein totales Differential besitzt, die Relationen
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f(x, y) lim 1/(1,^)^(1 — x,n)(p(rj — y,n)d£drj (3.1)

lim |/(f,,)-?l^_ '-Ly^-y^dÇdr, (3-2)

gelten, ist notwendig und hinreichend :

a) (pder a°)). jF#r den zu &^ ipf(u, n) y(v, n) gehôrigen gelochten

Kerngilt l,Va) (bzw. l,Va°))6).

bj) und b2). jBs existieren positive Konstanten N und h, so dafi fur aile n

h h

bj) | | utp'(u, n) | du • / | <p(u, n) \ du <N
-i Jh

h h

b2) I | ipf(u n) | du * j | u<p(u, n) \ du <N

gilt.

Cj) und c2) ^?5 existiert eine Konstante ç^O, so da/? ^ q-strebig und

<p strebig ist im Ursprung.
Q

9. Fur (p \p nimmt dieser Satz, wie wir sogleich beweisen werden,
die etwas einfachere Gestalt an :

Satz IL Es sei y)(u, n) tp(v, n) ein symmetrischer Produktkern auf
(Rn(O)) und Q0(x, y) ein beliebiger aber fester Punkt aus dem Inneren
eines vorgegebenen Quadrates Rt der Çrj-Ebene.

Damit fur jede Funktion f(i,rj), die auf R% zu F{ (i 1,2) gehort und

in Qo ein totales Differential besitzt, die JRelationen

f(xfy) lim I f(£,rj) ip(Ç — x,ri) y)(rj — y,n) d£drj (3.3)
n->oo ty

/ • P 9y(f — #, w)
/| (# 2/) ^m I f(£>y) V (y — y jM) d£ dr\ (3 .4)

gelten, ist notwendig und hinreichend :

e) a) (oder a°)) bedeutet hier und in den folgenden Sàtzen, dafi die Voraussetzung a),
welche sich auf 1, Va) a. p. 298 bezieht, nach Belieben durch die Voraussetzung a°) ersetzt
werden kann, welche auf 1, Va°) a. p. 299 Bezug nimmt.
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a) (oder a°)) Fur den zu &fu tpr(u, n) tp(v, n) gehôrigen gelochten

Kerngilt l,Va) (bzw. l,Va°))6).

bL) utp'(u, n) genûgt einer N-Ungleichung im Ursprung.

b2) Es existieren positive Konstanten N und h, so daji fur aile n

h h

I | y)f(u, n) | du • l | utp(u, n) \ du<N

gilt.

c) tp ist eins-strebig im Ursprung.

Beweis. Wir haben offenbar blo8 nachzuweisen, daB Ib!) fur <p — y)

erfûllt und IIbj notwendig ist.
In der Tat erhàlt man durch partielle Intégration

n n n

I | y>(u, n) | du u | ip(u, n) \ — utpf(u, n) sgmpdu

wobei sgn \p 1 fur ip ^ 0 und sgn tp — 1 fur y < 0 ist.
Wegen Hilfssatz 2 strebt der ausintegrierte Bestandteil mit n -^oo

nach 0, wâhrend das letzte Intégral zufolge IIhx) absolut beschrànkt
ist. Also ist auch die linke Seite absolut beschrànkt, und zusammen mit
II bx) folgt hieraus die Giiltigkeit von Ibj). —

Wâre IIbj) nicht erfiillt, so wurde fur jedes hinreichend kleine h>0
und eine gewisse von h abhângige Folge nv (v 1, 2,... die rechte und
dalier auch die linke Seite der Ungleichung

h h h h

\utpr(u,nv)\du - f| tp{v, nv) \ dv ^ f | utpf(u,nv) \du- \tp(v,nv)dv4 Ah Ah 4
ûber aile Grenzen wachsen, da der zweite Faktor rechts nach 1 strebt.
Also kônnte Ibx) fiir <p tp nicht gelten. —

10. Ganz analog wie die Sâtze I und II ergeben sich, jetzt unter Be-
rufung auf Satz 1,VII5 die beiden folgenden:

Satz III. Es sei tp(u9n) cp(v,ri) ein Produktkern auf (i?2l(O)) und
Qoix> y) ein beliebiger aber fester Punkt aus dem Inneren eines vorgegebe-
nen Quadrates Rl der irj-Ebene.
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Damit fur jede Funktion f(i,rj), die auf Rt zu Ft (i 1, 2) gehôrt und
in Qo stetig und H-differenzierbar nach f ist, die Relationen (3.1), (3.2)
gelten, ist notwendig und hinreichend, dafi die Voraussetzungen la) (pder
a°))> &i)> ci)> C2> erfiïllt sind.

Die Voraussetzung Ib2) kommt also in Wegfall.

Satz IV. Es sei yj(u, n) ip(v, n) ein symmetrischer Produhthern auf
(R2l(O)) und Q0{x, y) ein beliebiger aber fester PunJct aus dem Inneren
eines vorgegebenen Quadrates Rt der %r\-Ebene.

Damit filr jede Funktion f(Ç,r]), die auf Rt zu Ft (i 1, 2) gehôrt und
in Qo stetig und H-differenzierbar nach i ist, die Relationen (3.3), (3.4)
gelten, ist notwendig und hinreichend, dafi die Voraussetzungen lia) (pder

a°))> &i)> c) erfûllt sind.

§ 4. Differentiationssâtze im Falle der O-Ableitung fur Produktkerne

11. Der nâchste Satz verlangt die Einfuhrung speziellerer Einerkerne.
Es sei fast uberall in einer Umgebung VL(O) des Nullpunktes fur den

Einerkern <p :

<p(v,n)^0, cp(-v,n) <p(v,n) (v<U(O), n=l,2,...) (4.1)

Ein solcher Kern heiBein XI(O) ein positiver gerader Einerkern. —

Ist y> ein totalstetiger Einerkern und gilt fast uberall in U (0)

^ 1, 2,...) (4.2)

so wollen wir sagen, xp sei in 11(0) ein gerader Glockenkern7).

Satz V. Es sei ip(u,n) cp(v,n) ein Produktkern auf (i22l(O)), und in
XI (0) sei cp ein positiver gerader Einerkern und \p ein gerader Glockenkern.

Qo(%, y) bezeichne einen beliebigen aber festen Punkt aus dem Inneren eines

vorgegebenen Quadrates Rt der £r]-Ebene.
Damit fur jede Funktion f(Ç,r)), die auf Rt zuFt (i 1, 2) gehôrt und

in Qo stetig und 0-differenzierbar nach i ist, die Relationen (3.1), (3.2)
gelten, ist notwendig und hinreichend :

a) (oder a°)) FUr den zu &„= ip'(u,n) (p(v,n) gehôrigen gelochten

Kern gilt l,Va) (bzw. l,Va0)).

7) Die Wahl von Glockenkernen schemt fur das Folgende eine besonders einschneidende

Beschrankung zu sem. Es wird sich aber erweisen, dafi die klassischen Kerne (vgl. Fufi-
note 1), abgesehen von den komphziertesten Fallen, Glockenkerne sind.
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bi) und b2) Es existiert eine Konstante g > 0, so daji \p Q-strebig und <p

strebig ist im Ursprung.
Q

c) Es existiert eine Konstante Ml9 so dafi fur jedes hinreichend kleine
h>0 und aile n

h

En= (<p(v,n){y>(0,n) - f(v,n)} dv<Mx (4.3)

gilt.

12. Beweis. Wir beweisen die Àquivalenz obiger Voraussetzungen
mit jenen von Satz 1,VIII.

1,VIIIa) und 1,Ville) sind âquivalent mit a) bzw. bx) und b2). —

l,VIIIb) ist sicher erfullt, wenn uip'(u,n) <p(v,n) im Ursprung sogar
einer JV-Ungleichung geniigt. Wir weisen daher jetzt Ibi) als erfullt nach :

Wegen (4.2) ist fur jedes hinreichend kleine h>0
h h h

utpf(u, n) | du — u tp(u, n) + I y>(u, n) du
-h ^k

Unter Beachtung des Hilfssatzes 2 und der ^-Strebigkeit von %p erkennt
man, da8 das Intégral linker Hand fur n -> oo beschrânkt bleibt. Ande-

h

rerseits ist \ cp\ dv fur hinreichend kleine A>0 in n gleichmaBig
~h 1

beschrânkt wegen der Positivitât und der Strebigkeit von q?. Also

ist Ibx) und somit auch l,VIIIb) erfullt.

13. Es bleibt noch einzusehen, daB l,VIIId) âquivalent ist mit c). In
der Tat ist, wenn y>{u), (p(v) anstatt ip(u,n)9 <p(v,n) geschrieben wird,

h

0 — v h v

I v'(u) <P(V) I dudv I | ipf(u) <p{v) | dudv + 1 I | ipr(u) <p(v) \ dudv
h(0) —hv 0 — v

0 0 0 —V

1 <p(v) I yf(u) dudv — l9?(t;) | ^;(^) d^ rff +
—hv —hohO h v

+ | ^(v) y>f(u)dudv — I ç?(v) I ip'{u)dudv

o o

~* ^(v)] dv + I 9?(v) [^(0) — ip(— v)] d?; +
h h V • /

• \ <p(v)[y>(0) — y>(—v)]dv + \<p(v)[f(O) — ip(v)]dv
b' h
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Zufolge der Geradheit von y), y in IX(0) ist fur jedes hinreichend kleine
h>0 die letzte Summe gleich der wegen (4.1), (4.2) positiven GrôBe

h

éC<p(v)[y>(O)-y>(v)]dv

Dies ist gerade das Vierfache des Ausdrucks, von dem wir unter c) die
Beschrânktheit vorausgesetzt haben. Damit ist bewiesen, daB die Bedin-

gungen a), bx), b2), c) notwendig und hinreichend sind.

14. Anmerkung. Will man darauf verzichten, in den Voraus-
setzungen dièses Satzes ip und ç? in II (O) als gerade anzunehmen, so hat
man offenbar e) durch die Forderung zu ersetzen, daB jedes einzelne der
vier Intégrale in (4.4) fur n->oo beschrànkt bleibt. Dièse Forderung
ist namlich auch notwendig, weil aile vier Intégrale nicht negativ sind.

15. Fur q? tp erhalt man aus Satz V sofort den folgenden :

Satz VI. Es sei \p(u, n) ip(v, n) ein symmetrischer Produktkern auf
(l?2j(0)), und ip(u,n) sei in U(0) ein positiver gerader Olockenkern.

Q0(x, y) bezeichne einen beliebigen aber festen Punkt aus dem Inneren
eines vorgegebenen Quadrates Rl der Çrj-Ebene.

Damit fur jede Funktion f(Ç,rj), die auf Rt zu Ft (i 1, 2) gehôrt und

inQostetig undO-differenzierbar nach Ç ist, die Relationen (3.3), (3.4)
gelten, ist notwendig und hinreichend :

a) (oder a0)) Fur den zu &„— y>'(u, n) tp(v, n) gehorigen gelochten

Kern gilt IJa) (bzw. l,Va°)).

b) tp ist eins-strebig im Ursjwung.

c) Es existiert eine Konstante Ml9 so dafi fur jedes hinreichend kleine

h>Q und aile n
h

>, n) — y)(u, n)\ du<Mt (4.5)

ist. -
16. SehlieBlich sei noch bemerkt, daB auf Grand der Sâtze 1,VI* bis

1,VIII* ohne weiteres ersichtlich ist, wie die den Sâtzen I bis VI ent-
sprechenden, unter Berûcksichtigung der gleichmâfîigen Konvergenz zu

formulierenden Sâtze lauten.
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§ 5. Bemerkungen zu den Sâtzen V und VI

17. Wâhrend sich die Sâtze I bis VIII im ersten Teil und daher hier
die Sàtze I bis IV analog fur mehr als zwei Dimensionen formulieren und
beweisen lassen, ist in den Sâtzen V und VI wegen der Voraussetzung c)
eine solche Analogie nicht offensichtlich. Wir wollen daher im Falle von
m>2 Dimensionen Bedingungen angeben, die den Voraussetzungen Vc)
und Vie) entsprechen.

Es sei ip1(u,n) auf (L) ein totalstetiger Einerkern, der in lï(O) ein
gerader Glockenkern ist, und es seien ip^u^n) (ju 2,..., m) Einer-
kerne auf (L), die aile in Xt(O) positiv und gerade sind. Es môgen ferner m

m
Konstanten q^ (/u 1,..., m) mit FI q^ 1 existieren, so da8 ip^u, n)

(ju 1,..., m) g^-strebig ist im Ursprung.
Wir betrachten sodann den m-dimensionalen Produktkern

m

0(xl9..., xm;n) /7y/i(a^,n) (| x^ \ <l, p 1,..., m)

in den m Variablen x^ (/u 1,..., m) und bezeiehnen fur ein beliebiges
h>0 mit Uh(O) jetzt den Bereich

^1^1 (^ 2,..., m)

und mit Vh(O) den Bereich R2h(O) — Uh(O), wobei R2h(O) hier ein um
den Ursprung als Zentrum gelegtes, achsenparalleles m-dimensionales
Intervall mit der Seitenlânge 2h bedeutet.

Die Lôsung unseres Problems gibt der folgende Satz, worin (5.1) jene
Voraussetzung ist, die der Voraussetzung l,VIIId) im Fall von m — 2

Dimensionen entsprieht.

18. Satz. Damit eine Konstante Mound ein h>0 existieren, so dafî
fur aile n

f \0ïl(x1,...,zm;n)\dP<Mo (dP dxt.. .dxj (5.1)

gilt, ist notwendig und hinreichend, dafi filr %p ^i(xi> n) un^ 9 ^
^Wfii^fi»n) (t1 2,..., m) die sich so ergebenden m — 1 Belationen (4.3)
erfûllt sind. — Hieraus folgt offenbar, da6 im Falle xp^ y)x y)

(iW 2,. m) die Giiltigkeit von Vie) zu fordern ist.
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19. Beweis. Mit A^ (jh 2,..., m) sei fur ein festes jjl jener in der

xx a^-Koordinatenebene liegende (nicht abgeschlossene) Bereich bezeich-

net, fur dessen Punkte P(xt, x^)

x1\,\xIA
gilt.

Um die Notwendigkeit unserer Behauptung zu beweisen, beachte man
jetzt, da8 der m-dimensionale Bereich A* welcher durch die Gesamtheit
der Punkte P(x1,..., xm) mit

festgelegt wird, ein Teilbereich von Vh(O) ist. Daher folgt aus (5.1),
wenn wir iteriert, zuerst nach xx und x2 und sodann nach den ubrigen
Variablen integrieren

Ji c f r m
10X I dP =1 | \px (xx, n) w2 (x2, n) \ dxx dx2j U \ w (x n) I dx3... dxm < M0

1 J J ,=3 ^ p
< ^ ^ (5.2)

fur aile n, wobei Q2 das durch | x^ \ ^ h (/lc 3,..., m) definierte
(m -— 2)-dimensionale Intervall bezeichnet. Das ùber Q2 erstreckte Intégral

in (5.2) strebt mit n-^oo gegen eine feste, von 0 verschiedene

Konstante, da

J n | ^(x^n) \dx3...dxm= n jipfl(x^l,n)dx^l

ist und die \p^ ([x 1,..., m) ^-strebig sind.
Wâre jetzt Relation (4.3), welche ja, wie wir in Nummer 13 gesehen

haben, mit 1, VlIId) àquivalent ist, nicht erfûllt fur y tpx, q> \p2i so

wàre das Intégral iiber A2 in (5.2) fur n -> oo nicht beschrânkt und (5.2)
konnte nicht gelten. — Indem man x2 mit xu (fi 3,..., m) permutiert,
erkennt man die Notwendigkeit aller aufgestellten Bedingungen.

DaB die Voraussetzungen auch hinreichend sind, geht aus den an

(5.2) angeknupften tîberlegungen hervor, wenn man berûcksichtigt, daB

die m — \ Bereiche A * (ju, 2,..., m) den Bereich Vh (0) uberdecken.

§ 6. Produktkerne vom Stieltjes-Hahnschen Typus

20. Mit H. Hahn nennen wir \p einen Stieltjesschen Einerkern, wenn

ip die folgende Gestalt hat : Es sei fur jeden Parameterwert k ^ 1 :
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C

- 1 — oc | u\* + œ(u) \u\p lim oj(u) 0
W->0

Ferner sei Sup | %(u) | <1 fur jedes Teilintervall L* <( (.L), das den

Nullpunkt nicht enthalt, und es sei co(u) meBbar auf L8).
Hahn8) hat insbesondere gezeigt, daB fur jede Funktion /(f) (f <( (L))

aus der Klasse Ft in einem Stetigkeitspunkt die Relation (1 ; 1.1) mit
J L und einem Stieltjesschen Einerkern K ip (| — x, k), n & 9)

gilt.
Einen Stieltjesschen Einerkern wollen wir insbesondere einen Stieltjes-

Hahnschen Einerkern nennen, wenn %(u) in jedem (abgeschlossenen)
Intervall 1/<( (L) totalstetig ist und bis auf eine Nullmenge die Un-
gleichung

| %'(u) \<A | u I*-1 (u<Lf, A Const.) (6.1)
befriedigt.

Ist tp(u, k) ein Einerkern von letzterer Art, so gelten nach Hahn8)
insbesondere die Relationen (1 ; 1.2) mit K ip(Ç — x, k), n k,
J L, s 1 in jedem Punkt # <( (L) einer beliebigen Funktion /(£),
die auf L zu i^x gehort und fur | x differenzierbar ist.

21. Im Falle von zwei Dimensionen stellen wir jetzt als Beispiel zu
den Satzen II, IV, V den folgenden Satz auf :

Satz VII10). Es sei \p(u, k) ein Stieltjes-Hahnscher Einerkern auf (L)
und Q0(x, y) ein beliebiger aber fester Punkt aus dem Inneren eines vor-
gegebenen Quadrates Rt der Çrj-Ebene.

8) H. Hahn (I), pp. 623—643. Der Emfachheit halber hat Hahn solche Emerkerne nur
fur den Fall benutzt, daÔ k uber die Werte der naturhchen Zahlenreihe nach unendlich
strebt. Von dieser unwesenthchen Beschrankung wollen wir absehen und k stetig nach
unendlich wachsen lassen. Ferner wurde x (u) ^ei Hahn als eme nicht-négative Funktion
vorausgesetzt, eme Forderung, auf die man bei den von Hahn hier noch zu zitierenden
Satzen verzichten kann.

9) Hier und im folgenden soll n k bedeuten, daB m den betreffenden Ausdrucken an
Stelle des diskreten Parameters n der stetig nach unendlich wachsende Parameter k zu
setzen ist.

10) Wie oben sind auch die Satze VII und VIII der Emfachheit halber fur zwei Dimensionen

formuliert worden. Aus îhren Beweisen ist aber ersichthch, dafi sich ohne neue
Schwierigkeiten ahnhche Satze auch fur mehrere Dimensionen beweisen lassen.
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oc) Damit fur jede Funktion f(£,rj), die auf Rt zu Fx gehort, und in Qo

stetig ist und daselbst ein totales Differential oder eine H-Ableitung
nach f besitzt, die Relationen (3.3), (3.4) mit n k gelten, ist hinreichend,

p ^ 1 ist11).

/?) Dièse letzte Voraussetzung ist notwendig, wenn

uc»r(u)-+Q (ti->0, w<9l) (6.2)

gilt, wobei u fur Punkte einer Nullmenge 31 aufier acht gelassen wird.

y) Ersetzt man in oc) die Klasse Fx durch die Klasse F2, so ist (bereits)
hinreichend.

à) Es sei ipo(u, k) ein weiterer Einerkern auf (L) jedoch blofi vom Stielt-
jesschen Typus, der im einzelnen durch die Grôfien Co, p0, oco, Xo> wo

charakterisiert sei. — Unter den Voraussetzungen p0 ^ p und (6.2) kann
die Relation (3.2) mit cp ip0, n k nicht fur jede auf R% stetige Funk-
tion f(£,rj) gelten, die in Qo (blofi) eine O-Ableitung nach | besitzt.

22. Folgerungen aus ô). Ist f(i9rj) nach einer beliebigen der bei-
den Variablen |, r\ O-differenzierbar in Qo, und soll die entsprechende
partielle Ableitung von / in Qo durch ein singulâres Intégral mit einem
Produktkern approximiert werden, der aus zwei Stieltjes-Hahnschen
Einerkernen gebildet ist, fur welche (6.2) gilt, so darf laut Satz ô) weder

Po ï> noch p^p0 sein. Es existiert also kein Produktkern mit der

gewunschten Eigenschaft, womit die in Nummer 3 uber Stieltjessche
Kerne aufgestellte Behauptung im Fall m 2 bewiesen ist. Fur m > 2

ist aber jene Behauptung auch wahr. Andernfalls mûBten zufolge des

Satzes in Nummer 18 fur die m HdhnStieltjesschen Einerkerne die
Relationen (4.3) gelten. Die Unmôglichkeit dieser Ungleichungen wird aber

gerade im Beweis zu Satz ô) erkannt werden.

23. Beim Beweis des Satzes VII wird das Verhalten der Intégrale von
der Gestalt

h

l) (6.3)

fur k -> oo eine entscheidende Rolle spielen. Eine fur unsere Zwecke ge-

u) Ein Beweis fur die Behauptung a), soweit es sich um das totale Differential handelt,
fur den Fall a — 1, p 2, <o(u) 0, jedoch fur n Variable, findet sich in O. Haupt und
O. Aumann (I), pp. 164—169.
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eignete asymptotische Auswertung ist bereits von Hahn vorgenommen
worden. Nach Hahn12) gilt fur phv<\:

__ g+i

Kk(p,h,p,q)~C(p,q,P)-k p (&->oo) (6.4)
wobei

q+i

fl " r(i±i) (6.5)

ist.
Dem Beweis unseres Satzes sei noch die Bemerkung vorausgesehickt,

daB der Buchstabe G, mit diversen Indizes versehen, im folgenden aus-
schlieBlich fur GrôBen benutzt wird, die bloB von gewissen Parametern,
und zwar nur solchen abhângen kônnen, welche im Laufe der Diskussion
konstant gehalten werden.

§ 7. Beweis des Satzes VII: Behauptungen oc) und /?)

24. Beweis. Es wird genugen, unsere Behauptungen fur den Fall zu
beweisen, daB der Parameter k uber eine beliebige Zahlenfolge kn>l
(n 1, 2,...) nach unendlich strebt.

Zunàchst xiberzeugen wir uns, daB ip{u, kn) wegen Sup | %(u) | <1
(u<^L*) die Relation (2.1) mit cp — tp fur jedes p>0 erfullt.
tp (u, kn) y) (v, kn) ist also ein symmetrischer Produktkern.

Behauptung a) wird bewiesen sein, wenn die Voraussetzungen des
Satzes II fur die Klasse Fx als zutreffend erkannt sind. Mit den
Voraussetzungen von Satz II treffen nâmlich fur den Kern auch die
Voraussetzungen des Satzes IV zu, wie ein Vergleich der Sâtze II und IV zeigt.

lia0) fur Ft ist erfullt : In der Tat gilt fast uberall

(7.1)

und also unter Beachtung von (6.1)

i

12) H. Hahn (I), pp. 628—629. An jener Stelle ist die Formel, die hier unter (6.4) steht,
blofî fur g > 0 angegeben. Sie gilt aber auch fur aile q > — 1, was aus der bekannten

analog wie bei Hahn folgt.
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Daher gilt in jedem Rechteck Rr <( {R2l(0)) mit Ausnahme einer Null-
menge yin fur jedes kn :

(7.3)
Ist p^tl, so ist der letzte Ausdruckfûr kn ->oo in jedem denNullpunkt
nicht enthaltenden Rechteck i2* <( (jR2î(0)) gleichmàBig beschrânkt.
Also ist IIa°) fiir Fx erfiillt. — Es sei noch besonders darauf hingewiesen,
daB p^l beim Beweis von oc) nur an dieser Stelle benutzt wird.

Die Voraussetzungen Ilbj) und Ile) sind bereits von Hahn13) (bei der

Behandlung des Problems in einer Dimension) fiir aile p > 0 als erfiillt
nachgewiesen worden.

25. Wir weisen jetzt IIb2) nach. Wegen co -> 0(u -> 0) kann man zu

jedem e>0 ein hf>0 angeben, so daB fiir aile u-^^ — h'jh'y

O<l-(ot+e)\u\»<x(u)<l-~(oc-e)\u\* (w<<~A/,A/>) (7.4)

ist. Setzt man oc — e /?, so gilt daher fiir q*?0, s^l und hinreichend
kleine h>0

h h

f M2 I zM |s^<2 (V(l — pup)*du

Unter Beachtung von (7.3) ergibt sich daher

h h

Ç\y>'(u,kn)\du Ç

4
^ C3kn p u (l-fiu) du - \ v(l — fiv dvu (l-fiu) du - \

und dies ist wegen (6.3), (6.4) fiir hinreichend kleine h>0 àquivalent

1 A _1 —A
#4 kn p (kn - 1) kn p ~ C4 (iw -> 00)

Da C4 eine von kn unabhângige Konstante bedeutet, ist IIb2) erfiillt und

damit auch die Behauptung oc) bewiesen.

26. Die Behauptung P) beweisen wir, indem wir zeigen, daB der zu

y'(u,kn)y)(v, kn) gehôrige gelochte Kern auf Rr <( {Rn{0)) fur

18) H.Hahn (I), pp. 628—629, 631—632.
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nicht fast beschrànkt ist und also II a°) fur Fx nicht erfûllt sein kann. In
der Tat gilt, wie man leicht fur u^O und u<0 verifiziert, fast iiberall

CD (U) Ù)r (u)
y^

oc ocp

und wegen (7.1) und (6.2) ist daher fur hinreichend kleine | u | fast
iiberall

wobei VL(O) eine gewisse Umgebung des Nullpunktes bezeichnet.
Sei p<l. Wir wàhlen jetzt h>0 so klein, daB neben (7.5) auch

I X(u) I X(u) i (^<<—A,A>) (7.6)

gilt. Ferner sei J?* ein achsenparalleles Rechteck, welches in (R2h(O))
gelegen ist, von der v-Achse halbiert wird und den Nullpunkt weder im
Inneren noch auf dem Rande enthâlt. Wegen (7.5) und (7.6) kann man
sodann fiir jedes n ein symmetrisch zur v-Achse liegendes, von n abhângi-
ges Teilrechteck R* <( i?* finden, fiir dessen Punkte — bis auf eine

Nullmenge —
2

Y V* > Kn) Y \v i Kn) \ ^5 K | X \u) \ \ X \u) \
\ y \l~P n

ist. Daher kann ipr{u, kn) ip(v, kn) auf i2* unmôglich fast beschrânkt
sein. Der dazugehôrige gelochte Kern erfiillt also die Voraussetzung II a°)
fur Fx nicht. Damit ist Behauptung {}) bewiesen.

§ 8. Fortsetzung des Beweises: Behauptungen y) und ô)

27. Um y) zu beweisen, braucht jetzt bloB noch unter der Voraussetzung

0<p<l die Eigenschaft IIa°) fiir F2, d. h. die gleichgradige
Totalstetigkeit des zu y>f(u, kn) yj(v, kn) gehôrigen gelochten Kerns auf
R! <( (R2l(O)) nachgewiesen zu werden. Der Beweis wird erbracht sein,
wenn gezeigt werden kann, daB fiir jedes Rechteck iî* <^ (R2l(O)), das
den Nullpunkt nicht enthâlt,

Jn I \wf(u, kn) y)(v, kn) | du dv -> 0 (kn -> oo)
Ai

gilt.
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Seien a, b und c, d (a<b,c<d) die u- bzw. v-Koordinaten der Eck-
punkte von iî*. Wegen (7.2) ist

1

du

Fur 0 <£ <a, 6> strebt der Integrand des letzten Intégrais mit kn -> oo

gleichmâBig nach 0. Also gilt

8* ->0, £w->0 (^->oo) (8.1)

Fur a<^0<6 oder a<0^b ist wegen (7.4) fiir jedes hini'eichend
kleine h>0 und ein geeignetes jS>0 unter Beachtung von (8.1)

S*n<S** C1ft1n+? 11*1
wobei o*! (T2 1 oder ax 0, Og 1 oder ^ 1, a2 0 ist und
ew ein oder zwei Intégrale vom Typus S* darstellt. Mit Hilfe von (6.3),
(6.4) erkennt man, da8 fiir hinreichend kleine h>0

8*n *
~ G6 kn+ * {kn - if' ~ C6 k\ (n -> oo) (8.2)

ist.
Andererseits setzen wir

r\n fur 0 < c < d oder c < ci < 0

en fiir c < 0 ^ d oder c <£ 0 < d
Tn f\v(v,kj\dv

C

wobei im ersten Fall

; w=l,2,...) (8.3)

und im zweiten Fall wegen der Eins-Strebigkeit von rp in 0, der Positivi-
tat von y) und (8.3)

0<en<C, (n l,2,...) (8.4)
gilt.

Falls jetzt iî* die v-Achse trifft, so gilt wegen (8.2) und (8.3)

Jn SnTn<S**Tn~C9knpr,n->0 (n->oo)
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Trifft B* jedoch die w-Achse, so gilt wegen (8.1) und (8.4)

Jn SnTn Snen-+O (n->oo)

Trifft jR* keine der beiden Achsen, so strebt Jn erst recht nach 0. Also gilt
in jedem Fall Jn -> 0 (n -» oo), womit y) bewiesen ist.

28. Wir wenden uns jetzt der Behauptung ô) zu und zeigen zunâehst, daB

es fur deren Beweis genugt, die Bedingung c) von Satz V als nicht erfûllt
nachzuweisen. Satz V bezieht sich auf Funktionen aus der Klasse Fx bzw.
Fg. Wir haben aber bereits in Nummer 1,55 darauf hingewiesen, daB die
Voraussetzung l,VIIId), mit welcher ja Vc) équivalent ist, fur die Gul-
tigkeit von (1 ; 10.2) notwendig ist, sogar wenn an die Stelle von Ft
(i 1, 2) bloB die Klasse der auf Rl durchweg stetigen Funktionen zur
Konkurrenz zugelassen wird.

Ferner beachte man, daB auf Grund der Anmerkung in Nummer 14 die
Voraussetzung Vc) auch im Falle von nicht geraden Glockenkernen
notwendig ist.

Da in jedem Intervall £* < (L), das den Nullpunkt nicht enthàlt,
^UP I X I < 1

> Sup | Xo I < 1 gilt, ist (2.1) fiir unsere Einerkerne ip, ipQ

erftillt. Somit ist ip(u, kn) yo{v, kn) ein Produktkern auf {Rn{0)). Nach
Définition ist y)>0, ipo>O, und wir haben bloB noch nachzuweisen, daB

y) in VL(O) ein Glockenkern ist.
In der Tat gilt, wie man fur ^^0 und u<0 sofort verifiziert, fast

iiberall in L'<(L):

oc ocp

Dies ist aber in U{0) wegen (6.2) sicherlich bis auf eine Nullmenge nicht
positiv. Also ist ip(u, kn) in 11(0) ein positiver Glockenkern.

29. Wir zeigen jetzt, daB Vc) nicht zutrifft. Zu diesem Zweck bilden
wir fur ein kleines h > 0 den Ausdruck En :

o

J \ I o o | | o I

* (8.5)
Wegen po^p gilt i2(w)->0 (w->0).
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Zunâchst behandeln wir den Fall po>p. Es sei ein positives e<oc
vorgegeben. Sodann wâhle man ein h > 0 so klein, dafi

+
up° )kndu - Ç(1 - (a

ist. Die Produkte dieser beiden Intégrale mit knp Po sind zufolge (6.3),
(6.4) âquivalent

C8 V bzw. (79 in^ (C8 C9 > 0 n->oo)

Da unter der Annahme pQ>p dièse Ausdrucke fur n->cx> einander
nicht âquivalent sind und ihre Différent nach unendlich strebt, folgt

Isthingegen pQ — p, so wâhle man e>0 so klein, daB oc + <x0 — e>0
und

l—T>
1

r (8.6)

ist. Dann folgt fur jedes hinreichend kleine h>0 aus(8.5)fur po P'

h h J

f (1- {<xo + e) up)**du- f (l- (ot + <xo — e)up)kndu\.
6 6

1.
Die Produkte dieser beiden Intégrale mit knp sind vermôge (6.3), (6.4),
(6.5) âquivalent

CC0 i r±
(n->oo).

Dièse Ausdrucke sind fur n->oo wegen (8.6) einander nicht âquivalent,
und da ihre Differenz nach unendlich strebt, folgt wiederum En ->oo

(n~> oo). — Damit ist der Satz in allen Teilen bewiesen.

30. Anmerkung. Sâmtliche Behauptungen des Satzes VII lassen sich

aufrechterhalten, wenn (3.4) bzw. (3.2) unter Vertauschung von Intégration
und Differentiation angesetzt wird.

Fur den Beweis ziehen wir die im ersten Teil in § 13 aufgestellten Ver-
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tauschbarkeitskriterien heran. Bezeichnet tp0 einen beliebigen Stieltjes-
schen und y> einen beliebigen Stieltjes-Hahnschen Einerkern auf (£), so

folgt unter Benutzung von (7.2) fur fast aile Punkte irgendeines Reeht-
ecks R'< (R2l(0))

Zu jedem Wertepaar p,po>O und jedem Index n existiert eine
GrôBe Cn, so daB der letzte Ausdruck ûberall auf R1 kleiner ist als Cn fur
p^l und kleiner als Cn\u\p~x fur 0<p<l. Daher ist im ersten
dieser beidenFâlle (1 ; 13. 2) und im zweiten (1 ; 13. 9) mit 0^(u,v ; n)

y)'(u,kn) ipo(v,Icn) fast uberall auf R' < (R2l(0)) erfûllt. Auf Grund
der Kriterien I und II in den Nummern 58 und 61 des ersten Teils erkennt
man jetzt die Richtigkeit obiger Behauptung fur jeden der Teilsâtze
VII <x) bis ô).

§ 9. Produktkerne vom Poisson-Hahnsehen Typus

31. Als Poissonsche Einerkerne bezeichnen wir mit Hahn Einerkerne
von folgendem Typus : Es sei fur jeden Parameterwert

(Vil

x(u) oc | u \* + œ(u) \u\* u<(-l,l) (L)

lim co (u) 0

(o sei meBbar auf L, und es gelte in jedem Teilintervall L* <^ (L), das
den Nullpunkt nicht enthàlt

Inf r

Hahnu) hat insbesondere gezeigt, daB fur jede Funktion /(^) (| <( (L))
aus der Klasse J?7! in jedem Stetigkeitspunkt die Relation (1 ; 1.1) mit
J L und dem Poissonschen Einerkern K y>(Ç — x,h)> n — k gilt.

M) H. Hahn (I), pp. 647—655.
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Ist y)(u,k) ein Poissonscher Einerkern, fur welchen in jedem (ab-
geschlossenen) Intervall L! <^ (L) die Funktion r(u) totalstetig ist und
fast iiberall der Ungleichung

u\^ (u<Lr, 4 Const.) (9.1)

genûgt, so wollen wir y) einen Poisson-Hahnschen Einerkern nennen.
Fur einen Einerkern letzterer Art gelten nach Hahnu) insbesondere die

Relationen (1 ; 1.2) mit K ^(| — x, k), n k, J L, s 1 in
jedem Punkt x <^ (L) einer beliebigen Funktion / die auf L zu Fx
gehôrt und fur £ x differenzierbar ist.

32. Es seien jetzt mit \px, \p2 Poissonsche Einerkerne bezeichnet, zu
welchenbzw. die GrôBen Ct,pt, rt(u),oct, œt(u) (i 1,2) gehôrenmôgen.
Im Falle von zwei Variablen wollen wir nunmehr als Beispiel zu den

Sâtzen I, III, V ûber beliebige (nicht notwendig symmetrische) Produkt-
kerne den folgenden Satz beweisen :

Satz VIII. Es sei ip2 (v, k) ein Poissonscher und \px (u, k) ein Hahn-
Poissonscher Einerkern auf (L). Q0(x, y) bezeichne einen beliebigen aber

festen Punkt aus dem Inneren eines vorgegebenen Quadrates Rt der Çr]-

Ebene.

oc) Damit fur jede Funktion f(Ç,rj), die auf El zu Ft (i 1, 2) gehôrt

und in Qo ein totales Differential besitzt, die Relationen (3.1), (3.2) mit

ip tply (p \p2J n k gelten, ist hinreichend :

2 1

A] fur F± : Es ist p± ^ p2 und 1 ^1 ;
Pi Vi

E\ filr F2 : Es ist px ^ p2 und 1 < 1

P) Die beiden Voraussetzungen A] bzw. B] sind notwendig, wenn

ua)[(u)-^O (u-*0, u<i 51) (9.2)

gilt, wobei u fur Punkte einer Nullmenge 91 aujier acht gelassen wird.
y) Damit fur jede Funktion /(£, rj), die auf Rt zu Fi (i 1, 2) gehôrt

und in Qo stetig und H-differenzierbar nach £ ist, die Relationen (3.1),

(3.2) mit y) y)x, <p y)2, n k gelten, ist unter der Annahme (9.2)

notwendiq und hinreichend, dali 1 <^ 1 im Falle von Fx und

l i Pi Pi ~
1 < i im Falle von F2 ist.

Pi Pa
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ô) Damit filr jede Funktion f(£,r]), die auf RlzuFt (i 1,2) gehort
und in Qo stetig undO-differenzierbar nach f ist, die Relationen (3.1),
(3.2) mit tp y)l9 <p ip2, n k gelten, ist unter den Annahmen
wt(w) <ot(— u) (u < VL(O) ; i 1, 2) und (9.2) notwendig und hin-
reichend :

C] filr F,: Es giU 1 <:
Pi Pt~ Pt ' Px~ '

11 1

D] fur F2 : Es gilt 1 < 1 und (- — 5j 1
Pi Pi Pi Pi

Zusatz zu ô). Die Voraussetzung \- — fg 1 ist auch notwendig,
Pz Pi

wenn cot(u) ^ cot(— u) ist und wenn an die Stelle von Ft (i 1, 2) die
Klasse der auf Rt stetigen Funktionen tritt.

33. Vorgângig dem Beweis des Satzes VIII sollen in dieser und der
nâchsten Nummer einige darin oft vorkommende Intégrale abgeschàtzt
werden. Dabei werden wir immer wieder Intégrale von der Gestalt

h

J f., ffo
^m du (9.3)j i _)_ k p up)m

0

vermôge der Substitution z 1 + kf}up ûberfûhren in

C
g-fi

k p

Ç ~—%r^—dz (c>°) • <9-4)

Allgemein werden hier und im folgenden mit C, C[9 Cf usw. GrôBen
bezeichnet, die nur von Parametern abhângen, welche im Laufe unserer
Diskussion konstant gehalten werden. Insbesondere seien dièse GrôBen
stets von den mit h und k bezeichneten Parametern unabhângig.

34. Zu jedem hinreichend kleinen e>0 existiert ein h'>0, so daB
fûralle u<(—h',hf} und aile ifc^l

1 1
-< <¦

1 + k{0Ci + e)\u\p* 1 + krt(n) 1 + *(*, - s) \u\p*

(tt<<-V,V>; i=l,2) (9.5)

gilt. Daher ist fur aile hinreichend kleinen h > 0
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(i + kZ»)Y du^2f a +^f du '

—A 0

worin ^ bedeuten soll, da8 fur eine geeignete Konstante /} > 0 das obère

und fur eine andere Konstante {$ > 0 das untere Zeichen fur aile Je ^ 1

gilt. Unter Benutzung von (9.3), (9.4) ergibt sich daher fur geeignete
Konstanten C[

1 + kphPi

wobei g (h, h) fur h > 0, k ^ 1 positiv und < 1 ist. Wir notieren noch,
da6 fur jedes feste h > 0

limg(h,k)=l (9.6)
gilt. *-~

Es seien wiederum e>0 und hf(e) =hr so gewâhlt, daB (9.5) gilt.
Mit Hilfe obiger Substitution und unter Verwendung geeigneter Konstanten

erhâlt man sodann fur irgendein h <( (0, hf) :

J 1 + &t2(i;) ^ J 1 + kpvP* 2 J

P2+C'2Jc v* Ç -^ ^ dz (9.7)
2

Wir schàtzen J2 zuerst nach unten ab und erhalten fur ein gewisses C\
und aile k>k1{U) p-1 hrv* :

2

Pa < J*

Eine Abschâtzung nach oben fûhren wir fur k fg kt und t > kx ge-
2_

trennt durch. Im ersten Fall ist J2 < C\ k Pz fur ein passendes C%, und

im zweiten ist der Ausdruck (9.7) kleiner als

fc v*l n" i n* i /~ i\î>2 ~a~ \ __ # '-ii/'V-h «i (/»;«'• J fur
\ l + Cr2 J («-

-?--1

^ (s2 (h) + Cf2 lg ifc) fur p2 ==2
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Somit ergibt sich als eine obère Schranke von J2 fur jedes h ^ (0, hf)
und aile k 2> 1

J2<A - Max /— —^
VF fc^

Hierin bedeutet y eine beliebige Zahl aus dem Intervall (0,1) und A eine
GrôBe, die von e, h und p2 abhângt.

Analog erhâlt man, wieder unter Verwendung von (9.3), (9.4) fur aile

{i+krl(u)rdu<2j
—h

und fur aile p2 > 1 :

J> J l+kr2(v)<2J l+kfiv»--!: J
dv c c i1)

_L '

Bezeichnen schlieBlich c, d GrôBen, fur welche \c\, |d| <Z, 0 <£ <c, d>
ist, so gilt, wie man sich an Hand der Définition von r2 (v) direkt ûber-
legt : d

5 J 1 + &T2(v) "^ k

§ 10. Beweis des Satzes VIII, erste Hâlfte

35. Wieder wird es genugen, unsere Behauptungen fur den Fall zu
beweisen, daB k liber eine beliebige Zahlenfolge kn^ 1 (n 1, 2,...)
nach unendlich strebt.

Aus den Voraussetzungen in oc), y) oder <5) fur irgendeine der Funktions-

klassen Fi (i 1, 2) folgt, daB in jedem dieser Fâlle 1 < 1 gilt.
Pi Vi

Daher gilt gleichmâBig in jedem den Nullpunkt nicht enthaltenden
Rechteck B* < (B2l(O)):
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(2.1) ist also fur y=yx und (p=tp2 erfûllt, und somit ist y>i(u9kn)y>z(v9kn)
ein Produktkern auf (B2l(O)).

36. Beweis der Behauptungen oc) und /?). Um Satz I fur den
Beweis von oc) anwenden zu kônnen, werden jetzt die Voraussetzungen
dièses Satzes unter den Annahmen von oc) als erfiïllt nachgewiesen.

Wir beginnen mit Ia°) fur Fx und haben also zu zeigen, daB der zu
y>'i(u,kn)y)2(v,kn) gehôrige gelochte Kern auf jedem Rechteck
B'X (B2l(O)) fast beschrânkt ist, oder — was dasselbe bedeutet — daB

Wi(u> hn) V2(v> kn) dièse Eigenschaft auf jedem den Nullpunkt nieht ent-
haltenden Rechteck j?* < (222j(0)) besitzt. Fur y>x(u,kn) ergibt sich

mit Hilfe von (9.1) die fast ûberall in IX (L) giiltige Abschâtzung

Daher gilt fur jedes Rechteck B' ¦< (i22,(O)) fast ûberall

+ }"r(l + fc.T^t*))1 l + knr2(v)
(10.1)

Der letzte Ausdruck ist wegen < 1 gleichmâBig beschrânkt
Pi P*

fur aile kn ^ 1 und aile Punkte jedes Rechtecks R* < (R2i(O))> ^as

die #-Aehse nicht trifft. Also ist fast iiberall

Wi(^K)V^9K)\<Co (P(u,v)<B*9P{O,v)<tB*9kn^l). (10.2)

Wir dûrfen uns daher auf Rechtecke B* beschrânken, deren Ecken die

Koordinaten

(-h, a), (h, a), (A, 6), (-ft,6) (0< <a, 6>; | a \, | 6 | <l) (10.3)

fiir ein kleines h>0 besitzen. In einem derartigen Rechteck ist die

rechte Seite von (10.1) kleiner als

Clkn^ ^ — (10.4)
{i+kp\n*

fur geeignete Konstanten P,C'q>0. Durch Nullsetzen der Ableitung
dièses Ausdrucks nach j u \ erhâlt man fur \u\Pl den einzigen von 0
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verschiedenen Wert C^ kn durch den die Ableitung selbst fallend hin-
durchgeht, so daB diesem Wert das absolute Maximum des Bruchfaktors
in (10.4) entspricht. Der Wert des Maximums von (10.4) ergibt sich
daher zu

2 1

C^knVl
+ V2~ (10.5)

und dies ist wegen der zweiten Voraussetzung A] gleiehmâBig beschrânkt
fur aile kn^l. Daher ist die linke Seite von (10.1) auf R* fast
beschrânkt, und damit ist bewiesen, daB Ia°) fur Fx zutrifft.

37. Wir schlieBen hier gleich den Beweis der Behauptung in p) an,
daB im Falle von Fx die zweite Voraussetzung A] notwendig ist.

Es gilt fast ûberall in Lf<<\(L), wie man fûr u^O und u<0 leicht
verifiziert :

XJnter Benutzung von (9.2) folgt hieraus, daB in einer gewissen Um-
gebung des Nullpunktes fast ûberall

ist. Daher gilt fast ûberall in einem Rechteck R* von der Gestalt (10.3)
mit hinreichend kleinem h > 0 :

(10.6)

wobei C^ eine von h unabhângige Konstante ist. Dabei môgen fur R*
die GrôBen | a \ und | b \ von vornherein so klein angenommen werden,
daB | t2(v) | <const. fiir v<( <a,6> gilt. Fur geeignete j$,Cq>Q ist
sodann (10.4) auf R* kleiner als der letzte Ausdruek, und fur eine
geeignete Konstante C^ stellt (10.5) wieder das Maximum der bei konstant
gehaltenem kn stetigen Funktion (10.4) in \ u\ dar. Unter der Voraus-

2 1
setzung 1 > 1 wâchst aber dièses Maximum mit kn -> oo ûber

Pi P2
aile Grenzen, so daB also | xp[ y>21 ai*f R* nicht gleichmaBig fur fast aile
Punkte und aile kn^l beschrânkt sein kann. Daraus ergibt sich die
Notwendigkeit der zweiten Voraussetzung in A].
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38. Wir beweisen jetzt, daB 1 < 1 fur das Zutrefïen von Ia°)
Pi Pi }

fur F2 hinreichend und notwendig ist. Ia°) fur F2 ist mit der Forderung
gleichbedeutend, daB J | ip^iu, kn) y>2(v, kn) | dP gleichgradig totalstetig
ist auf jedem Rechteck JR* < (B2*(0)), das den Nullpunkt nicht ent-
hâlt. Dièse Eigenschaft ist wegen (10.2) sicher auf jedem Rechteck
B* < (Rn(O)) erfullt, das die v-Aehse nicht trifft. Wir kônnen uns daher

von vornherein auf das Rechteck R* von der Gestalt (10.3) beschrânken.
Unsere Voraussetzungen sind also als hinreichend erkannt, wenn wir
zeigen kônnen, daB zu jedem fi >0 ein k(h, /u) existiert, so daB fur aile

kn>k(h,fi)
Gh Ç\y'i(u9kn)yz{v,kn)\dudv<p (kn>k(h,/Lt)) (10.7)

gilt.
Ein Blick auf (10.1) lehrt, daB

GH<CQkn+^ + ^J1J,

ist, so daB man unter Berucksichtigung der in Nummer 34 ftir J1, Jb

gefundenen Abschâtzungen

Oh<C0C[C5g(hykn) C^+ f2 K* (*»^1)

erhâlt. Wegen 1 < 1 und der gleichmâBigen Beschrânktheit von
Pi Pz

g(h,kn) folgt Gh-*0 (fen-> oo), womit (10.7) bewiesen ist.

39. Um die Notwendigkeit der Bedingung 1 < 1 zu be-
Pi P*

weisen, werden wir unter der Annahme 1 ^1 zeigen, daB es ein
Pi P*

und Rechtecke jB* beliebig kleinen Inhaltes gibt, fur welche (10.7)
nicht erfullt ist. Zu diesem Zweck môgen die Koordinaten a, 6 in (10.3)
konstant gehalten werden, wâhrend wir h nach 0 abnehmen lassen.

Wegen (10.6) ist

(5) i + JL + _L (5) / JL + JL—i
Gh>C0 k "i '• J1 JB >Co Gx Cbg(h, kn) kn* ** (kn à 1)

und zufolge (9.6) existiert eine von h abhàngige Grôfie ko(h), so daB

man unter Beachtung von 1 1^0 fur aile kn>k0
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erhâlt. Fur p \ C0(6)Cj 06 ist (10.7) nicht erfûllt, wie klein auch h>0
gewahlt wurde. Also ist 1 < 1 eine notwendige Bedingung.

Das Erfûlltsein von Icj) und c2) fur g 1 und p{>l (i 1, 2) ist
bereits von Hahn15) (bei der Diskussion des eindimensionalen Problems)
nachgewiesen worden.

40. Wir beweisen nunmehr das Zutrefifen von IbJ und b2). Unter Be-

achtung von (10.1) erhâlt man fur aile kn^ 1

f ^\uWr1(u,kn)W2{vikn)\dudv<C*kn " P*JZJ* (K^l),
-h ~h

und dies ist fur kn -> oo beschrànkt. —- Andererseits erhâlt man wieder

wegen (10.1) fur aile kn^l

f fWi(u,kn)vW2(v,kn)\dudv<Cokn ^ P*JXJ2<

Wâhlt man jetzt y so, daB 1 <y < 1 ist, so ist der letzte Aus-
Pi P

druck wegen (9.6) und p^p2 beschrànkt, gleichmâBig fiir aile &n^>l.
Damit ist Ib!) und b2), und somit auch Behauptung oc) unseres Satzes
bewiesen. — Wir wollen noch bemerken, daB hier beim Nachweis von
Ib2) zum erstenmal p^p2 benôtigt wurde.

41. Behauptung /?) wird vollstândig bewiesen sein, wenn noch die
Notwendigkeit der Bedingung 2)i^2)2 erkannt ist. Da (10.6) auch auf
einèm Quadrat B2h(O) mit einem hinreichend kleinen h>0 richtig ist,
erhâlt man unter Beachtung von (9.8):

\ h 11 11
J f\vl(u,kJvVt(v9kn)\dndv>Co)k\*Ti

+ ^^

Fur kn -> oo gilt g (h, kn) -> 1, und somit strebt der ganze Ausdruck
nach unendlich, so daB Ib2) nicht gelten kônnte.

15) H. Hahn (I), pp. 647—649.
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§ 11. Beweis des Satzes VIII, zweite Hâlfte

42. Beweis der Behauptungen y) und ô). Fur den Beweis von y)
haben wir uns auf Satz III zu beziehen. Da im obigen Ia°), bj, cx), c2)

als zutreffend befunden wurden, und zwar ohne Benutzung der Voraus-

setzung px ^ p2 und da andererseits, wie gezeigt wurde, 1 < 1,2i Pi V2
1 <: i fur (Jie Gultigkeit von Ia°) im Falle von Fx bzw. F2 not-

Vi V%

wendig ist, ist Behauptung y) somit bewiesen.

Um ô) zu beweisen, haben wir Satz V anzuwenden. Zunâchst wollen
wir feststellen, daB (4.1), (4.2) fur yj2 bzw. ipx erfiillt ist. Die Geradheit
dieser Einerkerne in Xï (O) haben wir vorausgesetzt. Nach Définition ist

Andererseits gilt fast iiberall in 2/*\(L), wie man fur u^O und

u < 0 verifiziert :

f\
und dies ist fast ûberall in U(0) wegen (9.2) nicht positiv. tp2 ist also in
VL(O) positiv und gerade und y)t ein gerader Glockenkern, wie in Satz V

verlangt wird.

43. DaB Va°) fur Fx und F2 sowie Vb^ und b2) zutreffen, wurde be-

reits unter oc) bewiesen. Wir haben dort allerdings px^p2 vorausgesetzt,
eine Relation, die jetzt aus der zweiten Voraussetzung in C] bzw. D] folgt.
Es ist also noch Vc) nachzuweisen, wozu wir das Konvergenzverhalten von

h

> K) [Vi(°> K) - Vi{u, K)]

zu untersuchen haben.
Es gilt

(u, Jcn) - y>x(u, hn) y^u, kn)

C* kJ1'

0 knPl pt-
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Wir wâhlen jetzt ein e > 0. Dann kann fur hinreichend kleine h > 0 ver-
môge (9.5) stets erreicht werden, daB En fur gewisse positive Konstanten
0i> /?2> ^e grôBer bzw. fur andere positive Konstanten fil9 /?2, C6 kleiner
ist als

1 1 h
pi

—du

Die Substitution

fûhrt diesen Ausdruck ûber in

I i
—2Pl knPldz
Pi

so daB wir schreiben kônnen :

U/2+Pl l f — dz. (11.1)
j/ I ——1 __^

Das letzte Intégral ist kleiner als

Aus 1- — <, 1 folgt erstens, daB 0 < — < 1 gilt und also Sn
P% Pi " Pi

beschrânkt ist fur A:n -> oo, und zweitens, daB daher die rechte Seite von
(11.1) ebenfalls beschrânkt ist fur &n->oo. Die Voraussetzungen in à)
sind also fur die Behauptung à) hinreichend.

44. Die Notwendigkeit der ersten Bedingung in C] bzw. D] fur die
Griiltigkeit von Va0) ist bereits unter /?) bewiesen worden. — Wâre die

zweite Bedingung C] bzw. D] nicht erfullt und also \- — > 1, so be-
P2 Pi

trachte man zunàchst den Fall p^p2. Unter dieser Annahme ist der
Wert des Intégrais in (11.1) grôBer als
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T ~ f *— r-&.

Da lim Tn ^ 0 ist, divergiert die rechte Seite von (11.1) nach unend-
n->oo

lich und daher fur geeignete Konstanten auch En, so daB Vc) nicht erfiillt
sein kann.

Sei endlich pa>Pi* ^as Intégral in (11.1) ist jetzt fur hinreichend
grofie kn grôBer als

2 JL /

-kr*—£r-
Pi £ Pi

und daher ist die rechte Seite von (11.1) und somit fur geeignete Kon-
î

stanten auch En wenigstens wie Const. • JcnP2 divergent. Wieder kônnte
Vc) nicht erfûllt sein. —

45. Beweis des Zusatzes zu <5). Wir haben soeben festgestellt, daB

1_
jE*. <g i fxir (jas Bestehen von Vc) notwendig ist, und nach Nummer

14 ist dies auch noch der Fall, wenn a)t(u) ^ oyt{— u) gilt. Ferner sei

daran erinnert, daB Vc) mit l,VIIId) âquivalent ist. In Nummer 1, 55

haben wir aber festgestellt, daB l,VIIId) fiir das Bestehen von (1; 10.2)
bzw. (3.2) auch dann notwendig ist, wenn Ft (i 1, 2) durch die Klasse
der auf Rx stetigen Funktionen ersetzt wird. — Damit ist Satz VIII in
allen Teilen bewiesen.

46. Anmerkung. Aile Behauptungen des Satzes VIII bleiben wahr,
wenn in (3.4) die Intégration mit der Differentiation vertauscht angesetzt
wird. Dies ergibt sich sofort daraus, daB (1 ; 13.2) mit &(u,v;n)

ipi{u,kn)y)2(v,kn) wegen (10.1) und Pt>l erfiillt ist und somit das

Kriterium I in Nummer 58 des ersten Teils Anwendung findet.

47. Folgerungen aus ô). Ist f(£,rj) auf Rt stetig und nach einer

beliebigen der beiden Variablen f, rç O-dififerenzierbar in Qo, so hâtte man
fur einen in bezug auf | und rj symmetrisch formulierten Satz ô) neben

l £l <,i auch, \~— <Ll vorauszusetzen, was ofifenbar nicht
2>2 Vi ~~ Pi V* ~~

miteinander vertrâglich ist. Es existiert also kein aus zwei Poisson-
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Hahnschen Einerkernen gebildeter Produktkern mit der gewunschten
Eigenschaft.

Analog verhalten sich auch drei- und mehrdimensionale Poisson-
Hahnsche Produktkerne. Es seien z. B. im Falle von m 3 Dimensionen
die Einerkerne mit y>l9 ip2, % bezeichnet. Fur die Gultigkeit des dem
Satze ô) entsprechenden Differentiationssatzes muBte die Relation (5.1)
mit m 3 vorausgesetzt werden, oder — wie der Satz in Nummer 18

besagt — zwei Relationen (4.3), nâmlich mit y> ipl9 <p rp2 und
%p \px, çp %pz. Dièse Ungleichungen kônnten aber, wie wir in Nummer

44 fur die eine von ihnen gesehen haben, nur gelten, wenn — 1

pi - '

ist. Fur einen in bezug auf drei Variable symmetrischen
Pz Pi
Differentiationssatz im Falle der O-Ableitung muBte man daher die sâmt-

1 vlichen Relationen 1- — <£ 1 (i, k 1, 2, 3) voraussetzen. Da sich
P* Pk

dièse aber teilweise widersprechen, ist unser Ansatz zum Scheitern ver-
urteilt.

Verzeichnis der besonderen Termini

Die Zahlenpaare hmter den angefuhrten Bezeichnungen smd so zu verstehen, daÛ die erste
Zahl auf den 1 oder 2 Teil dieser Beitrage verweist, wahrend die zweite sich auf die

Nummer am Rande des Textes bezieht

Emerkern 2, 5 2, 11

^i^2 1,4
fast beschrankt 1, 10
Fundamentallemma 1, 13

gelochte Funktion 1, 24
geloehter Kern 1, 14 1, 29
gleichgradig totalstetig 1, 11

gleichmaûig eine H-Ableitung 1, 49
gleichmafiig eme O-Ableitung 1, 56
gleichmafiig ein totales Differential 1, 26
Glockenkern (gerader) 2, 11
H Ableitung, H-Difîerenzierbarkeit 1, 8

mtegrieren, Fufinote 1, 10
Kern 1, 10 2, 5 2, 17
klassische Kerne, Fufinote 2, 1

hmitar orthogonal 1, 12

nullstrebig 1, 12

^-Ungleichung 1, 15 1, 29 2, 5
0-Ableitung, O-Difïerenzierbarkeit 1, 7

Poisson-Hahnscher Einerkern 2,31
Poissonscher Produktkern 2, 31

positiver gerader Emerkern 2, 11

Produktkern 2, 5 2, 17

Quadrat i?; 1, 28 und Fufinote 1, 12

(R) 1, 10; Rh{Q) 1, 14;
(R2i(O)) 1,28 2,5

q strebig 1, 14 1, 29 2, 5

Stieltjes Hahnscher Produktkern 2, 20
Stieltjesscher Produktkern 2, 20

symmetrischer Produktkern 2, 5
totales Differential 1, 6

totalstetiger Emerkern 2, 5

Totalstetigkeit des Lebesgueschen Intégrais

1, 11

[7-Ungleichung 1, 51

Verschiebungseigenschaft 1, 30
Verschiebungskern 1, 28 1, 29

F-XJngleichung 1, 51

(Eingegangen den 20. Oktober 1947.)
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