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Sur le théoréme de Hurwitz-Radon
pour la composition des formes quadratiques

Par H. C. Leg, Cambridge

1. Introduction. Il est bien connu que le probléme de n carrés
@+ )+t =4+t 4
n’est possible que si » = 1, 2, 4, 8. Pour le probléme plus général
@+t 2) g1 Yn) = (2150 . ., 2,) (1)

ou g, h sont des formes quadratiques non singuliéres, Hurwitz [1]1) avait
démontré, dans le domaine complexe, le

Théoréme (forme de Hurwitz). Le probléme n’est possible que st n est la
fonction sutvante de p: Pour p = 2r + 1 impair, n est un multiple de 27
ou 2™+ gelon r = 0,3 ou 1,2 (mod 4) ; tandis que pour p = 2r + 2 paar,
n est un multiple de 27 ou 27+ selon r =3 ou 0,1, 2 (mod 4).

En supposant les formes ¢, h réelles et définies positives, Radon [2] a
montré, par une autre méthode, que ce théoréme est méme vrai dans le

domaine réel et que les résultats peuvent se mettre sous la forme équi-
valente :

Théoréme (forme de Radon). Le probléme n’est possible que si p est la
fonction swivante de n: Pour n = u-2%+B (u impair; B=0,1, 2, 3),
p =< 8a - 28.

Dans les Commentarii, M. B. Eckmann [3] a donné, sous les mémes
hypothéses que g, k& soient réelles et définies positives, une nouvelle dé-
monstration du théoréme de Hurwitz-Radon dans le domaine réel, fai-
sant usage de la théorie des caractéres d’un groupe fini spécialement cons-
truit. Nous donnerons, aussi dans le Réel, une autre démonstration de ce
théoréme faisant application des représentations (comme données par
Weyl et Brauer) de I’algébre de Clifford. Cette démonstration donne aussi
une construction actuelle de toutes les solutions du probleme.

!) Les numéros entre crochets renvoient & I'index bibliographique placé a la fin du
Présent mémoire.
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Les faits connus que nous utiliserons sont les suivants. Posant ¢ =
p — 1, soit C, I'algébre de Clifford ayant q générateurs u,,..., %, qui

sont deux-a-deux anticommutatifs et tels que 2= —1 (¢ =1,...,¢).
Done, pour g = 2r pair, 'algébre C, a (a part d’équivalence) une seule
représentation irréductible complexe u;, — U, (¢ = 1,..., 27), de degré

27 (voir [4]), donnée par les produits de Kronecker?)

Ur=V—1RX:--  XRXPXEX---XHKE

k=1,..., 2
i == BRx.-+ - XBRXQXHEX---XE ( ") @)

Y

a r facteurs, dont P ou Q est le k™, ol

E=G) P=Qy, @=(40, BR=(-1)- (3)

Pour ¢ = 2r 4+ 1 impair, C, a (& part d’équivalence) deux représenta-

tions irréductibles complexes u, - 4+ U, (i =1,...,2r 4 1), toutes
deux de degré 27, ou U,,..., U,, sont donnés par (2), et ol

Ugpr1 = |/—- IRX.--X R (r facteurs). (4)

De plus, il est facile de démontrer (voir I’Appendice & la fin) que la

représentation irréductible U, (¢ = 1,...,q) jouit des propriétés sui-

vantes :

Lemme 1. Une matrice S, satisfaisant a la condition3)
U;S():_S()Ui (i:].,.»o’q)

est adiagonale?), déterminéde & un facteur scalaire prés, et ses éléments adia-
gonauzx différent entre eux par le signe seulement. De plus : quand q = 2r
est pair,ona S, =8, e 8,8y, =0l (0 =0) si r=0,3 (mod 4), mais
Sy = — 8, et SO;S—'-Oz —ol (0=0) &t r=1,2 (mod 4); quand q =
2r + 1 est vmpair, ces résultats subsistent avec U'addition que Sy = 0 en
cas de r pair.

Lemme 2. Une matrice 8, satisfaisant @ la condition

U:8,=48,U, t=1,...,9

2) Voir [5] p. 429; [6] p. 271; [7] p. 300.
8) Dans ce qui suit, ' dénote le transposé, — le conjugué complexe et I la matrice iden-
tique.

4) On appelle une matrice adiagonale si elle a la forme r "} avec des éléments nuls

en dehors de la ligne ponctuelle, celle-ci s’appelle 'adiagonale et ses éléments éléments
adiagonauz.
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est adiagonale, déterminée a un facteur scalaire prés, et ses éléments adiago-
naux difféerent entre eux par le signe seulement. De plus : quand q = 2r est

pair, on @ Sy =8, et SIIS'"1 =90l (p =0) &2 r=0,1 (mod 4), mais
Si=—8,¢e 8,8 =—90I (0 =0) st r=2,3 (mod 4); quand q =
2r + 1 est impair, ces résultats subsistent avec Uaddition que S; = 0 en

cas de r impair.

2.  Réduction du probléme. Cette réduction est classique, mais nous
lindiquons dans une notation plus générale pour notre but. Supposons
les formes g, h réelles, de matrices symétriques ¢, H respectivement. Si

y et z désignent les colonne-vecteurs de composantes ¥;,...,y, et
Z15- -5 2, (1) peut s’écrire

(i +---+ay)yGy=2"Hz . (5)
Puisque z,,. . .,z, sont par hypotheése des fonctions linéaires de y,,. . .,¥,,
on peut écrire z = Ay ou A est une nXn matrice dont les éléments
sont par hypothese des fonctions linéaires de =z,,..., z,:

A=Az, + -+ Az,

A;,..., 4, étant des nm Xn matrices & éléments constants réels. Faisant
z=Ay dans (5) on obtient A'HA = (2} +-.-4 3) G, et par suite

AlHA, =G (x=1,...,p),

6)
A;HAB—}—A{BHA(,—:-O (xff; o, f=1,...,p) . (

Séparons les équations (6) en deux groupes (I), (II) tels que (I) com-
prenne les équations (6) avec les indices allant de 1 & p — 1, et (II)
comprenne les suivantes

A, HA ,=@G , (7)
AiHA,+ A HA, =0 G=1,...,p—1). (8)

Puisque G et H sont non singuliéres, (7) implique que A, I'est aussi et
que, pour que le probléme soit possible dans le réel, les formes g et h
dotvent avoir la méme signature. Nous verrons plus tard que ces formes
doivent étre définies (positives ou négatives). Pour le moment supposons
seulement qu’elles aient la méme signature. Donc, on peut trouver la
matrice réelle non singuliére 4, satisfaisant & (7), et méme sa totalité.
D’autre part, de (7) on tire 4, = GA;* H-, et alors (8) donne A=
= GA; A, A;PH-Y (i =1,...,p — 1); si on introduit celle-ci dans les
€quations du groupe (I), le résultat peut s’écrire
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B = -1 G=1,....,p—1),
C e (9)
B, B, = — B, B, (v #9; t,9=1,...,p—1).
on B,=A;'4; ¢=1,...,p—1). Donc 4,=A4,B;, (i=1,...
p — 1) et par suite (8) donne, eu égard de (7),

Bi@=—-GB, (i=1,...,p—1). (10)

Les matrices 4, étant réelles, les B, le sont aussi. Supposons inverse-
ment qu’on ait trouvé les matrices réelles B; (+ = 1,..., p — 1) satis-
faisant & (9) et (10); on définit d’abord la matrice réelle 4, par (7) et
Ion pose ensuite 4, = A4 _ B; (:+ =1,..., p — 1); les matrices réelles 4,
(e =1,..., p) ainsi obtenues satisferont & (6). Ainsi, notre probléme se
réduit a trouver des matrices réelles B, satisfaisant a (9) et (10).

3. Démonstration du théoréme de Hurwitz. D’aprés (9), les B, cons-
tituent une représentation réelle de degré »n de I’algébre de Clifford C,_,.
L’algébre étant semi-simple [4], toute représentation complexe est équi-
valente & une somme directe B? de représentations irréductibles U,
(comme citées au n° 1). Alors, & partir d’une telle B donnée, on cherchera
§’il existe une représentation équivalente B, = T B!T-! qui satisfait &
(10): (TBT-Y)' G = — G(TBT-Y), et qui est réelle: TBT-1=
T BYT-1: la premiére condition peut étre écrite

(B)' X = — X B (11)
ou
X=7QrT , (12)
et la seconde prend la forme suivante
B}Y = YB] (13)
ou —
Y=7T17T. (14)

Considérons d’abord la condition (11).

1° Prenons, au premier lieu, B} irréductible :
(a,) Bf = U, ;

done (11) est la condition du Lemme 1. Puisque X est symétrique et non
singuliére d’aprés (12), Lemme 1 implique que r = 0, 3 (mod 4) si p — 1
=2r, et r=3 (mod4)si p—1=2r+41, et que

b) X=08 [8=28, SS=¢e¢l (¢0>0)].
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Dans ces cas seulement, la représentation irréductible (a,) est acceptable
(degré 27, un choix pour p — 1 pair, deux choix pour p — 1 impair).
Bien entendu, toute somme directe formée par cette représentation
répétée m fois (degré m-27) est aussi acceptable. Alors?)

n=m-2" quand p —1=2r, r=0, 3 (mod 4) , (15.1)

n=m-2" quand p—1=2r+4+1, r=3 (mod4). (15.2)

20 Pour les autres cas, on doit prendre B réductible. Essayons

U;0
@ B=(y)
X, X,
X;X3) avec
X;=X,, X;=X,, domme U.X,=-—-X,U;,, U;X,=—X,U,,
U;X,= — X, U,;, qui sont chacune la condition du Lemme 1. Par
suite, quand p — 1 =2r et r=1,2 (mod 4),ou p—1=2r+41 et
r=1 (mod4), on a X|=—X,, X;=—X,, X;=—X,; dou
X, =X, =0, etalors

08 =
B X=(g'g) 5= =5 Sfh=—el (¢>0).

de degré 2.2r = 27+1 ; la condition (11), ot onécrit X = (

On a maintenant )
n=m-2"* quand p —1=2r, r=1,2 (mod 4), (15.3)

n=m-2"! quand p—-1=2r+4+1, r=1 (mod 4). (15.4)

3¢ Pour les cas restants de p — 1 impair = 2r 4 1, et r pair = 0,2
(mod 4), prenons

@ B=(o p)

donc (11) donne U.X,= —X,U,, U/X,= X,U;, U;X,= —X,U,.
La premiére et la troisiéme de ces équations sont chacune la condition du
Lemme 1, d’oi1, comme au-dessus, X; = X, = 0; la deuxiéme est la
condition du Lemme 2, et par conséquent

®) La représentation peut étre choisie d’une seule maniére pour le cas (15.1), mais de
™ + 1 maniéres pour (15.2).

) Il y a une seule représentation pour le cas (15.3), mais en m -+ 1 pour (15.4).

265



&) X=(OS") [S{:Sl, Slkié:l-_—_—gl (0>0) sir;O(mod4)].
8;0) |18;=—8,, 8,8, =—0I (0>0) si r=0 (mod 4)

On aici?)

n=m-2"1 quand p—1=2r+41, r=0,2 (mod 4). (15.5)

Les valeurs (15.1 —é) sont précisément celles données dans le théoreme
de Hurwitz®). Remarquons en passant que d’aprés (b,), (b,) et (b;) on a

XX=0I (p>0) (16)

dans tous les cas. Puisque X est aussi symétrique, il existe, d’aprés un
théoréme connu ?), une matrice unitaire ¥V telle que

X=1eV'V (¢>0). (17)

Considérons maintenant la condition (13). D’apres (2) & (4) on a U ;=
— U}, et alors B_‘i’= — (BY))! d’aprés (a,), (a.) et (a,). Donc (13) a la
méme forme (11); par conséquent, la matrice Y est aussi donnée par
(61), (by) ou (b,) suivant le cas, et elle ne différe de X que par un facteur
scalaire. D’aprés (14) on doit avoir Y Y = I ; alors (voir (16) et (17)) on
peut prendre

Y=V'V. (18)

Done, 'équation (14) s’écrit TAT = V'V = V-1V, ce qui entraine
T=RV (19)

ou R est une matrice réelle arbitraire. A ’aide de (17) et (19), la condi-
tion (12) équivaut 3 N
R'GR=]el. (20)

Par suite la forme g doit étre définie®). Inversement, si g est une forme
définie, il existe une matrice réelle R telle que (20), et toutes les condi-
tions (11) a (14) sont donc satisfaites, ce qui compléte notre démonstra-
tion dans le réel.

7) Il n’y a qu’une seule représentation pour le cas (15.5).
8) Dans le complexe, ce théordme est donc démontré.
%) Radon [2] p. 5, c). — Schur [8] p. 478—479.

10) M. R. Dubisch ([9] p. 525) a récemment démontré ce fait par un raisonnement diffé-
rent.
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(1)t R g Pl BEg1Br

Appendice. Démonstration des Lemmes 1, 2.

Combinons les conditions des Lemmes 1, 2 sous la forme

U;8S=F8U, (t=1,...,9) . (1)
Supposons d’abord q¢ = 2 r. Done (i) consiste en
U,8=F8U,, xS =F8U,y, ((k=1,..,7. (ii)
Puisque Uy = U,, U, ;= — U, d’aprés (2) et (3), (ii) s’écrit
U.8=F8U,, Uy 8= +8U,y; . (iii)

Désignons les éléments des 2 X 2 matrices (3) par €&, p%, g&, v respec-
tivement, ol u indique la ligne et » la colonne, ces indices prenant deux
valeurs que nous choisissons comme 0, 1. On a

eb=1 ou 0 si u=v» ou u#v, ph =€l =e"

(iv)

gh=(—1)" et = (— 1) et = (— 1) el = (— 1)7 &,

ou si un indice prend la valeur 0 ou 1, son barré prend la valeur 1 ou 0.
Les éléments des produits de Kronecker (2) ont la forme

1 (.M PE-1, Pk PE+1 Pr

7, == l/—— 1 (r,,l S ey oS e,,r)
Ky HFe—-1 Pe Pk+1 Hr

U, = (r,,l e Doy Gy e,,r)

et si on désigne les éléments de la matrice S par s’:::_'_",f: les conditions
(iii) s’écrivent

151 Re—1 BEp BE41 By C1...0, SR R | k-1 %k %k+1 Oy
T e o o 0 @ Miinity * e 8 * o 0
% ¢! Toy_1Poy e"k+1 €o,8vy...vp j:%:'g“r--“r ™ VE—14VE e"k-g-1 €y,
1 Pe—1 FE MPE41 By 01...0, My .pp 031 Ok—1 .°%k %k+1 Oy
2 0‘1 Tak__l O’k eO’k+1 CUTSVI...Vr $ p 80’1...0'1- rvl Vk_]_ql'k er+1 el’r

qui, & cause des valeurs (iv), deviennent

(s]_)”‘l'*‘"‘“f'ﬂk—l 8#1---#7:-1!71«: Wc+1--44r= = (_1)V1+"'+"k—1 8#1---#k—1l_fk#k+1-- by

V1 Vg1 VE VE41---Vr Vi VE-1VkVk+1---Vr '’

Viee Vi1 vk Vk+1...vr Vl...vk_1Vka+1...
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Multiplions (v) par (— 1) et égalons le second membre ainsi obtenu & celui
de (vi) ; le résultat, quand on en remplace », par v,, peut s’écrire

[(— D)™ + (=D&l =0 ;

l‘r_

d’ou s v, =0 dés que . =y, pour une valeur k. Il s’ensuit que

les seuls eléments de 8, qui sont peut-étre non nuls, sont de la forme

iy . . . .
3,71 ﬁ' , et ces dermiers se trouvent évidemment sur l'adiagonale. Si dans
By

(v) ou (vi) on remplace ,Zk par u, (donc u, par ;k), et si on fait », =
U, I=1,...,7), on obtient

P P1e-BE—1 Bk PE+1 B
- = i ("— l)k -y o T
B- CBE—1 Bk BE 1By

(vii)
ce qui montre qu’a partir d’un élément adiagonal, par exemple s:-§
tous les autres s’en déduisent par un changement de signe.

Séparons maintenant la considération de (vii) en deux cas suivant les
signes + & droite. Prenons le signe supérieur et appliquons la formule
(vii) successivement pour k= 1,...,7; on obtient

8#1 )%r (r+1) #1 ooy

l‘r:( I‘ by

qui exprime la relation entre deux éléments symétriquement opposés de
I’adiagonale ; il s’ensuit que la matrice S est symétrique ou antisymétrique
selon que % r(r + 1) est pair ou impair, c’est-a-dire r = 0,3 ou 1,2 (mod 4).

Prenons le signe inférieur et appliquons (vii) pour £ =1,...,r suc-
cessivement ; on trouve maintenant

8;;:1...5:7 =( 1)%r(r 1) I*l P'r ,
1--Br I" S

d’ou S est une maitrice syméirique ou antisymétrique selon que i r(r — 1)
est parr ou impair, c’est-a-dire r = 0,1 ou 2,3 (mod 4).

S étant une matrice adiagonale dont les éléments adiagonaux ont la
méme valeur absolue, on voit immédiatement que le produit S S als
forme oI ou — oI (o0 >0) selon que S est symétrique ou antisymétrique.
On peut aussi en vérifier directement.

Supposons maintenant ¢ = 27 4+ 1. Donc (i) consiste en (ii) et, en
outre, la condition

U2 8 =F 8 Uprps
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Les résultats que nous venons d’établir au-dessus subsistent encore.
D’aprés (4) ona Uj, ., = U,,,,, et alors la condition précédente s’écrit
Ugpa 8 = F 8 U,,,,, ce qui donne, puisque U,, , = V— 1 (r‘:; .. 'r‘::)
d’apres (4),

o

o 1.9 My r
Erql.. Ta, Spy..v, $“ ..o, r,,l...r,,r ,

c’est-a-dire

|15 Tl of P2 1% IR U Vit d Ve HBy.. i
('—— 1) ' rsvi...v: B (—' 1) ! § v;...v:

En faisant v, = ﬁ, (I=1,...,r) dans la derniére équation on obtient
[14+(—1)7] s Z' = 0 ; d’ou, pour le signe supérieur et r pair, ou pour
Py
le signe mfemeur et r impair, on a sﬁl :—:' = 0, c’est-a-dire § = 0. Les
By

Lemmes 1, 2 sont completement démontrés.
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