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Sur le théorème de Hurwitz-Radon
pour la composition des formes quadratiques
Par H. C. Lee, Cambridge

1. Introduction. Il est bien connu que le problème de n carrés

(x\ +¦ ¦ ¦+ xl)(yl+¦¦¦+/„) z\ +¦ ¦ ¦+ z\

n'est possible que si n 1, 2, 4, 8. Pour le problème plus général

(x\-\ h x\) g(yl9. ..,yn) h(zl9...,zn) (1)

où g, h sont des formes quadratiques non singulières, Hurwitz [l]1) avait
démontré, dans le domaine complexe, le

Théorème (forme de Hurwitz). Le problème n'est possible que si n est la
fonction suivante de p : Pour p 2r -f 1 impair, n est un multiple de 2r
ou 2r+1 selon r 0,3 ou 1,2 (mod 4) ; tandis que pour p 2r + 2 pair,
n est un multiple de 2r ou 2r+1 selon r 3 ou 0, 1,2 (mod 4).

En supposant les formes g, h réelles et définies positives, Radon [2] a

montré, par une autre méthode, que ce théorème est même vrai dans le
domaine réel et que les résultats peuvent se mettre sous la forme
équivalente :

Théorème (forme de Radon). Le problème n'est possible que si p est la
fonction suivante de n : Pour n u-2*a+P (u impair ; /? 0, 1, 2, 3),
P g 8a + 20.

Dans les Commentarii, M. B. Eckmann [3] a donné, sous les mêmes
hypothèses que g, h soient réelles et définies positives, une nouvelle
démonstration du théorème de Hurwitz-Radon dans le domaine réel,
faisant usage de la théorie des caractères d'un groupe fini spécialement construit.

Nous donnerons, aussi dans le Réel, une autre démonstration de ce
théorème faisant application des représentations (comme données par
Weyl et Brauer) de l'algèbre de Clifford. Cette démonstration donne aussi
une construction actuelle de toutes les solutions du problème.

x) Les numéros entre crochets renvoient à l'index bibliographique placé à la fin du
présent mémoire.
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Les faits connus que nous utiliserons sont les suivants. Posant q

p — 1, soit Cq l'algèbre de Clifford ayant q générateurs %,..., uq qui
sont deux-à-deux antieommutatifs et tels que u* — 1 (i 1,..., q).

Donc, pour q 2r pair, l'algèbre Cq a (à part d'équivalence) une seule

représentation irréductible complexe ut -> U{ (i 1,..., 2r), de degré
2r (voir [4]), donnée par les produits de Kronecker2)

x- -xBxPxEx- - -xE
Rx • • • xRxQ xEx- • -xE (~ >•••> (2)

à r facteurs, dont P ou Q est le &ième, où

« (-îî), ^=G-Î). (3)

Pour g 2r + 1 impair, Cq a (à part d'équivalence) deux représentations

irréductibles complexes ui -> zL U{ (i 1,..., 2r + 1), toutes
deux de degré 2r, où Ul9..., C72r sont donnés par (2), et où

U2r+i y-lRx-xR (r facteurs). (4)

De plus, il est facile de démontrer (voir l'Appendice à la fin) que la

représentation irréductible Ui (i 1,..., q) jouit des propriétés
suivantes :

Lemme 1. Une matrice So satisfaisant à la condition*)

UfiS0=~S0Ui (i=l,...,g)
est adiagonale*), déterminée à un facteur scalaire près, et ses éléments adia-

gonaux diffèrent entre eux par le signe seulement. De plus: quand q 2r

est pair, on a 8'0 So et 80S0= g I (q ^ 0) si r 0,3 (mod 4), mais

SrQ= ~ So et S080= — qI (q ^ 0) si r 1, 2 (mod 4) ; quand q

2r + 1 est impair, ces résultats subsistent avec Vaddition que 80 0 en

cas de r pair.

Lemme 2. Une matrice 8X satisfaisant à la condition

2) Voir [5] p. 429; [6] p. 271; [7] p. 300.

8) Dans ce qui suit, ' dénote le transposé, - le conjugué complexe et / la matrice
identique.

4) On appelle une matrice adiagonale si elle a la forme I • I avec des éléments nuls

en dehors de la ligne ponctuelle, celle-ci s'appelle Vadiagonale et ses éléments éléments

adiagonaux.
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est adiagonale, déterminée à un facteur scalaire près, et ses éléments adiago-
naux diffèrent entre eux par le signe seulement. De plus : quand q %r est

pair, on a S[ St et S1S1 q I (q ^ 0) si r 0, 1 (mod 4), mais

S[= — Sx et 8181= — qI (^0) si r 2, 3 (mod 4) ; quand q

2r + 1 est impair, ces résultats subsistent avec Vaddition que S± 0 en

cas de r impair.
2. Réduction du problème. Cette réduction est classique, mais nous

l'indiquons dans une notation plus générale pour notre but. Supposons
les formes g, h réelles, de matrices symétriques G, H respectivement. Si

y et z désignent les colonne-vecteurs de composantes yx, yn et

zly...,zn, (1) peut s'écrire

(*«+...+ xl)yfGy zr H z (5)

Puisque zt,..., zn sont par hypothèse des fonctions linéaires de yx,. yn,
on peut écrire z A y ou A est une nxn matrice dont les éléments
sont par hypothèse des fonctions linéaires de xl9..., x9:

A. A.! X-± -\- ' ' • -\- Ap Xp,

At,..., Ap étant des nxn matrices à éléments constants réels. Faisant
z A y dans (5) on obtient Ar HA (x\ + * * • + %l) # > et par suite

G (a 1,. p)

Séparons les équations (6) en deux groupes (I), (II) tels que (I)
comprenne les équations (6) avec les indices allant de 1 à p — 1, et (II)
comprenne les suivantes

A'pHA9 G (7)

AriHA9 + A'pHAi 0 (i=l,...,p-l) (8)

Puisque G et H sont non singulières, (7) implique que Ap l'est aussi et
que, pour que le problème soit possible dans le réel, les formes g et h
doivent avoir la même signature. Nous verrons plus tard que ces formes
doivent être définies (positives ou négatives). Pour le moment supposons
seulement qu'elles aient la même signature. Donc, on peut trouver la
matrice réelle non singulière Av satisfaisant à (7), et même sa totalité.
D'autre part, de (7) on tire A'v GA~x H-1, et alors (8) donne A\
— GAp1 At A~x H"1 (i 1,..., p — 1) ; si on introduit celle-ci dans les
équations du groupe (I), le résultat peut s'écrire
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(9)
BtBi=~B3B% (i^j; i, 1,..., p — 1)

où 5t ^p1 ^4t (i 1,..., p — 1). Donc ^4t ^ J3t (t 1,

p — 1) et par suite (8) donne, eu égard de (7),

Les matrices Aa étant réelles, les Bt le sont aussi. Supposons inversement

qu'on ait trouvé les matrices réelles Bt (i 1,..., p — 1)
satisfaisant à (9) et (10) ; on définit d'abord la matrice réelle Ap par (7) et
l'on pose ensuite At A p Bt (i 1,..., p — 1) ; les matrices réelles Aa
(a 1,..., p) ainsi obtenues satisferont à (6). Ainsi, notre problème se

réduit à trouver des matrices réelles B% satisfaisant à (9) et (10).

3. Démonstration du théorème de Hurwitz. D'après (9), les Bt
constituent une représentation réelle de degré n de l'algèbre de Clifford Cp^.1.

L'algèbre étant semi-simple [4], toute représentation complexe est
équivalente à une somme directe Bf[ de représentations irréductibles Ut
(comme citées au n° 1). Alors, à partir d'une telle J5J donnée, on cherchera
s'il existe une représentation équivalente Bt TB®T~* qui satisfait à

(10): (T&lT-^'G — GiTBlT-1), et qui est réelle :

: la première condition peut être écrite

où
X= T'GT (12)

et la seconde prend la forme suivante

Jor=
où

Y t~i T (14)

Considérons d'abord la condition (11).

1° Prenons, au premier lieu, B^ irréductible :

donc (11) est la condition du Lemme 1. Puisque X est symétrique et non

singulière d'après (12), Lemme 1 implique que r 0, 3 (mod 4) si p — 1

2r, et r 3 (mod 4) si p — 1 2 r + 1, et que
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Dans ces cas seulement, la représentation irréductible (ax) est acceptable
(degré 2r, un choix pour p — 1 pair, deux choix pour p — 1 impair).
Bien entendu, toute somme directe formée par cette représentation
répétée m fois (degré m-2r) est aussi acceptable. Alors5)

n m-2r quand p~ l 2r, r 0,3 (mode), (15.1)

n ni'2r quand p — l 2r+l, r 3 (mod 4) (15.2)

2° Pour les autres cas, on doit prendre &% réductible. Essayons

de degré 22r 2r+1 ; la condition (11), où on écrit Z 2)
\Z2 Z3/

avec

donne t^'X^-X^, U[X2= ~
U[ Xz ~ X3 Ut, qui sont chacune la condition du Lemme 1. Par
suite, quand p — l==2r et r 1, 2 (mod 4), ou p — 1 2 r -f- 1 et

r=l (mod 4), on a X[ - Xt, Xf2=-X2, X'3=~XZ; d'où
Zx X3 0, et alors

(b2) x

On a maintenant6)

n m.2''+1 quand p — l 2r, r=l,2 (mod 4), (15.3)

n m'2r+1 quand p—l 2r+l, r l (mod 4). (15.4)

3° Pour les cas restants de p — 1 impair 2 r + 1, et r pair 0,2
(mod 4), prenons

donc (11) donne U[X1= -XtUti UfiX2 X2Ut, U[XZ= -XzUt.
La première et la troisième de ces équations sont chacune la condition du
Lemme 1, d'où, comme au-dessus, Xx Xz 0 ; la deuxième est la
condition du Lemme 2, et par conséquent

5) La représentation peut être choisie d'une seule manière pour le cas (15.1), mais de
171 -j- 1 manières pour (15.2).

6) H y a une seule représentation pour le cas (15.3), mais en m -\- 1 pour (15.4).

265



x (08,\ [S', 8,, 8,8,= QI (e>0) si r 0 (mod 4)1
(* \S',Oj [s'^-S,, 8,8, -qI (e>0) si r 0 (mod 4)J

'

On a ici7)

n m-2r+1 quand p —l 2r+l, r 0,2 (mod 4). (15.5)

Les valeurs (15.1—5) sont précisément celles données dans le théorème
de Hururitz8). Remarquons en passant que d'après (b,), (b2) et (63) on a

XX qI (q> 0) (16)

dans tous les cas. Puisque X est aussi symétrique, il existe, d'après un
théorème connu 9), une matrice unitaire V telle que

Considérons maintenant la condition (13). D'après (2) à (4) on a Ut
— U[, et alors B° — (B°%)f d'après (a,), (a2) et (a3). Donc (13) a la
même forme (11); par conséquent, la matrice Y est aussi donnée par
(b,), (b2) ou (63) suivant le cas, et elle ne diffère de X que par un facteur
scalaire. D'après (14) on doit avoir Y Y I ; alors (voir (16) et (17)) on
peut prendre

Y V'V (18)

Donc, l'équation (14) s'écrit T~XT V'V V~XV, ce qui entraîne

T=RV (19)

où jR est une matrice réelle arbitraire. A l'aide de (17) et (19), la condition

(12) équivaut à

RfGR= ]/qI (20)

Par suite la forme g doit être définie10). Inversement, si g est une forme
définie, il existe une matrice réelle i? telle que (20), et toutes les conditions

(11) à (14) sont donc satisfaites, ce qui complète notre démonstration

dans le réel.

7) II n'y a qu'une seule représentation pour le cas (15.5).
8) Dans le complexe, ce théorème est donc démontré.
») Radon [2] p. 5, c). — Schur [8] p. 478—479.

10) M. i?. Dubisch ([9] p. 525) a récemment démontré ce fait par un raisonnement
différent.
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Appendice. Démonstration des Lemmes 1,2.

Combinons les conditions des Lemmes 1, 2 sous la forme

U'tS=TSUt (i=l,...,g). (i)

Supposons d'abord q 2 r. Donc (i) consiste en

U'kS TSUk, U'r+kS ^SUr+k, (k=l,...,r). (ii)

Puisque U'k Uk, U'r+k - Ur+k d'après (2) et (3), (ii) s'écrit

Uk8 ^SUk, UT+kS=±SUr+k (iii)

Désignons les éléments des 2x2 matrices (3) par e%, p%, qÇ, r%

respectivement, où ii indique la ligne et v la colonne, ces indices prenant deux
valeurs que nous choisissons comme 0,1. On a

e^ 1 ou 0 si [jl ~ v ou /u, ^ v j/1 et e^

où si un indice prend la valeur 0 ou 1, son barré prend la valeur 1 ou 0.
Les éléments des produits de Kronecker (2) ont la forme

V evk+1

et si on désigne les éléments de la matrice S par s^1 '"^r les conditions
(iii) s'écrivent

f T°l • • -^t-nP** e^t+r ' • SS vf — ± ^S .ar ^ • • • rvk.1Vvk evk + x

qui, à cause des valeurs (iv), deviennent

^ ' vl--vk-lvkvk+l--vr * * '
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Multiplions (v) par (— 1) et égalons le second membre ainsi obtenu à celui
de (vi) ; le résultat, quand on en remplace vk par vk, peut s'écrire

d'où Sy1'"^ 0 dès que vk [ik pour une valeur Je. Il s'ensuit que
les seuls éléments de S9 qui sont peut-être non nuls, sont de la forme

s-1'"- et ces derniers se trouvent évidemment sur Vadiagonale. Si dans

(v) ou (vi) on remplace juk par fik (donc fxk par //fc), et si on fait vt

fi% (l 15... r), on obtient

ce qui montre qu'à partir d'un élément adiagonal, par exemple «J - - • J

tous les autres s'en déduisent 'par un changement de signe.
Séparons maintenant la considération de (vii) en deux cas suivant les

signes ± à droite. Prenons le signe supérieur et appliquons la formule
(vii) successivement pour Je 1,..., r ; on obtient

qui exprime la relation entre deux éléments symétriquement opposés de

l'adiagonale ; il s'ensuit que la matrice S est symétrique ou antisymétrique
selon que \ r (r + 1) est pair ou impair, c'est-à-dire r 0,3 ou 1,2 (mod 4).

Prenons le signe inférieur et appliquons (vii) pour Je 1,..., r
successivement; on trouve maintenant

d'où 8 est une matrice symétrique ou antisymétrique selon que \r(r — 1)

est pair ou impair, c'est-à-dire r 0,1 ou 2,3 {mod 4).
8 étant une matrice adiagonale dont les éléments adiagonaux ont la

même valeur absolue, on voit immédiatement que le produit 8 S a h
forme ql ou — g I (g > 0) selon que S est symétrique ou antisymétrique.
On peut aussi en vérifier directement.

Supposons maintenant q 2 r + 1. Donc (i) consiste en (ii) et, en

outre, la condition
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Les résultats que nous venons d'établir au-dessus subsistent encore.
D'après (4) on a U'2r+1 U2r+i> et alors la condition précédente s'écrit

U2r+i S q= S U2r+1, ce qui donne, puisque U2r+1 ]/- 1 (r£ rfy
d'après (4),

c'est-à-dire

En faisant vx pil (l 1,..., r) dans la dernière équation on obtient

[!_)_(_ i)r] 5.1 •"„*• _. q d'où? pO^r le signe supérieur et r pair, ou pour
le signe inférieur et r impair, on a s-1'"-r =0, c'est-à-dire S 0. Les

Lemmes 1, 2 sont complètement démontrés.

INDEX BIBLIOGRAPHIQUE

[1] A. Hurwitz, ,,Ûber die Komposition der quadratischen Formen", Math. Ann.
88 (1923) 1—25.

[2] J.Radon, ,,Lineare Scharen orthogonaler Matrizen", Abh. Sem. Hamburg 1

(1922) 1—14.

[3] B. Eckmann, ,,Gruppentheoretischer Beweisdes Satzes von Hurwitz-Radon
ûber die Komposition quadratiseher Formen", Commentarii Math. Helv. 15

(1943) 358—366.

[4] H.C.Lee, ,,On Clifford's algebra", J. of London Math. Soc. 20 (1945) 27—32.

[5] R. Brauer and H. Weyl, ,,Spinors in n dimensions", Amer. J. of Math. 57 (1935),
425—449.

[6] H. Weyl, The classical groups (1939).

[7] F. D. Murnaghan, The theory of group représentations (1938).

[8] I. Schur, ,,Ein Satz ùber quadratische Formen mit komplexen Koeffi-
zienten", Amer. J. of Math. 67 (1945) 472—480.

[9] R. Dubisch, ,,Compositionof quadraticforms", Ann. of Math. 47 (1946)510—527.

(Reçu le 1er septembre 1947.)

269


	Sur le théorème der Hurwitz-Radon pour la composition des formes quadratiques.

