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Sur les dérivées approximatives
d'ordre supérieur
Par Akos Csaszar, Budapest

Nous rappelons la définition du nombre dérivé approximatif d'une
fonction f{x) d'une variable réelle :

f(x) a la dérivée approximative y au point a s'il y a un ensemble
mesurable E qui a la densité 1 au point a et pour lequel

lim /<«)-/<«> =y
X €E

De là résulte la propriété fondamentale de la dérivée approximative :

A. Si f{x) g(x) presque partout sur l'ensemble mesurable E et
fap (a) existe au point de densité a de E, alors gfap (a) existe et est égal
à f.,(a).

On connaît le théorème de Denjoy-Khintchine selon lequel toute fonction

à variation bornée généralisée (1) mesurable sur un ensemble mesurable

est approximativement dérivable presque partout dans cet
ensemble [1] (renvoi à la bibliographie).

Nous établirons une extension de ce théorème aux dérivées approximatives

d'ordre supérieur.
f(x) étant une fonction réelle définie sur un ensemble E et x0,..., xn

des points différents de E, désignons par g(x) le polynôme de degrée n
au plus prenant en ces points les mêmes valeurs que f(x). Soit A le

coefficient de xn dans g(x) ; nous désignerons le nombre n\ A par

Qn{x0,...,xn;f)=Qn(x0,...,xn)

(1) La fonction f(x) est à variation bornée généralisée sur Pensemble E9 si E U E fc

et pour chaque ensemble Ek les sommes fc==1

S \f(bv)—f(av)\
v-X

°u {aVi bv) sont des intervalles n'empiétant pas les uns sur les autres dont les extrémités
appartiennent à JS?&, restent sous une borne (qui peut dépendre de k).
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La formule réeursive suivante est bien connue :

O (x x - In 4- \\ ^^ g»)

x0 xn+i

Nous emploierons le symbole suivant :

An(xOi. xn;f) — |Çn(a:0,.. #„ ; /) | <5(#0,.. xn)

I xo xn\

où 5(x05..., xn) désigne le diamètre de l'ensemble {xOi..., xn}.
Nous allons définir trois espèces de dérivées d'ordre n de la manière

suivante :

Etant donné un ensemble P dense en soi et a e P, nous appelons
dérivée forte d'ordre n de f(x) par rapport à P au point a la limite
suivante, si elle existe et est finie :

/ j?ï (<*) lim & (*„...*„;/)
Xi-+ a
Xi €P

La dérivée ordinaire d'ordre n par rapport à P est définie par récurrence

:

et si (p(x) f$(x) existe en tout point de P appartenant à un entourage

de a,

Enfin, la dérivée approximative d'ordre n sera aussi définie par récurrence

:

/op+1)(a) est la dérivée approximative de f^(x) au point a, pourvu
que /^ (x) existe en tout point d'un ensemble mesurable E dont a est

un point de densité. La propriété A. nous assure que l'existence et la
valeur de /^+1)(#) ne dépendent pas du choix de l'ensemble E.

Convenons enfin de définir :

La fonction f(x) appartient à la classe (jRn) sur l'ensemble E s'il
existe un nombre M de sorte que pour tout système fini d'intervalles
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n'empiétant pas l'un sur l'autre Il9.. ,,IN et pour x\ c EIv, on ait
toujours N

E An(xv0,...xl-i)< M
V l

De plus, f(x) sera dite d'appartenir à la classe (RnG) sur E, si
00

E X Ek et /(a?) est (i?n) sur chaque ensemble Ek

On voit que les fonctions (B±) respectivement (Rx G) sont identiques
aux fonctions (FB) respectivement (FjB6?) de M. Khintchine [1].

Cela étant, voici l'extension promise du théorème de Denjoy-Khint-
chine.

Théorème. Si la fonction f(x) est mesurable et (Rn G) sur l'ensemble
mesurable E, alors ^(x) existe presque partout sur E.

Pour démontrer ce théorème, nous aurons besoin de quelques lemmes.

Lemme 1. f(x) étant (Rn) sur l'ensemble E, les nombres

restent sous une borne commune.

Démonstration. On a, d'après l'hypothèse, pour Jf suffisamment grand

An(xOi...,xn;f)<M

Or> Io5- • •> ^n-i étant n points différents fixes de E, on & selon (1)

I Qn-l(*O>- - • *«-l) ~ ^«-1(^0- - f-i) I ^

+ I ©»-i(*i,. -. *«-i fo) - <3»-i(*2,. • • «»-i, fo» fi) I H H

g Jw(o:o,... ^.^lo) + Jn(a?1,.,.,a;B.a, |0> fi) H h

pourvu que les points x0,..., xn_x ; |0,..., fn-1 soient tous différents ;
si deux ou plusieurs en sont identiques, l'évaluation se simplifie même.
Ainsi pour tout x{ c E

ce qu'il fallait démontrer.
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Lemme 2. Une fonction f(x) qui est (Bn) sur un ensemble borné E

y est aussi (i2n_!).

Démonstration. D'après lemme 1 on a pour tout xtc E

Or, pour tout système fini Ix,... IN d'intervalles n'empiétant pas l'un
sur l'autre et pour xv% c EIV on a

-i- £
n — 1 v=i

v=l

désignant le diamètre de l'ensemble E, ce qui prouve le lemme.

Lemme 3. Si la fonction f(x) est (Rn) sur l'ensemble E borné et dense

en soi, alors f^~2)(x) existe en tout point de E et il est (i?2) sur E.

Démonstration. D'abord nous établirons l'existence de fl$~2](x) en
tout point de E. Or, x0,... xn_2, y0,... yn_2 étant des points
différents de E, on a l'évaluation suivante :

— y. I ^
1 n-2

^ —-7- 2 I Q«-i(*t
n — 1 l==0

les nombres | Qn^1(xt9... xn_2, y0.... yt) | restant selon lemme 1 sous

une borne B. Une évaluation analogue étant valable dans le cas ou l'un
des points xt coïncide avec un des points yt, on voit aussitôt que /$~23(#)
existe en tout point de E.

f(x) étant (jBn.x) sur E d'après lemme 2, ç?(a;) f[E~~B](x) existe aussi

en tout point de E. Montrons que

/£-21(s) <p'E(x)

a étant un point quelconque de E, admettons pour fixer les idées que
fjs~~2](a) 0 ; le cas général s'y ramène par l'addition d'un polynôme de
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degrée n — 2. Or, pour tout e positif on peut trouver un ô > 0 tel que
pour x% € E et | xt — a | < à on ait

x étant un point de E tel que | x — a | <ô, considérons des points oc%

et ft différents et appartenant à E. On a évidemment

a; — a x — a\

fg lim sup
n-3

— 2
I Qn-2 (£t i • • • £n-3 j ^0 > • • • <*t)

a; — a

ce qui étant valable pour tout s > 0 on a ç?^(a) 0.
En vertu de ce que nous venons d'établir, on voit aisément en procédant

par induction que /^~2)(#) existe sur E et est f[E~2](x). Nous
avons à montrer que ce dernier-ci est (R2) sur E.

Considérons donc des points xv e E, yv c E, ^ e £J (i> 1,... N)
tels que

^ z2 ^. • • ^ xN<yN<zN

On peut trouver des points f J^ € i?, rf% € E, Cl e 2? au voisinage de #„,
yv, 2:v respectivement tels que

On a évidemment

- lim
iV

— Vv
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sup
v=ib=o

\Qn-i(vl"-rt)\

Le dernier membre tend vers zéro puisque Qn-\Wi->* ..,C[) est borné,
ainsi on a en poursuivant l'évaluation :

N n-2

v=l t=o

+1«„(**+!»• • • vi+,)i ifr+i-< +

n£ 2 U (fr -• • • v:+i) +
L

cr>i i^-i.-• • cri]^

.• • • »?r+.)+• • •+

^ 2(n—l)if

Jf désignant un tel nombre que pour tout système fini Ix,..., IN d'intervalles

n'empiétant pas l'un sur l'autre et pour y\ e EIV on ait

Cette évaluation montre que f[^~2](x) est (R2) sur E, ce qui achève la

démonstration.

Lemme 4. f(x) étant (i?2) sur l'ensemble borné E et / un intervalle
contenant E, il existe une fonction g(x) qui est (i?2) sur / et qui coïncide

avec f(x) surJEJ.

Démonstration. En vertu du lemme 1, la fonction f(x) est uniformément

continue sur E. Ainsi elle peut être prolongée sur la fermeture E de

E d'une façon qu'elle reste continue. Il est facile de voir que la fonction
ainsi obtenue est (i?2) sur E
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On passe à la fonction g(x) par interpolation linéaire dans les
intervalles contigus à ~E Pour montrer qu'elle est (E2) sur /, considérons un
système fini de triples de points {xv, yv,zv} (v — 1,..., N), n'empiétant

pas, c'est-à-dire tels que

Z2 ^ •' ^ XN<Vn<ZN '

Nous allons évaluer la somme

N

S A2(xv,yv,zv;g) (2)

On peut admettre qu'aucun des triples {xv, yv,zv} ne se trouve dans un
seul intervalle contigu à E, car pour un tel triple A2 s'annule. Divisons
ensuite les triples en deux groupes selon la parité de leurs indices ; il suffit
d'évaluer la somme (2) étendue sur l'un des deux groupes.

x<y<z étant l'un des triples appartenant à ce groupe, admettons

que x,y,z appartiennent respectivement aux intervalles (xF, x"), (yr, y"),
(zf7 z11) contigus à E. C'est le cas le plus compliqué, dans les autres cas
l'évaluation s'obtient d'une façon analogue et même plus simple.

On a en vertu d'une propriété bien connue des rapports des accroissements

A*{x, y,z) \ Qt(x, y) - Q^y, z) \ ^

— min f ]

L'expression en crochet peut être remplacée par

et alors

max f ] — min [ ] â
S A2(x\ x\ y') + A2{x\ y\ yn) + A2(yf\ y\ z1) + A2{y\ z>', z") (3)

Le premier et le troisième des triples figurant ici n'empiètent pas l'un
sur l'autre, ni le deuxième et le quatrième, et en vertu de nos conventions
ils n'empiètent pas sur les triples obtenus d'une façon analogue des
triples voisins du même groupe. Or, les triples figurant dans (3)
appartiennent à F, sur lequel g(x) est (B2), de sorte que la somme (2) reste
sous une borne finie, ce qu'il fallait démontrer.
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Lemme 5. f(x) étant mesurable sur l'ensemble mesurable et borné
A et (JRn) sur E a A, il existe un ensemble mesurable B tel que
E c B czA et sur lequel f{ap(x) existe presque partout.

Démonstration. Considérons d'abord le cas n 2. Désignons par
g(x) une fonction qui est (i?2) sur un intervalle / contenant A et qui
coïncide avec f(x) sur E, et par B le sous-ensemble de A sur lequel
f[x) g{x). B est mesurable, car f{x), g(x) et A le sont, de plus

E œBœA

Désignons par 'g + (x) le nombre dérivé supérieur à droite de g(x) ; en

vertu d'un théorème de M. F. Riesz [2], ce nombre dérivé est à variation
bornée sur / et g(x) en est une intégrale indéfinie. Or, fap{x) existe et
est égal à ^+(x) en presque tout point de densité de B, c'est-à-dire presque

partout sur B. En vertu du théorème de Lebesgue concernant la
dérivabilité des fonctions à variation bornée, la dérivée de ~g + (x) existe

presque partout sur J, ce qui entraîne selon A) que f^p(x) existe presque
partout sur B. L'énoncé se trouve ainsi établi.

Passons au cas de n arbitraire > 2. D'une façon tout à fait analogue
à la première partie de la démonstration du lemme 4, on voit qu'on peut
trouver une fonction g(x) qui est (Rn) sur E et qui coïncide avec f(x)
sur E. Désignons par B le sous-ensemble de AE sur lequel f(x) g(x) ;

B est mesurable, on a E c B c A et f(x) est (Rn) sur B.
D'après un théorème connu de la théorie des ensembles [3], B est la

somme d'un ensemble B+ dense en soi et d'un ensemble dénombrable.
En vertu du lemme 3, f^2\x) existe et est (R2) sur B+. Il résulte de la
définition de la dérivée approximative d'ordre n que /(j^~2)(#) /(^+2)(#)

presque partout sur B+. La partie déjà établie du lemme 5 montre que
la dérivée approximative d'ordre 2 de f{jp~2)(x) existe presque partout
sur JS+, ce qui prouve l'énoncé.

Enfin, dans le cas n 1, l'énoncé résulte du théorème de Denjoy-
Khintchine.

Le théorème à démontrer est une conséquence évidente du lemme 5.
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