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Sur les dérivées approximatives
d’'ordre supérieur

Par Akos Csiszar, Budapest

Nous rappelons la définition du nombre dérivé approximatif d’une
fonction f(z) d’une variable réelle :

f(z) a la dérivée approximative y au point a §’il y a un ensemble
mesurable £ qui a la densité 1 au point a et pour lequel

im 1@ —f@ _
zZ>a r—a
z €E

De la résulte la propriété fondamentale de la dérivée approximative :

A. Si f(z) = g(x) presque partout sur ’ensemble mesurable £ et
fop(@) existe au point de densité a de E, alors g,’w (@) existe et est égal
b 1, ().

On connait le théoréme de Denjoy-Khintchine selon lequel toute fone-
tion & variation bornée généralisée (1) mesurable sur un ensemble mesu-
rable est approximativement dérivable presque partout dans cet en-
semble [1] (renvoi & la bibliographie).

Nous établirons une extension de ce théoréme aux dérivées approxi-
matives d’ordre supérieur.

f(x) étant une fonction réelle définie sur un ensemble & et z,,..., z,
des points différents de £, désignons par g(z) le polyndéme de degrée n
au plus prenant en ces points les mémes valeurs que f(x). Soit 4 le
coefficient de 2™ dans ¢(z); nous désignerons le nombre n! A par

Q. (xg,...,2,;f) =@, (2g,...,2,) .

[ -]
(1) La fonction f(x) est & variation bornée généralisée sur I’ensemble E,si £ =2 E,
et pour chaque ensemble E,, les sommes k=1

N
2| f(by) —flav) |

v—1
ou (a,, b,) sont des intervalles n’empiétant pas les uns sur les autres dont les extrémités
appartiennent & K, restent sous une borne (qui peut dépendre de k).
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La formule récursive suivante est bien connue :

Qo(xo; ) = f(20) 5

Qn(xo,- --’xn) - Qﬂ(xli" ~9xn+1) .

0 53 Bygyd = 1
Qr+1 (@0, Tpty) = (0 + 1) Ty — Zpyy

Nous emploierons le symbole suivant :

I

1
a4, (xy,... 2,5 ] = | @n(@gs... Za; )] 0(2g,. .. 2,)

. 0(zg,...x,)
= | Q1 (To>- - - Tny) — @ny (T1,. .. Zp) | |Zg — #n|
ou 0(xg,...,x,) désigne le diametre de I’ensemble {x,,...,z,}.

Nous allons définir trois espéces de dérivées d’ordre » de la maniére
suivante :

Etant donné un ensemble P dense en soi et a e P, nous appelons
dérivée forte d’ordre n de f(x) par rapport & P au point e la limite
suivante, si elle existe et est finie :

f%l(a) = hm Qn(x()a-- « Ty s f) .

Zi>a
zi €P

La dérivée ordinaire d’ordre n par rapport & P est définie par récur-
rence :

f(})(a) — f;(a) ::iina f(xi:i((l) ’
z€P

et si @(x) = f{(x) existe en tout point de P appartenant & un entou-
rage de a,

f(}’,‘“)(a) = ¢'p(a) .

Enfin, la dérivée approximative d’ordre » sera aussi définie par récur-
rence :

f05F0 (@) est la dérivée approximative de f(x) au point @, pourvu
que f{(x) existe en tout point d’un ensemble mesurable £ dont a est
un point de densité. La propriété A. nous assure que l’existence et la
valeur de f{*(x) ne dépendent pas du choix de ’ensemble E.

Convenons enfin de définir :

La fonction f(z) appartient & la classe (R,) sur ’ensemble E &'il
existe un nombre M de sorte que pour tout systéme fini d’intervalles
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n’empiétant pas I'un sur 'autre I,,...,I, et pour 2} e¢E I,, on ait
toujours

N
A, (xg, .. 20 )< M,
y=1

De plus, f(x) sera dite d’appartenir a la classe (R, G) sur E, si
E= XY E, et f(x) est (R,) sur chaque ensemble E, .
k=1

On voit que les fonctions (R,) respectivement (R, G) sont identiques
aux fonctions (V B) respectivement (VB G) de M. Khintchine [1].

Cela étant, voici ’extension promise du théoréme de Denjoy-Khini-
chine.

Théoréme. Si la fonction f(x) est mesurable et (R, @) sur ’ensemble
mesurable E, alors f(x) existe presque partout sur E.
Pour démontrer ce théoréme, nous aurons besoin de quelques lemmes.

Lemme 1. f(x) étant (R,) sur I’ensemble K, les nombres

| @n1(Tose . oy )| (z; € B)

restent sous une borne commune.
Démonstration. On a, d’aprés ’hypothése, pour M suffisamment grand
A, (xg,..., 2, H< M .

Or, &,,..., &, , étant n points différents fixes de E, on a selon (1)

| @n1(Zos- - - Tpy) — Quy(&ose -+ End) | =
S| Qaea(®ose - Tpy) — @uoa (@15 Ty, So) | +
+ | Qua @y oo Tpy Eo) — Qua(@ase - Tpys S0y 81) | +-- -+
+ | Quo1(Zners E0se -+ Enms) — @uoa(bor- - End) | =
= Ap(Tgse . By, &) + Ap(@yse oo, Tnp, €0y &)+ F
+ A (Zpoys Eoye - Ep)) S M

pourvu que les points «,,..., Z,_;; &g,--., §,—, soient tous différents;
s1 deux ou plusieurs en sont identiques, ’évaluation se simplifie méme.
Ainsi pour tout z, ¢ E

| @1 (Zose oo Zpn) | S| Qpa(b0seve Eng) | +0 M,

ce qu’il fallait démontrer.
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Lemme 2. Une fonction f(x) qui est (R,) sur un ensemble borné E
y est aussi (R,_,).

Démonstration. D’aprés lemme 1 on a pour tout z, ¢ B

| @uovr(zg,... x,_4) | <B .

Or, pour tout systéme fini 7,,... Iy d’intervalles n’empiétant pas I'un
sur 'autre et pour x; ¢« £I, ona

N 1 N
DA @y, Ty y) = 2| Qua (%, 2y )|y, Th ) S
v=1 %-—1 y=1
B X B
< oxl.... 22 _ )< —06(H) ,

0(E) désignant le diameétre de ’ensemble £, ce qui prouve le lemme.

Lemme 3. Sila fonction f(x) est (R,) sur ’ensemble £ borné et dense
en soi, alors f§~?(x) existe en tout point de E et il est (R,) sur E.

Démonstration. D’abord nous établirons 'existence de fI'~*(z) en
tout point de £. Or, =z,,... Z,_5, ¥Yo,--. Yo 6tant des points diffé-
rents de £, on a I’évaluation suivante :

l Qn—2(x0" . wn—z) - Qn—z(?/m- . yn-—Z) I g

1 n—2
é 2‘Qn—l(xi"°°xn——2’y0""yi)“xi_yil é
n—1 i
< Bé(xy,... Xp_g;Yos--+ Yn_sz) »
les nombres |Q,_,(;,... Z,_s, Yo--.. ¥;) | restant selon lemme 1 sous

une borne B. Une évaluation analogue étant valable dans le cas ou I'un
des points z; coincide avec un des points y;, on voit aussitét que fif~?(z)
existe en tout point de E.

f(x) étant (R,_,) sur E d’aprés lemme 2, ¢(x) = fi*~%(x) existe aussi
en tout point de . Montrons que

[~ MNx) = gg(x) .

a étant un point quelconque de £, admettons pour fixer les idées que
f"=%(a@) = 0; le cas général s’y raméne par ’addition d'un polynéme de
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degrée m — 2. Or, pour tout ¢ positif on peut trouver un 6>0 tel que
pour x, e K et |2, —a|<d onait

‘ Qn—z(x(h- .. xn—2) l <& .

x étant un point de £ tel que | x —a | <<d, considérons des points «;
et &, différents et appartenant & . On a évidemment

f[En—SJ(x) _ f_[éz—3](a) lQn—-3 (507 . 'n—-3) Qn-—3(“0" .. O‘n—S)l
r—a i é;—»z ‘ r—a l o
ai>a
1 n—3 5 —_— X
< l' o Pye e e — se oo g e =
St ey B 10 b w0l G55 5
ai->a

ce qui étant valable pour tout £>0 ona ggha)= 0.

En vertu de ce que nous venons d’établir, on voit aisément en procé-
dant par induction que f@~?(x) existe sur E et est = fi#~%(x). Nous
avons & montrer que ce dernier-ci est (R,) sur E.

Considérons donc des points x,eH, y,eE, z,¢eE (v=1,... N)
tels que

By <Y, <2 S X<TYy<Zp =+ =Xy <Yyp<zy .

On peut trouver des points &) e B, u ¢ B, (! ¢ E au voisinage de z,,
Y,, %, respectivement tels que

<< <l <l i<yl i<l <l a<Eic <Y,

On a évidemment

EA @, Y,,2,; f5 %) =

= lim z Qn—2(£09 c e n 2) _Qw-—2(773:---77;:._2) .

§?~>zv y=1 xv - yV
)
- Qe Ol M) = QualChe . Eha) ;z
CE-,»ZV Yy — 2

1 N | n—2 5,.,__77,.,
:n 2_ ;[ n-—l(‘f > n -2 0"" ) ZV_TJ:_

v v v v 771"“‘5;;,
“Qn—1(7?i='-° nn—Z’CO" . C3) “l‘—'—"“] s ==

Yp — 2y
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Ev _nz
Ty—Yy

1 n—2
S-———~—hm supz [EIQu——l( ;'}w*"?:)_Q —»1(7711 "C’)l +

v=1{t=0

3 ’ . v 4
Le dernier membre tend vers zéro puisque @, _,(%},..., ;) est borné,
ainsi on a en poursuivant ’évaluation :

+ E IQn—1(77;",--. V)I} E . Ub _Ci
=0 _yv

Yy — 2

ZA @,,9,,2,; g2 =

1 . n-2 v v v 14
7 lim sup gl 2_]0 |Qn-1(6%5- - 1)) —Qu_a(ni,... L)) | =

1 ] 1 N n—2
n — 1 lim sup '77 2 g[ . 77z’77z+1)l | &7 — 77:+1|+

v=

=

F1@n(ETs1s- - mive) | 16T — il + - - F Qi1 - - 8D Imions- - Ci] |2

n— N
1lim sup ;0 EI[A,, e i) F A0 15 i)+ F

+An<n:_1,...c:>]g
=2n—1) M,

M désignant un tel nombre que pour tout systéme fini 1,,..., I, d’inter-
valles n’empiétant pas 'un sur 'autre et pour y} e £I, on ait

N
24,00y <M.
y=1

Cette évaluation montre que =% (x) est (R,) sur B, ce qui achéve la
démonstration.

Lemme 4. f(x) étant (R,) sur ’ensemble borné E et I un intervalle
contenant F, il existe une fonction g(x) qui est (R,) sur I et qui coin-
cide avec f(x) sur K.

Démonstration. En vertu du lemme 1, la fonction f(x) est uniformé-
ment continue sur E. Ainsi elle peut étre prolongée sur la fermeture £ de
E d’une fagon qu’elle reste continue. Il est facile de voir que la fonction
ainsi obtenue est (R,) sur & .

258



On passe a la fonction g(x) par interpolation linéaire dans les inter-
valles contigus & E . Pour montrer qu’elle est (R,) sur I, considérons un
systéme fini de triples de points {z,,y,,2,} (v=1,..., N), n’empié-
tant pas, c’est-a-dire tels que

Xy<Y1<2% S X, <Yy<2p = Sxy<yYy<zy .

Nous allons évaluer la somme
N
2 A2(xv’ yvsz'v;g) . (2)
v=1

On peut admettre qu’aucun des triples {z,, ¥,, z,} ne se trouve dans un
seul intervalle contigu & E, car pour un tel triple 4, s’annule. Divisons
ensuite les triples en deux groupes selon la parité de leurs indices ; il suffit
d’évaluer la somme (2) étendue sur I'un des deux groupes.

x<<y<z étant I'un des triples appartenant & ce groupe, admettons
que z, ¥, z appartiennent respectivement aux intervalles (', "), (y/, y”),
(¢, 2") contigus & E . Cest le cas le plus compliqué, dans les autres cas
I'évaluation s’obtient d’une facon analogue et méme plus simple.

On a en vertu d’une propriété bien connue des rapports des accroisse-
ments

Az, y,2) = | Qi(2,y) —Qi(y,2) | =
=max [Q,(»,x"), @,(z",y"), Q:1(¥,y), @1(¥,¥"), @1 (y".2"), @:1(z',2) ] —

—min|[ ].
L’expression en crochet peut étre remplacée par

[Ql (x,’ x”)’ Ql(x”’ y,)a Ql(yla y”)3 Ql(y”> Z,),QI(Z,, Z”)]

et alors
max|[ ]—min[ ] =

é Az(x,: x”s y,) + AZ(x”: yla y”) + Az(y,: y”’ Z,) _l— A2(y”3 z,’ Z”) ' (3)

Le premier et le troisiéme des triples figurant ici n’empiétent pas 'un
sur autre, ni le deuxiéme et le quatriéme, et en vertu de nos conventions
ils n’empiétent pas sur les triples obtenus d’une fagon analogue des
triples voisins du méme groupe. Or, les triples figurant dans (3) appar-
tiennent & &, sur lequel g(z) est (R,), de sorte que la somme (2) reste
sous une borne finie, ce qu’il fallait démontrer.
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Lemme 5. f(x) étant mesurable sur I’ensemble mesurable et borné
A et (R, sur £ cA, il existe un ensemble mesurable B tel que
E cB cA etsurlequel f{(x) existe presque partout.

Démonstration. Considérons d’abord le cas » = 2. Désignons par
g(z) une fonction qui est (R,) sur un intervalle I contenant A et qui
coincide avec f(x) sur E, et par B le sous-ensemble de A sur lequel
f(x) = g(x). B est mesurable, car f(x), g(x) et 4 le sont, de plus

EcBcAd.

Désignons par g+(x) le nombre dérivé supérieur a droite de g(x); en
vertu d’un théoréme de M. F. Riesz [2], ce nombre dérivé est & variation
bornée sur I et g(x) en est une intégrale indéfinie. Or, f;p(x) existe et
est égal & g+(x) en presque tout point de densité de B, c’est-a-dire pres-
que partout sur B. En vertu du théoreme de Lebesgue concernant la
dérivabilité des fonctions & variation bornée, la dérivée de ¢g+(x) existe
presque partout sur I, ce qui entraine selon A) que f@)(x) existe presque
partout sur B. L’énoncé se trouve ainsi établi.

Passons au cas de n arbitraire > 2. D’une fagon tout & fait analogue
4 la premiére partie de la démonstration du lemme 4, on voit qu’on peut
trouver une fonction g¢(x) qui est (R,) sur E et qui coincide avec f(x)
sur E. Désignons par B le sous-ensemble de AE sur lequel f(x) = g(z);
B est mesurable, ona Ec Bc A4 et f(x) est (R,) sur B.

D’aprés un théoréme connu de la théorie des ensembles [3], B est la
somme d’'un ensemble B+ dense en soi et d’un ensemble dénombrable.
En vertu du lemme 3, ¢7%(x) existe et est (R,) sur B+. Il résulte de la
définition de la dérivée approximative d’ordre n que f9~?(x) = fG3¥(»)
presque partout sur B+. La partie déja établie du lemme 5 montre que
la dérivée approximative d’ordre 2 de f{»~?(z) existe presque partout
sur B+, ce qui prouve I’énoncé.

Enfin, dans le cas n = 1, ’énoncé résulte du théoreme de Denjoy-
Khintchine.

Le théoréme & démontrer est une conséquence évidente du lemme 5.
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