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Uber eine Klasse von Funktionalgleichungen

Von J. AczkL, Budapest

1. Eiwnlesitung. Das grundlegende Resultat in der Theorie der linearen
Funktionalgleichungen riithrt von Cauchy!) her und sagt aus, daB3 unter
allen iIn —oo<x <4 oo stetigen Funktionen nur

f(x) =ax
die Funktionalgleichung

f(@y + x) = (1) + (=) (1)

lost. Darboux?) bewies, da man die Stetigkeit nur in einem einzigen
Punkte fordern muf}, um die Einzigkeit der obigen Losung zu sichern.
Im weiteren werden wir uns nur auf diese Cauchyschen bzw. Darbouxschen
Resultate stiitzen.

Als einen Spezialfall seiner bekannten Ungleichung zeigte Jensen, daB
falls eine in —oo<x <+ oo stetige Funktion die Funktionalgleichung

1(g1 &1 + g2 o) = ¢y f(%1) + ¢ [(0) (1%)
fir jedes positive ¢,, ¢, mit ¢, 4+ ¢, = 1 befriedigt, dann
() =ax+b

sein muB. Doch gilt das schirfere Resultat, da wenn (1*) auch nur fiir

ein einziges ¢,, ¢, mit ¢; + g, = 1 durch eine in einem Punkte stetige
Funktion befriedigt wird, dieses nur das obige sein kann.
Von selbst dringen sich die folgenden Fragen auf :

a) Wie gestaltet sich die Losung von (1*) im Falle ¢, + g, % 1?
b) Welche sind die Losungen der Funktionalgleichung

flag @y + ay 25) = By f(21) + B f(x,) ? (2)

1) Cauchy, Oeuvres, II¢ série, t. I11, pp. 98—105.
®) Darboux, Math. Annalen 17 (1880) p. 56.

Sierpinsky bewies sogar, daB f(x) = ax die einzig meBbare Losung ist. Fundamenta
Math. 1 (1920) pp. 116—121.
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Es wird sich herausstellen, daB (2) nur im Falle «; = 8,, ay = B, eine
nichttriviale Losung besitzt.

Ob zwar die Funktionalgleichung (2) fiir die meisten Anwendungen
hinreicht, behandeln wir mit gleicher Miihe die scheinbar viel verwickel-
tere

flag &y + oy ) = By (%)) + Ba f(%2) + py(21) 4 po(3) + 15, (3)

WO oy, ag, By, B. gegebene, von Null verschiedene Konstanten, p, eine
zu bestimmende Konstante, und f(x), p,(x), p.(x) zu bestimmende,
stetige Funktionen sind, mit der Bedingung p,(0) =0, p,(0) = 0.
Merkwiirdigerweise bestimmt (3) nicht nur f(x) bis auf zwei Konstanten,
sondern auch p,(x), p,(x) und p,.

Der Fall oy = f, = 0 fithrt zu der sogenannten verallgemeinerten
Poinsotschen Funktionalgleichung?)

faz) = B f(x) + p() ,

doch ist hier p(x) durchaus nicht durch die Funktionalgleichung be-
stimmt. Das Problem f(x) aus «, 8 und p(z) zu bestimmen, ist dem
Summationsproblem der Differenzenrechnung dquivalent.

Am Ende dieser Arbeit geben wir auch eine andere Verallgemeinerung
von (2), sowie Anwendungen auf gewisse, durch Hardy, Littlewood und
Pélyat) definierte Funktionen.

2. Wir suchen jene in einem Punkte stetige Funktionen f(z)
p(), p.(x) (und die Konstante p,) die fiir jedes —oo<x <+ oo die
Funktionalgleichung

flag 2y + g 25) = By f(21) + B2 f(25) + p1(21) + Do) + 2o (3)

losen, mit der Bedingung p,(0) = p,(0) = 0. Wir setzen z, = x2 = 0
ein ; dies gibt f(0) = (B8, + B.) f(0) + p,. Mit der Bezeichnung f(0)
bekommen wir

Po=(1—B,—B)0b . (4)

Wir setzen diesen Wert von p, in (3) ein und fithren die neue Funktion
F(x) = f(x) — b= f(x) — f(0) ein. Dann wird F(0)=0 und
f(@) =F(x)+ b

3) Vgl. Pompeiu, Bull. Math. Phys. Ec. Polytech. Bucuresti 9 (1938) pp. 54—56.
4) Inequalities. Cambridge 1934, pp. 65, 84—85.
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F(ayz) 4+ oz 2,) + b=
= B F (2,) + P10 + B2 F (%3) + B2b + py(%y) + po(xs) +b6—p, b — B, b

F(o; 2y + ay 73) = By F () + B F (x5) + pi(21) + pa(zs) , (5)

wo F(0)= p,(0) = p,(0) = 0 ist. Wir setzen in (5) erst =z, :—-—5—11— ,
z, =0, dann z, = 0, x,:%
- (2) en(2) . re-ar(2)en(z) o
Es sei endlich xz, = —Z‘; , By == —:i-, dann folgt aus (6)

F(zy + 2) = F(z) + F(z,) . (7)

Dies ist die Cauchysche Funktionalgleichung (1), deren einzige in einem
Punkte stetige Losung F(x) = ax ist. Dies gibt

f(#) =ax+b . (8)

Wir setzen F(z) =ax in (5) ein: o,ax;, + a,az, = f,ax, + fax,
+ py(2;) + pa(x,), also ist
Pi(x) =a(a;, — By) x P (%) = a(ay — ) @ . (9)
Wir haben den
Satz I. Die Funktionalgleichung (3) bestimmt f(xz), p,(x), Pps(z),

Py, bis auf zwei willkiirliche Konstanten ¢ und 6, indem :

He)=ax+b, p(x)=a(—pF)z, px)=a(xn—4F),
Po=(1—pB—B)0b .

Es ist p,= 0, wenn entweder b =0 oder B, + 8, =1 ist,
es ist p,(x) =0, wenn entweder a = 0 oder o, = f; ist
und  p,(x) =0, wenn a = 0 oder a, = f, ist. Dies gibt den

Satz II. Die Losungen der Funktionalgleichung (2) sind :

la) f(z)=0.
1b) f(x) =0, falls B, + f,=1 ist.
2a) f(x) =ax, falls oy =8, a=24§,.

2b) f(x)=ax+b, falls o, =p,, oy=2p0, P+B=1
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3. Anwendungen.
A. Die iibliche Definition des Mittelwerts ist : ¢)

M(f; 15 Ta3 @15 92) = UG F(®) + @2 f(x2)] 5 (@1 +¢2=1), (10)

wo f(z) eine stetige, streng monotone Funktion ist. Schon Leibniz?3)
kannte die folgende Eigenschaft der Exponentialfunktion : zum arithme-

Z, + Z,
2

tischen Mittel zweier Abszissen z = gehort immer das geo-

metrische Mittel der Ordinaten y = l/yl Yy . Wir suchen nun die
Bedingung fiir die Existenz einer stetigen Funktion, die dem Werte
z=MW(p; x1, Ta; &, ) den Wert y =M (y; y,, ¥Y2; B1, Ba) als
Funktionenwert zuordnet; also einem Mittelwert der Abszissen einen
anderen Mittelwert der Ordinaten :

oy =1
B+ p=1

Fo oy (1) + aap(22)] =72 [B19F (1) + BoyF ()], (fl9(2)] = f9(2))-

F{M(p; @y, 235 01, a)} = My ; F(x,), F(xs) ; B, Bl (11)

Wir bezeichnen ¢(x) =2z, z = ¢1(2) und setzen beide Seiten der
Gleichung in die streng monotone Funktion y(x) ein:

YF o ay2) + 0p2) = B F o7 2(2) + o F g1(2,) .

Dies ist aber eben die Funktionalgleichung (2) fir die Funktion
f(2) =9 F ¢o1(2), und zwar ist hier o + ay=p8,+ =1, und
Satz 11, 2b) zeigt, daB (11) dann wund nur dann eine mnichitriviale
Losung besitzt, wenn oy = f;, ay = f, (die ,,Gewichte“ der beiden
Miitelwerte mitssen gleich sein). Die Losung ist p F ¢~'(z) =az + b,
also: F(z) =y 1(ag(z)+ b).

Weiter folgt : Zwei Mittelwerte sind einander gleich :

im(?’?xp9025011,0‘2)=9R(1P5x1,x2;ﬁ1, 132) (12)

wenn ihre Gewichte gleich sind: oy =p8,, ay=Fp0, und wenn
p(x) =ag@(x)+ b, denn (12) ist der Spezialfall von (11), wo
F(x) = x ist.

B. Ist in (10) ¢, + g, # 1, so bezeichnen wir diese Funktion nach
Hardy, Littlewood und Pélya?):

T(f5 21, Xg5 1> P2) = [ [Plf(%) + sz(xz)] (P + P #1) -

5) Analysis des Unendlichen. Ostwalds Klassiker, Nr. 162, p. 13.
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Der Spezialfall p, = p, = 1 ist eine kommutative, assoziative Opera-
tion zwischen z;, und z, (x,0 ;= z,0 %,, x,0 (2,0 ;) = (2,0 Z,)0 ) :
2,0 Ty = G(f; 21, 7)) = TAf; 21, 2251, 1) = {2 [f(z,) + f(xa)] -
Die Frage, wann (¢ ; oy, 55 oy, ap) = T(p; 4, 53 Py, B2) ist, 1dBt sich

analog zu A auf Satz II2a zuriickfiihren :
TP ;s @1, ®a5 a5 00) = T(Y; @, X5 B, Ba)
wenn oa; = By, ay = f; und y(x) = ap(x);
S(p; @1, @) = S(p;2,,%,), wenn p(x) = a ¢(x).
C. Die unmittelbare Verallgemeinerung der Funktionen

mt(f;xlﬁxz;QD q2) und z(f;xl’x2;pl3 p2)

ist W(f; 2y, X957y, 79, 7) = f2[ry f(2) + 73 f(22) + r]. Die Frage, wann
U(p; xy, 253 Ay, 45, A) = U(p; z,, 55 By, By, B) ist, fiihrt auf eine
neue Verallgemeinerung der Funktionalgleichung (2), und zwar auf :

f(Ayz, + Ay 2y + A) = B f(x,) + B f(xy) + B, (13)

die sich aber leicht auf (2) zuriickfiihren 148t. Wir setzen nidmlich in (13)

und die Substitution
A A
| x1:xs=mz1+m32:“1z1+“zzz
ergibt :
f(Ay2, + Ay2, + A) = (B, + By) f(ay 2, + a3 2,) + B . (14)

Aus (13) und (14) folgt f(ay ) + s %) = By f(z) + Baf(wa)
(t; + a3 = B5 + B, = 1) und dies ist schon ein Fall der Gleichung (2).
Aus Satz II, 2b folgt als Losung von (13) f(x) = a x 4+ b, und setzen
wir dies in (13) ein, so sehen wir, daB es nur dann eine nichttriviale
Losung gibt, wenn B, = A,, B,=A4,, B=a A + b(1 — 4, — 4,).
Daraus folgt nun :

1I(q>; xl’ xz;Al: A2: A) = u(w’ xl’ Lo Bl: Bz> B)
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dann und nur dann, falls y(x)=ag@(z)+b. B,=A4,, B,= A4,,
B=ad+b(1 —A, —A4,). Ist 4, + A, # 1 so kénnen wir B =0

: aA , e .
machen, wenn wir b = AT 4,1 wahlen. Das heillt :
Ist

@ —alo@ + 45

AP T A 4,
80 ist

u(‘)”;xx»xz; AI’AZaA)::z("P;xIs xz;Ala A2) .

(Erhalten den 16. Juli 1947).
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