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Uber die Stetigkeit
der analytischen Funktionale "

Von Haxs GEorg HAEFELI, Ziirich, und FraNco PELLEGRINO, Rom.

1. Einleitung.

Es ist bekannt, wie schon nach den ersten Arbeiten von Volterra die
Theorie der Funktionale verfolgt und ausgearbeitet wurde. Die unter
verschiedenen Gesichtspunkten einsetzenden Entwicklungen lassen sich
nach einer beschreibenden und einer konstruktiven Richtung gruppieren.
Zur ersten gehort die von Volterra, Hilbert und Fréchet entwickelte Theorie,
wo die Eigenschaften gewisser Klassen von Funktionalen in Analogie zu
den Resultaten in endlich-dimensionalen Réumen studiert und beschrie-
ben werden, und weniger Wert auf die moglichen Anwendungen der be-
trachteten Funktionale gelegt wird. Zur zweiten Richtung gehoren die
Untersuchungen von Fantappié, der sich zum Ziel setzt, eine Theorie der
Funktionale zu konstruieren, die sich bei der Anwendung auf die klassi-
schen Fragen der Analysis als praktisch niitzlich erweist, ohne in einem
ersten Entwurf zu lange bei den allgemeinen Eigenschaften und Begriffen
zu verweilen. Die so von Fantappié aufgebaute Theorie hat nun wirklich
die Losung einer Menge von Problemen erlaubt, von denen wir nur die
folgenden erwihnen wollen :

1. Gesamthafte Begriindung des sogenannten ,,symbolischen Kalkiils’ der
linearen Funktionaloperatoren, mit welcher endgiiltig die rein heuristischen
Methoden von Heaviside durch liickenlos strenge ersetzt werden, deren
Giiltigkeitsbereich sich genau bestimmen 18t ; dabei wird die Theorie auch
zur Berechnung von Funktionen von mehreren Operatoren erweitert?).

!) Diese Arbeit, welche durch die Vorlesungen von Prof. Fantappié am Istituto
Nazionale di Alta Matematica in Rom angeregt wurde, gibt unter anderm eine
éntwort auf die von Prof. Sever: gestellte Frage tiber die ,,a priori¢-Kontinuitat der
linearen, analytischen Funktionale. Rend. di Mat. e sue appl., s. V — Vol. 1 — fasc.
2—3, pg. 248 — Questione 27.

%) L. Fantappié, La giustificazione del calcolo simbolico e le sue applicazioni

allintegrazione delle equazioni a derivate parziali. Mem. Acc. d'Italia — Vol. 1
— N.2 — 1930.

_ L. Fantappié, Integrazione con quadrature dei sistemi a derivate parziali
lineari e a coefficienti costanti in due variabili mediante il calcolo degli
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2. Tatsidchliche Losung des Cauchy’schen Problems fiir alle partiellen
linearen Differentialgleichungen beliebiger Ordnung mit konstanten Koef-
fizienten mit Hilfe einer endlichen Anzahl von Integrationen iiber be-
kannte Funktionen. Diese Losung ist gerade eine Anwendung des Opera-
torenkalkiils mit mehreren Operatoren 3).

3. Noch allgemeiner, die Losung einer sehr groBen Klasse von linearen
Funktionalgleichungen, in der alle Integralgleichungen von Volterra und
Fredholm enthalten sind, und daher aller gewohnlichen und partiellen
linearen Differentialgleichungen mit variablen Koeffizienten, und somit
auch aller gewohnlichen, nicht linearen Differentialgleichungen 4).

Gegeniiber diesen Resultaten blieben in der Theorie der analytischen
Funktionale von Fantappié noch fundamentale Fragen offen, die hin-
gegen in der andern, vorher angegebenen Richtung gelost wurden;
unter diesen steht in erster Linie die Frage nach der Stetigkeit der analyti-
schen Funktionale.

Es ist das Ziel dieser Arbeit, die Theorie in dieser Richtung zu vervoll-
stindigen. Wir geben unter anderm einen ,,a priori“-Beweis der Stetig-
keit der linearen analytischen Funktionale, d. h. ohne die Integralformeln

operatori lineari. Rend. Cir. Mat. di Palermo. Tomo LVII — 1933 — fasc. 1 e 2 —
pg. 137—195.

3) L. Fantappié, Soluzione con quadrature del problema di Cauchy-Kowa-
lewsky perleequazioniditipo parabolico. Rend. Ace. Lincei. Vol. XVII —s. VI —
1° sem. — fasc. 2 — 1933 — pg. 897—902.

L. Fantappié, Integrazione per quadrature dell’equazione parabolica gene-
rale a coefficienti costanti. Rend. Ace. Lincei. Vol. XVIIT — s. VI — 20 gem. —
fasc. 7—8 — 1933 — pg. 266—270.

L. Fantappié, Integration par quadratures de 'équation parabolique géné-
rale, & coefficients constants sur les caractéristiques. C. R. Acec. Sc., Paris —
T. 197 — 1933 — pg. 969.

L. Fantappié, Integrazione in termini finiti di ogni sistema od equazione a
derivate parziali, lineari e a coefficienti costanti, d'ordine qualunque. Mem.
Acc. d’Italia — Vol. VIIT — 1937 — pg. 613.

L. Fantappié, Risoluzione in termini finiti del problema di Cauchy con dati
inizialisuuna ipersuperficie qualunque. Rend. Acc. d’Ttalia — s. VII — Vol. IT —
fasc. 12 — 1941 — pg. 948—956.

L. Fantappié, L’'indicatrice proiettiva dei funzionalilinearie i prodotti fun-
zionali proiettivi. Annali di Mat. — s. IV — T. 22 — 1943 — pg. 181—289.

4) M. Carafa, Calcolo delnucleorisolvente delle equazioni funzionali lineari
mediante un numero finito di integrazioni. Diese Arbeit befindet sich im Druck bei
der Zeitschrift ,,IJnvestigatio Mathematica‘‘, welche in Barcelona erscheint. Ein Aus-
zug derselben, ebenfalls noch im Druck, soll in den Rend. Acc. Lincei unter dem Titel
»Risoluzione delleequazionifunzionalilinearinel campo analitico mediante
un numero finito di integrazioni‘‘ verdffentlicht werden.
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zu beniitzen, mit deren Hilfe sich dieselben ausdriicken lassen ; unser Be-
weis ist auch fiir die linearen Funktionale von Funktionen mehrerer
Variablen giiltig, fiir welche bis jetzt noch keine allgemeine Integral-
darstellung gefunden wurde.

2. Definitionen.

Wir wollen nun die zum Verstindnis dieser Arbeit notwendigen
Definitionen und Begriffe zusammenstellen. Dabei beschrinken wir
uns der Einfachheit halber auf Funktionen einer einzigen Variablen,
bemerken aber, daBl sich dieselben Definitionen ohne weiteres auch
auf den allgemeinen Fall der Funktionen mehrerer Variablen?) iiber-
tragen lassen ; die komplexe Zahlenkugel ist dann durch eine gewisse
Segre-Mannigfaltigkeit V,,, zu der man auch ein metrisches, ganz im
Endlichen gelegenes Modell konstruieren kann, zu ersetzen. In der letzten
Systematisierung der Theorie der analytischen Funktionale werden als
Argumente der Funktionale die ,,lokal-analytischen Funktionen®,d.h. Funk-
tionen, welche in einem oder mehreren Gebieten der komplexen Zahlen-
kugel eindeutig definiert sind und daselbst den Cauchy-Riemann’schen
Differentialgleichungen geniigen, genommen. Weiter wird von ihnen voraus-
gesetzt, daB sie ultrareguldr sind, was besagen will, daBl sie im unendlich-
fernen Punkt verschwinden, falls dieser zu ihrem Definitionsbereich
gehort. Wenn nun 4 eine beliebige, geschlossene Punktmenge aus dem
Definitionsbereich M, einer lokal-analytischen und ultrareguléren Funk-
tion y,(¢) bedeutet, so nennen wir die Gesamtheit aller in 4 ultra-
reguliren, lokalanalytischen Funktionen y(t), fiir welche

ly(t) — %o(t) | <o

gilt, wobei ¢ eine beliebige, positive Zahl bedeutet, und ¢ in 4 variiert,
eine Umgebung (A, o) von y,(¢) oder eine beschrinkte Umgebung. Die
Gesamtheit, aller in A4 ultrareguliiren, lokalanalytischen Funktionen bil-
den eine Umgebung (4) oder eine lineare Umgebuny.

Mit dieser Umgebungsdefinition wird die Gesamtheit der lokalanalyti-
schen und ultrareguliren Funktionen zu einem topologischen Raum T ;
diesen wollen wir Funktionenraum R nennen. Eine offene Menge aus R
nennen wir ein Funktionalgebiet G ; dabei ist y () ein innerer Punkt von
@, wenn er eine Umgebung (4, o) besitzt, die ganz in G liegt. Hat @

%) L. Fantappié, Nuovi fondamenti della teoria dei funzionali analitici. Mem.

Ace. d’Ttalia, — Vol. XII — 1941 — pg. 617—706. Diese Arbeit werden wir im folgenden
mit N. F. zitieren.

227



ferner die Eigenschaft, daB mit einer beliebigen Anzahl von Funktionen
¥; auch deren lineare Kombination mit komplexen Koeffizienten c,.

n
Y= CrYs
k=1

in @ liegt, so bezeichnen wir @ als lineares Funktionalgebiet. Die linearen
Funktionalgebiete sind eineindeutig den geschlossenen, nicht leeren Punkt-
mengen 4 der komplexen Zahlenkugel oder einer Segre-Mannigfaltigkeit
V3a, wenn es sich um Funktionen mehrerer Variablen handelt, zugeord-
net ; A ist die bestimmte Punktmenge, wo die Funktionen des linearen
Funktionalgebietes und nur diese definiert und ultra-regulir sind, und
heilt daher die jeweilen zugeordnete charakteristische Punktmenge ).

Daraus folgt sofort, dafl ein lineares Funktionalgebiet mit der Um-
gebung (A4) einer jeden in ihm enthaltenen Funktion ibereinstimmt,
wenn A die zugeordnete charakteristische Punktmenge bezeichnet. Eine
Funktion y,(¢) heilt Fortsetzung (nicht notwendig analytische) einer
Funktion y,(f), wenn der Definitionsbereich von y, denjenigen von y,
enthilt, und ¥, im Definitionsbereich von y, mit y, iibereinstimmt.

Eine Funktion y = y(¢, a), die in bezug auf den Parameter o regulir
ist, und sich fiir jeden Wert « eines gewissen Gebietes £ der komplexen
«-Kugel auf eine in einem Gebiet der komplexen ¢-Kugel definierte, ultra-
regulire Funktion y(¢) reduziert, hei3t eine analytische Linie, wenn die
fiir ein festes o auf der ¢-Kugel definierte, abgeschlossene Punktmenge
I(x), wo die Funktion y(¢, «) nicht definiert ist, sich stetig mit « dndert.
Darunter verstehen wir, daf sich fiir jeden festen Wert «, aus 2 zu einem
beliebigen, positiven ¢ stets eine Umgebung U(a,) in £ finden 1d8t, so
daB die Abweichung?) der beiden abgeschlossenen Punktmengen 7 («) und
I (o) fiir o aus U(x,) kleiner als ¢ ist.

Uber die analytischen Linien ist bekannt :

Ist y = y(t, «) eine analytische Linie und y, = (¢, «,) einer ihrer
Punkte mit «, aus 2, so existiert zu jeder beliebigen Umgebung (4, o)
von y, eine Umgebung U (a,) in 2, so daB alle Punkte y = y(f, «) mit
x aus U(x,) in die Umgebung (4, o) von y, fallen®).

8) Siehe N.F., pg. 647. — Fir eine gesamthafte Darstellung der analytischen Funk-
tionale siehe auch: Teoria de los funcionales analiticos y sus aplicaciones. Semi-
nario Matematico de Barcelona. 1943.

?) Unter der Abweichung zweier Mengen I, und I, der komplexen Zahlenkugel ver-
stehen wir die obere Grenze der Entfernungen, welche die Punkte jeder dieser Mengen
von den Punkten der andern Menge haben.

8) siehe N. F., pg. 644.
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Dringt eine analytische Linie y = y (¢, ) mit « aus 2 in ein Funk-
tionalgebiet @ ein, so existiert in 2 ein Gebiet 2’ derart, daB alle Punkte
y = y(t, «) mit o aus 2’ in G liegen?).

Nun kénnen wir die analytischen Funktionale®) definieren : Ein Funk-
tional F{y(f)] heit analytisch, wenn es folgenden drei Bedingungen ge-
ntgt :

I. Das Funktional ist in einem Funktionalgebiet G des Raumes R der

lokal-analytischen, ultrareguldren Funktionen definiert.

II. Wenn y, eine Fortsetzung von y, ist, so mufl

F y,()] = F [y, (t)]

sein.

ITI. Wenn y = y(t, «) eine analytische Linie ist, die fiir « aus 2’ in das
Definitionsgebiet eines analytischen Funktionals F' eindringt, so muf3

Flyt, )] = f(a)
fiir « aus 2’ eine regulire, lokal-analytische Funktion sein.

Die analytischen Funktionale bewahren daher die Analytizitédt in bezug
auf ihre Parameter. Dies ist die Eigenschaft, welche nach einem Satz von
Poincaré die Anwendung auf Differentialgleichungen erlaubt. Diese Mog-
lichkeit, in welcher das von Fantappié vorgefaBBte Ziel liegt, rechtfertigt
die Definition.

Ein analytisches Funktional hei3t nun linear, wenn es folgenden beiden
weitern Bedingungen geniigt :

IV. Sein Definitionsbereich ist ein lineares Funktionalgebiet (4).
V. Sind y, und y, zwei beliebige Funktionen des linearen Funktional-
gebietes (4), so gilt :

Fly, () + v ()] = F [y, ()] + F Ly, ()] -

3. Die Geraden im Funktionenraum R.

Es sei g,(t) ein Punkt unseres Funktionenraumes R, (4) eine seiner
linearen Umgebungen, und (4, ,) eine beliebige, darin enthaltene, be-
schrinkte Umgebung. Nun nennen wir die Gesamtheit der Funktionen

?) siche N.F., pg. 653.

1%) Genauer lokal-analytisch, doch werden wir der Einfachheit halber fortan immer nur

von analytischen Funktionen und Funktionalen sprechen, da in dieser Arbeit keine andern
vorkommen.
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y*(t) aus (A4), welche in jeder ihrer Umgebungen (4, ¢*) Funktionen, die
in der Umgebung (4, g,) von %,(t) und solche, die nicht in dieser Um-
gebung liegen, besitzen, den Rand der Umgebung (A, o,) tn (A).

Damsit eine Funktion y*(t) dem Rande der Umgebung (A, o,) von
Yo(t) angehort, ist notwendig und hinreichend, daf

Max | y* — yo | = 0y , (1)
wenn t in A varitert.
DaB die Bedingung (1) hinreichend ist, sehen wir sofort, wenn wir die
Funktionen der Geraden

Y = Yo+ a(y* — o)
betrachten. Geniigt ndmlich der Betrag von « der Ungleichung

0*
[l — | <—
Gy

x]<1,

so erhalten wir Funktionen der Geraden, welche sowohl der Umgebung
(4, o*) von y*, als auch der Umgebung (4, ¢,) von y, angehtren. Geniigt
umgekehrt der Betrag von « der Ungleichung

1l — x| <—,
0

l(x'>l ’

so erhalten wir Funktionen der Geraden, welche wohl der Umgebung
(4, o*) von y*, nicht aber der Umgebung (4, o,) von y, angehoren.

Um nun zu zeigen, dafl die Bedingung (1) auch notwendig ist, setzen
wir voraus, daB sich in jeder beliebigen Umgebung (4, ¢*) von y* Funk-
tionen y, und y, finden lassen, die folgenden Ungleichungen in ganz 4
geniigen :

| Y2 — Yol <00 , Max |y — Yo |>00 -

Man sieht nun leicht, daf3

| y* — Yo | <o+ 3 0*
ist, und ferner :

oo<Max | y; — yo| = Max | (3 — ¥2) + (¥ — ¥*) + (¥* — ¥0) |
<M&X{|y:s“‘?/2|+| Yy — y*| + | y* — 9o |} <30*+M3X|y*“yo! .
Somit erhalten wir :

0y — 3 0* < Max | y* — yo[<oo +- 30* .

230



Wegen der Unabhingigkeit von ¢* folgt nun sofort die Behauptung
Max | y* — yo | = 0, -

Es sei nun R ein lineares Funktionalgebiet, und (4, o) eine in ihm ent-
haltene Umgebung einer Funktion y, von R. Wir betrachten die Gerade,
welche y, mit einer beliebigen, festgewihlten Funktion y # y, aus
(4, o) verbindet. Diese Gerade existiert, da die beiden Funktionen y, und
y in der gleichen Punktmenge A definiert sind. Thre Gleichung konnen
wir folgendermaBen schreiben :

Y= Yo+ Bly — ¥o) - (2)
Nun halten wir in (4, o) eine beliebige Umgebung, etwa (A ,%) fest.

Wir wollen nun sehen, fiir welche Werte des Parameters g wir auf der
Geraden (2) Punkte y* erhalten, welche die Relation

o

Max!y*——yo[::? (3)
erfilllen. Diese Punkte liegen daher auf dem Rand der Umgebung (A ,%)

von y, in (4). Die entsprechenden Parameterwerte bezeichnen wir mit
f*. Nun erhalten wir:
¢

Ma‘xly*”yol:Maxlg*(?—/-—?/o)l:lﬁ*lMa‘xlg_?/oi:‘z“ )

und somit | p* | = 2Max{0§—y |
0

Unter diesen Funktionen y* koénnen wir eine bestimmte y* auszeichnen,
die wir erhalten, wenn wir dem Parameter § den reellen, positiven Wert 8

B =

o
2Max |y — yo|

(4)
geben.

Wir bemerken noch, daB Max |y — y,| in A existiert und von Null
verschieden ist, weil A abgeschlossen ist und die Funktionen y und y,
nicht identisch sind.

Wir wollen nun die Gleichung der Geraden (2) mit Hilfe der Punkte y,
und y* schreiben _
Y ="Yo+ x(y* — ¥y - (5)

Da wir diese Darstellung im folgenden sehr oft beniitzen miissen, wollen
Wir etwas niher auf sie eingehen.
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a) Die Gesamtheit der mst Hilfe einer Funktion y berechneten Funk-
tionen y* stimmil diberein mit der Gesamthert der Funktionen y*, welche

mst Hilfe einer beliebigen andern Funkiion __;/: der gleichen Geraden berechnet
wurden.

Es seil y* = y, +B; (;/_““ Yo) >
wo
= o
ﬂ2* = =
. 2Ma.x'y — Zlo[
18t.

Es geniigt nun zu zeigen, dafl der Wert E;" des Parameters E , fiir
welchen wir aus der Darstellung (2) der Geraden dieselbe Funktion y*

erhalten, durch x

}E:‘

o
2Max |y — yo|

gegeben ist.

A = == —_— ——
s Y* = yo+ B3 (¥ — Yo) = Yo+ B2 (¥ — ¥o)

erhalten wir

?;" — Y7 % | ynd daher {g‘;l == Maxl;g;~—yo\ .
5 Y=Y 18X Max|y — yo|
Somit
E* | 7% Max[:gjwyoi . o .Maxl-j-—-yo[
2 — 2 — - = — )
Ma,xly——yol 2Ma,x|y—-y0| Ma,x]y~—yo}
und deshalb EE;" = 2Max]% vl q. e. d.
— Yo

b) Die Gesamtheit aller Funktionen der Geraden (2), welche auf dasselb_e
y* fihren, erhalten wir fir alle reellen, positiven Werte des Parameters f.

Aus y* = yo+ B*(y — y,) und y* = y, + B* (y — y,) erhalten wir

e _—x O ¥ — % B Y — Yo (6)
y ““"2 M =—~ M _.—_ .
ax | ¥y — yo| ax |y — ¥, |

<

Weil aber ; auch auf der Geraden liegt, gibt es einen Parameterwert /-3—2

von B, so daB3 _ - _
Y = Yo+ B2y — %)
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wird. Dann konnen wir (6) folgendermaflen schreiben :

z*_g*:i[ g"’?/o (EB _‘1)] .
& Max]?/——y“ | B2 |

Damit ist gezeigt, dal die beiden Funktionen ;* und y* nur fiir reelle,
positive Parameterwerte iibereinstimmen.

¢) Der Betrag des Parameterwertes, der uns eine fest gewdihlte Funktion
der Geraden bestimmt, ist von der Wahl des in der Geradengleichung auf-
tretenden y* unabhdngig.

Es seien y* und ;* zwei beliebige Funktionen unserer Geraden auf dem

Rand von (A : ..g-) von y,. Nun wird eine beliebige Funktion y, der Ge-
raden durch

V1= Yo+ 3 (F* —y) und  y, = yo+ x,(¥* — o)

dargestellt. Dann muB «,(y* — y,) = x, (;* — y,) sein. Da die Para-
meterwerte von ¢ unabhéngig sind, und da

- = o
Max | y* — yo | = Max | y* — yo | = 5
ist, folgt sofort die Behauptung
l&_l]:liﬂ- (7)

Umgekehrt lassen sich zu zwei Parameterwerten «; und «,, welche den-
selben Betrag haben, immer zwei Funktionen y¥ und yy finden, so daB

1="YoF+ a(yf —yo) und  y; = yo+ as(yy — Yo)

wird. Zu diesem Zweck geniigt es

&
('/: = Yo +‘&l(?/: — Yo)
2
zu wahlen.

d) Die Gesamtheit der Funktionen y, welche wir bei einer bestimmten
Darstellung der Geraden mit festgewihltem y* fir Parameterwerte desselben
Betrages erhalten, hat die Eigenschaft, daf3 der Betrag ihrer Differenz mit
Yo von y unabhingig ist.

Es seien

V1= Yo + oq(y* — o) und y, = Yo + ap(y* — yo) mit |y | =] g ] .
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Dann folgt sofort oa(Yy — Yo) = oy (Y2 — ¥Yo)
und daher %1 — %ol =192 — %l - (8)

Im speziellen erhalten wir fiir die Parameterwerte mit dem Betrage 1
die Gesamtheit der auf der Geraden liegenden Funktionen y*.

e) Es sei nun auBler der Umgebung (A , g—) eine beliebige weitere Um-

gebung (A : %) von y, gegeben. Dann ist einem festgewéhlten Punkt y,

unserer Geraden auBler dem Punkt y* auf dem Rand der ersten Um-
gebung noch ein zweiter Punkt y* auf dem Rand der zweiten Umgebung
zugeordnet. Wird nun die Gerade mit Hilfe dieser Punkte y* und y*
dargestellt, so sind die Parameterwerte & und o«, welche dieselbe, beliebige
Funktion der Geraden festlegen, zu o und o umgekehrt proportional.

Es sei also

Yy=1yo+ a(y* —yy) und y=y,+ «x(y* — y,)
mit
o
5 -

Max]y*~yo]=—g— und Max|y* —y,| =-

Dann erhalten wir sofort

Y*— Yo _ Y*— Yo
« o
und daraus

oder X0 = (x0C .

2l a
l
R |al

4. Notwendige und hinreichende Bedingung fiir die Stetigkeit
analytischer Funktionale.

Aus der Bedingung III (siehe Definitionen), welcher die analytischen
Funktionale geniigen miissen, folgt sofort, daBl jedes analytische Funk-
tional in einem beliebigen Punkt y, = y(f, «,) einer jeden analytischen
Kurve y = y(t, o) stetig ist. Das bedeutet, dafl sich in Abhdngigkeit zu
einem beliebigen, positiven ¢ stets ein positives d so finden 148t, daB fir
alle Funktionen y(f, «) mit |a — a| <9

| Fly@¢, ] —Fy(t, w)l|<e ist™).

11) Siehe S.32 des unter Note 6 zitierten Buches.
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Es sei jetzt y, eine Funktion aus einem Funktionalgebiet @, in welchem
ein Funktional?) F' definiert ist. Dann existiert in G eine Umgebung
(4, o) von y,. Wir betrachten jetzt eine Gerade durch y, und wollen F
nur auf ihre in (4, o) enthaltenen Punkte y ausiiben. Wiahlen wir zwei

Darstellungen dieser Geraden mit Hilfe der Punkte y* und ?*, SO er-

halten wir : o
Flyl="Flyo+ o (y* — yo)] =

Flyl = Fly,+ a (y* — yo)] =

mit | x| =1, weil nach (7) |« | = || sein muB. Damit haben wir:

) (9)

und daraus im speziellen
f(0)=1(0)=Flyg . (10)

Wegen der Stetigkeit der Funktionale auf jeder analytischen Kurve gibt
es zu einem beliebigen, positiven ¢ stets ein positives d, so daB fiir | o« | <9

[F@) —fO)]<e
ist. Wegen (9) und (10) gilt aber

7@ —FO) | =Fxx) —F©)] .
Daher gilt

T@E —FO)] <e

fiir dieselbe Schranke |& |<d8, weil |&| = |« | ist.

Eine fiir eine bestimmte Darstellung giiltige Schranke ist somit auch
fiir jede andere Darstellung giiltig ; insbesondere haben wir fiir alle Dar-
stellungen dieselbe obere Grenze, die hochstens zwei sein kann. Somit gilt :

Hilfssatz : Der Radius 6 (¢) <2 der maximalen Umgebung von ay=0,
fitr welche immer fiir alle auf der Geraden liegenden Punkte aus einer festen
Umgebung (A, o)

| F'[yo + o (¥* — yo)]l — F [yol | <e

gtlt, ist von der in der Darstellung der Qeraden gewdhlten Funktion y* unab-
hingig.

12) Da wir ausschlieBlich analytische Funktionale betrachten, werden wir fortan ab-
kiirzend nur von Funktionalen sprechen.
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Man nennt ein Funktional F in einem Punkt y, seines Definitions-
gebietes G stetig, wenn sich zu jedem beliebigen, positiven ¢ stets eine
Umgebung (4, o*) von y, in @ finden 1d8t, so daB fiir alle ihre Punkte y
immer

| F [yl — Flyol|<e
wird.
Nun sind wir in der Lage, den folgenden Satz zu beweisen :

Stetigkeitskriterium : Notwendige und hinreichende Bedingung fiir die
Stetigkeit eines analytischen Funktionals F in einem Punkte y, seines
Definitionsgebietes G st die Existenz einer in G liegenden Umgebung (A, o)
von ¥,, so daf die untere Grenze 0* (¢) der Gesamtheit der 6 (¢)- Werte, welche
den verschiedenen, durch y, gehenden Geraden zugeordnet sind, grofer Null ist.

Wir zeigen zuerst, dafl die Bedingung hinreichend ist. Da G' ein Funk-
tionalgebiet ist, liegt in ihm eine Umgebung (4, o) von y,. Es sei

Y= Yo+ a(y* — yo)

eine beliebige Gerade durch den Punkt y,, auf der wir fir 0 <| o | <2
Punkte der Umgebung (4, o) von y, erhalten, und é << 2 ihr zugeord-
neter Wert. Nun suchen wir die kleinste Umgebung von y,, in der alle
Punkte y der Geraden liegen, welche wir fiir | a|<d erhalten. Es ist

g
|?/”’“?/o|=:|0‘H?/*'“?/0|<|0‘|’2—<“§’,

und daher stehen alle diese Funktionen in der Umgebung (A , %i) von Y.

Nehmen wir jetzt an, daf3 8% >0 ist, so folgt sofort, daB fiir alle Funk-

*
tionen der Umgebung (4, o*) = (A , —?—f-) die Ungleichung

2
| F[y] — Fyo] | <e (11)
gilt.

Demnach ist F in y, stetig, und die Bedingung also hinreichend. Neh-
men wir jetzt umgekehrt an, daf F im Punkte y, stetig sei. Dann existiert
zu jedem positiven ¢ eine Umgebung (4, ¢*) von y,, so daf fiir alle ihre
Funktionen (11) erfiillt ist.

Es sei nun
Y = Yo+ « (¥y* — Yo)

eine beliebige Gerade, welche durch y, geht. Da wir auf ihr fir |« |<2
lauter Funktionen der Umgebung (4, ¢*) erhalten, und F nur auf diese
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anwenden, so wird é = 2 fiir alle Geraden durch y,. Somit wird auch
6* = 2. Die Bedingung ist daher notwendig.

Wir werden sofort zeigen, wie sich dieses é* fiir lineare Funktionale
miihelos berechnen 148t. Wir geben spiter ein Beispiel eines nicht linearen
Funktionals, bei dem die Berechnung von 6* ebenfalls sehr leicht ist.

Wir betrachten nun eine beliebige Gerade

Y= Yo+ a(y* — ¥,)

durch einen Punkt y, des linearen Definitionsgebietes G eines linearen
Funktionals F, wo y* auf dem Rande einer beliebigen Umgebung 4, o)
von y, liegt, und A die G zugeordnete Punktmenge A als innere Punkte

enthélt, und iiben F auf die in der Umgebung (4, o) liegenden Punkte y
dieser Geraden aus. Dann ist :

| Flyl — Flyd| =|a| | Fly* —gol| = ||| Fy*] — F[yo| -
Damit jetzt

| F[y] — F[yo] | <e
wird, wiirde es geniigen,

&
[Fly*1— F [yl |

zu wihlen. Da wir aber nur die Punkte der Umgebung (f.l— , 0) von ¥,
betrachten, erhalten wir fiir ¢ :

| & | < 6

J = 0 <2,
und wenn
0 =2 0> 2

ist. Nehmen wir jetzt an, daBl | F [y*]| beschrankt ist, so wird auch
| F [y*] — F[y,]| beschrinkt sein. Nun verlangen wir, daB F auf dem

ganzen Rand der Umgebung (A , —%) von ¥, beschrinkt ist. Dann existiert

die obere Grenze M*, so daBl immer

| Fly*] — Fyo]| < M* (M* # oo) ist. Somit erhalten wir fiir 6*:

&€

0* = )

M* >
wenn
0¥ =2 M* <

(CYRCI ST

ist. Damit haben wir :
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Korollar : Ein lineares, analytisches Funktional F ist in einem Punkte y,
seines Defimitionsgebietes G stetig, wenn es auf dem Rande einer beliebigen,

in G enthaltenen Umgebung A, o) von y, beschrimkt ist.

Es wird nachher ersichtlich werden, daf} diese hinreichende Bedingung
auch notwendig ist. Damit haben wir einen zur Theorie der linearen
Funktionale einer reellen Variablen analogen Satz erhalten, der aber im
Gegensatz zu diesen fiir analytische, lineare Funktionale immer gilt, wie
wir nun zeigen werden.

5. Die Stetigkeit der linearen analytischen Funktionale.

Wir wollen jetzt beweisen, dal alle linearen Funktionale in jedem
Punkte ihres Definitionsbereiches stetig sind.

Wir zeigen in einem ersten Schritt, dall jedes lineare Funktional F im
Punkte y,= y = 0, der aus Definitionsgriinden immer dem linearen
Definitionsgebiet G von F' angehoren muB, stetig ist. Es gilt, wie bei den
reellen Funktionalen :

F[o]=0.

Es sei nun A eine abgeschlossene Punktmenge der ¢-Kugel, welche
alle Punkte der dem Definitionsgebiet G zugeordneten, charakteristischen
Punktmenge 4 als innere Punkte enthilt. In jeder mit Hilfe einer solchen
Punktmenge A definierten Umgebung (f-l— , 6) von 0 existiert ein 6*>0,
und deshalb wird F in 0 immer stetig sein. Wir fiihren den Beweis in-
direkt, und nehmen an, daBl eine beliebige, aber festgewihlte Umgebung
A, o) von 0 existiert, wo ¢* = 0 ist. Unter der Gesamtheit der durch 0
gehenden Geraden existiert dann eine Folge, deren zugeordnete 4-Werte
eine nach 0 strebende Zahlenfolge bilden. Wir betrachten diese Geraden-
folge erst von da an, wo die Glieder der zugehorigen Folge der §-Werte
immer kleiner zwei bleiben ; diese letztere bezeichnen wir mit {4,}. Es
ist also :

0<d<?2 und liméd, =0 .

Es sei >0

y=ay*

die Gleichung der allgemeinen Geraden, welcher §, zugeordnet ist. Auf
ihr bestimmen wir die Funktion y,, so da8

Fly)=¢ (¢>0)

wird. Dazu geniigt es
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& WO e
Fly*] ° | Fly*1]

ist, zu wihlen. So erhalten wir eine Folge von Funktionen y, (auf jeder
Geraden eine),

“:

On

& *

y"::—F_f?;*—Ty ;

welche in (Z , o) definiert sind, und in denen ¥ immer denselben Wert ¢
hat. Nun wollen wir zeigen, daf} in der Funktionenfolge {y,} eine Unter-

folge {y,} existieren muB, so daB die Reihe Xy, in 4 absolut gleich-
méfig konvergiert. Es ist

0, O 0, + c
lynl IF *]lly*l\ ) <( 27}1) ; 771>O-

Da 4, — 0, gibt es einen Index »,, so daf

wird. (Dazu 1 geniigt es d, und 7, kleiner oder gleich 12 zu wihlen.) Nennen
wir Yy, = Y1, SO. wird ’

|y, =1y l<h<L.

Genau so gibt es einen Index v, und ein 7,>0, so daB

(6112 + 7)) ©

2 SH

wird, und daher eine Funktion Yv,> die wir entsprechend y, nennen,
welche

| ye | <h?

erfiillt. Diese Konstruktion weitergefiihrt zeigt, daf in der Funktionen-
folge {y,} eine Unterfolge {y,} enthalten ist, so daB die Reihe Xy,

in 4 absolut gleichmiBig gegen eine Funktion y konvergiert:
y=2Y,

Diese Grenzfunktion y ist in allen innern Punkten von A ultra-regulir,
und daher sicher in ganz 4.
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Damit sind die Voraussetzungen erfiillt, daf3
Flyl=F[Xy,]=2ZF[y,] )
gilt. Es miiBte also X F[y,] konvergieren. Anderseits aber mufl

ZF(y)=¢e+ete+---+et--

divergieren. Damit ist gezeigt, da es keine Umgebung (4, o) von 0
geben kann, in welcher 6* = 0 wird.

Alle linearen Funktionale sind daher im Punkte 0 stetig.

Nun ist es einfach, aus diesem Satz die Stetigkeit der linearen Funk-
tionale in einem beliebigen Punkte ihres Definitionsgebietes herzuleiten.

Es sei y, % y = 0 ein solcher Punkt und Zl eine abgeschlossene
Punktmenge, die ganz im Definitionsbereich M, von y, liegt und alle
Punkte von 4 als innere Punkte enthilt. Wir betrachten nun die Um-

gebung (4,, o) von y = 0, die existiert, weil y = 0 iiberall definiert
ist. Zu dieser Umgebung existiert fiir ein beliebiges, aber festgewéhltes ¢
ein 6*>0. Daher gilt (sieche 11) fiir alle Funktionen y aus der Um-

A . 0*co
gebung (4., 6*) von 0 mit o* = 5
| Fly]l|<e .

Nun betrachten wir dieselbe Umgebung (Z 1> 6*) von ¥, und wihlen aus
ihr eine beliebige Funktion y,. Dann liegt die Differenz y, — y, in der

Umgebung (Zl , 0*) von 0 ; daher gilt fiir sie:

| Fly, —ydl<e,
und somit

| Fly] — Flyid|<e .
Daher ist F in y, stetig. Da aber y, ein beliebiger Punkt von @ ist, gilt :

Satz : Jedes lineare, analytische Funktional ist in allen Punkten seines
Definitionsgebietes G stetig.

Es ist zu bemerken, dal der gefiihrte Beweis sich wortlich iibertragen

18) L. Fantappié, I funzionali analitici. Mem. Ace. Lincei, 8. VI, Vol. III, fasc. 11,
1930, pg. 39.

240



la3t, wenn wir lineare Funktionale von Funktionen mehrerer Variablen
betrachten.

Somit ist auch die Stetigkeit der linearen, analytischen Funktionale von
Funktionen von mehreren Variablen bewiesen.

Eine spezielle Bedeutung dieses Satzes haben wir in der Einleitung
dargelegt.

AuBlerdem folgt aus dem Vergleich des eben bewiesenen Satzes mit
dem Korollar in 4, daBl die linearen, analytischen Funktionale auf dem

Rande einer beliebigen Umgebung (;1- , o) einer beliebigen Funktion aus
(4) smmer beschrdnkt sind.

Wir bemerken nun, da3 eine Umgebung (4’, ¢) einer Funktion y, aus
dem Definitionsbereich G eines Funktionals F von A’ und ¢ abhingt.
Wenn nun bei einem stetigen Funktional die Umgebung (4’, ¢) eines
beliebigen Punktes y, von @, fiir deren Punkte y bei einem vorgegebenen
e>0

| Flyl — Flyol | <e

wird, beim Variieren von y, in G immer dasselbe A’ oder dasselbe o hat,
so nennen wir das Funktional in @ beziiglich A’ oder ¢ halb-gleichmdfig
stetrg.

Insbesondere folgt natiirlich, da8 bei den linearen Funktionalen, wenn
sie in @ in bezug auf 4’ halb-gleichmiBig stetig sind, 4’ mit der charakte-
ristischen Punktmenge 4 von @ iibereinstimmen muf.

Ist nun ein Funktional in G sowohl in bezug auf A’ wie auch in bezug
auf ¢ halb-gleichméBig stetig, so nennen wir es in G gleichmdifig stetig.

Diese Definition wird dadurch gerechtfertigt, daBl wir die Funktionen
der Umgebung (4’, o) eines beliebigen Punktes y erhalten, wenn wir
immer dieselben Funktionen ¢, die in A’ ultra-regulir und |¢|<o
sind, zu y hinzufiigen. Da wir in analoger Weise gleich groe Umgebun-
gen verschiedener Punkte eines Intervalles charakterisieren, diirfen wir
auch jetzt von gleich grofen Umgebungen sprechen, trotzdem in R keine
Metrik definiert ist. Lineare Funktionale konnen natiirlich wiederum nur
in bezug auf 4 gleichmiBig stetig sein, wihrend fiir ¢ keine Einschrin-
kung besteht.

Es existieren gleichm#Big stetige und nicht gleichmiBig stetige lineare
Funktionale ; wir werden von beiden Typen ein Beispiel geben. Dazu
gibt es keine Analogie bei den linearen Funktionen, welche auch iiber
offenen Punktmengen immer gleichmiig stetig sind.

Ferner gibt es stetige und sogar halb-gleichmiBig stetige nicht-lineare
Funktionale, was wir mit je einem Beispiel belegen werden.
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6. Beispiele.

I. Wir beginnen mit einem Beispiel eines gleichméBig stetigen, linea-
ren Funktionals.

Es sei ¢ ein Punkt im Endlichen der t-Kugel, und F' ein Funktional, das
im Funktionalgebiet (4) aller Funktionen y(¢), welche in ¢ regulédr sind
(t = A), folgendermaBen definiert ist:

Fly®)]=y() .
F ist offensichtlich analytisch und linear. Wir betrachten die Gerade
Y= Yo+ a(y* — Yo)

durch einen beliebigen, festgewéhlten Punkt y,, wo y* auf dem Rand
der Umgebung (A , —0—) von ¥y, liegt. Dann wird

2
5 — _ £ _ 2¢ e<q
| y* (¢) — Yo (2) | o
wenn
0 =2 e=0 .
Da § von der Geraden unabhéngig ist, wird
6*:%—8—>0 oder 0*=2 .
%
In beiden Fillen ist daher die Umgebung (4, o*) = (A , _‘_’;.2,2) von ¥,

vom gewihlten y, unabhingig. F' ist daher in (4) gleichméfBig stetig.

II. Jetzt wollen wir ein Beispiel fiir ein lineares, nicht gleichméfig
stetiges Funktional geben. Zu diesem Zweck definieren wir in demselben
(A4) wie in 1. das Funktional F folgendermafen :

d
Flyol=(gv0),_;
F ist wieder analytisch und linear. Um zu zeigen, da F nicht gleichméBig
stetig ist, geniigt es zu beweisen, daf} es in (4) auch nur eine Funktion ¥,
gibt, die keine Umgebung (4, o) besitzt, in der 6* >0 ist. Wir wihlen
9o = ¥ = 0 und betrachten die Geradenschar

tm

ym::“’—i—;{ (m reell) ’
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welche y = 0 mit jedem Punkte y, = :t.;'-— verbindet. Weil in A fiir
jedes m t

| Ym | = o]

ist, erhalten wir auf jeder Geraden fiir « = —g— einen Punkt y* auf dem

Rande einer beliebigen, aber festgewihlten Umgebung (A , %) von 0:

gx o1

Ym = 35 =,
Da

Fly* =22

[Ym 5
ist, erhalten wir fiir 6,,:
P £ _ 2¢ |t ]
" | Flym]| am

Da nun m beliebig gro8 sein kann, wird é* = 0 fiir jedes festgewihlte
o und ¢. Damit ist gezeigt, daB es keine Umgebung (4, ¢) von 0 gibt, in
der 6*>0 wird. Dariiber hinaus wissen wir aber jetzt noch, da F' auf
jedem Rand einer beliebigen Umgebung (4, ¢) von 0 unbeschrinkt ist.
Trotzdem ist F' als lineares Funktional im Punkte O natiirlich stetig. Es
wird daher in jeder Umgebung (4, ¢) von 0, wo 4 die Punkte von 4 als
innere Punkte enthilt, immer 6* >0 sein.

Dies wollen wir an diesem konkreten Fall fiir dieselben Funktionen y,,
verifizieren, um damit den Unterschied zwischen stetigen und gleich-
miBig stetigen Funktionalen recht deutlich zu machen. Es enthalte also

A den Punkt = A als innern Punkt und nicht den Punkt co. Dann
gibt es auf der ¢-Kugel immer einen Kreis mit ¢ als Mittelpunkt und einem

passend gewihlten p>0 als Radius, der ganz im Innern von 4 liegt.
Wir betrachten wiederum die Geradenschar

tm
m — X —— ,
Yy e
—_— m
welche den Punkt y — 0 mit den in A4 definierten Punkten ¥, — z_—m

verbindet, und suchen auf jeder Geraden den Punkt y} in bezug auf eine
festgewihlte Umgebung (Z , ¢) von 0. Es sei

% *tm
:‘/ar»:o‘m~?;n°~ »
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Dann mus Max | 7 | = 2

bo|

sein fiir ¢ variabel in 4. Umgekehrt ist aber

Max |y | > o} (1 + T%)m

Daher wird
X < i
2 (1 + -:"_—-)m
|¢]
und damit
|Fy2]1< - ‘Q’” -

2 (1 ) 1T

Da
m

ist fiir jedes p>0, bleibt F auf dem Rande einer jeden Umgebung

(Z , —;—) von y = 0 auch in den Punkten y} beschrinkt. Fiir die untere

Grenze 6} der 4,,-Werte erhalten wir :

2e|'t'|(1 + ——":)m
65 > Min 2]

=0>0 6 <2
je nach dem

Sy =2 0>2 .

g-m

Wir sehen nun sehr schon, wie 6* von A abhingt, und wie beim Uber-

gang von A —> A, dem o — 0 entspricht, F[yX] auf dem Rande jeder
Umgebung (4, o) von y = 0 unbeschrinkt und 8% = 6 = 0 werden.

III. AbschlieBend wollen wir noch ein Beispiel eines nicht linearen
stetigen Funktionals geben. _

Es sei F wieder im selben Funktionalgebiet (4) mit A =¢ in der
folgenden Weise definiert :

Fly@®)] =) -

F ist sicher analytisch und nicht linear. Wir betrachten die allgemeine
Gerade

Y = Yo+ a(y* — y,)
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durch einen beliebigen Punkt y, von (4), wo y* auf eine beliebige, aber

festgewihlte Umgebung (4, o) von y, bezogen ist. Dann gibt es zu jedem
positiven € ein d(¢g), so daBl

| F(y] — Flyod | = [{5®) + «(@* (&) — 9o®))}* — 52 | <e
fir | «|<d wird. Nun ist
[{yo®) + a(y* (1) — yo(0)}2 — 52 |
<l y*® — yo® 12+ 2ol 4@ || 9*®) — o0 | -

Die rechte Seite dieser Ungleichung wird aber fiir

— 1%l +Viy 2+ e
| ¥* — Yo |

o] <o =

kleiner als ¢, und daher um so mehr die linke Seite. Deshalb wird fiir
unsere Gerade

- — 2 -
0>o = lyol‘*‘z/lyol‘l'e < 2
9 je nachdem
0=2 a=2 .

Da ¢ nicht von der Geraden abhingt, haben wir im Punkte y,:

0* > >0 oder 0% =2,

da die beliebige Funktion ,(f) in 4 =i regulir, also endlich sein muf.

F ist daher in allen Punkten von (A4) nicht nur stetig, sondern sogar
halb-gleichmiifig stetig in bezug auf A’ = A. F ist aber nicht gleich-
mifig stetig, denn es gibt fiir die 6* keine von y, unabhéngige untere
Grenze groBer als Null.

IV. Ein Beispiel eines nicht linearen, stetigen, aber weder gleichmi8ig,
noch halb-gleichmifBig stetigen Funktionals erhalten wir, wenn wir F

im gleichen Funktionalgebiet (4) (4 = t) folgendermaBen definieren :

\ ={

Fiy o) =)(5v0), -| -
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Wir verzichten darauf, dieses Beispiel zu entwickeln, da die einzelnen
Berechnungen zu denen von Beispiel II parallel laufen.

Es bleibt noch die Frage, ob es iiberhaupt nicht lineare Funktionale
gibt, welche nicht stetig sind. In einer bedeutsamen Arbeit von M. Ca-
rafat) wird gezeigt, daBl sich jedes nicht lineare Funktional als lineares
Funktional einer Funktion eines linearen Funktionals ausdriicken 148t.
Es ist daher moglich, dafl mit Hilfe dieses Sachverhaltes aus der jetzt
bewiesenen Stetigkeit der linearen Funktionale auf die Stetigkeit aller
Funktionale geschlossen werden kann.

(Eingegangen den 9. August 1947.)

1) Die Arbeit wird demnéchst erscheinen.
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