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Ûber die Stetigkeit
der analytischen Funktionale *)

Von Hans Georg Haefeli, Zurich, und Franco Pellegrino, Rom.

1. Einleitung.
Es ist bekannt, wie schon nach den ersten Arbeiten von Volterra die

Théorie der Funktionale verfolgt und ausgearbeitet wurde. Die unter
verschiedenen Gesichtspunkten einsetzenden Entwicklungen lassen sich
nach emer beschreibenden und einer konstruktiven Richtung gruppieren.
Zur ersten gehort die von Volterra, Hilbert und Fréchet entwickelte Théorie,
wo die Eigenschaften gewisser Klassen von Funktionalen in Analogie zu
den Resultaten in endlich-dimensionalen Raumen studiert und beschrie-
ben werden, und weniger Wert auf die moglichen Anwendungen der be-
trachteten Funktionale gelegt wird. Zur zweiten Richtung gehoren die

Untersuchungen von Fantappiè, der sich zum Ziel setzt, eine Théorie der
Funktionale zu konstruieren, die sich bei der Anwendung auf die klassi-
sehen Fragen der Analysis als praktisch nutzlich erweist, ohne in einem
ersten Entwurf zu lange bei den allgemeinen Eigenschaften und Begriffen
zu verweilen. Die so von Fantappiè aufgebaute Théorie hat nun wirklich
die Losung einer Menge von Problemen erlaubt, von denen wir nur die
folgenden erwahnen wollen :

1. GesamthafteBegrundungdes sogenannten ,,symbolischenKalkûls" der
linearen Funktionaloperatoren, mitwelcher endgultig die rein heuristischen
Methoden von Heaviside durch luckenlos strenge ersetzt werden, deren
Gultigkeitsbereich sich genau bestimmen laBt ; dabei wird die Théorie auch
zur Berechnung von Funktionen von mehreren Operatoren erweitert2).

1) Dièse Arbeit, welche durch die Vorlesungen von. Prof. Fantappiè am Istituto
Nazionale di Alta Matematica in Rom angeregt wurde, gibt unter anderm eine
Antwort auf die von Prof. Seven gestellte Frage uber die ,,a priori" - Kontinuitat der
lmearen, analytischen Funktionale. Rend, di Mat. e sue appl., s. V — Vol. 1 — fasc
2—3, pg. 248 — Questione 27.

2) L. Fantappiè, La giustificazione del calcolo simbolico e le sue applicazioni
all'integrazione délie equaziom a denvate parziali. Mem. Ace. d'Itaha — Vol. 1

— N 2 — 1930.

L. Fantappiè, Integrazione con quadrature dei sistemi a denvate parziali
Imeari e a coefficienti costanti in due vanabih mediante il calcolo degh
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2. Tatsâchliche Lôsung des Cauchy'schen Problems fur aile partiellen
linearen Differentialgleichungen beliebiger Ordnung mit konstanten Koef-
fizienten mit Hilfe einer endlichen Anzahl von Integrationen ûber be-

kannte Funktionen. Dièse Lôsung ist gerade eine Anwendung des Opera-
torenkalkuls mit mehreren Operatoren3).

3. Noch allgemeiner, die Lôsung einer sehr groBen Klasse von linearen
Funktionalgleichungen, in der aile Integralgleichungen von Volterra und
Fredholm enthalten sind, und daher aller gewôhnlichen und partiellen
linearen Differentialgleiehungen mit variablen Koeffizienten, und somit
auch aller gewôhnlichen, nicht linearen Differentialgleichungen4).

Gegeniiber diesen Resultaten blieben in der Théorie der analytisehen
Funktionale von Fantappiè noch fundamentale Fragen offen, die hin-

gegen in der andern, vorher angegebenen Richtung gelôst wurden ;

unter diesen steht in erster Linie die Frage nach der Stetigkeit der analytisehen

Funktionale.
Es ist das Ziel dieser Arbeit, die Théorie in dieser Richtung zu vervoll-

stândigen. Wir geben unter anderm einen ,,a priori"-Beweis der Stetigkeit

der linearen analytisehen Funktionale, d. h. ohne die Integralformeln

operatori lineari. Rend. Cir. Mat. di Palermo. Tomo LVII — 1933 — fasc. 1 e 2 —
pg. 137—195.

3) L. Fantappiè, Soluzione con quadrature del problema di Cauehy-Kowa-
lewsky per le equazioni di tipo parabolieo. Rend. Ace. Lincei. Vol. XVII — s. VI —
1° sem. — fase. 2 — 1933 — pg. 897—902.

L. Fantappiè, Integrazione per quadrature dell'equazione parabolica générale

a coeffieienti costanti. Rend. Ace. Lincei. Vol. XVIII — s. VI — 2° sem. —
fasc. 7—8 — 1933 — pg. 266—270.

L. Fantappiè, Intégration par quadratures de l'équation parabolique générale,

à coefficients constants sur les caractéristiques. C. R. Ace. Se, Paris —
T. 197 — 1933 — pg. 969.

L. Fantappiè, Integrazione in termini finiti di ogni sistema od equazione a

derivate parziali, lineari e a coeffieienti costanti, d'ordine qualunque. Mem.
Ace. d'Italia — Vol. VIII — 1937 — pg. 613.

L. Fantappiè, Risoluzione in termini finiti del problema di Cauchy con dati
iniziali su una ipersuperficie qualunque. Rend. Ace. d'Italia — s. VII — Vol. II —
fasc. 12 — 1941 — pg. 948—956.

L. Fantappiè, L'indicatrice proiettiva dei funzionali lineari e i prodotti fun-
zionali proiettivi. Annali di Mat. — s. IV — T. 22 — 1943 — pg. 181—289.

4) M, Carafa, Calcolo del nucleo risolvente délie equazioni funzionali lineari
mediante un numéro finito di integrazioni. Dièse Arbeit befindet sich im Druck bei

der Zeitschrift ,,Investigatio Mathematica", welche in Barcelona erscheint. Ein Aus-

zug derselben, ebenfalls noch im Druck, soll in den Rend. Ace. Lincei unter dem Titel
,,Risoluzione délie equazioni funzionali lineari nel campo analitico mediante
un numéro finito di integrazioni" verôffentlicht werden.
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zu benutzen, mit deren Hilfe sich dieselben ausdrucken lassen ; unser Be-
weis ist auch fur die linearen Funktionale von Funktionen mehrerer
Variablen gultig, fiir welche bis jetzt noch keine allgemeine Integral-
darstellung gefunden wurde.

2. Deflnitionen.

Wir wollen nun die zum Verstândnis dieser Arbeit notwendigen
Definitionen und Begriffe zusammenstellen. Dabei beschrânken wir
uns der Einfachheit halber aui Funktionen einer einzigen Variablen,
bemerken aber, daB sich dieselben Definitionen ohne weiteres auch
auf den allgemeinen Fall der Funktionen mehrerer Variablen5) ùber-

tragen lassen ; die komplexe Zahlenkugel ist dann durch eine gewisse
Segre-Mannigfaltigkeit F2n, zu der man auch ein metrisches, ganz im
Endlichen gelegenes Modell konstruieren kann, zu ersetzen. In der letzten
Systematisierung der Théorie der analytischen Funktionale werden als

Argumente derFunktionale die, Jokal-analytischenFunktionen", d. h.
Funktionen, welche in einem oder mehreren Gebieten der komplexen Zahlenkugel

eindeutig definiert sind und daselbst den Cauchy-Riemann'sehen
Differentialgleiehungengeniigen, genommen. Weiterwirdvon ihnenvoraus-
gesetzt, daB sie ultraregular sind, was besagen will, daB sie im unendlich1
fernen Punkt verschwinden, falls dieser zu ihrem Definitionsbereich
gehôrt. Wenn nun A eine beliebige, geschlossene Punktmenge aus dem
Definitionsbereich M0 einer lokal-analytischen und ultraregulâren Funk-
tion yQ(t) bedeutet, so nennen wir die Gesamtheit aller in A
ultraregulâren, lokalanalytischen Funktionen y(t), fiir welche

\y(t)-yo(t)\<°
gilt, wobei a eine beliebige, positive Zahl bedeutet, und t in A variiert,
eine Umgebung (A, a) von yo(t) oder eine beschrânkte Umgebung. Die
Gesamtheit aller in A ultraregulâren, lokalanalytischen Funktionen bil-
den eine Umgebung (A) oder eine lineare Umgebung,

Mit dieser Umgebungsdefinition wird die Gesamtheit der lokalanalytischen

und ultraregulâren Funktionen zu einem topologischen Raum To ;

diesen wollen wir Funktionenraum R nennen. Eine offene Menge aus jB

nennen wir ein Funktionalgebiet G ; dabei ist y(t) ein innerer Punkt von
G, wenn er eine Umgebung (A, g) besitzt, die ganz in G liegt. Hat G

5) L. Fantappiè, Nuovi fondamenti délia teoria dei funzionali analitici. Mem.
Ace. d'Italia — Vol. XII — 1941 — pg. 617—706. Dièse Arbeit werden wir im folgenden
mit N. F. zitieren.
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ferner die Eigenschaft, daB mit einer beliebigen Anzahl von Funktionen
yfc auch deren lineare Kombination mit komplexen Koeffizienten cfc.

in G liegt, so bezeichnen wir G als lineares Funktionalgebiet. Die linearen
Funktionalgebiete sind eineindeutig dengeschlossenen, nicht leeren Punkt-
mengen A der komplexen Zahlenkugel oder einer Segre-Mannigfaltigkeit
F2nî wenn es sich um Funktionen mehrerer Variablen handelt, zugeord-
net ; A ist die bestimmte Punktmenge, wo die Funktionen des linearen
Funktionalgebietes und nur dièse definiert und ultra-regular sind, und
heiBt daher die jeweilen zugeordnete charakteristische Punktmenge6).

Daraus folgt sofort, daB ein lineares Funktionalgebiet mit der Um-
gebung (A) einer jeden in ihm enthaltenen Funktion ûbereinstimmt,
wenn A die zugeordnete charakteristische Punktmenge bezeichnet. Eine
Funktion yx (t) heiBt Fortsetzung (nicht notwendig analytische) einer
Funktion yo(t), wenn der Definitionsbereich von yx denjenigen von yQ

enthâlt, und yt im Definitionsbereich von y0 mit y0 ûbereinstimmt.
Eine Funktion y y (t, a), die in bezug auf den Parameter a regulâr

ist, und sich fur jeden Wert a eines gewissen Gebietes Q der komplexen
a-Kugel auf eine in einem Gebiet der komplexen £-Kugel definierte, ultra-
regulâre Funktion y(t) reduziert, heiBt eine analytische Linie, wenn die

fur ein festes a auf der i-Kugel definierte, abgeschlossene Punktmenge
/(a), wo die Funktion y(t, a) nicht definiert ist, sich stetig mit a ândert.
Darunter verstehen wir, daB sich fur jeden festen Wert a0 aus Q zu einem

beliebigen, positiven s stets eine Umgebung U(a0) in Q finden lâBt, so

daB die Abweichung1) der beiden abgeschlossenen Punktmengen / (a) und

7(a0) fur oc aus U(oc0) kleiner als e ist.
Ûber die analytischen Linien ist bekannt :

Ist y y(t, a) eine analytische Linie und yQ~y{t, oco) einer ihrer
Punkte mit a0 aus Q, so existiert zu jeder beliebigen Umgebung (A, a)

von y0 eine Umgebung U(ocQ) inQ, so daB aile Punkte y y(t, a) mit
oc aus U(oùq) in die Umgebung (A, a) von yQ fallen8).

6) Siehe N. F., pg. 647. — Fur eine gesamthafte Darstellung der analytischen Funk-
tionale siehe auch: Teoria de los funcionales analiticos y sus aplicaciones. Semi-

nario Matematico de Barcelona. 1943.

7) Unter der Abweichung zweier Mengen It und J2 der komplexen Zahlenkugel
verstehen wir die obère Grenze der Entfernungen, welche die Punkte jeder dieser Mengen

von den Punkten der andern Menge haben.

8) siehe N. F., pg. 644.
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Dringt eine analytische Linie y y(t, oc) mit a aus Q in ein Funk-
tionalgebiet G ein, so existiert in Q ein Gebiet Qf derart, da8 aile Punkte
y y(t, oc) mit ex aus Qf in G liegen9).

Nun kônnen wir die analytischen Funktionale10) definieren : Ein Funk-
tional F[y(t)] heiBt analytisch, wenn es folgenden drei Bedingungen ge-
ntigt:

I. Das Funktional ist in einem Funktionalgebiet G des Raumes R der
lokal-analytischen, ultraregulâren Funktionen definiert.

II. Wenn yx eine Fortsetzung von y0 ist, so mufi

sem.

III. Wenn y y(t, oc) eine analytisehe Linie ist, die fur a aus Qr in das

Definitionsgebiet eines analytischen Funktionals i^ eindringt, so mu8

F[y{t ,«)] /(«)

ftir a aus Q! eine regulâre, lokal-analytisehe Funktion sein.

Die analytisehen Funktionale bewahren daher die Analytizitât in bezug
auf ihre Parameter. Dies ist die Eigenschaft, welche nach einem Satz von
Poincaré die Anwendung auf Differentialgleichungen erlaubt. Dièse Môg-
lichkeit, in weleher das von Fantappiè vorgefaBte Ziel liegt, rechtfertigt
die Définition.

Ein analytisches Funktional heiBt nun linear, wenn es folgenden beiden
weitern Bedingungen genûgt :

IV. Sein Definitionsbereich ist ein lineares Funktionalgebiet (A).
V. Sind yx und y2 zwei beliebige Funktionen des linearen Funktional-

gebietes (A), so gilt :

F [Vl (t) + y2 (t)] F [Vl (t)] +F[y2 (t)]

3» Die Oeraden im Funktionenraum R.

Es sei yQ(t) ein Punkt unseres Funktionenraumes R, (A) eine seiner
linearen Umgebungen, und (A, aQ) eine beliebige, darin enthaltene, be-
schrânkte Umgebung. Nun nennen wir die Gesamtheit der Funktionen

9) siehe N. F., pg. 653.
10) Genauer lokal-analytisch, doch werden wir der Einfachheit halber fortan immer nur

von analytischen Funktionen und Funktionalen sprechen, da in dieser Arbeit keine andern
vorkommen.
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y* (t) aus (^4), welche in jeder ihrer Umgebungen (A, a*) Funktionen, die
in der Umgebung (A, a0) von yQ (t) und solche, die nicht in dieser Um-
gebung liegen, besitzen, den Rand der Umgebung (A, a0) in (A).

Damit eine Funktion y*(t) dem Bande der Umgebung {A, o0) von
yo(t) angehort, ist notwendig und hinreichend, dafi

Max | y* - y01 a0 (1)

wenn t in A variiert.
DaB die Bedingung (1) hinreichend ist, sehen wir sofort, wenn wir die

Funktionen der Geraden

V=Vo + <*(y* - y0)

betrachten. Genûgt nâmlich der Betrag von oc der Ungleichung

so erhalten wir Funktionen der Geraden, welche sowohl der Umgebung
(A, a*) von y*, als auch der Umgebung (A, a0) von y0 angehôren. Geniigt
umgekehrt der Betrag von a der Ungleichung

so erhalten wir Funktionen der Geraden, welche wohl der Umgebung
(A, a*) von y*, nicht aber der Umgebung (A, cr0) von y0 angehôren.

Um nun zu zeigen, daB die Bedingung (1) auch notwendig ist, setzen

wir voraus, daB sich in jeder beliebigen Umgebung (A, a*) von y*
Funktionen y2 und y3 finden lassen, die folgenden Ungleichungen in ganz A

geniigen :

I I M | 2/3 — 2/o I

Man sieht nun leicht, daB
I 2/* ~ </o I «*o + 3 <r*

ist, und ferner :

cro<Max | yz ~ y01 Max | (yz - y2) + (y2 - y*) + (y* - y0) \

< Max {| 2/3 - y2 \ + | y2 - y* \ + \ y* - y0 |} < 3 a* + Max | y*— y0 \

Somit erhalten wir :

a0 - 3 a* < Max | y* — y0 \ <a0 + 3 a*
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Wegen der Unabhângigkeit von a* folgt nun sofort die Behauptung

Max | y* — y0 | a0

Es sei nun R ein lineares Funktionalgebiet, und (A, a) eine in ihm ent-
haltene Umgebung einer Funktion yQ von R. Wir betrachten die Gerade,
welche y0 mit einer beliebigen, festgewâhlten Funktion ~y ^ y0 aus
(A, a) verbindet. Dièse Gerade existiert, da die beiden Funktionen y0 und
~y in der gleichen Punktmenge A definiert sind. Ihre Gleichung kônnen
wir folgendermaBen schreiben :

y<>) (2)

Nun halten wir in (A, a) eine beliebige Umgebung, etwa IA — I fest.

Wir wollen nun sehen, fur welche Werte des Parameters p wir auf der
Geraden (2) Punkte y* erhalten, welehe die Relation

Max | y* — y0 \ ~ (3)

erfiillen. Dièse Punkte liegen daher auf dem Rand der Umgebung IA —• j
von y0 in (^4). Die entsprechenden Parameterwerte bezeichnen wir mit
/?*. Nun erhalten wir :

Max | y* — y0 | Max | fi* (y — y0) \ | ]ï* \ Max \y — yo\ ^ »

und somit
2 Max y -

Unter diesen Funktionen y* kônnen wir eine bestimmte y* auszeichnen,
die wir erhalten, wenn wir dem Parameter /? den reellen, positivenWert p*

2 Max y ~ y0
geben.

Wir bemerken noch, da8 Max | y — yQ \ in A existiert und von Null
verschieden ist, weil A abgeschlossen ist und die Funktionen y und y0
nicht identisch sind.

Wir wollen nun die Gleichung der Geraden (2) mit Hilfe der Punkte y0
und y* schreiben

Da wir dièse Darstellung im folgenden sehr oft benutzen mussen, wollen
wir etwas nâher auf sie eingehen.
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a) Die Gesamtheit der mit Hilfe einer Funktion y berechneten Funktionen

y* stimmt ilberein mit der Gesamtheit der Funktionen y*, wehhe

mit Hilfe einer beliebigen andern Funktion 1} der gleichen Geraden berechnet

wurden. _ _
Es sei y* y0 + p* (y - y0)

wo
a

ist.
2 Max y ~~

Es geniigt nun zu zeigen, daB der Wert /?* des Parameters /S, fur
welchen wir aus der Darstellung (2) der Geraden dieselbe Funktion y*
erhalten, durch

a

gegeben ist.
Aus

erhalten wir

6*
2 Max I y — y0 \

li (y - yo) y0 + Pi

und daher
y

Max

Max
y — y<>

y -y0
Somit

pî

und deshalb

Max | y — y0 \

Max | y — y0 \

Max I
2/ — 2/o

2 Max \y —yQ\

2 Max | y — y0 Max | y — y0 j

q. e. d.

b) Die Gesamtheit aller Funktionen der Geraden (2), welche au] dasselbe

y* filhren, erhalten wir fur aile reelhn, positiven Werte des Parameters /?.

Aus y* yQ p* (y - y0) und y* yQ + /5* (y - y0) erhalten wir

y — y01J

Weil aber y auch auf der Geraden liegt, gibt es einen Parameterwert pi

von p, so daB _. __ _y yo + /My — y0)
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wird. Dann kônnen wir (6) folgendermaBen schreiben :

Damit ist gezeigt, daB die beiden Funktionen ~y* und y* nur fur réelle,
positive Parameterwerte tibereinstimmen.

c) Der Betrag des Parameterwertes, der uns eine fest gewâhlte Funktion
der Geraden bestimmt, ist von der Wahl des in der Geradengleichung auf-
tretenden y* unabhàngig.

Es seien y* und y* zwei beliebige Funktionen unserer Geraden auf dem

Rand von IA — I von j/0. Nun wird eine beliebige Funktion yx der

Geraden durch

2/i Vo + âx(y* - y0) und y1= yo + â^y* - yQ)

dargestellt. Dann muB ïx^* — y0) <%i(y* — y0) sein. Da die
Parameterwerte von t unabhàngig sind, und da

Max | y* — y0 \ Max | y* — y0 \ y
ist, folgt sofort die Behauptung

I «i I I «i I • (7)

Umgekehrt lassen sich zu zwei Parameterwerten ax und a2, welche den-
selben Betrag haben, immer zwei Funktionen y* und y* finden, so daB

2/1 2/0 + «2(2/2* - 2/o)

wird. Zu diesem Zweck genugt es

zu wâhlen.

d) Die Gesamtheit der Funktionen y, welche wir bei einer bestimmten
Darstellung der Geraden mit festgewàhltem y* filr Parameterwerte desselben

Betrages erhalten, hat die Eigenschaft, dafi der Betraq ihrer Differenz mit
2/o von y unabhàngig ist.

Es seien

2/o + <*i(2/* — 2/o) und 2/2 2/0 + «2(2/* ~ 2/o)
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Dann folgt sofort <x2(y1 — y0) <xx(y% — y0)

und daher | yx — yQ | | y2 — y0 | (8)

Im speziellen erhalten wir fiir die Parameterwerte mit dem Betrage 1

die Gesamtheit der auf der Geraden liegenden Funktionen y*.

e) Es sei nunauBer derUmgebung IA — I eine beliebige weitere Um-

gebung IA — I von y0 gegeben. Dann ist einem festgewâhlten Punkt y1

unserer Geraden auBer dem Punkt y* auf dem Rand der ersten Um-
gebung noch ein zweiter Punkt y* auf dem Rand der zweiten Umgebung
zugeordnet. Wird nun die Gerade mit Hilfe dieser Punkte y* und y*
dargestellt, so sind die Parameterwerte oc und ~â, welche dieselbe, beliebige
Funktion der Geraden festlegen, zu g und g umgekehrt proportional.

Es sei also

y yo + <*(*/* — yo) und y yQ + ôc(y* — y0)

mit _
ft — G

Max \y* — yo\=j und Max | y* — y0 | ¦= ~

Dann erhalten wir sofort

y* ~~ 2/0 __ y* "~

oc oc

und daraus _
-=r — oder oc g oc g
oc oc

4. Notwendige und hinreichende Bedingung lûr die Stetigkeit

analytischer Funktionale.

Aus der Bedingung III (siehe Definitionen), welcher die analytischen
Funktionale genûgen mûssen, folgt sofort, daB jedes analytische Funk-
tional in einem beliebigen Punkt y0 y(t, oc0) einer jeden analytischen
Kurve y y(t, a) stetig ist. Das bedeutet, daB sich in Abhàngigkeit zu
einem beliebigen, positiven e stets ein positives ô so finden lâBt, daB fiir
aile Funktionen y(t, oc) mit | a — oc0 \ < ô

\F[y(t,oc)]-F[y(t,oc0)]\<e ist").

n) Siehe S. 32 des unter Note 6 zitierten Bûches.
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Es sei jetzt y0 eine Funktion aus einem Funktionalgebiet G, in welchem
ein Funktional12) F definiert ist. Bann existiert in G eine Umgebung
(A, a) von y0. Wir betrachten jetzt eine Gerade dureh y0 und wollen F
nur auf ihre in (A, a) enthaltenen Punkte y ausiiben. Wâhlen wir zwei

Darstellungen dieser Geraden mit Hilfe der Punkte y* und y*, so er-
halten wir : _

F [y] F [y0 + *(y*- yQ)] - "(a) 7(* *)

mit | « | 1, weil nach (7) | "ôc \ — \ "oc | sein mu6. Damit haben wir :

7"(«)=7(«) /"(*«) w
und daraus im speziellen

7(0) - 7(0) F [y0] (10)

Wegen der Stetigkeit der Funktionale auf jeder analytischen Kurve gibt
es zu einem beliebigen, positiven e stets ein positives ô, so daB fur | <% | < ô

ist. Wegen (9) und (10) gilt aber

17(5) - 7w i

Daher gilt _
7

fur dieselbe Schranke | S | < ô, weil | ot \ \ "ôi \ ist.

Eine fur eine bestimmte Darstellung gûltige Schranke ist somit auch
fur jede andere Darstellung gultig ; insbesondere haben wir fur aile
Darstellungen dieselbe obère Grenze, die hôchstens zwei sein kann. Somit gilt :

Hilfssatz : Der Radius ô (e) < 2 der maximalen Umgebung von <x0 0,
fur welche immer fur aile auf der Geraden liegenden Punkte aus einer festen
Umgebung (A, or)

+ *(y*~-yo)]-F[yo]\<e
gilt, ist von der in der Darstellung der Geraden gewâhlten Funktion y* unab-
hângig.

12) Da wir ausschlieôlich analytische Funktionale betrachten, werden wir fortan ab-
kûrzend nur von Funktionalen sprechen.
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Man nennt ein Funktional F in einem Punkt y0 seines Définitions-
gebietes G stetig, wenn sich zu jedem beliebigen, positiven s stets eine

Umgebung (^L, a*) von y0 in G finden lâBt, so daB fur aile ihre Punkte y
immer

\F[y]-F[yo]\<e
wird.

Nun sind wir in der Lage, den folgenden Satz zu beweisen :

Stetigkeitskriterium : Notwendige und hinreichende Bedingung fur die

Stetigkeit eines analytischen Funktionals F in einem Punkte y0 seines

Definitionsgebietes G ist die Existenz einer in G liegenden Umgebung (A, a)

von yQ, so dafi die untere Grenze ô*(e) der Gesamtheit der ô(s)-Werte, welche

den verschiedenen, durch y0 gehenden Geraden zugeordnet sind, grôfîer Null ist.

Wir zeigen zuerst, daB die Bedingung hinreichend ist. Da G ein Funk-
tionalgebiet ist, liegt in ihm eine Umgebung (A, a) von y0. Es sei

y yo + oc(y* - y0)

eine beliebige Gerade durch den Punkt y0, auf der wir fur 0 < | oc \ < 2

Punkte der Umgebung (A, a) von y0 erhalten, und ô < 2 ihr zugeord-
neter Wert. Nun suchen wir die kleinste Umgebung von y0, in der aile
Punkte y der Geraden liegen, welche wir fur | ex | < ô erhalten. Es ist

12/ — 2/01 1*1 \y*-Vo\ <\°c\y<~J~ >

A -^~ I von y0.

Nehmen wir jetzt an, daB <5*>0 ist, so folgt sofort, daB fiir aile Funk-

tionen der Umgebung (A, a*) IA I die Ungleichung

\F\y]~F[yo]\<e (11)

gilt.
Demnach ist F in y0 stetig, und die Bedingung also hinreichend. Nehmen

wir jetzt umgekehrt an, daB F im Punkte y0 stetig sei. Dann existiert
zu jedem positiven s eine Umgebung (A, a*) von y0, so daB fur aile ihre
Funktionen (11) erfûllt ist.

Es sei nun
y Vo + oc (y* — y0)

eine beliebige Gerade, welche durch yQ geht. Da wir auf ihr fur | a \ < 2

lauter Funktionen der Umgebung (A, a*) erhalten, und F nur auf dièse
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anwenden, so wird <5 2 fur aile Geraden durch y0. Somit wird auch
<5* 2. Die Bedingung ist daher notwendig.

Wir werden sofort zeigen, wie sich dièses <5* fur lineare Funktionale
miihelos berechnen làBt. Wir geben spàter ein Beispiel eines nicht linearen
Funktionals, bei dem die Berechnung von ô* ebenfalls sehr leicht ist.

Wir betrachten nun eine beliebige Gerade

y y0 + « (y* — y<>)

durch einen Punkt y0 des linearen Definitionsgebietes G eines linearen

Funktionals F, wo y* auf dem Rande einer beliebigen Umgebung (A, a)

von y0 liegt, und A die G zugeordnete Punktmenge A als innere Punkte

enthàlt, und uben F auf die in der Umgebung (A, a) liegenden Punkte y
dieser Geraden aus. Dann ist :

\F[y] -F[y0] | | « \\F[y* - y0] \ | a | | F [y*] - F \y0] \

Damit jetzt
\F[y]-F[yo]\<s

wird, wurde es genûgen,

°M< \F[y}-Fty0]\
zu wâhlen. Da wir aber nur die Punkte der Umgebung (^4, a) von yQ

betrachten, erhalten wir fur ô :

ô=6 6<2,
und wenn

ô 2 6 > 2

ist. Nehmen wir jetzt an, daB | F [y*] \ beschrânkt ist, so wird auch
I F [y*] — F \yQ] | beschrânkt sein. Nun verlangen wir, daB F auf dem

ganzen Rand der Umgebung IA, — I von y0 beschrânkt ist. Dann existiert

die obère Grenze M*, so daB immer

\F\y*]-F{yo]\

ist. Damit haben

ô*

d*

wir :

(M*

e

M*

: 2

wenn

ist. Somit

if* >

M* <

erhalten wir fur ô* :

e

2

e
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Korollar : Ein lineares, analytisches Funktional F ist in einem Punkte yQ

seines Definitionsgebietes G stetig, wenn es auf dem Bande einer beliebigen,

in G enthaltenen Umgebung (A, a) von yQ beschrânkt ist.

Es wird nachher ersichtliehwerden, da8 dièse hinreichende Bedingung
auch notwendig ist. Damit haben wir einen zur Théorie der linearen
Punktionale einer reellen Variablen analogen Satz erhalten, der aber im
Gegensatz zu diesen fur analytische, lineare Funktionale immer gilt, wie
wir nun zeigen werden.

5. Die Stetigkeit der linearen analytischen Funktionale.

Wir wollen jetzt beweisen, daB aile linearen Funktionale in jedem
Punkte ihres Definitionsbereiches stetig sind.

Wir zeigen in einem ersten Sehritt, dafi jedes lineare Funktional F im
Punkte y0 y 0, der aus Definitionsgrûnden immer dem linearen
Definitionsgebiet G von F angehôren muB, stetig ist. Es gilt, wie bei den
reellen Funktionalen :

F [0] 0

Es sei nun A eine abgesehlossene Punktmenge der £-Kugel, welche
aile Punkte der dem Definitionsgebiet G zugeordneten, eharakteristischen
Punktmenge A als innere Punkte enthâlt. In jeder mit Hilfe einer solchen

Punktmenge A definiertenUmgebung (A, a) von 0 existiert ein <5*>0,
und deshalb wird F in 0 immer stetig sein. Wir fûhren den Beweis in-
direkt, und nehmen an, daB eine beliebige, aber festgewâhlte Umgebung

(A, a) von 0 existiert, wo ô* 0 ist. Unter der Gesamtheit der durch 0

gehenden Geraden existiert dann eine Folge, deren zugeordnete ô-Werte
eine nach 0 strebende Zahlenfolge bilden. Wir betrachten dièse Geraden-

folge erst von da an, wo die Glieder der zugehôrigen Folge der <5-Werte

immer kleiner zwei bleiben ; dièse letztere bezeichnen wir mit {ôn}. Es

ist also :

O<(5<2 und lim.(5w 0

Es sei n->0°

die Gleichung der allgemeinen Geraden, welcher ôn zugeordnet ist. Auf
ihr bestimmen wir die Funktion yn, so daB

e (e>0)
wird. Dazu genûgt es
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«- F[y*] ' W° \F[y*}\ ~ *•

ist, zu wàhlen. So erhalten wir eine Folge von Funktionen yn (auf jeder
Geraden eine),

welche in (A, o) definiert sind, und in denen F immer denselben Wert e

hat. Nun wollen wir zeigen, daB in der Funktionenfolge {yn} eine Unter-
folge {yn} existieren muB, so daB die Reihe £ljn m A absolut gleieh-
mâBig konvergiert. Es ist

0

Da <5^ -> 0, gibt es einen Index v1? so daB

wird. (Dazu genugt es ôv und rj1 kleiner oder gleich — zu wâhlen.) Nennen
wir yv — y1? so wird

I

Vvx
I - \ y 11 < » < i •

Genau so gibt es einen Index ?>2 und ein ^2>0, so daB

wird, und daher eine Funktion yv die wir entsprechend y2 nennen,
welche

erfùllt. Dièse Konstruktion weitergefûhrt zeigt, daB in der Funktionenfolge

{yn} eine Unterfolge Çyn] enthalten ist, so daB die Reihe
in A absolut gleiehmàBig gegen eine Funktion y konvergiert:

y

Dièse Grenzfunktion y ist in allen innern Punkten von A ultra-regulâr,
und daher sicher in ganz A.
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Damit sind die Voraussetzungen erfûllt, daB

gilt. Es mûBte also 2F\l/n] konvergieren. Anderseits aber muB

divergieren. Damit ist gezeigt, daB es keine Umgebung (A, a) von 0

geben kann, in welcher d* 0 wird.

Aile linearen Funktionale sind daher im Punlcte 0 stetig.

Nun ist es einfach, aus diesem Satz die Stetigkeit der linearen
Funktionale in einem beliebigen Punkte ihres Definitionsgebietes herzuleiten.

Es sei yx ¦=£ y — 0 ein soleher Punkt und Ax eine abgeschlossene

Punktmenge, die ganz im Defînitionsbereich Mx von yx liegt und aile
Punkte von A als innere Punkte enthâlt. Wir betrachten nun die

Umgebung (Ax, g) von y 0, die existiert, weil y 0 ûberall definiert
ist. Zu dieser Umgebung existiert fur ein beliebiges, aber festgewâhltes e

ein <5*>0. Daher gilt (siehe 11) fur aile Funktionen y aus der Um-

- ô* a
gebung (Al9 a*) von 0 mit a* —~—

\F[y]\<e •

Nun betrachten wir dieselbe Umgebung (Ax, cr*) von yx und wàhlen aus

ihr eine beliebige Funktion y2. Dann liegt die Differenz y2 ~ yx in der

Umgebung (Ax, o*) von 0 ; daher gilt fur sie :

\F\y2-y1]\<e
und somit

Daher ist F in yx stetig. Da aber yx ein beliebiger Punkt von G ist, gilt :

Satz : Jedes lineare, analytische Funktional ist in allen Punkten seines

Definitionsgebietes G stetig.

Es ist zu bemerken, daB der gefuhrte Beweis sich wôrtlich ubertragen

ls) L. Fantappiè, I funzionali analitici. Mem. Ace. Lincei, s. VI, Vol. III, fasc. 11,

1930, pg. 39.
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lâflt, wenn wir lineare Funktionale von Funktionen mehrerer Variablen
betrachten.

Somit ist auch die Stetigkeit der linearen, analytischen Funktionale von
Funktionen von mehreren Variablen bewiesen.

Eine spezielle Bedeutung dièses Satzes haben wir in der Einleitung
dargelegt.

AuBerdem folgt aus dem Vergleich des eben bewiesenen Satzes mit
dem Korollar in 4, daB die linearen, analytischen Funktionale auf dem

Bande einer beliebigen Umgebung (A, a) einer beliebigen Funktion aus
(A) immer beschrànkt sind.

Wir bemerken nun, daB eine Umgebung (A ', a) einer Funktion y0 aus
dem Definitionsbereich G eines Funktionals F von Ar und a abhângt.
Wenn nun bei einem stetigen Funktional die Umgebung (A', a) eines

beliebigen Punktes y0 von G, fur deren Punkte y bei einem vorgegebenen
£>0

\F[y]-F[yo]\<e

wird, beim Variieren von yQ in G immer dasselbe A1 oder dasselbe a hat,
so nennen wir das Funktional in G bezûglich Af oder a halb-gleichmafiig
stetig.

Insbesondere folgt naturlich, daB bei den linearen Funktionalen, wenn
sie in G in bezug auf A ' halb-gleichmâBig stetig sind, A ' mit der charakte-
ristischen Punktmenge A von G ûbereinstimmen muB.

Ist nun ein Funktional in G sowohl in bezug auf A ' wie auch in bezug
auf a halb-gleichmâBig stetig, so nennen wir es in G gleichmâfiig stetig.

Dièse Définition wird dadurch gerechtfertigt, daB wir die Funktionen
der Umgebung (Af, a) eines beliebigen Punktes y erhalten, wenn wir
immer dieselben Funktionen <p, die in A ' ultra-regulâr und | <p \ < a
sind, zu y hinzufûgen. Da wir in analoger Weise gleich groBe Umgebun-
gen verschiedener Punkte eines Intervalles charakterisieren, dûrfen wir
auch jetzt von gleich groBen Umgebungen sprechen, trotzdem in R keine
Metrik definiert ist. Lineare Funktionale kônnen naturlich wiederum nur
in bezug auf A gleichmâBig stetig sein, wàhrend fur a keine Einschràn-
kung besteht.

Es existieren gleichmâBig stetige und nicht gleichmâBig stetige lineare
Funktionale ; wir werden von beiden Typen ein Beispiel geben. Dazu
gibt es keine Analogie bei den linearen Funktionen, welche auch uber
offenen Punktmengen immer gleichmâBig stetig sind.

Ferner gibt es stetige und sogar halb-gleichmâBig stetige nicht-lineare
Funktionale, was wir mit je einem Beispiel belegen werden.
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6. Beispiele.

I. Wir beginnen mit einem Beispiel eines gleichmaBig stetigen, linea-
ren Funktionals.

Es sei t ein Punkt im Endlichen der £-Kugel, und F ein Funktional, das

im Funktionalgebiet (^4) aller Funktionen y(t), welche in t regulâr sind

(t A), folgendermaBen definiert ist:

F ist offensichtlich analytisch und linear. Wir betrachten die Gerade

y Po + <*(y* - yo)

durch einen beliebigen, festgewàhlten Punkt yQ, wo y* auf dem Rand

der Umgebung IA -~ i von y0 liegt. Dann wird

Â e 2e
o =— e<o

\y*(t)-yo(t)\ <*

wenn
ô=2 s^a.

Da ô von der Geraden unabhangig ist, wird

^*=-^>0 oder ô* 2
a

(Jt>k
\

A I von t/0

vom gewâhlten yQ unabhangig. F ist daher in (^4) gleichmaBig stetig.

II. Jetzt wollen wir ein Beispiel fur ein lineares, nicht gleichmaBig
stetiges Funktional geben. Zu diesem Zweck definieren wir in demselben

wie in I. das Funktional F folgendermaBen :

F ist wieder analytisch und linear. Um zu zeigen, daB F nicht gleichmaBig
stetig ist, genugt es zu beweisen, daB es in (A) auch nur eine Funktion y0

gibt, die keine Umgebung (A, a) besitzt, in der <5* > 0 ist. Wir wâhlen

y0 y 0 und betrachten die Geradenschar

yw oc -=- (m reell)
tm
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— tm
welche y 0 mit jedem Punkte ym -==— verbindet. Weil in A fur

tm
jedes m

I ym I I <* i

ist, erhalten wir auf jeder Geraden fur a —- einen Punkt y* auf dem

Rande einer beliebigen, aber festgewâhlten Umgebung (-4,^-1 von 0 :

-* _ a tm
ym ~ë\ -7- *

& t
Da

ist, erhalten wir fiir ôm :

am

Da nun m beliebig groB sein kann, wird <5* — 0 fur jedes festgewàhlte
a und e. Damit ist gezeigt, da8 es keine Umgebung (^4, a) von 0 gibt, in
der 5* > 0 wird. Daruber hinaus wissen wir aber jetzt noch, daB F auf
jedem Rand einer beliebigen Umgebung (A, or) von 0 unbeschrânkt ist.
Trotzdem ist F als lineares Funktional im Punkte 0 natûrlich stetig. Es
wird daher in jeder Umgebung (A, a) von 0, wo A die Punkte von A als
innere Punkte enthâlt, immer ô* > 0 sein.

Dies wollen wir an diesem konkreten Fall fur dieselben Funktionen ym
verifizieren, um damit den Unterschied zwischen stetigen und gleich-
màBig stetigen Funktionalen recht deutlich zu machen. Es enthalte also
A den Punkt t A als innern Punkt und nicht den Punkt 00. Dann
gibt es auf der £-Kugel immer einen Kreis mit t als Mittelpunkt und einem

passend gewâhlten ^>0 als Radius, der ganz im Innern von A liegt.
Wir betrachten wiederum die Geradenschar

welche den Punkt y 0 mit den in A definierten Punkten ym —
tm

verbindet, und suchen auf jeder Geraden den Punkt y* in bezug auf eine

festgewàhlte Umgebung (A, a) von 0. Es sei

T.* __ ^* l
Vm — "m jm
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Dann muB Max | y* | —l
sein fur t variabel in A. Umgekehrt ist aber

Daher wird

2 1

Kl
und damit

a • m
m _

• in

lim ™
0

Da

ist fur jedes g>0, bleibt F auf dem Rande einer jeden Umgebung

IA — j von y 0 auch in den Punkten y* beschrânkt. Fur die untere

Grenze ô* der <5m-Werte erhalten wir :

(m)
<5* >Min ^ ' M/ ^0>0 6< 2

je nach dem
*2 2 0 > 2

Wir sehen nun sehr schôn, wie ô* von A abhangt, und wie beim t)ber-

gang von A -> A, dem £ -> 0 entsprieht, jP [y*] auf dem Rande jeder
Umgebung (A, a) von y 0 unbeschrânkt und ô* 6 0 werden.

III. AbsehlieBend wollen wir noch ein Beispiel eines nicht linearen

stetigen Funktionals geben. _
Es sei F wieder im selben Funktionalgebiet (^4) mit A t in der

folgenden Weise definiert :
_

F ist sicher analytisch und nicht linear. Wir betrachten die allgemeine
Gerade
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durch einen beliebigen Punkt y0 von (A), wo y* auf eine beliebige, aber
festgewàhlte Umgebung (A, a) von y0 bezogen ist. Dann gibt es zu jedem
positiven e ein ô (e), so daB

\F\jf\-F [y,] | |{y, (7) + «(y*(7) - y0(*))}» - y* (7) | <e

fiir | a | < ô wird. Nun ist

< | a H y*(t) - yo(t) |2 + 2 | a 11 yo(t) 11 y*{t) - yo(t) |

Die rechte Seite dieser Ungleichung wird aber fur

M<" ~{V°\y+*-]Iî^r7

kleiner als e, und daher um so mehr die linke Seite. Deshalb wird fxir
unsere Gerade

-=
a
~2 je nachdem

Da ô nicht von der Geraden abhângt, haben wir im Punkte yQ :

<5* ^ <% > 0 oder ô* 2

da die beliebige Funktion yo(t) in A =t regulâr, also endlich sein muB.
F ist daher in allen Punkten von (A) nicht nur stetig, sondern sogar

halb-gleichmafiig stetig in bezug auf Af A. F ist aber nicht gleich-
mâBig stetig, denn es gibt fur die (5* keine von yQ unabhângige untere
Grenze grôBer als Null.

IV. Ein Beispiel eines nicht linearen, stetigen, aber weder gleichmâBig,
noch halb-gleichmâBig stetigen Funktionals erhalten wir, wenn wir F
ina gleichen Funktionalgebiet (A) (A ~ t) folgendermaBen definieren :
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Wir verzichten darauf, dièses Beispiel zu entwickeln, da die einzelnen
Berechnungen zu denen von Beispiel II parallel laufen.

Es bleibt noch die Frage, ob es ûberhaupt nicht lineare Funktionale
gibt, welche nicht stetig sind. In einer bedeutsamen Arbeit von M. Ca-

rafalé) wird gezeigt, daB sich jedes nicht lineare Funktional als lineares
Funktional einer Funktion eines linearen Funktionals ausdrticken làfit.
Es ist daher môglieh, daB mit Hilfe dièses Sachverhaltes aus der jetzt
bewiesenen Stetigkeit der linearen Funktionale auf die Stetigkeit aller
Funktionale geschlossen werden kann.

(Eingegangen den 9. August 1947.)

14) Die Arbeit wird demnâchst erseheinen.
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