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Il punto di vista gruppale nei vari tipi
di equivalenza sulle varieta algebriche
Di Francesco SEVERI, Roma

I1 punto di vista gruppale nello studio delle equivalenze sulle varieta
algebriche fu considerato una prima volta nel 1910 in una delle mie
Memorie sulla base e precisamente quando introdussi il gruppo fonda-
mentale della divisione delle curve di una data superficie per un numero
intero!) ; e una seconda volta fu sfiorato nel 1933 in uno dei miei lavori
sulla teoria delle serie e dei sistemi di equivalenza (razionali)?).

I’inquadramento gruppale dei vari tipi equivalenza in relazione alla
scelta di un sottogruppo del gruppo (abeliano, infinito, discontinuo) for-
mato dalle varieta virtuali pure, di data dimensione %, sopra una varieta
ambiente M ,, in quanto tali varieta (o meglio i sistemi di varieta uguals
ad una data3)) si assumano ad elementi e come operazione generatrice
si prenda la somma, € stato delineato in una brevissima NotadiJ. 4. Todd?*),
limitatamente, si puo dire, alla definizione fondamentale.

Avendo ripreso la questione nelle mie lezioni all’Istituto Nazionale di
Alta Matematica nel gennaio 1947, ho voluto spingerne a fondo lo studio,
che si presenta interessante pei legami che stabilisce fra la geometria
algebrica e la teoria dei gruppi astratti.

E’ pero naturale che questa visione gruppale, nei momenti risolutivi,
debba esser fiancheggiata (come spiego anche dal n. 26 in poi) dagli ap-
porti di carattere funzionale, senza i quali essa rimane una sistemazione
elegante, ma non costruttiva.

In particolare, le questioni concernenti la ricerca della base dei gruppi
abeliani dell’equivalenza algebrica, dell’equivalenza lineare, della divi-
sione algebrica e lineare e della irregolaritad superficiale, richiedono riferi-
menti alle questioni collegate di geometria sopra una varietd ; ma una
volta compiuto il riferimento, questo ne risulta armonizzato e affinato.

1) Complementi alla teoria della base per la totalitd delle curve di una
superficie algebrica (Rend. del Circolo matematico di Palermo, 1910).

2) Ved. alcune Note lincee del 1933, citate nel n. 26.

3) Ved. per una precisa specificazione i nn. 1, 2, 3 della presente Memoria.

') Some groups-theoretic considerations in algebraic geometry (Annals of
mathematics, vol. 35, 1934; pp. 702—1704).
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Le considerazioni gruppali mi porgono inoltre I’occasione di esporre una
elaborazione, che direi definitiva, del concetto di equivalenza algebrica e
del relativo teorema di unicitd e di approfondire ulteriormente la rela-
zione di equivalenza razionale, le cui caratteristiche fondamentali non
posson esser esaurite dalla visione gruppale.

Mostro anzi come si possa introdurre un concetto a priori meno ampio,
che chiamo di stretta equivalenza razionale, il quale &, al pari della lata
equivalenza, invariante per trasformazioni birazionali ; e di natura grup-
pale.

Esso & o non &, nel fatto, meno ampio del concetto di lata equivalenza,
secondo che esistono o non esistono sistemi irriducibili non unirazionali
di varietd effettive equivalenti razionalmente (in senso lato).

Un sistema algebrico irriducibile di equivalenza (in senso lato) di va-
rietd virtuali é sempre razionale (e viceversa): occorre indagare se le
traccie di un tal sistema nel campo delle varieta effettive si ripartiscano
in sistemi che sieno soltanto unirazionali (o razionali).

Cosi, con riferimento alle serie d’equivalenza di ordine uno sopra le
superficie, si tratta di sapere se una superficie ¥ contenente una tal serie &
necessariamente razionale ; mentre finora ho potuto soltanto affermare
ch’essa & regolare, di genere geometrico zero, e a divisione univoca delle
sue curve.

Questioni dunque sostanziali, che non si pud sperare di superare sola-
mente con sistemazioni formali, sieno pure larghe, eleganti ed utili.

Preliminari

1. Consideriamo le varietd (algebriche) tracciate sopra una varieta
irriducibile e riferiamoci ad un modello M, di questa, privo di punti
multipli in un conveniente spazio ?).

Fissata una dimensione & per le varietd di M,, attribuiamo un segno
ad ogni varietd irriducibile V, e denotiamo la varietd orientata con + ¥,

(varieta positiva) o con —V, (varietd megativa), secondo che & associata
al + oppure al —¢).

5) Si ammette il teorema della risoluzione delle singolarita per varietd qualunque,
teorema classico per r = 1, 2 e dimostrato di recente (1944) da Zariski per r = 3. O
se non si vuol ammettere questo, ci si limita a considerare le M, che posseggono trasfor-
mate birazionali senza punti multipli.

8) Topologicamente si pudé dare un significato suggestivo, ma non necessario alla pre-
sente esposizione, dell’orientamento di una V. Ved. le mie Lezioni sulle Serie, sistemi
d’equivalenza e corrispondenze algebriche (a cura di F. Conforto ed E. Martinellt,
Roma, Edizioni Cremonese, t. I, 1942; p. 12). Ved. pure la mia Memoria I fondamenti
della geometria numerativa (Annali di Matematica, t. 29,, 1940, pag. 158).
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Un insieme di un numero finito di varieta irriducibili orientate, della
stessa dimensione k, dicesi una varietd virtuale pura di dimensione k:
pura, per denotare che non contiene parti (complete) di dimensione <k.
D’ora innanzi ometteremo l’attributo, perché non tratteremo che di
varieta pure.

Si dice altresi che quell’insieme & la somma delle [ varieta irriducibili che
lo costituiscono (componenti o addendi): somma che nasce dunque, per de-
finizione, commutativa e associativa. Essa denotasi con V/4- V"4 ... 4V
qualora nei simboli V delle varieta si voglia incorporare il segno, oppure
con (+Vl) + (+V”) + (__Vll/) _‘_. . + (__V[) o VI+V/I___V///___ . '—-Vl
(omettendo il segno della prima, se & positiva). Si ha cosi la varieta sotto
aspetto di somma algebrica. E’ poi ovvio il significato di differenza C di
due varietd 4, B (B + C & identica ad A4).

Se tutte le componenti hanno il medesimo segno, la varietad designasi
anche con +(V'4---+V) o —(V'4---+VY e si ha una varieta
riducibile positiva o negativa. La denominazione di varieta effettive si
dovrebbe riserbare alle varietd irriducibili o riducibili, non orientate ;
ma & spesso conveniente di usarla anche per denotare le varieta positive,
irriducibili o riducibili. Dal contesto del discorso si desume se trattasi di
una varieta non orientata o di una varietd positiva.

Ogni varieta virtuale é identica (come insieme di varieta irriducibili
orientate) alla differenza di due varieta effettive.

2. Definiamo ora V'uguaglianza tra varieta virtuali. Sieno le varietda
virtuali 4 — B, C — D, ove A, B, C, D son varieta effettive (s’in-
tende sempre della fissata dimensione k). Si dice ch’esse son uguali e si

scrive ;
A—B=C—D,

se le varieta somme della parte positiva di ciascuna delle due e della
parte negativa dell’altra, presa positivamente, son identiche ; cioe se

A+ D=B+C,

dove qui = sta per « identico ».
Si riconosce subito che I'uguaglianza & riflessiva, simmetrica e transi-

tiva. Invero, per cio che concerne la transitivita (proprietd meno imme-
diata delle altre due), se

A—B=C—-D e C—D=EKE-—-F, (1)
sicche :
A+D=B+C, C+F=D+E, 2)
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sl ricava :

A+D+F=B+4+C+F , B+C+F=B+D+E (3)
e quindi, dato che qui si tratta di relazioni d’identita, eppero transitive :
A+D+F=B+D+E, cioée: A+F=B+E,

la quale esprime appunto chele 4 — B, E — F son uguali.
Ne deriva che :

A—A=B—-B=C—-C=-.., (4)

perché :
A+B=A+B; B+C=B+C; .

Una qualunque delle varieta uguali (4) si chiama lo zero dell’ugua-
glianza tra varieta virtuali e si indica con 0.

Si verifica senz’altro che uguaglianze tra varietd virtuali possono
sommarsi o sottrarsi a membro a membroeche 4 + 0 = A4 .

La somma di A varieta uguali ad A, ove 1 sia un intero positivo, 8’in-
dica con 44 e si chiama il multiplo di A secondo A. E’ chiaro che — 14
= A(—4).

Se 4 4+ B =0, sommando a membro a membro con 0 =4 — 4,
se ne trae B= — 4. Inoltre da 4 = B — C segue — A =C — B,
perchée (B —C)+ (C — B) =0 ; ecc. ecc. Insomma si costruisce
un’algebra delle varieta virtuali, la quale & analoga a quella dei numeri
reali relativi. Analoga, non identica, perche esistono varieta che non sono
né positive né negative.

Gruppo dell’uguaglianza

3. Presi come elementi di un insieme G i sistems di varieta virtuali
uguali fra loro, I'insieme G & un gruppo (abeliano, infinito, discontinuo)
rispetto alla somma ; ’identitd e il sistema delle varieta zero ; l'inverso
del sistema delle varieta uguali ad A4 é il sistema delle varietd uguali
a —A7).

Chiameremo questo il gruppo G dell’uguaglianza tra varietd virtuali.

7) Per le nozioni elementari sui gruppi astratti, che qui occorrono, rinvio al bel libro
di Gaetano Scorza: Gruppi astratti (a cura di Giuseppe Scorza Dragoni e Quido Zappa,
Edizioni Cremonese, 1942).
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E’ facile provare che ¢l gruppo dell’uguaglianza non ammette un numero
finito dv generators.

Se si assumono invero n elementi A’,..., A* di G, rappresentati dai
simboli di altrettante varieta virtuali individuanti quegli elementi, le
varietd 4,4’ +...+ 2,4A", con A,,..., 4, interi arbitrari, positivi,
negativi o nulli, hanno le componenti fisse, epperd non posson rappresen-
tare tutte le varieta virtuali di M, ; e cido qualunque sia il numero di
varieta prefissate.

4. In particolare, quando l’ambiente M, & uno spazio lineare
proiettivo S, a coordinate omogenee di punto =z,, z;,...,2, ed &
inoltre k£ =r — 1, si pud dare delle ipersuperficie virtuali un’inter-
pretazione mediante le funzioni razionali semiomogenee del punto
x(%g, Z,. .., Z,). Una tal funzione & quoziente di due polinomi omogenei
@, v (di gradi qualunque) nelle . Diremo uguali due di queste funzioni
quando moltiplicate pel prodotto dei loro denominatori, danno due poli-
nomi differenti fra loro per un fattore costante non nullo. Il prodotto di
due funzioni razionali semiomogenee & una funzione dello stesso tipo,
sicche, assunti i sistemi di funzioni uguali fra loro a elementi di un in-
sieme, questo risulta un gruppo (rispetto all’operazione di prodotto delle
funzioni) di cui l'identitd é costituita dalle funzioni identicamente co-

stanti. Ebbene, fatta corrispondere alla funzione -(-5 e alle funzioni uguali

Iipersuperficie virtuale 4 — B, ove 4, B hanno per equazioni rispettive
¢ =0, y =0, e leipersuperficie uguali ad 4 — B, tra il gruppo defi-

nito in relazione alle % e il gruppo G dell’'uguaglianza nasce un tsomor-
fismo, la cui esistenza permette di assumere come tmagini algebrico-funzzio-
nali delle A — B le % .

Geometricamente il quoziente % puo caratterizzarsi mediante i suoi

zeri e i suoi poli, considerati ciascuno col loro ordine di molteplicita,
percheé il quoziente di due funzioni razionali semiomogenee aventi gli stessi
zeri e gli stessi poli con le stesse molteplicita, essendo una funzione razio-
nale di z,, z,,..., z, priva di poli e di zeri per valori finiti (e, beninteso,
non tutti nulli) delle z, riducesi a una costante non nulla. Sicché ’insieme

delle % uguali ad una data & definito dall’ipersuperficie effettiva V
somma delle componenti irriducibili di 4 4+ B e da una funzione nume-

rica N (x) del punto z di S,, la quale esprime I’ordine di ? in z: e ciod
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zero, quando x non appartiene a V e -1 secondo che x & uno zero e
rispettivamente un polo di ordine A per % . Pertanto si puo anche assu-

mere a imagine di 4 — B l’associazione di V con le funzione numerica
N (z)8). In particolare l’ipersuperficie virtuale zero 4 — 4 & caratte-
rizzata dal fatto che la corrispondente N (z) ¢ identicamente nulla.

L’equivalenza algebrica e il suo gruppo

5. Prima di procedere oltre, conviene richiamare il concetto di equi-
valenza algebrica di varietd sopra M,, risultante da precedenti miei
lavori (dal 1904 in poi), onde aggiungervi precisazioni e complementi, i
quali danno ad esso una veste, che direi definitiva.

Occorre anzitutto fissar bene il concetto di varieta totale di un sistema
algebrico irriducibile 2', di varieta effettive V' (di dimensione k) su M, ;
concetto che figura gia implicitamente od esplicitamente nelle defini-
zioni da me date in passato dell’equivalenza algebrica ®).

Le varietd di X' sul modello M, hanno lo stesso ordine : anzi, presa
comunque in M, una varieta effettiva (pura) W, di dimensione r — k
complementare di quella delle V, al variare di V in X resta addirittura
costante il numero virtuale [V, W] delle intersezioni di V, W 19),

Supponiamo che la ¥V generica di X non possegga che componenti
semplici (cosi che 1’ordine di V sia la somma degli ordini delle sue compo-
nenti irriducibili). Allora la sezione W, co™*, di ¥V con un generico spazio
lineare dell’ambiente proiettivo di M,, di dimensione conveniente, stacca
sulla generica ¥V un gruppo (V, W) d’intersezioni semplici 1?).

8) E’ questa sostanzialmente l'interpretazione contenuta in una Nota di Spampinato,
Nozioni introduttive alla teoria delle ipersuperficie algebriche di indice n
dell’S, proiettivo complesso (Rend. dell’Accademia delle Scienze di Napoli, vol.
XIV,, 1946; vol. XV,, 1947). La disarmonia che I’A. sembra riscontri nella definizione
geometrica d’ipersuperficie virtuale, nella realtd non sussiste, percheé la somma di varieta
deve sempre intendersi (sia nel campo delle varietd effettive come in quello delle varieta
virtuali) quale sinonimo d’insieme delle varietd che la costituiscono; e, soltanto dopo
definite a suo mezzo le varietd virtuali, essa diviene un’operazione interna del campo
virtuale. Comunque ’accennata interpretazione algebrica acquisterebbe interesse mag-
giore se si estendesse a varietd di dimensione qualunque in un qualsiasi ambiente M, :
il che reputo possibile.

%) Ved. in particolare la Memoria citata, I fondamenti della geometria numera-
tiva, pag. 1569.

10) Serie d’equivalenza, ecc. p. 13. Le V di un sistema continuo hanno lo stesso
ordine sopra ogni modello di M ., nonostante che muti in generale il valore del loro ordine.

11) Serie d’equivalenza, ecc. p. 4.
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Cio posto, una varietd totale V, del sistema irriductbile X é definita
dalle condizioni seguenti :

1) V, &, entro X, riguardato come insieme di elementi, un elemento di
accumulazione di varieta V.

2) Ogni punto di ¥, é di accumulazione per punti di varietd V dell’in-
torno di V,in 2.

3) Ogni componente irriducibile Z di V conta, come costituente di V,,
un certo numero s > 1 di volte e 'intero s si ottiene facendo tendere V
a Vyin 2' e contando quanti punti del gruppo (V, W) tendono ad uno
qualunque (ché il risultato ¢ lo stesso comunque si fissi un’intersezione di
W con Z) dei punti del gruppo (Z, W) (ciascuno di questi, per la genericita
di W, é un’intersezione semplice).

Si riconosce agevolmente che I'intero s ¢ indipendente dal modello con-
siderato di M,, almeno se V, non & fondamentale per la trasformazione
birazionale che fa passare da un modello all’altro. Se poi V possiede com-
ponenti multiple, si considerera il sistema irriducibile X/ di varieta V'
ottenute dalle ¥ contando semplicemente le loro componenti. Quando V'
¢ nell’intorno di una V; totale di 2/, ogni componente di V', che abbia
la molteplicita ¢ come componente di V, & prossima ad un gruppo deter-
minato di componenti di V;, ciascuna delle quali ha la propria molte-
plicitd s entro V. Ebbene, il prodotto st denota allora la molteplicita di
questa componente di Vj, come parte della varietd totale V, di X, che
prende origine da V.

Fissato il concetto di varietd totale di un sistema 2 irriducibile, ac-
quista senso pienamente rigoroso la definizione seguente :

a) Due varieta effettive 4, B di M, si dicono algebricamente equivalents
sopra M, e si scrive
A=B,

quando son varietd totali di un medesimo sistema algebrico irriducibile
di varieta di M, oppure a tali si riducono aggiungendo una medesima
varieta effettiva C'.

Osservazione 1% La definizione di varietd totale di un sistema alge-
brico irriducibile X sopra M, si pud presentare in veste algebrica (e non
infinitesimale, come si & qui fatto) proiettando genericamente sopra un
8441 le V del dato sistema. Si ha ivi un sistema di ipersuperficie e per
ciascuna di queste le molteplicitd delle componenti son date dagli espo-

nenti dei singoli fattori primi del primo membro della corrispondente
equazione.
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Osservazione 2* La necessitad di ampliare la definizione a) con la
seconda alternativa s’intravede fin dalla mia prima Memoria generale
sulla base dei Mathematische Annalen, 1906, pp. 202, 203. La a) ¢ adot-
tata nella mia Memoria del 1934 sulla base delle varietd di dimensione
qualunque contenuta in una data (Accademia d’Italia, 1934, p. 246);
ma con la condizione (inutilmente piu larga, come qui si vedra) che il
sistema contenente le due varietd sia connesso!?). La definizione a) &
la pit ampia possibile. Essa ¢ imposta, come vedremo, da ragioni essen-
zialmente gruppali 13).

6. Diremo che un sistema algebrico 2’ di varieta V di M, & connesso,
se non si pud con talune sue componenti (cioé sistemi irriducibili com-
pleti come partt di X) formare un insieme di sistemi algebrici irriducibili
non aventi varietd totali comuni con le componenti rimanenti di X'.

E’ facile vedere che se A, B son due varieta totaly dv un sistema connesso
2, esiste una successione di components dv X, la prima delle quali contiene
totalmente A, U'ultima totalmente B e due consecutive hanno qualche varietd
totale comune.

Poiché la proprieta é vera nel caso di una o di due sole componenti, am-
mettiamola per un sistema con meno di ¢ componenti e dimostriamola per
un X con ¢ componenti. Se qualcuna delle componenti di X' connesse con
una componente X, di X', che contenga A4, contiene B, il teorema & dimo-
strato ; altrimenti si sopprima da X la componente X,. Se il sistema 2’
residuo é ancora connesso, ed ¢ 2, una sua componente connessa con 2,
pel teorema ammesso esistera una catena, come quella descritta nell’enun-
ciato, da 2, ad una componente di X2’ contenente B e questa catena potra
esser prolungata verso A, con 'aggiunta di 2.

Se invece X’ & sconnesso, ci sard un sistema connesso XZ” (eventualmente
ridotto ad una sola componente) di componenti di X/, contenente B,
sconnesso colle componenti restanti di 2/, nessuna delle quali contiene B.
E 2" dovra esser connesso con X, altrimenti 2 non sarebbe connesso.
Detta X, una componente di £” connessa con X, poiché 2” contiene meno
di £ componenti, si conclude come prima.

12) Un esame di alcuni tipi di equivalenza algebrica di curve sopra una superficie,
sopratutto nei riguardi dei sistemi algebrici considerati come luoghi di sistemi lineari, fu
fatto da Albanese (Annali di Matematica, t. 245, 1915, p. 159).

13) Per le curve d’una superficie questa definizione «& peu prés équivalente» a quella
ch’io avevo data per la prima volta nei Math. Annalen, 1906, trovasi, con una lieve diffe-
renza inessenziale, in Lefschetz, L’analysis situs et 1a géométrie algébrique (Paris,
Gauthier-Villars, 1924), p. 80. Ved. pure le mie Conferenze di geometria algebrica
(raccolte da B. Segre, Roma, Tip. Genio Civile, 1927); p. 361.

196



7. Conseguenza della proprieta precedente & il teorema :

b) Se A, B son varietd effettive totalt dv un sistema algebrico connesso,
esse son algebricamente equivalents.

Invero o 4, B appartengono ad una medesima componente del sistema
connesso 2 e allora e soddisfatta la prima alternativa della a), oppure
esiste in X', in forza del n. prec. una catena di sistemi irriducibili X,, %, ,. . .,
2, 1,2, il primo dei quali, 2',, contiene totalmente 4, I'ultimo, 2,, con-
tiene totalmente B ; e inoltre 2, 2, hanno in comune almeno una varieta
totale C;; 2,,2,; almeno una varieta totale C, ;... ; 2,_;, 2, almeno una
varieta totale C,_,.

Orale A+C,+---+C,_y, C;+---+ C,_, + B, appartengono,
come varietd totali, al sistema irriducibile (prodotto di 2, %,,..., %))
costituito dalle varietd composte con ¢ varieta totali tolte rispettivamente
dai sistemi irriducibili X, %,,..., 2, ; cioe le A, B con l'aggiunta di
una medesima varieta ¢ = C, + C, 4---+ C,_,, appartengono total-
mente ad un sistema irriducibile e si verifica la seconda alternativa della a).

Osservazione. Se come definizione dell’equivalenza algebrica si
assumesse la b), se ne dedurrebbe senz’altro la transitivita della relazione
stessa per le varietd effettive; ma, come vedremo nel n. 9 (Oss. 2?),
non se ne potrebbe ricavare altrettanto agevolmente la transitivitd della
relazione per le varietd virtuali. D’altronde resta dubbio se la b) sia in-
vertibile.

8. Proviamo la transitivita della relazione di equivalenza algebrica, de-
finita dalla @), per varietd effettive.
Siano 4, B, C varieta effettive e sia

A=B, B=C.

Si deve dimostrare che 4 = C. Invero, esiste qualche varieta effettiva
D (che puo non considerarsi, se gia A, B appartengono totalmente allo
stesso sistema irriducibile), tale che 4 + D, B + D appartengono
totalmente ad un sistema irriducibile ; e, similmente, una £ tale che
B 4+ E, C + E son varietd totali di un sistema irriducibile. Ne deriva
che A + D+ E, B+ D+ E son varieta totali di un sistema irriduci-
bile X';e B+ D + E, C + D + E varieta totali di un sistema irridu-
cibile XZ”. Poiché X/, £” hanno in comune la varietd totale B 4+ D + E;

essi son componenti di un sistema connesso X'; e, a norma del n. prec.,
risulta

A4+D+E=C+ D+ E cioé : A=C .
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9. KEstesa la relazione di equivalenza algebrica alle varietd virtuali;
(al modo stesso con cui si passa (n. 2) dall’'uguaglianza tra varieta effettive
all’'uguaglianza tra varietd virtuali), si dimostra la transitivita dell’equi-
valenza algebrica anche tra varieta virtuali, come segue.

Sieno le varietd virtuali A — B, C — D, E — F e fra esse inter-
cedano le equivalenze algebriche :

A—B=C—-D, C—-D=F —F ,
cioé :

A+D=B+C , C+F=D+E.
Da queste si deducono le :
A+D+E=B+C+E, A+ C+F=A+ D+ E
e, per la transitivita dell’equivalenza algebrica tra varieta effettive:
A+ C+F=B+C+ E cioe : A4+F=B+E,
la quale mostra chele 4 — B, E — F son algebricamente equivalenti.

Osservazione 1% In particolare due varietd virtuali uguali son alge-
bricamente equivalenti.

Osservazione 2% Il passaggio dalla penultima all’ultima delle equi-
valenze tra varietd effettive non sarebbe lecito se non avessimo aggiunto
alla definizione a) la seconda alternativa; e d’altra parte la mancanza
della transitivitd dell’equivalenza algebrica tra varietd virtuali impedi-
rebbe di far rientrare questo tipo di equivalenza nel concetto gruppale
del n. 4.

Osservazione 3% Nel caso delle curve d’una superficie M, (k = 1,
r = 2) l'equivalenza algebrica fra curve virtuali coincide coll’equiva-
lenza topologica e la transitivitd dell’equivalenza algebrica con la transi-
tivitd dell’equivalenza topologica.

L’identificazione delle equivalenze algebrica e topologica costituisce
uno dei brillanti risultati di Lefschetz (loc. cit. p. 81), che I’ha conseguito
con mezzi topologico-trascendenti. Nella mia prima Memoria generale
sulla base (1906) era stabilito, per via algebrico-geometrico, che se due
curve A, B dello stesso ordine sopra una superficie soddisfanno alle rela-
zioni numerative [4,A4] =[4,B] = [B, B] esse o due loro equimultipli
convenienti son equivalenti [nel senso della a)] e quindi omologicamente
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equivalenti. Albanese*) osservo che quando, viceversa, A, B son
omologicamente equivalenti, poiché segano ogni ciclo bidimensionale di
F nello stesso numero (algebrico = aritmetico) d’intersezioni, son per esse
soddisfatte le ricordate relazioni numerative e ridusse cosi il teorema di
Lefschetz ad una conseguenza ovvia di quelle relazioni. Interpretata
Pequivalenza algebrica come equivalenza topologica, dall’esistenza di una
base pei cicli bidimensionali della superficie ne seguiva allora subito il
teorema fondamentale della base per le curve d’una superficie, che io nel
1906, Poincaré nel 1910, e Lefschetz nel 1924, avevamo stabilito con
mezzi trascendenti.

La stessa possibilitd d’identificare equivalenza algebrica ed equivalenza
topologica dei cicli 2k-dimensionali algebrici di una M ,, non & stata pero
dimostrata in generale; ma soltanto fatta discendere da un postulato,
che attende la sua completa giustificazione 1*). Non pud dunque conside-
rarsi senz’altro acquisita la transitivitd dell’equivalenza algebrica, né
percio si puo passare subito all’aspetto gruppale della questione, senza le
considerazioni esposte dal n. 5 in poi od altre simili.

10. Stabilite le proprietd simmetrica, riflessiva, transitiva dell’equi-
valenza algebrica, le varieta differenze delle coppie di varieta virtuali
algebricamente equivalenti, costituiscono ovviamente un sottogruppo in-
variante H del gruppo G dell’'uguaglianza, ed H & cosi lo zero dell’equi-
valenza algebrica, nel senso che in questo tipo di equivalenza tutti gli
elementi di H si assumono nulli (e si rappresentano col simbolo 0).

Le somme di una varietda A di M, e delle varieta di H, danno luogo ad
un sistema gruppale di equivalenza algebrica {{A}}, individuato da A4 ;
e 'insieme dei sistemi {{4}} costituisce un gruppo abeliano G¢' = G/H,
fattore di @ rispetto ad H, che chiamiamo il gruppo dell’equivalenza
algebrica. Ma {{4}} non & né algebrico né dimensionale, in quanto
consta di un’infinitd discontinua di sistemi continui.

Qui si pone, pel gruppo abeliano @', il problema della base, che, come
s’intende a priori e come vedremo con qualche dettaglio fra breve, ridu-
cesi al problema della base per le varietd V di M,.

La risoluzione di tale problema incide pero soltanto sui sistemi grup-
pali e lascia p. es. in ombra la questione, che pure interessa di risolvere,

4) Sul teorema fondamentale della base per la totalita delle curve d’una
superficie algebrica (Rend. dell’Acc. Nazionale dei Lincei, aprile 1927, p. 481). Ved.
anche le mie citate Conferenze di geometria algebrica, p. 363.

1) Ved. la mia Memoria, La base per le varietd algebriche di dimensione
‘lu‘alunque, ecc. (Mem. della Accademia d’Italia 1934, p. 239), e particolarmente il n. 13.
L’identificazione accennata vale a tutto rigore per k=1 e k=r—1.
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se esiste un teorema di unicitd anche pei sistemi algebrici di equivalenza
algebrica (ossia, se anche per questi valga la transitivita).

11. Sia 4 una varieta effettiva (si sottintende sempre di dimensione %)
su M,. La totalita delle varieta effettive (algebricamente) equivalenti ad
A, la quale si potrebbe chiamare la fraccia del sistema gruppale {{4}}
nel campo delle varieta effettive, & essa un ente algebrico? E’ facile rispon-
dere affermativamente.

Invero, presa una varieta effettiva B equivalente ad 4, dovendo esi-
stere qualche varieta effettiva tale che 4 + C, B -+ C appartengano
allo stesso sistema irriducibile, una varietd qualsiasi W, di dimensione
complementare alle 4, B, C, tracciata su M,, soddisfa alla relazione
numerativa :

(4, W]+[C, W]=[B,W]+[C,W], cice: [4,W]=[B, W]

In particolare le A, B hanno lo stesso ordine m ; eppero le varieta effet-
tive algebricamente equivalenti ad A4 si distribuiscono nei sistemi alge-
brici irriducibili complet: (cioé non contenuti in sistemi irriducibili piu
ampii, cui appartengano totalmente le loro varietad), che abbracciano
sopra M, la totalitd delle V di ordine m. Tali sistemi sono in numero
finito 1%). Se una varietd B equivalente algebricamente ad A appartiene
ad uno X' di questi sistemi, tutte le varieta totali di 2'sono algebricamente
equivalenti a B epperd ad A, cioé tutto il sistema X' ¢ una componente
del sistema delle varietd equivalenti ad 4, che risulta cosi costituito da
alcuni (o tutti) i sistemi irriducibili completi, che esauriscono le varieta V
di ordine m di M,. In conclusione :

Le varieta effettive algebricamente equivalenti ad una data varieta effettiva
A riempiono un sistema algebrico completo {A}, individuato da una qua-
lunque div esse (e che consta di un numero finito di sistemi irriducibili,
completi come tali, connessi o no fra loro).

Non é detto che il sistema {4} sia connesso, ma & certo che se esso non
comprende tutte le varietd di ordine m di M,, le varietd che ne sono
escluse si distribuiscono in sistemi irriducibili non connessi con {4}.

I1 teorema stabilito prova che la transitivita dell’equivalenza algebrica
vale anche nel campo delle sole varietd effettive ; sicché i sistemi algebrici di
equivalenza algebrica di queste varietd formano un semigruppo rispetto
all’addizione.

18) Ved. la Memoria ora citata: La base per le varietd algebriche di dimen-
sione qualunque, ecc. p. 242.
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La base del gruppo abeliano dell’equivalenza algebrica

12. 1l teorema fondamentale della base (ved. i miei citati lavori del
1906 e del 1934, nei riguardi rispettivamente delle curve di una superficie
e delle varietd di una M,) afferma che su M, possono scegliersi ¢ conve-
nienti varietd virtuali algebricamente indipendenti V', ... Ve (ossia tali
che una loro combinazione lineare a coefficienti interi positivi o negativi,
non tutti nulli non & mai algebricamente nulla), in guisa che, se V &
un’altra qualunque varieta (pura, di dimensione k) di M, sussiste, per
As Ag, ..., A, convenienti interi (positivi, negativi o nulli), 'equivalenza :

AV 4+ LV 44 A, Ve=0, (A£0) . (5)

Se al posto delle V pensiamo i sistemi gruppali {{V}} — il che intende-
remo sempre fatto (senza portarci dietro simboli ingombranti) dato che
ogni {{V}} & individuato da una ¥V — la (5) s’interpreta come una rela-
zione fra p elementi convenientemente fissati del gruppo G’ dell’equi-
valenza, un altro elemento qualunque di G’ e ’identita. Non é pero ancora
una base di G’ nel senso della teoria dei gruppi?).

L’ulteriore passaggio ad una base intermediaria delle V di M, 18),
permette di affermare I’esistenza di ¢ varieta V', V”,... Ve (base inter-
mediaria) tali che per ogni V il coefficiente A divide A,, 4,,..., 4,, sic-
ché ogni V differisce da un’opportuna combinazione lineare di V', ... Ve
per un diwvisore dello zero, cioé per un elemento che o appartiene ad H o
ha un suo multiplo opportuno appartenente ad H .

L’insieme dei divisori dello zero, forma un gruppo abeliano finito G,
di un certo ordine o, che, come ho gia ricordato, considerai nel 1910 per
le curve di una superficie, con un procedimento algebrico-geometrico, che
non ¢ tal quale estendibile alle ¥V di M,, ma che lo diviene quando si
appoggi ad altre proposizioni di geometria sopra una varieta o si tra-
sferisca al campo topologico (ved. i successivi nn. 21, 23). Chiamai G,
gruppo della divisione (rispetto all’equivalenza algebrica). Lo chiameremo
ora piu specificamente, dovendo considerare altri gruppi della divisione,
il gruppo della divisione algebrica. Di questo gruppo abeliano si pud consi-
derare una base normale I'), I,,..., I, 1), ossia un sistema di ele-

17) Scorza, loc. cit. p. 131.

18) Ved. per le superficie la mia Memoria sulla base negli Annales de I’Ecole Normale
Sup. de Paris, 1908 e I'altra Memoria citata dell’Acc. d’Italia, 1934, per cid che concerne
le variets.

1%) Scorza, loc. cit. p. 138; ved. pure: Bianchi, Lezioni sulla teoria dei gruppi di

Bostituzioni e delle equazioni algebriche secondo Galois (Pisa, Spoerri, 1900,
p. 73).
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menti generatoridi G,, aperiodi ¢,,¢,,...,%,, taliche ¢ =1¢,,¢,,...,¢,
(con ¢,, divisore di ¢, ; t, divisore di ¢,,..., ¢ _,, divisore di ;) e indipen-
denti tra loro, nel senso che una relazione del tipo :

pm Iy +pe Ly +p, I, =0 (6)

a coefficienti interi positivi, negativi o nulli, non possa esser verificata, se
non essendo u,, U,,..., 4, rispettivamente multipli di ¢,,¢,,...,¢,.

Allora gli elementi V’,...,Ve diuna base intermediaria ei 7 divisori
dello zero I',,I,,...,I', costituiscono nel loro complesso una base
minima per le ¥V di M, e nello stesso tempo un insieme di elementi gene-
ratori di G’, indipendenti fra loro, nel senso che una relazione del tipo :

MV 4 WV AVt M4+, T,=0 (7)

fra gli elementi aperiodici V', V”,. .., Ve e gli elementi periodici I',,..., T,
non é possibile se non essendo

)«1————0,}.2:0,..-,12.—:0,

U1 =0 (mod. ?,),...,u, = 0(mod. ¢,) .
Invero, moltiplicando i due membri della (7) per o se ne ricava
oMV v+ eV +---4+0ci,Ve=0,

e quindi 4, =4, =---=1,=0. Dopo cié la (7) diviene la (6) e si
perviene alla parte ulteriore della conclusione. Dunque :

Il gruppo abeliano dell’equivalenza algebrica é generabile con un numero
finito di o + T elementi ed ammelte come sottogruppo (finito) il gruppo della
divisione algebrica.

L’equivalenza lineare e il suo gruppo

13. Quando le V di M, sieno ipersuperficie (k = r — 1), oltre all’equi-
valenza algebrica si deve considerare 1’equivalenza lineare.

Due varieta effettive (s’intende ipersuperficie) 4, B, sono linearmente
equivalenti e si scrive A = B, allorché son varieta totali di un medesimo
sistema lineare (e quindi sono anche algebricamente equivalenti). L’equi-
valenza lineare delle varieta virtuali si riduce a quella delle varieta effet-
tive al solito modo (n. 2).

L’unicitd del sistema lineare completo che contiene totalmente una
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data A — lo si indica, com’® noto, con |A4| — o, cid che & lo stesso, la
transitivita della relazione = , appartengono ai fondamenti elementari
della teoria.

Conviene osservare che queste proprieta (e il teorema invariantivo del
resto, che ne consegue) possono stabilirsi con elegante semplicita con un
tipo di argomentazione analoga a quella del n. 7, che fu diretta (n. 10)
a dimostrare il teorema di unicita pei sistemi algebrici di equivalenza
algebrica. Ed ecco come.

Sieno |A4|, |B| due sistemi lineari distinti (anche incompleti) aventi
in comune una varietd totale C. La varieta delle coppie di elementi di
| A|, | B| & ovviamente razionale ; a questa varietd appartengono le
A+ C, B4+ C. Ma le varieta di un sistema razionale su M, stanno,
come varieta totali, in uno stesso sistema lineare 2°), dunque le 4 + C,
B+ C son varieta totali di un medesimo sistema lineare. E siccome la
condizione imposta alle varieta di un sistema lineare di contenere una
parte fissa & lineare, le varieta di quest’ultimo contenenti C, fatta astra-
zione da C, costituiscono un sistema lineare di cui le varieta di | 4 |,
| B| sono varieta totali; cioé un sistema piu ampio dei due, che li con-
tiene totalmente. L’unicitd del sistema lineare completo & cosi acqui-
sita.

14. La transitivita della relazione = (insieme all’evidente riflessivita
e simmetria) fa rientrare ’equivalenza lineare nel concetto gruppale del
n. 3, essendo sottogruppo zero di questo tipo di equivalenza l’insieme L
delle varietd virtuali linearmente equivalenti a zero, ossia differenze di
varieta linearmente equivalenti.

I sistemi di varieta ottenuti dalle singole varieta virtuali, in particolare
effettive, di M,, aggiungendovi le varieta di L, son individuati ciascuno
da una varietd (ipersuperficie) A di M,. Si perviene anche qui a insiemi
di varieta a due a due linearmente equivalenti, che non sono algebrici : li
chiameremo i ststem: gruppali linear: (e non gid perché sieno lineari!).
Designeremo uno di essi con || 4 ||. L’insieme degli || 4 ||, considerati
come elementi, costituisce il gruppo abeliano G” = GQ/L, fattore di @
rispetto ad L: & il gruppo dell’ equivalenza lineare21).

E’ chiaro che L & un sottogruppo di H, perché le varietd linearmente
nulle son particolari varietd algebricamente nulle.

20) Proprieta che si stabilisce con un tratto di penna. Ved. p. es. a pag. 86 delle mie
Lezioni Serie di equivalenza, ecc.

21) Cosi @ & il gruppo dell’'uguaglianza, H il sottogruppo zero dell’equivalenza alge-

brica; @' = G/H il gruppo dell’equivalenza algebrica; L il sottogruppo zero dell’equi-
valenza lineare; G” = G/L il gruppo dell’equivalenza lineare.
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15. Proviamo che:

Affinché il gruppo dell’equivalenza lineare ammetta un numero finito di
generatory é mecessario e sufficiente che la varieta ambiente sta superficial-
mente regolare.

Ricordiamo che la varieta M, & superficialmente regolare quando ogni
suo sistema irriducibile completo di varietad ad » — 1 dimensioni consta
di varieta linearmente equivalenti.

Se la M, ¢ superficialmente regolare, ’equivalenza algebrica (tra varieta
ad r — 1 dimensioni) riducesi all’equivalenza lineare e il gruppo G” am-
mette un numero finito di generatori (n.12). Supponiamo, viceversa,
che G” ammetta un numero finito di operatori ; cio che in ultima analisi
equivale a supporre che esista una base per le varietd (ad r — 1 dimen-
sioni) di M,, di fronte all’equivalenza lineare. Si posson dunque fissare

in M, ¢ convenienti varietd V’',..., Ve tali che per ogni altra V sussiste
Iequivalenza

AV + 4V 44 A, Ve=0, (8)
A, Ay,..., 4,, essendo interi (positivi negativi o nulli) dipendenti sol-

tanto da V (4 #£0) .

Sia V effettiva (non nulla), variabile in un sistema algebrico irriducibile
2. Gl'interi 4, 4,,...,4,, non potendo variare con continuita, restano
costanti ; ossia AV (con A intero che si pud supporre positivo, dopo aver
cambiato eventualmente il segno a tutti i termini della (8)), si conserva
linearmente equivalente alla varietd fissa — 4, V'—... — 4,Ve; cioé
le AV son varietd effettive totali di un medesimo sistema lineare ; eppero
(n. suce.) le V sono esse stesse linearmente equivalenti, come volevasi
dimostrare.

16. Nel n. prec. si & fatto uso della proprieta che se le ipersuperficie V
d’un sistema algebrico tracciato sopra una varietd ambiente M, son tali che v
loro multipli secondo un certo intero A sono linearmente equivalenti, le V
stesse appartengono totalmente ad un sistema lineare.

Questa proprietd fu incidentalmente dimostrata per r = 2,3 (con
ragionamento di ovvia estensione) in una mia Nota del 1906 %2). Attra-
verso ai criteri di equivalenza?2®) essa riducesi in sostanza al caso
r = 1%4), Le dimostrazioni per » = 1 sono una trascendente e 1’altra

22) Atti dell’Istituto Veneto, t. 35.
23) Serie di equivalenza, ecc. p. 190.
%) Serie di equivalenza, ecc. p. 195.
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algebrica. Ma si puo anche dare (e per r qualunque) una dimostrazione
differenziale, come segue.

Se le varieta AV appartengono al sistema lineare staccato su M, da un
certo sistema lineare di forme dell’ambiente lineare di M, (fuori eventual-

mente di talune varietd base) ed & F la forma che _segna su M, una AV
genericamente fissata nel sistema delle AV, sicchd F o tocea M, lungo ¥
o ha in V una varieta, multipla (Varlablle con V) ogni forma del sistema
delle F infinitamente vicina ad F passa per V. Detta pertanto 1 V la
varietd infinitamente vicina a AV segnata da una delle predette F, ne
segue (A — 1) V= (A—1) Vl, onde il passaggio da una (4 — 1)V del
sistema ad una infinitamente vicina fa rimanere nel sistema lineare

|(A—1)V | ele (A — 1)V son percio linearmente equivalenti, e dunque
lo sono le V, quali differenze delle AV e delle (1 — 1) V.

Il gruppo dell’irregolarita superficiale d’una varietd e la base del gruppo
dell’equivalenza lineare

17. Ilrisultato del n. 15 non illumina la struttura del gruppo dell’equi-
valenza lineare quando la varietd M, ha lirregolarita superficiale ¢>0,
cioé contiene sistemi algebrici completi (come sistemi irriducibili) non
lineari, di varieta effettive V (ad » — 1 dimensioni).

Per indagare in qual modo si puo costruire mediante generatori il
gruppo G’ anche sopra una M, irregolare, occorre premettere alcune
proprieta dei sistemi di equivalenza algebrica e di equivalenza lineare.

Imaginiamo anzitutto su M, un sistema algebrico irriducibile X' di
varietd effettive (ad » — 1 dimensioni) 4, che sia completo come sistema
irriducibile. Il sistema lineare completo | 4 |, individuato dalla generica
4, sta in X (nell’ipotesi contraria infatti X' starebbe totalmente in un
sistema irriducibile pit ampio, descritto da | 4 |); ma non & escluso che,
per particolari 4, il sistema esorbiti da X, pel fatto che cresce di dimen-
sione 28). Comunque, il sistema X da luogo ad un sistema irriducibile
completo X’ di sistemi lineari (considerati come elementi), individuati
dalle sue varietd, anche se X/, quale insieme di varieta, contiene altre
varieta, oltre quelle di 2.

11 sistema X’ & conmesso, come insieme delle sue varieta, le quali sono
dunque tutte algebricamente equivalenti.

25) L’accrescimento di dimensione di | 4 | non porta perd come conseguenza neces-
saria l’esorbitanza. Ho considerato altra volta questi fenomeni: non mi dilungo nelle
citazioni.
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Sia ¢ I'infinita dei sistemi lineari di X' (o di 2’). Il primo fatto impor-
tante che occorre ricordare ¢ che 7+ ammette un massimo finito, che &
appunto I’irregolarita superficiale ¢ di M, (¢ = 0 quando M, non con-
tiene che sistemi lineari completi).

A prescindere dal significato che ¢ possiede rispetto ad altri caratteri
(geometrici, topologici, trascendenti) di M,, l'esistenza di un massimo
finito segue subito considerando una curva C sezione spaziale generica di
M. ed osservando che le V di un sistema algebrico segnano su C una
serie algebrica di gruppi di punti distribuiti al piti in ocoP serie lineari
distinte, p essendo il genere di C'; e che, in virtu dei criteri d’equivalenza,
le varieta d’un sistema continuo che segnano su C gruppi di una medesima
serie lineare, son equivalenti tra loro.

Si pone ora la questione : Il sistema X’ & esso completo come sistema
algebrico di varieta effettive algebricamente equivalenti ad una, 4, di
esse? Coincide cioé esso col sistema {4}, di cui al n. 10? La risposta
non é sempre affermativa, ma lo é tutte le volte che I’infinita ¢ dei sistemi
lineari di 2/ raggiunge il massimo ¢. Insomma :

Un sistema vrriducibile completo di sistemi lineart di varieta A ad r — 1
dimensiont, sopra una vareta M, d’irregolarita q, é certamente completo,
anche come totalita di varieta A algebricamente equivalentr, se Uinfinita der
suor sistemr lineart raggiunge il massimo q (ed esso é pertanto individuato
da una qualunque delle sue varietd o det suot sistemi lineart).

Un teorema molto vicino a questo trovasi per r» = 2 nella mia Nota
citata degli Atti dell’Istituto Veneto, 1906 ; ivi & data una proprieta
per le curve di una superficie, che da un lato & pil significativa e da un
altro meno.

Da un lato per concludere che il sistema & individuato da una sua
curva basta invero di sapere che si tratta di una curva aritmeticamente
effettiva (cioé i cui caratteri numerativi soddisfanno ad una certa dis-
uguaglianza) ; d’altro lato pero non si sa se la conclusione sia applicabile
a tutti i sistemi di co? sistemi lineari quando le curve che li costituiscono
non son aritmeticamente effettive ; né si sa se esistano altre curve algebri-
camente equivalenti alla data in un sistema sconnesso con quello da essa
individuato. Il teorema di unicitd per un sistema formato da co? sistemi
lineari su M, trovasi in una mia Nota recente 26).

Per passare al teorema qual’é sopra enunciato basta dunque provare
che se {4} —od {| 4|}, come anche scriveremo, quando il sistema si

28) Sulla irregolaritd superficiale d’'una varieta algebrica (Rendiconti del-
I’Ace. d’Ttalia, 1942), p. 553.
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consideri quale insieme dei suoi sistemi lineari — consta di oo? sistemi
lineari ed & B una varieta algebricamente equivalente ad una A4, essa
appartiene ad {4}.

Invero, esiste una C tale che 4 4 C, B 4 C appartengono allo
stesso sistema irriducibile 4, almeno oo!, del quale diciamo D la varieta
variabile. L’insieme dei sistemi lineari | D | é irriducibile, come 4. Le
varieta somme di C e delle singole varietd 4 stanno in oo? sistemi lineari
distinti | 4 + C'|, eppero, pel citato teorema di unicita, il loro sistema
completo irriducibile & individuato dal sistema lineare | A 4 C |, relativo
alla A prescelta. D’altronde a questo sistema completo appartiene la
varietd irriducibile dei sistemi lineari | D |, in quanto tra essi vi &
| A+ C|, e quindi anche il sistema | B + C|, che é un particolare
|D|. Cio significa che esiste qualche 4, sia 4, tale che |4,4C|=|B+C|;
eppero B= A4,.

18. Ma c’¢ di piu. Nella Nota del 1905 in cui introdussi la nozione di
curve virtuali??) assegnai un criterio numerativo (sufficiente) per rico-
noscere quand’e che fra le curve linearmente equivalenti ad una data
curva virtuale ce n’é qualcuna effettiva (basta che la data curva virtuale
sia aritmeticamente effettiva). Un criterio analogo per le varieta ad
r — 1 dimensioni e per le curve di una M, si pud formulare ?8) almeno
limitatamente all’equivalenza algebrica, che & meno esigente, mentre non
si conosce affatto per varietd di dimensione diversa da 1, r — 1; ma
esso & certo meno maneggevole di quello relativo alle curve di una super-
ficie. Comunque il criterio cui s’allude permetterebbe di rispondere alla
questione se un sistema gruppale {{4}} abbia o no una propria traccia
{4} nel campo delle varieta effettive.

E’ certo che vi sono sistemi gruppali che non contengono alcuna varieta
effettiva. Un esempio elementare & dato, sopra una quadrica (non spe-
cializzata) F' dello spazio ordinario, dalla curva virtuale A=4,+4,— B,
ove A,, 4, sieno due generatrici d’una schiera e B una generatrice del-
altra schiera. Non puo esistere alcuna curva effettiva C algebricamente
(anzi linearmente, perché siamo sopra una superficie razionale e dunque
regolare) equivalente ad A. Invero, una tal curva sarebbe del 1° ordine ;
ossia una retta, e dovrebbe dunque appartenere alla prima o alla seconda
schiera ; mentre non appartiene alla prima, perché segherebbe le rette
della seconda in un numero negativo (— 1) di punti ; né puo appartenere
alla seconda, perché segherebbe in due punti le rette della prima.

27) Rend. dell’Ist. Lombardo, 1905, p. 859.
28) Ho accennato cio alla fine di pag. 251 della mia Memoria sulla base della Acca-
demia d’Italia, 1934; ma il procedimento ha bisogno di essere sviluppato.
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19. Tuttavia, a prescindere dal criterio per riconoscere quando fra le
varietd virtuali di un sistema {{4}} ve ne sono delle effettive, possiamo
affermare qualcosa di preciso, ai nostri fini.

Diciamo per brevita che una varieta virtuale (ad » — 1 dimensioni)
su M, & linearmente effettiva, se fra le varieta ad essa linearmente equi-
valenti ce n’¢ qualcuna effettiva. Sussiste allora il teorema :

Condizione mecessaria e sufficiente affinché ogni varieta virtuale di un
sistema gruppale di equivalenza algebrica dv varieta V ad r — 1 dimensions
sia linearmente effettiva, é che il sistema contenga varieta effettive e ch’esse st
distribuiscano in ool sistems lineart, q essendo Uvrregolarita superficiale della
varietd ambiente M, .

Dimostriamo prima la sufficienza. Sia dunque {4} un sistema irridu-
cibile completo, costituito da co? sistemi lineari completi |4 | (formanti
una totalita forse riducibile, ma connessa) di varieta effettive.

Si tratta di dimostrare che, preso un qualunque operatore di H (zero
dell’equivalenza algebrica), cioé una qualunque varietad virtuale, algebri-
camente nulla, B — C, fra le varietd algebricamente equivalenti alla
varieta virtuale 4, + B — C, ove A4, sia una varieta effettiva totale di
{4}, ve ne sono delle effettive.

Osserviamo anzitutto che le varieta effettive B, C algebricamente equi-
valenti, con le quali si definisce la varieta virtuale nulla B — C, posson
supporsi, previa l’eventuale aggiunta ad entrambe di una medesima
varietd [n. 5, def. a)], appartenenti totalmente ad un medesimo sistema
algebrico irriducibile 4, almeno oo'. Dicasi D la generica varietd di 4.
Poiché i sistemi lineari | 4 + D |, somme di una D fissata e dei sistemi
| A], sono co? come gli | 4|, cosi, variando D in 4, quegli co? sistemi
si muovono entro la totalita irriducibile co? {| A + D |}, che contiene
tutti quelli provenienti da una D fissata ; e restano percio, nel loro in-
sieme, invariati. In particolare, tale totalita coincide coll’insieme dei si-
stemi lineari | A 4+ C' |, per 4 variabile in {4} ; e siccome ad essa ap-
partiene altresi | A, + B |, visard qualche posizione di 4, sia 4,, per
cui |4 + C| siidentifica con | 4, + B|, onde 4,4+ B= A4, + C,
ossia Ay, + B — C = A,, varieta effettiva. Cio dimostra che esistono
varietd effettive linearmente equivalenti ad 4,4 B — C.

Dimostriamo ora la necessita dell’enunciata condizione. Sia {{4}} un
sistema gruppale coincidente, a meno di equivalenze lineari, col sistema
algebrico {4} definito da una delle sue varieta effettive. Una varieta vir-
tuale algebricamente nulla, aggiunta ad una qualunque 4 non da, per
ipotesi, che varietd linearmente effettive. Se si assumono due varieta
effettive B, C, che sieno varietd totali di un medesimo sistema {C} luogo
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di oo? sistemi lineari distinti, e si tien fissa nel sistema la B, facendovi
variare C, i sistemi lineari | A + B — C'|, di varieta effettive, sono co?
e constano ciascuno di varieta effettive del sistema {{4}}, cioe di {4},
e questo sistema & dunque formato da oo? sistemi lineari distinti.

Corollario. Ogni varieta algebricamente nulla é linearmente equivalente
alla differenza dv due convenientt varieta di un qualsias: sistema {A} conte-
nente ool sistems linears effettive.

20. Isistemilineari | A | tolti da un sistema completo {4} di varieta
effettive, costituito da oo? sistemi lineari, formano una varieta algebrica
irriducibile ¥,, birazionalmente equivalente a quella proveniente dai
sistemi lineari | B| di un analogo sistema completo {B}; la varietd di
Picard inerente ad M. Invero, fissata nel sistema {B} una varieta B,
e considerata una varietd B in esso variabile, i sistemi lineari effettivi
| A + B, — B|, sono tutti gli | 4| e corrispondono biunivocamente
(birazionalmente) ai | B|. In particolare, prendendo {B} coincidente
con {4}, sicostruisce il gruppo continuo abeliano co?, ¢, di trasforma-
zioni birazionalidi {| 4 |}, cioé di V,, in sé. Che le trasformazioni siano
esattamente oo?, e non piu, e che formino un gruppo si dimostra come
segue.

Le varieta algebricamente nulle differenze delle coppie di varieta effet-
tive di {4}, sono oo??, ma esse riduconsi ad oo? linearmente distinte,
appunto perche, presa una, 4, — A4,, di quelle differenze, ce ne sono co?
altre, B, — B,, ad essa linearmente equivalenti, in quanto, variando

| By| in {4} visono oof sistemi lineari | B, | = | 4, + B, — 4,]|. La
totalitd degli co? elementi | 4, — A4, | costituisce un gruppo rispetto alla
somma, perche presi due, | 4, — 4,|, | B, — B,| di questi elementi,

ne esiste un altro | 0, — C,| dello stesso insieme, tale che
(A, — 4,) + (B, — B,) = (C; — C,) . (9)

E invero, 4, + B, — 4, = C,, ove C, & una conveniente varietd effet-
tiva di {4} ; sicché posto C, = B,, sussiste ’equivalenza lineare (9).
Nel gruppo ottenuto | 4, — 4,| & l'elemento inverso di | 4, — 4,]| e
|4, — 4, | & P’identita.

Come subito si constata dall’accennata costruzione di G,, il gruppo
degli elementi | A, — 4,| & isomorfo al gruppo G,.

Il gruppo degli oo? sistemi lineari differenze delle coppie di sistemi
lineari di una oo di sistemi lineari tracciati su M,, & indipendente dalla
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totalita dei sistemi lineari da cui si muove e costituisce quello che chiame-
remo il gruppo continuo abeliano, oo, dell’irregolarita superficiale dv M.
Lo indicheremo col simbolo stesso G, con cui abbiamo designato il gruppo,
ad esso isomorfo, appartenente alla varietd di Picard V,. Si constata
subito che :

Il gruppo dell’irregolarita superficiale é il gruppo fattore dello zero del-
Vequivalenza algebrica rispetto allo zero dell’equivalenza lineare.

Infatti, un sistema laterale di L in H é formato dalle varietd linear-
mente equivalenti ad una data varietd V algebricamente nulla e tra le
varieta linearmente equivalenti a V, ve ne e sempre, per quanto precede,
qualcuna differenza di una coppia di varietd di un sistema {4}, costi-
tuito da oo? sistemi lineari, per guisa che ogni elemento di T puo esser
rappresentato da un elemento di G, e viceversa. La corrispondenza biuni-
voca fra i due gruppi é evidentemente un isomorfismo 2°).

Ne deriva che, essendo 39) :

H H @
Q" - _ 7. —
" L "L H’

N R

si puo enunciare :

Il gruppo dell’equivalenza lineare é il prodotto di um gruppo isomorfo
al gruppo (discontinuo) dell’equivalenza algebrica pel gruppo continuo oot
dell’vrregolarita superficiale.

A prescindere dal linguaggio della teoria dei gruppi astratti presa una
base minima V’,..., Ve, I',..., I, dell’equivalenza algebrica (n.12),
per ogni altra V di M, &

V=4V + 4+ A, Vet+u I+ -+ pu, Ty

e poiché la varieta differenza dei due membri di quest’equivalenza & alge-
bricamente nulla, esiste qualche varietd Z di G, siffatta che:

V=aV' + -+ A, Ve+u N+ +u Tl +2Z. (10)

Tale ¢ il significato geometrico del teorema precedente.
Si puod dire che la base del gruppo dell’equivalenza lineare é data da
v,...,ve ..., I,,Q, .

29) Scorza, Gruppi astratti, p. 39.
30) Scorza, Gruppi astratti, p. 44.
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Il gruppo della divisione lineare

21. Innanzi di determinare i divisori dello zero nel campo (dell’equi-
valenza) lineare, proviamo che effettivamente anche per r qualunque (e
non soltanto per r = 2, in cui la proprietd fu data nella mia Memoria
sulla base del 1910) ¢l gruppo fondamentale della divisione (algebrica) fra
varietd di dimensione r — 1 di M, é finito: proprietd usata nel n. 12,

Sia Z un divisore dello zero algebrico ed F la superficie sezione generica
di M, con uno spazio lineare di dimensione conveniente, dell’ambiente
lineare di M. Possiamo porre Z = A — B (A, B varieta effettive). Dico
che se 4 &1l periodo di Z, cioé il piu piccolo intero positivo percui AZ =0,
la curva virtuale (Z, F') sezione di Z con F, &, sopra F', un divisore di
periodo 4 dello zero algebrico.

Invero, esiste una C tale che 44 + C, AB + C appartengono ad un
sistema irriducibile, il quale sega F secondo un sistema irriducibile di curve
contenenti A(4,F)+ (C,F), A(B,F)+ (C,F). Percio A(4,F)=A(B,F),
cio¢ A(Z,F)=0. Il ragionamento s’inverte in virth di una proprietd
che ho altrove dimostrato 3!) ; e dunque i periodi di Z, (Z,F) son uguali.

Similmente si prova (sul fondamento della proprieta citata) che due o
pit divisori dello zero algebrico in M,, indipendenti o dipendenti secondo
certi interi non multipli dei loro periodi, danno per traccie su F altrettanti
divisori dello zero indipendenti o dipendenti secondo gli stessi interi.

Percio i divisori dello zero algebrico sopra M, — o piu esattamente i
loro sistemi gruppali, elementi del gruppo G, della divisione — son tanti
quanti i divisori dello zero algebrico su F e i due gruppi della divisione su
M, e su F sono isomorfi e quindi ambedue finiti.

22, Sia ora su M, un divisore Z dello zero lineare (ossia dello zero del-
lequivalenza lineare). Esso & definito a meno di una varietd addittiva
linearmente nulla, cioé quando parliamo di Z alludiamo al sistema lineare
gruppale || Z]|. Invece il divisore Z, considerato a meno d’un’equi-
valenza algebrica, ciod come elemento {{Z}} di G,, appartiene ad un
sottogruppo @, del gruppo G, della divisione algebrica : lo chiameremo
il gruppo della divisione algebrico-lineare.

Un elemento || Z || di G, ha un periodo 4 come divisore dello zero
lineare ed un periodo, generalmente diverso, u < A, come divisore
{{Z}} dello zero algebrico. E’ facile riconoscere che A & un multiplo di .
E invero posto 4 = u 0 + & (u, & quoziente e resto della divisione 4 : u),

8) Ved. a pag. 1138 della mia Memoria Sui fondamenti della geometria nume-
rativa e sulla teoria delle caratteristiche (Atti dell’Istituto Veneto, 1916).
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da ulzZ+E¢(¢EZ=0,

essendo ©u0Z =0, segue £§Z=0 e quindi & = 0, perche &é<u.

Nel gruppo d’irregolarita G, esistono poi dei divisori dello zero lineare
(non linearmente, ma algebricamente nulli) : essi sono gli elementi perio-
dici di ¢,. Com’¢ ben noto dalle proprieta classiche del gruppo G, della
varietd di Picard V,, per ogni dato valore intero del periodo vi & un
gruppo finito di siffatti elementi, i quali dunque formano, nel loro com-
plesso, un gruppo infinito discontinuo K, che si chiamera il gruppo della
divisione entro il gruppo d’irregolarita o pitt brevemente il gruppo della
divisione irregolare.

Dimostriamo che :

11 gruppo dei divisort dello zero lineare (gruppo della divisione lineare) é il
prodotto di un gruppo isomorfo al gruppo finito della divisione algebrico-
lineare pel gruppo infinito discontinuo della divisione irregolare.

Ogni elemento || Z ||, individuato da un divisore Z dello zero lineare,
appartiene infatti ad uno dei sistemi gruppali d’equivalenza algebrica
lineare di @, e differisce da un altro divisore Z' dello zero lineare,
appartenente allo stesso sistema, per un elemento Z”, che, a meno d’un’equi-
valenza lineare, si puo intendere quale elemento del gruppo d’irregolarita
G,. D’altronde tale elemento, essendo periodico, appartiene a K. La
relazione Z =Z’ + Z” dimostra I’asserto.

La base del gruppo della divisione lineare si puo dunque formare aggre-
gando ad una base di G, gli elementi di K.

23. Aggiungiamo qualche considerazione circa l’interpretazione topo-
logica dei divisori dello zero algebrico e I'indicazione di alcuni altri legami
colla topologia.

Anzitutto, siccome ogni divisore di periodo 4 dello zero algebrico, &
rappresentato sulla riemanniana di M, da un ciclo (2 7 — 2)-dimensio-
nale, il cui multiplo secondo 4 & omologo a zero, i divisori dello zero alge-
brico, in quanto definiti a meno d’una equivalenza algebrica, sono neces-
sariamente in numero finito, perché sono in numero finito i divisori dello
zero topologico di quella dimensione 32). Si ritrova cosi la finitezza del
gruppo della divisione algebrica, che abbiamo stabilita nel n. 21 per via
algebrico-geometrica.

Si sa che i divisori dello zero topologico sopra una superficie sono tutti

32) Ved. p. es. le mie citate Conferenze di geometria algebrica, pp. 313—317-
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algebrici (a meno di un’omologia ; Lefschetz)32) e che pertanto la divi-
sione (algebrica) ha per imagine topologica la torsione (Poincaré).

I1 notevole risultato di Lefschetz si estende alle varietd ad » — 1 di-
mensioni di M,. All’'uopo (conformemente a quanto accennai nella mia
Memoria del 1934 sulla base, alla fine di pag. 251), basta osservare che
per le varieta ad r — 1 dimensioni di M, I’equivalenza topologica coin-
cide coll’equivalenza algebrica, come segue ovviamente (allo stesso modo
che sulle superficie) dalla proposizione del n. 7 della mia citata Memoria
sulla geometria numerativa (1916) ; eppero si puo asserire che ¢ divisort
dello zero algebrico esauriscono v divisori dello zero topologico di M.

La proprietd vale anche per k<<r — 1, ammesso il postulato cui ho
accennato nel n. 9.

I divisori dello zero lineare non hanno invece alcuna specifica inter-
pretazione sul terreno topologico. Essi posson essere caratterizzati sul ter-
reno trascendente, mediante gl’integrali semplici di 12 specie apparte-
nenti a M ,, considerando p. es. i loro gruppi d’intersezione con una curva
sezione spaziale generica di M,, e, naturalmente, mediante gl’integrali
doppi di 12 specie che li caratterizzano come divisori dello zero algebrico.
Ma di cio diro diffusamente in altra occasione.

Il gruppo dell’equivalenza aritmetica e la sua base

24. Torniamo alle varieta V di dimensione £ qualunque di M, e ricor-
diamo 3¢) che due tali varietd 4, B si dicono aritmeticamente equivalenti
quando, presa su M, una qualsiast varietd W di dimensione complemen-
tare r — k, & sempre

(4, W]=[B, W] .

Sono ovvie la simmetria, la riflessivitd e la transitivitd dell’equivalenza
aritmetica. Poste in un insieme N le varietd aritmeticamente equivalenti
a zero, ossia le differenze di coppie di varietd aritmeticamente equiva-
lenti, i ststemi gruppali di equivalenza aritmetica, che indichiamo col sim-
bolo [[V]], si ottengono dalle singole varieta di M, con le operazioni del
sottogruppo N di G. I sistemi [[V]] formano il gruppo @” = Q|N della
equivalenza aritmetica.

Se V & effettiva, le varieta effettive aritmeticamente equivalenti hanno
lo stesso ordine, eppero (n. 11) costituiscono un sistema algebrico dv equi-
valenza aritmetica [ V], individuato da V.

) Ved. le predette Conferenze di geometria algebrica, p.375.
#) Ved. la mia citata Memoria sulla base dell’Accademia d’Italia, 1934, p- 247.
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La base di G” si ottiene senz’altro da una base intermediaria di @',
perché due varietd aventi opportuni multipli algebricamente equiva-
lenti, son aritmeticamente equivalenti. Non c¢’¢ dunque luogo a conside-
rare qui i divisori dello zero.

25. Poiché G” costituisce forse uno dei pochi elementi di carattere
gruppale donde si possa sperare di poter trarre qualche tenue aiuto per
una dimostrazione algebrico-geometrica dell’esistenza della base per le V
di M,, val la pena di avviarne lo studio con talune osservazioni preli-
minari.

All’'insieme delle V corrisponde un insieme di interi relativi, che sono
1 numeri delle intersezioni delle V colle W di dimensione complementare.
In particolare alle V di un sistema gruppale [[V]] corrisponde un gruppo
abeliano infinito di intert (gruppo, al solito, rispetto alla somma).

Invero, presi due a, b di questi numeri, esistono su M, coppie di varieta
V, W, V', W/ taliche [V, W] =a, [V/,W/]=0b, conle V, V'’ aritme-
ticamente equivalenti. Percio & anche [V, W] =b e quindi [V 4+V'/,W’]
=a + b; onde a-+b appartiene allo stesso insieme di interi.

Si riconosce d’altronde subito che il gruppo numerico ®, cosi ottenuto
(come ogni gruppo abeliano infinito di numeri interi) consta di multipli
del minimo intero >0, appartenente a & 3°).

Ad ogni [[V]] corrisponde dunque un intero positivo m, la base di ®,
che é& il minimo valore assoluto non nullo di tutti gli interi [V, W], per ¥
variabile in [[V]] e W qualunque. In conclusione :

Sopra M, ¢ numers virtuals [V, W] delle intersezions delle varieta W,_;
con le V,, di un dato sistema di equivalenza aritmetica, sono tutty © multipli
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