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La théorie de Galois
des anneaux simples et semi-simples (i)

Par Jean Dieudonne, Nancy

Nous nous proposons, dans ce travail, de généraliser dans différentes
directions la théorie de Galois des corps non commutatifs développée
récemment par MM. N. Jacobson (2) et H. Cartan (3), et qui elle-même
contient comme cas particulier la théorie de Galois classique des corps
commutatifs. Notre généralisation consiste, d'une part, à considérer, au
lieu de corps, des anneaux simples ou semi-simples, et d'autre part, à

éliminer les restrictions de «dimension finie » qui interviennent dans la
théorie de Jacobson-Cartan. Les outils principaux dans cette étude sont,
d'une part les propriétés des sous-anneaux commutants d'un anneau d'en-
domorphismes d'un groupe abélien, et d'autre part l'utilisation d'une
idée (qui remonte à Dedekind et Artin, et a déjà été exploitée avec succès

par N. Jacobson et H. Cartan dans les mémoires précités) relative à Vin-
dépendance linéaire de certains types d'endomorphism.es.

1. Sous-anneaux commutants d'un anneau d'endomorphismes. Soit E
un groupe abélien additif (sans opérateur), (g son anneau d'endomorphismes

; nous considérons dans ce qui suit diverses structures de groupe
abélien à opérateurs définies sur E par la donnée de sous-ensembles de Ë
(généralement des sous-anneaux) dont les éléments sont pris comme
opérateurs sur E. Lorsqu'on considère sur E une telle structure, définie par
la donnée d'une partie Q de (£, Vanneau d'endomorphismes du groupe
abélien à opérateurs E ainsi défini n'est autre que le sous-anneau de ©

formé des éléments qui permutent avec tous les éléments de Q ; nous
dirons que c'est le sous-anneau de (£ commutant avec Q (ou encore
Vanneau commutant de Q dans (£) ; il contient toujours l'élément unité de ©.

Nous aurons parfois à considérer sur (£ la topologie de la convergence
simple, lorsqu'on prend sur E la topologie discrète ; autrement dit, c'est

(1) Les numéros entre crochets renvoient à la bibliographie placée à la fin de ce travail.
(2) Voir [5] et [8].
(3) Voir [2].
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la topologie induite sur (g par la topologie de l'espace produit EB de
toutes les applications de E dans E ; il est immédiat que (£ est fermé dans
EE. D'autres part, pour cette topologie, on vérifie aussitôt que les
applications (u, v) -> u -f- v, u -> — u et (u, v) -> u v sont continues,
autrement dit, ® est un anneau topologique (4) ; par suite, l'anneau
commutant d'une partie quelconque de (£ est fermé.

Commençons par rappeler le lemme suivant, cas particulier d'un résultat

de N. Jacobson (5) ;

Lemme 1. — Si K est un sous-corps de (£, contenant Vêlement unité de (g,
et A Vanneau commutant de K dans (£, K est Vanneau commutant de A
dans S.

Tout sous-corps de (E contenant l'élément unité de (5 est donc fermé.

Soit maintenant Q une partie de (£ telle que E, considéré comme groupe
à opérateurs sur Q, soit complètement réductible (6), c'est-à-dire somme
directe d'une famille (finie ou non) (Ma) de sous-groupes simples ; nous
supposerons en outre qu'aucun des Ma n'est annulé par Q ; rappelons
comment on détermine la structure de l'anneau A commutant avec
Q (7). Soit (Gx) la famille des composants homogènes de E : nous appelons
ainsi les sous-groupes de E obtenus en faisant la somme de ceux des Ma
qui sont deux à deux isomorphes ; E est somme directe des G\ ; soit c\{x)
le composant dans Gx d'un élément quelconque x de E. A chaque endo-
morphisme u e A correspond de façon biunivoque une famille {u^xj, où

u^ est la restriction de c u à Gx ; mais si A ^ fi, on a nécessairement

u^x 0, car pour tout a tel que Ma ci Gx, la restriction de u^x à Ma
est un homomorphisme de Ma dans G^, donc est un isomorphisme ou est
identiquement nulle ; mais dans le premier cas, ^^(^a) serait un sous-

groupe simple isomorphe à Ma et contenu dans G^, ce qui est impossible,
puisque (?„ est somme directe de sous-groupes simples non isomorphes à

Jfa. Il y a donc correspondance biunivoque entre u c A et la famille
(uxx) ; uxx ©st la restriction de u à Gx, et est un endomorphisme de Gx ; on
l'identifiera d'ailleurs à l'endomorphisme ex u ex € A, identique à

(4) Voir N. Bourbaki, Eléments de Mathématique, Topologie générale, chap. III,
§ 5 (Actual. Scient, et Ind., n° 916, Paris (Hermann), 1942).

(5) Voir [6], p. 233, th. 7.

(6) Les propriétés fondamentales des modules complètement réductibles sont rappelées
par exemple dans [3], p. 49—50. Nous dirons qu'un module complètement réductible est
semi-simple s'il est somme directe d'un nombre fini de modules simples.

(7) Voir [9], p. 166—169 pour le cas d'un module semi-simple, et [3], p. 55, pour le cas
général. Voir aussi N. Jacobsen, The theory of rings (Math. Surveys, n® 2, 1943),
p. 25, th. 11 et 12.
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dans (?^, à 0 dans les autres 0^ ; si ^4^ est Panneau des u\\ (identifié à

l'anneau des endomorphismes de G\), A est donc isomorphe au produit
des anneaux Ax*

Etudions chacun des Ax> Désignons par M un des sous-groupes simples
Ma dont G\ est somme directe, et pour chacun des indices a, soit ç>a un
isomorphisme de M sur Ma. Soit L le corps des endomorphismes du sous-

groupe simple M, et e un élément ^ 0 de M ; si q e L, la relation
q c 0 entraîne q 0 puisque tout endomorphisme de M qui n'est pas
un automorphisme est nul; donc F L-e est un espace vectoriel à

gauche sur L, de dimension 1 ; l'ensemble des endomorphismes de cet

espace vectoriel est un corps L° opposé à L, et F est aussi un espace
vectoriel de dimension 1 sur L°. Si on pose Fa <pa(F), Fa est un espace
vectoriel de dimension 1 sur le corps La (p^L <p~x des endomorphismes
de Jfa, et son corps d'endomorphismes est Z£ ç^L0^"1 ; on peut
considérer chacun des Fa comme espace vectoriel de dimension 1 sur L°,
en posant, pour tout q c L° et tout xa ç>a(#) eFa, qxa <pa(ox).
La somme directe N des Fa est donc un espace vectoriel sur L° ; nous
allons voir que les restrictions des endomorphismes u € A\ h N sont des

endomorphismes de cette structure d'espace vectoriel de N, et que
réciproquement, chacun endomorphisme de cette structure est restriction
d'un endomorphisme et un seul appartenant à Ax> En effet, soit Aa(#) le

composant dans Ma d'un élément quelconque x € G\ ; un endomorphisme
quelconque u € A^ est entièrement déterminé par la donnée de ses

restrictions ua aux Ma, et chaque ua est entièrement déterminé par la donnée
des upa hou^, représentation de Ma dans Mp ; comme, pour tout
xa ^ 0 dans Ma, on a wa(#a) J£ hp {ua(xa)) e^ que ^a somme du second

membre n'a qu'un nombre fini de termes non nuls, on a u^ 0 sauf

pour un nombre fini d'indices /? (pour chaque indice a). Cela étant, va

9a. 9J1 uPol es^ un endomorphisme de Ma ; il applique donc Fa dans lui-
même, donc Ufa applique Fa dans Fp ; en outre, pour tout xa ç>a(#),

avec x eF, et tout q €L°, on a par définition v^qx^) va(ç>a(£#))>
d'où UfaiQXu) yp {v(qx)) où v <p~x va ç>a est un endomorphisme de

if; on a par suite v(qx) qv(x) et par définition <pp(Qv(x))
Q <Pp (v(x)) 9 ce ^i montre que u est bien un endomorphisme de l'espace
vectoriel N. Inversement, tout endomorphisme de cet espace vectoriel
est la restriction d'un endomorphisme u e A^ et d'un seul ; en effet, si

up<x ©st une application linéaire de l'espace vectoriel Fa dans l'espace
vectoriel Fp, on voit comme ci-dessus que upa <pp v cp~x, où v est un
endomorphisme de l'espace vectoriel F ; par suite, v appartient au corps Lâ
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et Upa est bien la restriction à Fa d'un endomorphisme de Ma dans M$ ;

ce dernier est d'ailleurs unique, puisqu'un endomorphisme de Ma dans Ma
qui s'annule en un point ^ 0 de itfa est identiquement nul.

Nous avons ainsi prouvé que Ax est isomorphe à Vanneau de tous les

endomorphismes de Vespace vectoriel N sur le corps L° ; cherchons maintenant,

dans l'anneau (£, le sous-anneau B commutant avec l'anneau A
IIAx Pour cela, remarquons que M est un espace vectoriel sur le

corps L ; soit (ey) une base de cet espace, dont e est un des éléments, et
pour chaque y, soit Ny la somme directe de tous les sous-groupes ç?a (L • ey)
(a variable) ; il est clair que Gx est somme directe des Nyy et d'après ce

qui précède, chaque Ny est un module simple sur l'anneau A\ (car, étant
donné deux éléments ^ 0 d'un espace vectoriel, il existe toujours un
endomorphisme de cet espace qui transforme l'un en l'autre) ; en outre, deux
quelconques des Ny sont isomorphes (en tant que A ^-modules), car
l'hypothèse que M est simple pour les opérateurs de Q entraîne qu'il
existe un opérateur œ c Q au moins (ou un élément du sous-anneau de
S engendré par Q, élément qu'on peut encore désigner par co) tel que
ey a> - e, ce qui entraîne Ny co • N, et l'application x -> co • x de N sur Ny
est un isomorphisme pour la structure de A ^-module, puisque u(œ-x)
o)'U(x) pour tout u eAx par hypothèse. Comme d'autre part, pour tout ue A
et tout x c 0^, on a u (x) u^\ (x), on voit que E est un A -module complètement

réductible. La première partie du raisonnement montre alors que B
est isomorphe au produit des anneaux jB^, où Bx est l'anneau des endo-
morphismes du A ^-module O\ ', en outre, d'après le lemme 1, le corps des

endomorphismes du A^-module simple N est isomorphe à L° ; donc Bx
est isomorphe à l'anneau des restrictions à M des endomorphismes v c Bx,
et ce dernier anneau est identique à Vanneau de tous les endomorphismes
de Vespace vectoriel M sur le corps L.

L'anneau des endomorphismes fi (M) d'un espace vectoriel M sur un
corps L est un anneau primitif dans la terminologie de N. Jacobson (8).
Nous dirons que c'est un anneau primitif complet (9) : on sait (10) qu'il
admet un socle 8 qui est un anneau simple, et qu'il est entièrement déterminé

(à un isomorphisme près) par la donnée de son socle. Nous dirons

(8) Voir [7], p. 312.

(9) Un tel anneau peut effectivement être caractérisé intrinsèquement (parmi les
anneaux primitifs) par la propriété d'être complet pour la structure uniforme de la convergence

simple, quand on considère l'anneau primitif comme anneau d'endomorphismes d'un
de ses idéaux à gauche minimaux, muni de la topologie discrète. Voir [3], p. 68, et N.
Jacobson, On the theory of primitive rings, Annals of Mathematics, t. 48 (1947), p. 7—21.

(10) Pour la définition et les propriétés du socle d'un anneau, voir [3], p. 51 et suiv.
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qu'un produit d'anneaux primitifs complets est un anneau semi-simple (11)
complet ; on voit aisément que son socle la somme directe des socles
des anneaux facteurs. Cela étant, soit A un anneau semi-simple complet,
contenu dans (g, et contenant l'élément unité de (g. Si 8 est le socle de A
le sous-groupe SE de E (engendré par les u(x), où u parcourt S et x
parcourt E) est un $-module complètement réductible, car S étant somme
de ses idéaux minimaux, 8 • E est somme des sous-modules l • x, où l
parcourt l'ensemble des idéaux minimaux de 8, et x parcourt E ; mais
l'X est nul ou est un $-module simple isomorphe à I, donc S'E est
somme de ^-modules simples et par suite complètement réductible ; a

fortiori, 8-E est un A -module complètement réductible, car chaque \*x
est un A -module simple. On en conclut que, si 8-E E, E est un
A -module complètement réductible, auquel s'applique donc la théorie
précédente : l'anneau commutant de A est un anneau semi-simple complet

B ; inversement, A est Vanneau commutant de B. En effet, il suffit de
démontrer ce dernier point lorsque A est primitif complet ; si M est un
sous-module simple de E, isomorphe à un idéal minimal de A, L son corps
d'endomorphismes, M est un espace vectoriel sur L et l'ensemble des

restrictions des endomorphismes v e A à M est identique à l'anneau de tous
les endomorphismes de cet espace vectoriel (12) ; cet ensemble est donc,
d'après ce qu'on a vu plus haut, identique à l'ensemble des restrictions à M
des endomorphismes appartenant à l'anneau commutant de B ; cela ayant
lieu pour tout sous-module simple de E, la proposition est bien établie.

La condition 8-E E peut encore s'exprimer en disant que A est
contenu dans Yadhérence de son socle 8 dans (£ ; cette dernière condition
entraîne en effet 8-E E de façon évidente ; réciproquement, si 8-E

E est vérifiée, pour tout endomorphisme u € A, et un nombre fini
quelconque d'éléments xt € E, il existe un v e 8 tel que v(xi) u(xt)
pour tout i ; en effet, E est alors somme directe de ^-modules simples Ma ;

on peut se borner au cas où chacun des xt appartient à un Ma ; en groupant

ceux des Ma qui sont isomorphes, et tenant compte de la définition
du socle d'un anneau primitif complet, on se ramène finalement à prouver
qu'étant donné un endomorphisme u0 d'un espace vectoriel F, il existe
toujours un endomorphisme v0 de F, de rang fini, qui coïncide avec u0 en

(11) La définition générale des anneaux semi-simples est due à N. Jacobson (voir [7],
p. 304). Un anneau semi-simple complet peut encore être caractérisé intrinsèquement
parmi les anneaux semi-simples par le fait d'être représenté isomorphiquement comme
anneau d'endomorphismes de son socle S, et d'être complet pour la structure de la
convergence simple dans S (muni de la topologie discrète).

(12) Voir [4], p. 61.
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un nombre fini d'éléments donnés, ce qui est immédiat. En résumé, on a
donc prouvé le théorème suivant :

Théorème 1. — Pour tout sous-anneau semi-simple complet A de(£,
contenant Vêlement unité de(&, et contenu dans Vadhérence de son socle (dans (£),
le sous-anneau B de (E commutant avec A est un anneau ayant les mêmes

propriétés, et A est le sous-anneau de (g commutant avec B.

Les conditions de l'énoncé entraînent en particulier que A est fermé
dans (£, donc non seulement contenu dans l'adhérence de son socle, mais
identique à cette adhérence. Ces conditions sont en particulier remplies
de façon évidente lorsque A est un anneau semi-simple de longueur finie
(c'est-à-dire un anneau semi-simple au sens classique), puisqu'il est alors
identique à son socle. Par contre, on peut aisément donner des exemples
d'anneaux semi-simples complets A contenus dans un anneau (£, mais
non contenus dans l'adhérence de leur socle par rapport à (g. Considérons
en effet un espace vectoriel F de dimension infinie, et prenons pour E
l'anneau de tous ses endomorphismes, pour A l'anneau (dont la structure
est isomorphe à la structure d'anneau de E) des homothéties à gauche
v -> u v de E ; si S est le socle de A, il est clair que S • E est le socle de
l'anneau E, donc distinct de E.

Nous dirons pour abréger qu'un sous-anneau de (S qui est semi-simple,
complet, contient l'élément unité de (g et est identique à l'adhérence de
son socle, est distingué.

Il résulte de la démonstration du théorème 1 que, lorsque A est un
anneau primitif complet (distingué), il en est de même de J5. Soient A, Af
deux anneaux primitifs complets (distingués) tels que Af a A ; nous
allons préciser le théorème 1 en montrant comment certaines relations
entre A et A! donnent, par «dualité », des relations analogues entre les

anneaux commutants B et B'\
De façon générale, soient A, Ar deux anneaux primitifs complets tels

que A ' c A et que Ar contienne l'élément unité de A ; un raisonnement
d'Artin et Whaples pour les anneaux simples de longueur finie (13)
s'étend au cas général, et montre que si \x et I2 sont deux idéaux minimaux
à gauche (nécessairement isomorphes) de A', A'\x et Al2 sont deux
idéaux isomorphes dans A ; si un idéal minimal I de A ' est donc tel que
A • I soit un idéal de longueur finie de A, tout autre idéal minimal de Ar
a la même propriété, et la longueur des idéaux de A ainsi obtenus est un
invariant, que nous appellerons Yindice (à gauche) de Ar par rapport à A ;

(13) Voir [1], p. 102.
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lorsque A • I est somme directe d'une infinité d'idéaux minimaux de A,
nous dirons que l'indice de A' par rapport à A est infini ; enfin, l'indice
n'est pas défini si Al n'est pas somme directe d'idéaux minimaux.
D'autre part, tout idéal minimal à gauche de A (ou, ce qui revient au
même, tout A -module simple isomorphe à un tel idéal) est un .4'-module
à gauche, et deux idéaux minimaux de A sont des A '-modules
isomorphes ; si un idéal minimal de A est un A '-module de longueur finie,
cette longueur est un nouvel invariant, que nous appellerons la hauteur
(à gauche) de A par rapport à A ' ; si un idéal minimal de A est un A'-
module complètement réductible, somme directe d'une infinité de A!~
modules simples isomorphes à un idéal minimal de A', nous dirons que
la hauteur de A par rapport à A ' est infinie ; enfin, la hauteur n'est pas
définie lorsqu'un idéal minimal de A n'est pas un A '-module complètement

réductible. Il est immédiat que l'indice et la hauteur sont multiplicatifs

lorsqu'ils sont finis, c'est-à-dire que si Ai3 Af nA/f, l'indice de A"
par rapport à A est le produit de celui de A ' par rapport à A et de celui
de A" par rapport à A', et de même pour les hauteurs. Le produit de

l'indice et de la hauteur (quand tous deux sont finis) n'est autre, dans
le cas classique, que le degré (à gauche) de A par rapport à A ', tel qu'il
est défini par Artin et Whaples (13) ; dans le cas général, dire que ce degré
est fini et égal à n signifie que, pour tout idéal minimal I de A', A-l est

un A '-module de longueur n.
Lorsque A et A ' sont deux anneaux primitifs complets distingués dans

(£, et tels que A' c A, la hauteur de A par rapport à A1 est toujours
définie ; en effet, E est alors somme directe de .4-modules simples Ma
isomorphes à un idéal minimal de A ; si $' est le socle de A', on a par hypothèse

8f-E E, et a fortiori S'- Ma Jfa, puisque 8f> Ma c Ma ;

donc Ma est un S '-module complètement réductible, et a fortiori un
A '-module complètement réductible, somme directe de ^'-modules simples

isomorphes aux idéaux minimaux de A'.
Cela étant, on a la relation de dualité suivante :

Théorème 2. — Soient A, A' deux sous-anneaux primitifs complets
distingués dans ©, B et Br leurs anneaux commutants respectifs. Si A z> A',
et si la hauteur de A par rapport à A ' (resp. l'indice de A ' par rapport à A)
est finie, Vindice de B par rapport à B1 (resp. la hauteur de B' par rapport à

B est fini et lui est égal.

Supposons en effet que la hauteur de A par rapport à A ' soit égale à p ;

conservons les notations de la démonstration du théorème 1, en permutant

simplement les rôles de A et B. Chacun des A -modules simples Ma
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est somme directe de p A '-modules simples Mfioc ; en particulier, soient
M[ (1 < i < p) les p ^'-modules simples en lesquels se décompose M.
Soit I l'idéal à gauche minimal de B, formé des endomorphismes u du
A -module E qui sont nuls dans tous les Ma distincts de M ; on peut
écrire I Bu0, où u0 est l'endomorphisme (idempotent) nul dans les

Ma distinct de M, et dont la restriction à M est l'application identique.
On a donc B' I B' u0, et il est immédiat que cet idéal est formé des

endomorphismes uf e B1 du A '-module E qui sont nuls dans tous les
Mriot distincts des M\ (1 ^ i ^ p) ; on voit donc que cet idéal est de

longueur p dans Br, autrement dit que B est d'indice p par rapport à Br.
Le même raisonnement montre que, si A est de hauteur infime par rapport

à A', l'indice de B par rapport à B' n'est pas défini ; de ces deux
propriétés, et de la réciprocité des sous-anneaux commutants dans (£, on
déduit le théorème.

Corollaire. — Si le degré de A par rapport à Ar est fini, le degré de Bf par
rapport à B est fini et lui est égal.

On notera que si l'indice de A ' par rapport à A est un nombre fini q,
et si A ' est de longueur finie n, A est de longueur finie m ~ nq; et
réciproquement, si A est de longueur finie, n et q sont nécessairement finis ;

par contre, la hauteur de A sur A1 peut être infinie lorsque A est de

longueur finie.
On peut étendre les considérations qui précèdent au cas où A et A'

sont des anneaux semi-simples complets (distingués dans (£) quelconques ;

nous nous bornerons sur ce point à de brèves indications auxquelles le
lecteur suppléera sans peine. Soit A 77JLA, Ar IIA^ les dé-

X fi,

compositions de A et Ar en produit d'anneaux primitifs complets, B
IIB^, B1 77Br les décompositions analogues de leurs anneaux
x *
commutants respectifs. E est somme directe de sous-groupes G\, qui sont
à la fois des A -modules et des J5-modules, O\ étant annulé par tous les

anneaux facteurs de A et de B autres que A\ et J?^. Comme Ar c A,
G\ est un A '-module ; si fl^ est la partie de 0^ qui est annulée par tous
les facteurs de A ' sauf A' Jï^ est un jB^-module, et on vérifie aussitôt
que Ox est somme directe de ceux des Hx^ (A fixe, pi variable) qui ne sont
pas nuls. Soit alors A^ l'anneau (primitif complet) des endomorphismes
du jSA-module 2/^ ; dans l'anneau (£^ des endomorphismes du groupe
additif fl^, A1 et Bx admettent des représentations isomorphes A'X(JL et
^A/x » et Ar{p est l'anneau commutant de JS^ ; si B^ désigne l'anneau
commutant de A'XfM dans (g^, on est ramené, en ce qui concerne l'étude
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des quatre anneaux A'I^, A^, Bx^, B^, au cas examiné dans le théorème

2. D'autre part, si G^ est la somme (directe) de ceux des H^ (a
variable, fx fixe) qui ne sont pas nuls, E est somme directe des Gr, qui sont
à la fois des ^'-modules et des 2?'-modules, G^ étant annulé par tous les

facteurs de A ' et de Bf autres que A^ et B^.
Lorsque A et A ' sont des produits d'un nombre fini d'anneaux primitifs

complets, nous dirons encore, pour abréger, que A est de degré fini sur Af
si chacun des A'I est de degré fini sur A^ (pour les H^ non réduits
à 0) ; alors chacun des B^ est de degré fini par rapport à B^. Dans le

cas particulier où B est un corps et par suite A est primitif complet cela

signifie que Bf est de dimension finie quand on le considère comme un
espace vectoriel (à gauche) sur le corps B.

2. Sous-anneaux semi-simples complets dyun anneau primitif complet.
Nous allons à présent supposer que E est muni d'une structure d'espace
vectoriel par rapport à un corps K contenu dans l'anneau (£ et contenant
l'élément unité de (£ (14), et nous désignerons par A l'anneau primitif
complet (contenu dans (£) formé de tous les endomorphismes de l'espace
vectoriel E ; K et A sont donc deux sous-anneaux commutants de 6
(lemme 1), leur intersection Z est leur centre commun. Nous allons
considérer les sous-anneaux B de A qui sont distingués dans (£ ; le sous-
anneau C de (£ commutant avec un tel anneau est lui aussi un anneau
distingué, d'après le théorème 1, et contient évidemment K. Il y a donc

correspondance biunivoque et réciproque entre les sous-anneaux distingués

contenus dans A et ceux qui contiennent K, En particulier, si on
prend pour B l'anneau A lui-même, l'anneau commutant G est identique
à K ; si on prend pour B un sous-corps R de A, contenant l'élément unité
de A, G est identique à l'anneau U(B) de tous les endomorphismes de E
considéré comme espace vectoriel sur le corps R.

Lorsque B et G sont des anneaux primitifs complets, l'indice de K par
rapport à G est identique à la longueur de G, et la hauteur de C par
rapport à K est la dimension sur K (à gauche) d'un idéal minimal (à gauche)
de C. Le théorème 2 montre donc que la longueur de G est égale à la
hauteur de A par rapport à J5, et la dimension d'un idéal minimal de G

égale à l'indice de B par rapport à A (lorsque ces nombres sont finis). De
même, si R et S sont deux sous-corps de A tels que S c R, l'indice de

8 par rapport à R est 1, la hauteur de R par rapport à S égale au degré

(14) Ceci n'est évidemment pas possible pour un groupe abélien quelconque E; on voit
aussitôt que E doit être muni d'une structure d'espace vectoriel par rapport à un corps
premier (corps des rationnels ou corps fini ayant un nombre premier d'éléments).
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(à gauche) de R sur S, d'où les valeurs (faciles d'ailleurs à déterminer
directement) de la hauteur de U(S) sur U(R) et de l'indice de U(R) dans

U(8).
Lorsque E est de dimension 1 sur K, A est un corps isomorphe à l'opposé

K° de K, et tout sous-anneau distingué de A est un sous-corps B de

K° ; l'anneau commutant C de B est alors un anneau primitif complet,
de hauteur 1 sur K, de longueur égale au degré (à gauche) de K° sur B :

on retrouve ainsi le résultat fondamental de Jacobson-Cartan, en tenant
compte de ce que, dans ce cas particulier, tout sous-anneau de (£ contenant

K et qui est de dimension finie sur K (à gauche) est automatiquement
un anneau simple de longueur finie (15) (naturellement, ce dernier résultat
est inexact lorsque la dimension de E sur K est > 1). Il serait intéressant
d'avoir (toujours dans le cas où E est de dimension 1 sur K) un critère qui
caractériserait de même les anneaux primitifs complets C contenant K :

on peut par exemple se demander si tout anneau C contenant K et fermé
dans (£ est nécessairement un anneau primitif complet

Revenons maintenant au cas général.

Lemme 2 (16). — a) Si u% (1 ^ i ^ n) sont des applications semi-
linéaires (17) de E dans lui-même, relatives à un même automorphisme g du

corps K, et qui sont linéairement indépendantes par rapport au centre Z de

K, elles sont linéairement indépendantes par rapport à K.
b) Soit F un sous-espace vectoriel de (g par rapport à K, engendré par un

ensemble T d'applications semi-linéaires de E dans lui-même. Pour chaque
classe 6 d'automorphismes de K modulo le groupe des automorphismes
intérieurs de K, on désigne par Fe le sous-espace de F engendré par les applications

semi-linéaires u c T relatives à un automorphisme appartenant à la
classe 6 ; Vespace F est alors somme directe de ceux des sous-espaces Fe qui
ne sont pas réduits à 0.

Nous démontrerons d'un seul coup les deux parties du lemme.
Considérons un nombre fini d'applications semi-linéaires ut de E dans lui-
même, non identiquement nulles, et relatives respectivement aux
automorphismes at de K (1 ^ i ^ p). Supposons que les ut soient linéairement
dépendantes par rapport à K, et soit JC K ui 0 une relation primor-

(15) Voir [8], p. 28, th. 2.

(16) Voir [8], p. 29, lemma 1 et p. 29, lemma 2, et [2], p. 68, lemme 1.

(17) Rappelons qu'une application u d'un espace vectoriel E (par rapport à un corps K)
dans lui-même est dite semi-linéaire relativement à un automorphisme a de K si on a
u(x + y) u{x) -f u(y) et u(Xx) — Xau{x) quels que soient x, y dans E et A dans K,
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diale (18) entre les u%, à coefficients X% c K. Pour tout x e E, on a donc

]£ Xlut(z) O, donc aussi, pour tout jueK, X Kui(f* x) — °> c'est-à-

dir® J£ ^»/***%, (#) 0; cette dernière relation ayant lieu pour tout
t

x € E, signifie que £ Xt fj,at ut 0 ; en vertu de l'hypothèse, il existe
i

donc un g € K tel que Xt fxa% q Xt pour tout i tel que Xt =£ 0 ; comme
il y a par hypothèse un de ces indices k tel que Afc 1, on a @ //**,
d'où [fl ~ X^1 /uak Xt pour tout i tel que X% ^ 0 et tout ju e K. Si on
prend tous les o^ égaux à un même cr, cela montre que les Xt ^ 0 sont
dans le centre de K, et établit la première partie du lemme. Pour
démontrer la seconde, il suffit de supposer que ceux des ut qui correspondent
à des at d'une même classe 6 sont linéairement indépendants ; on voit
alors que ceux des Xt ^ 0 doivent correspondre à des at d'une même
classe, et on obtient une contradiction en supposant les ut linéairement
dépendantes.

La première partie du lemme 2 montre aussitôt que :

Théorème 3. — Dans (£, Vanneau A et le corps K sont linéairement
disjoints (19) par rapport à leur centre commun Z.

Le sous-anneau de (£ engendré par K et A est donc identique à
l'ensemble des combinaisons linéaires d'éléments de A à coefficients dans K,
et isomorphe au produit tensoriel K (££) A de K et de A par rapport à Z.
L'anneau commutant de K ® A dans (g est évidemment l'intersection
des anneaux commutants de K et de A, autrement dit est identique à Z ;

nous savons que l'anneau U(Z) commutant de Z est l'anneau de tous
les endomorphismes de E considéré comme espace vectoriel sur Z ; lorsque

A est de degré fini sur Z, le calcul des degrés de K ® A et de U (Z)

par rapport à Z donne aussitôt le résultat classique K ® A U(Z);
mais il n'en est pas de même en général. De façon plus précise, prenons
dans E une base (eA) par rapport à K ; pour tout oc e K, désignons par ha

l'endomorphisme de l'espace vectoriel E tel que Aa(e^) -= oc eA pour tout
A «matrices diagonales ») ; on vérifie aussitôt, que d'une part les ha
forment un sous-corps de A contenant Z, isomorphe à l'opposé K° de K,

(18) Voir JV. Bourbaki, Eléments de Mathématique, Algèbre,, chap. II, §5 (Actual.
Scient, et Ind., n° 1032, Pans (Hermann), 1947).

(19) On dit que deux sous-algèbres G, H d'une algèbre F sur un corps commutatif S

sont linéairement disjointes par rapport à S si : 1° elles ont un élément unité commun;
2° tout élément de G est permutable avec tout élément de H; 3° toute base de H par
rapport à S est linéairement indépendante par rapport à G.
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et que nous noterons K° ; d'autre part, que le sous-anneau Lde A commutant

avec K° est l'ensemble des endomorphismes u de E tels que u (ex)
soit combinaison linéaire des e^ à coefficients dans Z (si F est le sous-espace
de E par rapport au corps Z, engendré par les ex, L est isomorphe à
l'anneau des endomorphismes de cet espace vectoriel, et est donc un anneau
primitif complet). Cela étant, soit (6V) une base de K par rapport à Z ;

pour tout endomorphisme u e A, on a u(ex) J£ Q^ en (Qx^ 0 sauf

pour un nombre fini d'indices ju, dépendant de X) ; si QXfJL £ ïx^v ®v > °ù
V

yXflv *Z, on peut écrire u(ex) J£ 0V vv(ex), où vv(cA) — X 3%, V les

#„ appartenant donc à L ; si K ou L est de degré fini sur Z, ceci montre que
A Jl° 0 L ; au contraire, si Jl et L sont de degré infini sur Z, on ne
peut plus écrire (au sens usuel de l'algèbre) u Jjj£ 0y vv, car il y aura en

général une infinité d'indices v tels que vv =£ 0 ; mais cette relation est
exacte si on interprète le second membre comme une somme infinie dans
l'anneau topologique (£ ; autrement dit, A est alors Yadhérence dans (£ du
produit tensoriel K° 0 L.

Cela étant, si 1T est de degré fini sur Z, on a Z (g) ^4 (K ® if°) ® L,
et if 0 K° peut être identifié à l'anneau de tous les endomorphismes
d'un des espaces vectoriels Kex de dimension finie sur Z ; d'où on déduit
aisément (l'espace vectoriel E sur Z pouvant être considéré comme produit

tensoriel de F et d'un des Kex) que l'on a dans ce cas K®A U(Z).
Au contraire, cette relation est inexacte par exemple lorsque K est de
degré infini sur Z et E de dimension 1 sur K (autrement dit, lorsque
A K°) ; en effet, on sait alors (20) que K&) K° est un anneau simple
ayant un élément unité ; mais un tel anneau ne peut avoir d'idéaux
minimaux, donc ne peut être identique à U(Z). On peut se demander si dans
ce cas U(Z) est l'adhérence de K 0 K° dans (£ : on vérifie aisément qu'il
en est ainsi lorsque K est localement fini sur Z, c'est-à-dire que toute
partie finie de K engendre un sous-corps de K de degré fini sur Z ; mais
nous ne savons pas répondre à la question dans le cas général.

3. Sous-anneaux galoisiens d'un anneau primitif complet. Nous dirons
qu'un sous-anneau distingué B de l'anneau primitif complet A est galoi-
sien (respectivement fortement galoisien) si tout élément de l'anneau C

commutant de B dans (£ est combinaison linéaire à coefficients dans K,
d'applications semi-linéaires de l'espace vectoriel E (sur K) dans lui-même

(20) Voir [1], p. 98, th. 7.
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(respectivement de di-automorphismes de E, c'est-à-dire d'applications
semi-linéaires biunivoques de E sur E). Nous dirons que B est un anneau
galoisien (respectivement fortement galoisien) intérieur si C est formé de
combinaisons linéaires d!endomorphismes (respectivement d'automorphis-
mes) de l'espace vectoriel E sur K.

Le théorème suivant généralise un résultat de Cartan-Jacobson (21) :

Théorème 4. — Si B est un sous-anneau galoisien de A, tout sous-

anneau distingué Bf de A tel que B c B' c A, est galoisien.

Par hypothèse, l'anneau C commutant de B dans (£ admet une base

(par rapport à K, à gauche) formée d'applications semi-linéaires ux ; nous
désignerons par g\ Fautomorphisme du corps K correspondant à u\.
L'anneau Gr commutant de B! dans (£ est un sous-espace vectoriel de C

(par rapport à K) ; comme il est engendré par ses éléments primordiaux
par rapport à la base (ux) de C (17), il suffira de prouver qu'un tel élément

v est nécessairement une application semi-linéaire de E dans lui-même.
Par hypothèse, on a v Jj£ ocx ux, d'où v(pix) J£ aA ^ ux(x) pour

x x

tout fx € K, ce qui s'écrit aussi v pi J£ <xx fia* ux Comme C contient
x

K, v/bt, appartient k Cf ; comme aA 0 entraîne que le coefficient de ux
dans Vp est 0, il résulte des propriétés des éléments primordiaux qu'il
existe q e K tel que ocx H?* Q a\ Pour tout X ; comme il existe un
indice v tel que av 1, on a q — ix°v, et par suite v(/btx) ffv v (x)

pour tout x € E et tout \x c K, ce qui démontre la proposition.
L'anneau A est évidemment galoisien ; il en est de même de Z lorsque

K est de degré fini sur Z : on a vu en effet au n° 2 qu'on a alors U(Z)
iT ® J., ce qui prouve que Z est alors un anneau galoisien intérieur ;

lorsque K est de degré infini sur Z, Z ne peut certainement plus être
toujours un anneau galoisien intérieur, puisqu'en général K ® A ^ U(Z);
nous ignorons s'il peut encore être galoisien.

La notion d'anneau galoisien intérieur se rattache à la théorie des sous-

anneaux commutants de Vanneau A (et non plus de (£) par le théorème
suivant :

Théorème 5. — Pour qu'un sous-anneau distingué B de A soit galoisien
intérieur, il faut et il suffit qu'il soit Vanneau commutant dans A, d'un sous-

anneau D contenant Z et tel que K® D soit un sous-anneau distingué de

(Ê ; D est alors Vanneau commutant de B dans A.

(21) Voir [8], p. 34, th. 7, et [2], p. 66, th. 2.

166



La condition est nécessaire, car si B est galoisien intérieur, son anneau
commutant G dans (£ est formé des combinaisons linéaires à coefficients
dans K des éléments de l'anneau D C H A, donc (théorème 3) est

identique à K <S) D, et on sait (théorème 1) qu'il est distingué dans (£ ;

D contient évidemment Z K H A ; son anneau commutant dans A
est l'intersection de A et de l'anneau commutant de D dans (g ; comme A
est anneau commutant de K dans (£, l'anneau commutant de D dans A
est anneau commutant, dans (£, de l'anneau engendré par K et D, c'est-
à-dire de K ^ D, donc (théorème 1 il est identique à B. La réciproque
est immédiate ; en outre, l'anneau commutant de B dans A est
l'intersection de C et de A, donc D.

On a en particulier les corollaires suivants, qui généralisent des résultats
classiques (22) :

Corollaire 1. — Pour qu'un sous-anneau B de A soit galoisien intérieur
dans A, et tel que A soit de degré fini sur B, il faut et il suffit qu'il soit
Vanneau commutant, dans A, d'un sous-anneau semi-simple D de degré fini
sur Z.

En effet, si D est semi-simple et de degré fini sur Z, K® D est semi-
simple de longueur finie, donc distingué dans (£. Inversement, si Z0D
est semi-simple et de degré fini sur K, D est de degré fini sur Z et est semi-
simple, car s'il contenait un idéal nilpotent a ^ (0), K® a serait un
idéal nilpotent ^0 dans f®D.

Corollaire 2. — Si K est de degré fini sur Z, pour touJt sous-anneau D de

A, distingué dans (g et contenant Z, l'anneau commutant de D dans A est un
sous-anneau galoisien intérieur B de A, et D est l'anneau commutant de B
dans A.

En effet, D est par hypothèse un produit II Dx d'anneaux primitifs
x

complets, et E se décompose en somme directe de Z>-modules Ex, qui sont
aussi des espaces vectoriels sur K, et sont tels que Ex est annulé par tous
les Dp d'indice =£ A, et que l'on ait 8yEx Ex, en désignant par Sx le
socle de DA (cf. n° 1). Soit (6t) une base de K par rapport à Z ; par définition,

tout élément de K(&D s'écrit d'une seule manière u ]£,0tvt,
où vt € D ; la restriction de u à Ex est donc ux £ 0, vtx> où vtx est la

i
restriction de vt à Ex ; par suite ux est un endomorphisme de Ex, qui
appartient à K<S) Dx, si on identifie à DA l'anneau des restrictions à Ex

(22) Voir [1], p. 104, th. 13 et p. 105—106, th. 16.
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des endomorphismes v € D ; réciproquement, si pour chaque A, on se

donne arbitrairement un endomorphisme u^e K® Dx de E\, l'endo-
morphisme u de E dont la restriction à chaque Ex est ux appartient à

K ® D ; on peut donc considérer K&) D comme l'anneau produit des

K 0 D^, et la proposition sera démontrée si on établit que K 0 Dx est

un anneau primitif complet, distingué dans Panneau (£^ des endomorphismes

du groupe Ex-
En d'autres termes, on est ramené à démontrer le corollaire lorsque D

est primitif complet. E est somme directe de D-modules simples Ma
isomorphes à un idéal minimal de D ; et si M est l'un d'eux, tout
endomorphisme u € D est entièrement déterminé par sa restriction à M. Si H
est le corps des endomorphismes du D-module M, (ey) une base de M
considéré comme espace vectoriel sur H, F l'espace vectoriel sur Z
engendré par les ey, on voit comme à la fin du n° 2 que D est l'adhérence,
dans (£, du produit tensoriel H0® L, où L est l'anneau des endomorphismes

de l'espace vectoriel F (H° et L pouvant être considérés comme
formés d'endomorphismes de E, et non seulement de M, au moyen d'iso-
morphismes de M sur les Ma). Comme K est de degré fini sur Z, il est

clair que K§§D est l'adhérence, dans (g, de K<g)(H°(g)L)
(K 0 H°) 0 L ; d'autre part, K® H° est un anneau simple de longueur
finie ; si I est un idéal à gauche minimal de K(£) H°, nous allons voir que
la somme P des (K 0 l?0)-modules simples I ey est directe. Il suffit pour
cela de voir que les ey sont linéairement indépendants par rapport à

K&) H°; or, la démonstration du théorème 1 montre que, si G est
l'anneau commutant de D dans (£, les ^-modules Ny G-ey sont simples,
et E somme directe des Ny ; comme G contient K, et que H° ey H ey

est contenu dans Ny, (K 0 H°) ey est contenu dans Ny9 ce qui établit
notre assertion. Soit alors R le corps des endomorphismes de l'idéal I ; il
existe un nombre fini d'éléments w3 de I tels que les w3 ey forment une
base de l'espace vectoriel P sur le corps R. Nous allons voir que, dans

l'anneau d'endomorphismes du groupe P, les restrictions à P des

endomorphismes u e K 0 H°(£) L forment un anneau partout dense dans
l'anneau 8 de tous les endomorphismes de l'espace vectoriel P sur le

corps R. Il suffit pour cela, comme on le voit aisément, de montrer que,
quels que soient les indices j, k, y, <5, et q c R, il existe un endomorphisme

u e K® H°ÇZ) L tel que u(w3ey) QWke$, et u(wh ee) 0

pour (h, e) =fi (j, y) ; or, il existe vn e L tel que vn{ey) — es, et v"(ee)

0 pour e ^ y ; d'autre part, comme K® H° peut être identifié à

l'anneau d'endomorphismes de l'espace vectoriel I sur R, il existe
v' e K® H° tel que vf(Wj-) q wk et v'(wh) 0 pour h ^ j ; en pre-
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nant u=-vrv" on répond à la question. Ce raisonnement montre en même

temps que P est un module simple sur K&) fl°0 L. Or, on peut à

partir de chacun des Ma, définir ainsi un module simple Pa sur
K(£) H0® L, isomorphe à P ; E étant somme des Ma, est aussi somme
des Pa, donc somme directe d'une sous-famille des Pa ; en raison de l'iso-
morphie des Pa, l'anneau S peut être considéré comme anneau d'endo-
morphismes de chacun des Pa, donc aussi de E ; ce qui précède montre
que S est un anneau primitif complet, distingué dans (£, et que K(£)H°(£)L
est partout dense dans 8 ; on a donc S K (^) D, ce qui achève le
raisonnement.

On notera qu'il ne suffit pas, pour que B soit galoisien intérieur, qu'il
admette dans A un anneau commutant D contenant Z et tel que K§§ D
soit distingué : c'est ce que montre déjà la théorie de Cartan-Jacobson
lorsque A est un corps et B un sous-corps galoisien de A, tel que le

groupe des automorphismes de A par rapport à B contienne des auto-
morphismes extérieurs de A

En outre, si B est un sous-anneau galoisien intérieur de A, son anneau
commutant D dans A n'est pas nécessairement un anneau galoisien
intérieur, comme le montre le cas où on prend B A, lorsque K est de
degré infini sur Z.

Il est naturel de se demander si la distinction que nous avons introduits

entre anneaux galoisiens et anneaux fortement galoisiens est réelle,
c'est-à-dire s'il existe des anneaux galoisiens mais non fortement galoisiens.

Nous ne savons malheureusement pas répondre à cette question ;

il est classique que dans l'anneau d'endomorphismes d'un espace vectoriel
de dimension finie tout élément est combinaison linéaire d'automorphis-
mes de l'espace vectoriel ; autrement dit, tout sous-anneau primitif complet

B de A qui est galoisien intérieur et tel que son anneau commutant
0 dans (£ (ou son anneau commutant D dans A) soit de longueur finie
(ce qui revient à dire que la hauteur de A par rapport à -B est finie) est
fortement galoisien ; mais nous ignorons si la même propriété est vraie
pour tout sous-anneau galoisien intérieur (cela reviendrait à prouver que
tout endomorphisme d'un espace vectoriel de dimension infinie est
combinaison linéaire d'automorphismes de cet espace, ce qui ne paraît pas
pouvoir se faire par les mêmes procédés que dans le cas des espaces de
dimension finie). Dans la théorie de Jacobson-Cartan (E de dimension 1

sur K) la distinction entre sous-corps galoisiens et sous-corps fortement
galoisiens n'a pas de raison d'être, toute application semi-linéaire de E
dans lui-même qui n'est pas identiquement nulle étant ipso facto une
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application biunivoque de E sur lui-même. Enfin, nous allons indiquer
un autre cas, qu'on peut considérer comme à l'opposé de celui des anneaux
galoisiens intérieurs, où un anneau galoisien B est nécessairement fortement

galoisien. Il résulte du lemme 2 b) que l'anneau G, commutant de
B dans (£, peut (en tant qu'espace vectoriel sur K) être décomposé en
somme directe de sous-espaces C^, les éléments de C\ étant combinaisons
linéaires (à coefficients dans K) d'applications semi-linéaires telles que
deux quelconques d'entre elles u, uf soient relatives à des automorphis-
mes a, g' de K congrus modulo le groupe des automorphismes intérieurs
de K (autrement dit, tels que a1 a~x soit un automorphisme intérieur) ;

chaque application semi-linéaire de E dans lui-même qui appartient à

G appartient nécessairement à un des C\ ; en particulier, nous désignerons

par Co celui des sous-espaces C\ qui est engendré par les applications
linéaires de E dans lui-même (c'est naturellement un anneau, intersection
de G et de K® A). Cela étant, nous allons considérer le cas où Co se

réduit à K (cas où on peut dire que B est un sous-anneau galoisien
extérieur) (23) :

Théorème 6. — Lorsque Co K et que A et G sont des anneaux simples
de longueur finie, chacun des G\ est de la forme Ku^, où u\est un diauto-
morphisme de Vespace vectoriel E, relatif à un automorphisme a\de K ; en

outre, les o\ et les automorphismes intérieurs de K engendrent un groupe F
tel que le groupe des automorphismes intérieurs de K ait par rapport à F un
indice fini égal au degré de G sur K.

En effet, soit u\ ^ 0 une application semi-linéaire de E dans lui-même
appartenant à un C\ distinct de K. Comme G est un anneau simple de

longueur finie, l'idéal bilatère Cu^C de G est nécessairement identique à

G ; il existe donc une relation de la forme 1 X <*t v% u\ w% » °^ ^es a*

appartiennent à K et où les v% et wt sont des applications semi-linéaires
de E dans lui-même. Cela étant, chacun des produits vtu\wt, étant une
application semi-linéaire de E dans lui-même, appartient à un des G\ ;

comme G est somme directe des Gx, il résulte de la relation l=^octvt uxwt
i

que l'un au moins des produits vt ux wt appartient à K et est ^ 0 ; cela

signifie que vt ux w% est un diautomorphisme de E, et comme E est de

dimension finie sur K par hypothèse, on sait que cela n'est possible que
lorsque chacun des facteurs vt,ux, wt est un diautomorphisme ; autrement

dit, toute application semi-linéaire de E dans lui-même appartenant

(23) Lorsque E est de dimension 1 sur Kf ce cas est celui étudié par N. Jacobsondansfô].
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à G et ^ 0 est un diautomorphisme. L'hypothèse que A et G sont de

longueur finie entraîne que G est de degré fini n sur K, c'est-à-dire un espace
vectoriel de dimension n (à gauche) sur K ; comme v -+v u\ est une
application linéaire biunivoque de cet espace dans lui-même, c'est un
automorphisme de cet espace vectoriel, donc u^1 appartient à G ; l'application

v ~> v u^1 applique Cx dans K et l'application v -> v u\ applique
K dans (7^, ce qui montre que C\ est de dimension 1 sur K, autrement dit
Cx K ux pour tout A ; le produit Ux u^ étant de la forme <xuv (oc € K),
la fin de la démonstration est triviale.

Avec les mêmes hypothèses sur l'anneau galoisien «extérieur » B (c'est-
à-dire que A et B sont simples de longueur finie, et A de degré fini sur B),
on voit que si on désigne par Sx Pautomorphisme v -> u\ v u^1 de A, les

Sx forment un groupe fini © d'ordre n, et B est le sous-anneau de A formé
des éléments invariants par © ; on peut donc appeler © le groupe de Galois
de A par rapport à B. Il est facile de voir que, réciproquement, tout
automorphisme de A laissant invariants les éléments de B, appartient à © :

en effet, on sait (24) que tout automorphisme de A est de la forme
v -» u v w1, où u est une application semi-linéaire de E dans lui-même ;

comme u doit être permutable avec tout élément de B, u appartient à G
et est donc nécessairement de la forme olux, d'où la proposition. Le
théorème 4 montre ici que tout anneau simple B! tel que B c B1 c A,
est aussi un anneau galoisien extérieur, et qu'il y a correspondance
biunivoque entre ces anneaux et une certaine famille de sous-groupes de ©
(savoir ceux tels que la somme des Kux correspondants soit un sous-
anneau simple de G).

Etudions maintenant de plus près la structure des sous-anneaux galoi-
siens B de A, en conservant les notations du théorème 6. Nous ne pourrons

dire que peu de choses dans le cas général où on ne suppose pas B
fortement galoisien, même lorsque A est de longueur finie et de degré fini
sur B ; nous ignorons si dans ce cas les classes des automorphismes ax
(modulo le groupe des automorphismes intérieurs de K) forment un
groupe, car il n'est pas exclu que l'on ait Gx*G(JL (0) pour certains
couples d'indices ; nous ne pouvons même dire si le groupe engendré par
ces classes est fini, ni si le sous-anneau GQ de G est semi-simple. Pour les

sous-anneaux B fortement galoisiens, nous avons des renseignements plus
précis. Chacun des Cx admet alors par hypothèse une base (par rapport à
K) formée de diautomorphismes ; dans l'hypothèse où G est de degré fini
sur K (c'est-à-dire A de degré fini sur B, mais pas nécessairement de lon-

(24) Voir [3], p. 69—71 et [4], p. 59—60.
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gueur finie), pour chacun de ces diautomorphismes ux, on voit comme
dans le théorème 6 que v -> v ux est une application biunivoque de C sur
lui-même ; par suite, les classes des automorphismes ax (modulo le groupe
des automorphismes intérieurs de K) forment un groupe fini © d'ordre n,
et chacun des Cx a même dimension d sur K, d'où résulte que le degré de
C sur K est égal à n d.

Les ax induisent sur le centre Z de K un groupe fini d'automorphismes
G (isomorphe à un groupe quotient de ©) ; l'ensemble des éléments de Z
invariants par G, qui est identique à B H Z B fl K, est donc un
sous-corps de Z tel que Z soit galoisien sur B (1 Z (même lorsque B n'est
pas fortement galoisien et que C est de degré infini sur K, B fï Z est
l'ensemble des éléments de Z invariants par une famille d'automorphismes
de ce corps, et est donc toujours un corps). En outre :

Théorème 7. — Le corps K et Vanneau B sont linéairement disjoints sur
le corps B f\ Z.

En effet, soit (vt) une famille finie d'éléments de B, linéairement
indépendants sur le corps B fïZ ; supposons qu'ils ne soient pas indépendants

par rapport à Z ; il existerait alors entre les vt une relation primordiale

J£ <xt vt 0 à coefficients dans Z. Pour chacun des Ux, on a donc

aussi J£ Ux oct v% 0, ce qui équivaut à J£ <x°* ux vt 0, et comme Ux

est permutable avec chacun des vt, on a aussi J£ a** vt) Ux 0 ; enfin,

Ux étant inversible dans (£ par hypothèse, cette relation est équivalente
à J£ a%* vt 0. En vertu de l'hypothèse, il existe donc q eZ tel que

oc°* q oct pour tout i, et comme on a <xt 1 pour un indice i au
moins, on a q 1, a4 est invariant par chacun des automorphismes o^,
et par suite appartient à B f\ Z, ce qui est contraire à l'hypothèse. Les

vt sont donc linéairement indépendants par rapport kZ,et par suite aussi

par rapport à K d'après le théorème 3.

On notera que le théorème 7 est valable même lorsque A est de degré
infini sur B (B étant toujours supposé fortement galoisien).

Le sous-anneau de A engendré par B et Z est donc identique à leur
produit tensoriel B (3) Z (par rapport au corps B H Z) ; supposons
que Z soit de degré fini n sur B H Z (c'est-à-dire que le groupe G

engendré par les restrictions des ox à Z soit fini, ce qui est toujours
le cas, d'après ce qui précède, lorsque A est de degré fini sur B) ;

Z est alors une extension galoisienne de B f) Z ; en outre, le raisonnement
du corollaire 2 du théorème 5 (tenant compte du fait que Z est une exten-
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sion séparable de B HZ) montre que B <S) Z est un anneau semi-simple
complet distingué dans (£ ; d'après le théorème 4 c'est donc un sous-
anneau galoisien de A Mais rien ne permet d'affirmer en général que son
anneau commutant dans (£ soit identique à Co C n (K ® A ; on
peut seulement dire qu'il contient O0. Toutefois, Co est bien l'anneau
commutant de B (^) Z lorsque parmi les automorphismes ox, seuls les

automorphismes intérieurs laissent invariants tous les éléments de Z (ce

qui sera en particulier le cas lorsque tout automorphisme de K laissant
invariants les éléments deZ est intérieur, et plus particulièrement encore
lorsque K est de degré fini sur Z) ; en effet, l'anneau Cx commutant de

B®Z est engendré par des applications semi-linéaires de E dans E
(théorème 4) ; s'il était distinct de Co, il contiendrait donc une application

semi-linéaire t;^0, relative à un automorphisme g non intérieur
(congru à un des a^ ; comme v est permutable avec Z par hypothèse, on
aurait v (ot z) — a v (z) pour tout z e E et tout aeZ, ce qui équivaut
à ocav(z) otv(z), et comme il y a au moins un z tel que v(x) ^ 0,
oca oc pour tout oc c Z contrairement à l'hypothèse. Dans le cas
considéré, CQ est donc un anneau semi-simple distingué, et B &) Z un anneau
fortement galoisien intérieur. Les restrictions à B ® Z des applications
v -> u^v u^1 sont des automorphismes de cet anneau laissant invariants
les éléments de B ; le groupe engendré par ces automorphismes est
isomorphe à G, auquel on peut l'identifier, et B est l'ensemble des éléments
de B (££) Z invariants par G. Supposons en outre que B et B (££) Z soient
des anneaux primitifs complets ; soit F un sous-module simple de E
considéré comme (B &) Z)-module, H son corps d'endomorphismes, et soit
5 l'anneau d'endomorphismes du groupe additif F ; B et B &) Z peuvent
être considérés comme des sous-anneaux de 5, et l'hypothèse que B est
distingué dans (S entraîne aussitôt qu'il est distingué dans Ç- Les
automorphismes du groupe G sont de la forme v -> w^v w~x, où les w^ sont
des diautomorphismes de F (considéré comme espace vectoriel sur H) ;

comme Z est contenu dans le centre de B® Z, et qu'aucun des
automorphismes du groupe G autre que l'identité ne laisse invariants tous les
éléments de Z, les w^ sont linéairement indépendants par rapport à H
(lemme 2b)) ; comme leur nombre est égal au degré n de B§§Z sur B,
ils engendrent l'anneau commutant R de B dans ^ ; autrement dit, par
rapport à B(£)Z, B est un sous-anneau fortement galoisien eztérieur.
Dans les mêmes hypothèses, il y a alors correspondance biunivoque entre
tous les sous-groupes du groupe G et tous les sous-anneaux distingués Br
de A tels que B c Br c B ® Z. En effet, à tout sous-groupe G' de G

correspond un sous-corps Z! de Z tel que B n Z c Z1 c Z formé des
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éléments de Z invariants par Gf ; l'anneau B 0 Z7, engendré par B et
Z', est un sous-anneau primitif complet, distingué dans 5 ; on voit aussitôt

que le degré de B (g) Z sur B (g) Z' est égal à l'ordre du groupe Q',
et par suite que les w^ correspondant aux automorphismes du groupe Gf
forment une base (par rapport à H) de l'anneau Rr commutant de J?0Z;
dans 5* Inversement, si B! est un sous-anneau distingué tel que B c Bf
c B 0 Z, son anneau commutant Rr dans g a une base (par rapport à

H) formé d'un certain nombre m des w^ (d'après le théorème 4), et le
raisonnement du théorème 6 prouve que les automorphismes v -> w^ v w~x

correspondants forment un sous-groupe G' d'ordre m du groupe G ; si

B®Z' est le sous-anneau de J3 0Z correspondant à G', donc formé
des éléments invariants par (?', on a B! c -B0 Z' et les degrés de

B (g) Z par rapport à B! et à J3 0 Z' sont égaux ; donc B' B®Z'.
On notera aussi que, lorsque A est de degré fini nd par rapport à jS, il est
de degré fini md par rapport à B!, et que Br est fortement galoisien par
rapport à A, car son anneau commutant dans (£ est somme directe des

C\ correspondant aux automorphismes du groupe G1.

Soit maintenant B" un sous-anneau distingué de A tel que B c Bn

c A ; B!t est un sous-anneau galoisien de A (théorème 4), mais en général,

nous ne savons pas démontrer qu'il est fortement galoisien par
rapport à A. Si nous faisons donc l'hypothèse supplémentaire que B11 est
fortement galoisien par rapport à A, B" et Z sont linéairement disjoints
sur le corps Zf Bn Ç\Z (théorème 7); on en déduit que l'anneau
B1 B" f| (B (g) Z) est identique à B<g)Z' ; en effet, il contient
évidemment ce dernier, et s'il en était distinct, il existerait dans B' un
élément a (30 + JS y% £*> où p0 et les y{ sont dans B, les |t- forment, avec

1, une base de Z sur Z', et un au moins des y{ n'est pas nul ; mais alors
les |t- et 1 seraient linéairement dépendants par rapport à Bf/, ce qui est

absurde. L'anneau Br est donc, d'après ce qu'on a vu plus haut, un
anneau primitif complet ; si Bn (g) Z est un anneau primitif complet, il en
est de même de Bn', et le degré m de B" (g) Z sur Bft est égal à celui de

Z sur Z' et à celui de B (g) Z sur B1 ; en outre, si A est de degré fini d par
rapport à B 0 Z, son degré par rapport à B" 0 Z est un diviseur de d.

Remarquons enfin que, lorsque A est de degré fini sur Z, le corps B Ç\Z

est fortement galoisien par rapport à A. En effet, si on choisit un diauto-
morphisme Ux dans chacun des Cx, et si (vt) est une base par rapport à

Z de l'anneau U(Z), commutant de Z dans (g, on voit d'après le lemme
2 b) que les Ux v€ sont linéairement indépendants par rapport à K ;

comme leur nombre est égal au degré de A sur B D Z, ils engendrent
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l'anneau commutant de B f\Z dans (£ ; d'où la proposition, puisqu'on
peut toujours supposer que les vi sont des automorphismes de l'espace
vectoriel E.

4. Isomorphismes des sous-anneaux d'un anneau primitif complet.
Soient A> A' deux sous-anneaux isomorphes de (£, u ->u un isomor-
phisme de A sur A!\ cet isomorphisme permet de définir sur E une
seconde structure de A -module, en posant u-x u(x) ; si les deux
structures de A -module de E ainsi obtenues sont isomorphes, il existe une
application biunivoque <p de E sur lui-même telle que <p(x + y)
<p(x) + <p(y) et q){u(x)) u (<p(x)), ; autrement dit, ona w yuy~x.
En outre, si B, B1 sont les anneaux commutants de A et A! dans (g, et
si v € B, v (pv <p~l appartient à Bf et vice-versa, car on a ~vÇû(a;))

991; w çr"1^) <p u v qrx(x) u (v(x)) pour tout u e A ; l'application
v -> <pv q>~x est donc un isomorphisme de B sur JS;.

Reprenons les notations des numéros antérieurs, K désignant un corps
d'endomorphismes de E, A l'anneau primitif complet des endomorphis-
mes de l'espace vectoriel E sur K. Une première application des remarques

qui précèdent redonne la caractérisation connue (24) des automorphismes

de A : si u -> u est un automorphisme de A, les deux structures
de A -module sur E que permet de définir cet automorphisme, sont
isomorphes, puisque pour chacune, E est isomorphe à un idéal minimal de
l'anneau 4;ona donc u ç? u <p~x ; en outre A -> <p X q)~x est un
automorphisme g du corps K ; autrement dit, on a 99 (A #) Aa 99 (#) pour
tout x e E, ce qui signifie que y est un diautomorphisme de l'espace
vectoriel J5.

Nous allons chercher, dans ce qui suit, des conditions qui assurent
qu'un isomorphisme d'un sous-anneau primitif complet distingué B de
A sur un sous-anneau distingué Bf de A, peut se prolonger en un
automorphisme de A Nous considérerons d'abord le cas où l'isomorphisme de
B sur Br laisse invariants les éléments du centre Z de A, supposé contenu
dans Bet B'.

Théorème 8 (25). — Soient JS, B' deux sous-anneaux primitifs complets
de A, distingués dans (£ et contenant le centre Z. Soit <p un isomorphisme de

B sur B', laissant invariants les éléments de Z. Uisomorphisme y peut se

prolonger en un automorphisme intérieur dans les deux cas suivants :

a) B est de degré fini sur Z ;

(25) Voir [1], p. 101, th. 12.
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b) K est de degré fini sur Z, et les hauteurs de A par rapport à B et B!
sont finies et égales.

En effet, l'isomorphisme cp se prolonge évidemment en un isomorphisme
(que nous noterons encore <p) de K 0 B sur K 0 Br, laissant
invariants les éléments de K. Dans le cas a), K &) B et K ÇZ) Bf sont des

anneaux simples isomorphes, de longueur finie ; les dimensions par
rapport à K d'un idéal minimal de K (& B et d'un idéal minimal de K 0 Bf
sont finies et égales ; d'où on déduit aussitôt que E est somme directe de
deux familles équipotentes, l'une formée de (K 0 jB)-modules simples,
l'autre de (K 0 Bf)-modules simples. On déduit évidemment de là,
comme il a été expliqué plus haut, deux structures de (K 0 jB)-module
isomorphes sur E, au moyen de l'isomorphisme <p, et par suite il existe
une application additive biunivoque v de E sur lui-même telle que 99 (u)

v u v~x pour tout u e K 0 B ; en particulier, v est permutable avec
tout élément de K, et par suite appartient à A, ce qui démontre dans ce

cas le théorème.

Dans le cas b), l'anneau B peut être considéré comme l'adhérence,
dans (£, de l'anneau H°® L, où L est l'anneau d'endomorphismes de

l'espace vectoriel par rapport à Z engendré par une base (par rapport à

H) d'un jB-module simple F contenu dans E. Alors le même raisonnement

que dans le corollaire 2 du théorème 5 montre que K (££) B est un anneau
primitif complet, distingué dans (£ ; la hauteur de K 0 B par rapport à

B étant finie et égale à celle de K ® B' par rapport à Br, les hauteurs
de A par rapport à K 0 B et K&) Br sont égales ; on conclut le
raisonnement comme dans le cas a).

On arriverait à la même conclusion (toujours en supposant K de degré
fini) en supposant que les hauteurs de A sur Bet B' sont infinies et égales,

en ce sens que E est somme directe de deux familles équipotentes, l'une
de J5-modules simples, l'autre de jB/-modules simples. Par contre, lorsque
E est de dimension infinie sur K, il est facile de donner des exemples de

sous-anneaux primitifs complets isomorphes B, B1, contenante, mais tel
que A ne soit pas de même hauteur par rapport à B et par rapport à Br.

On notera aussi que le théorème 8 cesse d'être vrai lorsqu'on ne
suppose plus que K ou B est de degré fini sur Z, puisqu'on sait qu'il existe
des corps non commutatifs K de degré infini sur Z, admettant des auto-
morphismes laissant invariants tous les éléments de Z et qui ne sont pas
intérieurs.

Nous allons maintenant supposer que l'isomorphisme q? laisse inva-
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riants les éléments d'un sous-anneau Bf! de B n Br, qui est galoisien
dans A (26).

Théorème 9. — Soit Btr un sous-anneau galoisien de A; soient B, Bl
deux sous-anneaux primitifs complets de A, distingués dans (£, contenant
Brr et tels que les hauteurs de A par rapport à B et B1 soient finies et égales.

Si cp est un isomorphisme de B sur B'', laissant invariants les éléments de

B", il existe une application semi-linéaire d^O de E dans lui-même telle

qu'on ait identiquement (p{u)v~vu pour tout u e B.
En effet, l'hypothèse faite sur les hauteurs de A par rapport à B et Br

entraîne, par le raisonnement du début de ce numéro, que l'on a
identiquement cp(u) tut~x, où t est une application additive biunivoque de
E sur lui-même permutable avec tous les éléments de B/f, donc appartenant

à l'anneau Cn commutant de B" dans (£ (on aurait la même conclusion

en supposant que les hauteurs de A par rapport à B et B! sont
infinies et égales). Par hypothèse les éléments de G" sont combinaisons
linéaires (à coefficients dans K) d'applications semi-linéaires de E dans
lui-même; on peut donc (lemme 2b)) décomposer l'espace vectoriel (à

gauche) G" en somme directe de sous-espaces G% correspondant aux
différentes classes 6 des automorphismes de K modulo le groupe des automor-
phismes intérieurs. Posons alors t — ]£te, où te e Cl ; pour tout u e B,

e

on a JS {<p{u) te ~ ^0 u) ^ 0 ; or, pour chaque u c JS, <p(u) te— teu est
e

une combinaison linéaire, à coefficients dans K, d'applications semi-
linéaires de E dans lui-même relatives à des automorphismes de K appartenant

à la classe 6 ; d'après le lemme 2b), on a donc <p(u) te — te u 0

pour chaque 6 et tout u e B; il existe d'ailleurs au moins un t0 ^ 0.
Considérons, dans le sous-espace C"e correspondant, l'ensemble F des
éléments v c Cl tels que <p (u) v — v u pour tout u e B ; ce qui précède
montre que V ne se réduit pas à 0, et on voit aussitôt que c'est un sous-

espace vectoriel de C'q (parce que <p(u) est permutable avec tout jucK).
Or, Cl a une base par rapport à K formée d'applications semi-linéaires wt
relatives à un même automorphisme a (de la classe 6) ; considérons un
élément primordial v J£ Xt w{ du sous-espace F (par rapport à cette
__ i

(26) Lorsque B — Br — A, <p étant donc un automorphisme de A laissant invariants
les éléments d'un sous-anneau galoisien intérieur B" de A, on a <p(u) — vuv~~x, où v est
un diautomorphisme de E ; comme v est permutable avec tous les éléments de B", il résulte
du lemme 2b) que v est un diautomorphisme de E relatif à un automorphisme intérieur
A~>a A a"1 de K; mais alors w a~xv est un automorphisme de l'espace vectoriel E,
©t on a encore <p(u) wuw~x ; autrement dit, <p est un automorphisme intérieur de A. Ce
résultat généralise le th. 17 de [1], p. 107.
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base) ; comme u est permutable avec tout fi c K, v p appartient aussi
à V ; or on a v pi J£ Af ^ wt-, donc comme v est primordial par hypo-

thèse, il existe q e K tel que At /i° q At pour tout indice i ; il y a par
hypothèse un de ces indices tel que At 1, donc on a q jua, et par
suite Xi fxa pa X€ ; comme ju, est arbitraire dans K, cela entraîne que
les Xt appartiennent tous au centre Z de K, et par suite que v est une
application semi-linéaire relative à l'automorphisme a de K, ce qui
achève la démonstration.

Corollaire 1. — On suppose que B et Bf vérifient les hypothèses du
théorème 9, et en outre que, si D et Df sont les sous-anneaux de (g engendrés par
K u B et K\j B1 respectivement, E est un D-module semi-simple homogène

et un Df-module semi-simple homogène, ces deux modules ayant même

longueur. Alors (p se prolonge en un automorphisme de A.
Eneffet, E est somme directe de p D-modules simples Mt deux à deux

isomorphes, et aussisomme directe de p D '-modulessimples i\Tt. deux à deux
isomorphes. Cela étant, remarquons que si v(x) 0 pour un élément x =fi 0

appartenant à un Mi, v est identiquement nul dans ce module ; en effet, pour
tout u € B et tout fieK, on a v{u(fx x)) v([iu(xj) ii°v(u(xj)
fia(p(u) (v(x)) 0 ; si w ]? iii;Uj, où les uj sont quelconques dans B,

les pj quelconques dans K, on a aussi v(w(x))= 0, et on peut par
hypothèse prendre w tel que w(x) soit un élément quelconque de .Mt.
Comme par hypothèse v ^ 0, il y a au moins un M{ dans lequel v ne
s'annule que pour x 0 ; on peut supposer que ce module est M1.

p
D'autre part, pour tout xcE, on peut écrire v (x) J£ v{ (x), où

vt(x) c Ni ; comme cp(u) c B1, on a <p(u) {Vi(x)) e Ni9 d'où on tire que
l'on a identiquement <p(u)Vi vtu pour tout i ; les v{ sont des applications

semi-linéaires (puisque les N{ sont des sous-espaces vectoriels de E
par rapport à K) dont une au moins n'est pas nulle, on peut toujours
supposer que c'est vx ; restreinte à M1, vx est donc un isomorphisme de

l'espace vectoriel Mt dans l'espace vectoriel Nx ; en outre, c'est un
isomorphisme de Mx sur N± car on voit comme ci-dessus que si y ^ 0

appartient à t>i(Jfi) c Nl9 wr(y) appartient aussi à v1(M1), pour wf
Jj£ fi* u'j, où pi c K et u'j € B! ; comme JV^ est simple par hypothèse, on

peut prendre w' tel que wf(y) soit un élément quelconque de Nx. Soit
alors fi un isomorphisme du D-module simple M1 sur Mt, ^ un isomorphisme

du D'-module simple N1 sur 2V^ ; on définit une application semi-
linéaire biunivoque v0 de E sur lui-même en posant v0 (x) y[ (vx (tp^1 (x)))
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pour tout x e Mi (1 < i ^ p), et on vérifie aussitôt qu'on a bien <p(u)v0

vou, autrement dit <p(u) VqUVq1 pour tout u e B.
Les hypothèses du corollaire 1 sont en particulier remplies lorsque E

est lui-même un D-module simple et un Démodule simple ; d'après la
démonstration du théorème 1, cela correspond au cas où les idéaux
minimaux des anneaux commutants C, Gr de B, B' dans (g sont de dimension

1 sur K, et par suite au cas où les indices de B et B' par rapport à
A sont tous deux égaux à un ; c'est toujours le cas lorsque A est un corps,
et on retrouve ainsi un résultat de H. Cartan (27).

Corollaire 2. — On suppose que B et Bf vérifient les hypothèses du théorème

9, et en outre que Bl! est un sous-anneau fortement galoisien extérieur
de A, et que A est de degré fini sur B". Alors <p se prolonge en un auto-
morphisme de A.

En effet, toute application semi-linéaire de E dans lui-même contenue
dans C" et non identiquement nulle est alors un diautomorphisme.

Corollaire 3. — On suppose que B et Br vérifient les hypothèses du théorème

9, et que, si Rf désigne le sous-anneau de A engendré par B' et Z, E est

un R'-module semi-simple homogène. Alors Vimage du corps B f] Z par
Visomorphisme q? est Bf Ç\Z.

En effet, E est somme directe de 1?'-modules simples isomorphes Nf
Q

(1 ^ j ^ q). Pour tout xcE on peut écrire v(x) J£ v^x), où vg(x)

appartient à N$ ; comme les Nj sont des espaces vectoriels par rapport à

Z, les vi sont des applications semi-linéaires de E dans lui-même, relatives
à l'automorphisme g, quand on considère E comme espace vectoriel sur Z.
D'autre part, on a ç?(^)^ v^u pour tout indice j, et il y a au moins
un indice j tel que vi ^ 0 ; comme Nt est un module simple par rapport
à Rr, on voit comme dans la démonstration du corollaire 1 que vs applique
E sur Nj. Cela étant, pour tout fitBftZ et tout xcE, on a (pi^v^x)

Vjdu x) juaVj(x), autrement dit <p(pt)y ii°y pour tout y e N^;
tenant compte de ce que les N^ sont des i?'-modules isomorphes, on en
déduit qu'on a aussi (p(fJt)y fiQy pour tout y eE, c'est-à-dire que
<p(/i) fxa, d'où le corollaire.

On notera que les hypothèses du corollaire 3 sont en particulier remplies
lorsque B' est un sous-anneau fortement galoisien de A, tel que Z soit de

(27) Voir [2], p. 66, th. 3.
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degré fini sur B' ïïZ, et que Rr (alors égal à B;0Z) est un anneau
primitif complet. Alors, si B est aussi fortement galoisien dans A, comme
la restriction de (p à B f) Z coïncide avec la restriction d'un automor-
phisme de Z, on voit que 9? peut se prolonger en un isomorphisme (noté
encore 9?) de B & Z sur B'' <S)Z. Si on suppose en outre que K est de

degré fini sur Z, les hypothèses du corollaire 1 sont remplies pour les

anneaux B ® Z et Bf ® Z, car le raisonnement du corollaire du théorème

5 montre alors que K® B(£)Z et K<S) Bf ® Z sont des anneaux
primitifs complets de même hauteur sur B&)Z et Bf(£)Z respectivement,

et que i? est semi-simple, à la fois comme (K 0 B 0 Z)-module
et comme (if 0 Bf ® £)-module. On peut donc dans ce cas prolonger <p

en un automorphisme de A.

5. Appendice: Sous-anneaux galoisiens extérieurs et systèmes de

facteurs. Nous nous proposons de montrer comment les théories développées
ci-dessus permettent en particulier de donner un exposé très simplifié de

la théorie classique des «systèmes de facteurs » des algèbres simples (28).
Soit A une algèbre simple de rang fini sur son centre Z, T un «corps de

décomposition » de A, c'est-à-dire (29) un surcorps commutatif de Z, de

degré fini sur Z, tel que le produit tensoriel A 0 T B (par rapport à

Z) soit isomorphe à une algèbre de matrices sur le corps T. On peut donc

supposer que B est identifié à l'anneau des endomorphismes d'un espace
vectoriel E sur le corps T ; nous désignerons par (£ l'anneau des

endomorphismes de la structure de groupe additif de E : B est donc un sous-

anneau simple de (g, de centre T. Soit alors C l'anneau commutant de A
dans (E: c'est un anneau simple (théorème 1) qui contient T, et on a

(corollaire du théorème 2) [C : T] [B : A] [T : Z]. Le centre de C

est l'intersection G Ci A des deux anneaux commutants A et (7, et c'est
aussi le centre de A, donc Z ; autrement dit, T est un sous-corps commutatif

maximal de l'algèbre simple C, tel que [C : Z] [T :Z]2. En
outre, si K est le corps des endomorphismes des idéaux minimaux à

gauche de A, le corps des endomorphismes des idéaux minimaux à gauche
de C est isomorphe à K° (n° 1). Ces remarques montrent aussitôt que
l'algèbre C ne dépend que des corps K et T, à une isomorphie près : elle

correspond donc de façon biunivoque à la classe des algèbres simples de

centre Z ayant même corps K d'endomorphismes de leurs idéaux à gauche

(28) Les exposés les plus récents de cette théorie sont ceux de N. Jacobson, Theoryof
rings, p. 107—109, et Artin-Nesbitt-Thrall, Rings with minimum condition (Ann
Arbor, 1944) chap. VIII.

(29) Artin-Neabitt'Thrall, p. 76.
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minimaux (élément du «groupe de Brauer » des classes d'algèbres simples
de centre Z (30)).

Inversement, d'ailleurs, si G est une algèbre simple de centre Z, contenant
un sous-corps commutatif TdZ tel que [C:Z] [T:Z]2, on peut identifier

C à Fanneau des endomorphismes d'un espace vectoriel F sur le corps
K° ; soit 5 l'anneau des endomorphismes du groupe additif F. Les corps
T et K° sont linéairement disjoints sur Z (théorème 3) dans g ; comme K°
et C sont anneaux commutants dans 5, Fanneau commutant de î7^ K°
dans g n'est autre que Fanneau commutant de T dans 0, c'est-à-dire T
lui-même ; par suite, T ® K° est l'anneau des endomorphismes de F
considéré comme espace vectoriel sur T, autrement dit, T est corps de

décomposition de K°.
Ayant ainsi démontré la caractérisation classique des corps de

décomposition, supposons qu'un tel corps T soit galoisien sur Z, de degré n, et
soit F son groupe de Galois par rapport à Z. Pour tout automorphisme
a e F, il existe un élément uae G tel que Fautomorphisme a de T soit
restriction à T de Fautomorphisme intérieur z -+uaz u~x de C ; on a
donc uatu~x =¦- ta pour tout t e T, ce qui signifie que ua est une
application semi-linéaire biunivoque de E sur lui-même, relative à Fautomorphisme

a de T. Les n applications semi-linéaires ua sont linéairement
indépendantes par rapport à T (lemme 2b), donc, comme [G : T] n,
elles forment une base de G par rapport à T, et par suite A est un sous-
anneau galoisien extérieur de B A (££) T ; toute application semi-
linéaire de E dans lui-même, relative à a, et contenue dans G, est de la
forme tua(t e T). On en déduit aussitôt qu'on a uaut aa % uat où

aQX c T ; le « système de facteurs » (aa%) satisfait aux conditions d'associa-
tivité

et si on remplace la base (ua) par une base formée de multiples scalaires
ca uQ -= u!a, le nouveau système de facteurs {afa%) est donné par afa —

cctct câî ao,t' Si 31 désigne le groupe multiplicatif des applications
(ex, t) ->aox de FxF dans T, satisfaisant à (1), (£ le sous-groupe de 31

formé des systèmes de facteurs dégénérés de la forme (ca c* c"/), à toute
classe d'algèbres simples de centre Z admettant T comme corps de
décomposition, on fait ainsi correspondre un élément bien déterminé du groupe
quotient 3I/(£. Cette correspondance est biunivoque, car la structure de
l'anneau C est entièrement déterminée à une isomorphie près par
l'élément correspondant de 3I/(£, et nous avons vu que deux classes d'algèbres

(30) Artin-Nesbitt-Thrall, p. 75.
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simples ne peuvent donner des algèbres G isomorphes que si elles sont
identiques. On montre aisément d'autre part (31) que tout élément du
groupe $t/(£ correspond à une classe d'algèbres décomposées par T. Le
point qui, dans les exposés classiques, se démontre par des calculs assez

pénibles, est le fait que la correspondance ainsi établie est un isomorphisme
entre le groupe 9I/(£ et le groupe des classes d'algèbres décomposées par
T (32). Or, soient A et Af deux algèbres simples de centre Z, décomposées

par T ; B A(&T et B1 A'<g)T sont les anneaux d'endomor-
phismes de deux espaces vectoriels E, Ef sur le corps T ; B 0 B' (produit

tensoriel pris par rapport au corps T) est isomorphe à (A 0 Af) 0 T
(produits tensoriels par rapport au corps Z) et peut être considéré comme
anneau d'endomorphismes de l'espace vectoriel En E 0 E', produit
tensoriel de E et Er (par rapport à T) (33). Faisons maintenant usage du
lemme suivant de la théorie des produits tensoriels (33) :

Lemme 3. — Soient E, Ef deux espaces vectoriels sur un corps T, E"
E 0 E1 leur 'produit tensoriel ; si u (respectivement ur) est une application
semi-linéaire de E (respectivement Er) dans lui-même, relative à Vauto-

morphisme a de T, l'application uff de E" dans lui-même, définie par
u"(^ xi(^}xri) =J£ u(xi)&)uf(xri) (et notée u(£)u') est une application

% i
semi-linéaire relative à Vautomorphisme o\

Soient alors (£,(£' (£/; les anneaux d'endomorphismes des groupes additifs

E, Er, E", et soient C,C',Cf/ les anneaux commutants de A, A', A"
A 0 A1 dans (£, (Ê;, (^respectivement. Si ua (respectivement u'a) est

une application semi-linéaire de E (respectivement E') dans lui-même,
relative à l'automorphisme a, et permutable avec A (respectivement Ar),
le lemme 3 montre que una uo 0 ufa est une application semi-linéaire
de E" dans lui-même, permutable avec A", donc appartenant à C" ; si ua

et ufa sont biunivoques, il en est évidemment de même de u"a. Comme on
sait a priori que dans G" les applications semi-linéaires relativement à a

se déduisent toutes de l'une d'elles à un facteur près appartenant à T, on

peut prendre les u"a comme base de G" sur T ; cela étant, si uaut aatuai1
ufa ur% afat, uat, il est clair que vl!a u" aax a!Q% u!'at : c'est le « théorème

de multiplication » des systèmes de facteurs qui achève d'établir
l'isomorphisme cherché.

(31) Artin-Nesbitt-Thrall, p. 82—83.

(32) La présentation la plus simple des calculs classiques est sans doute celle de Jakobson,

Theory of rings, p. 108.

(33) Voir H. Whitney, Tensor products of abelian groups, Duke M. Journ., t. 4

(1938), p. 495—528.
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De la même manière on traite Yextension du corps de décomposition T
à un sur-corps 8 (galoisien sur Z). Nous désignerons ici par Fie groupe de
Galois de 8 par rapport à Z, par a -> a l'homomorphisme canonique de

F sur le groupe de Galois F de T par rapport à Z. Le produit tensoriel
A 0 8 (par rapport à Z) est identique au produit tensoriel B 0 8 (relatif

à T) ; or ce dernier peut être considéré comme l'anneau d'endomor-
phismes du produit tensoriel Ef E 0 8 (relatif h T, S étant considéré
comme espace vectoriel sur T) Ef étant considéré comme espace
vectoriel sur 8, Cela étant, a est une application semi-linéaire biuni-
voque de l'espace vectoriel 8 (relatif à T) sur lui-même, relative à
l'automorphisme a de T ; si u-% est une application semi-linéaire de
E sur lui-même, relative à l'automorphisme <r, et permutable avec A,
u'a Uq® a est, d'après le lemme 3, une application semi-linéaire de Er
sur lui-même, relative à l'automorphisme a de T, et permutable avec A ;

mais quand on considère E1 comme espace vectoriel sur 8, u'a est aussi
une application semi-linéaire de Ef sur lui-même, relative à l'automorphisme

a du corps $. On en conclut que les ufa forment une base par rapport

à 8 du commutant de A dans l'anneau des endomorphismes du
groupe E\ et que le système de facteurs correspondant est aa a^ - (34),

Voyons enfin comment on passe d'un système de facteurs d'une algèbre
A, décomposée par T, à un système de facteurs de l'algèbre A(U^
A 0 U, obtenue par extension du corps des scalaires Z à un surcorps
commutatif U de Z (contenu, ainsi que T, dans une extension fixe Q de
Z) ; A{U) est une algèbre simple de centre U, et elle est décomposée par
l'extension galoisienne T U de U ; il s'agit naturellement d'un système de
facteurs de A{U) par rapport à TU. On voit aussitôt (35) qu'on peut se
borner à traiter deux cas particuliers (parce que T est galoisien sur Z) ;

celui où U et T sont linéairement disjoints sur Z, et celui où U est urç

sous-corps de T. Dans le premier cas, tout automorphisme a de T par
rapport à Z s'étend d'une seule manière à un automorphisme (noté encore
a) de T U par rapport à U ; soit E! l'espace vectoriel sur T U obtenu par
extension à T U du corps des scalaires T de E ; si ua est une application
semi-linéaire de E sur lui-même, relative à l'automorphisme a de T et
permutable avec A, il est immédiat que ua se prolonge d'une seule
manière en une application semi-linéaire de E1 sur lui-même, relative à

l'automorphisme a de T U, et permutable avec A 0 U ; donc le système
de facteurs ne change pas.

(34) Cf. Artin-NeabiU'Thrcdl, p. 91—93.

(35) Artin-Nesbitt-Throll, p. 89—91.

183



Au contraire, dans le second cas, on a TU T ; l'anneau commutant
de A 0 U dans (£ n'est autre que l'anneau C' commutant de U dans
Vanneau C, évidemment engendré par les ua permutables avec U, c'est-
à-dire correspondant aux a du groupe A de T par rapport à U ; le système
de facteurs est alors formé des ao% où a et r parcourent seulement le

groupe A.
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Note ajoutée pendant la correction des épreuves : Pendant l'impression de ce

travail est paru un article de T.Nakayama et O.Azumaya : On irreducible rings, Ann.
of Math. t. 48 (1947) p. 949—965, qui aborde la théorie des anneaux simples dans le môme

esprit que le présent travail, et contient un certam nombre de résultats communs, notamment

nos théorèmes 1, 5 et 8 a.
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