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La théorie de Galois
des anneaux simples et semi-simples ()

Par Jeax DieuponNNE, Nancy

Nous nous proposons, dans ce travail, de généraliser dans différentes
directions la théorie de Galois des corps non commutatifs développée ré-
cemment par MM. N. Jacobson (2) et H. Cartan (3), et qui elle-méme
contient comme cas particulier la théorie de Galois classique des corps
commutatifs. Notre généralisation consiste, d’une part, & considérer, au
lieu de corps, des anneaux simples ou semi-simples, et d’autre part, &
éliminer les restrictions de «dimension finie » qui interviennent dans la
théorie de Jacobson-Cartan. Les outils principaux dans cette étude sont,
d’une part les propriétés des sous-anneaux commutants d'un anneau d’en-
domorphismes d’un groupe abélien, et d’autre part 1’utilisation d’une
idée (qui remonte & Dedekind et Artin, et a déja été exploitée avec succes
par N. Jacobson et H. Cartan dans les mémoires précités) relative a I’in-
dépendance linéaire de certains types d’endomorphismes.

1. Sous-anneaux commutants d’un anneauw d’endomorphismes. Soit E
un groupe abélien additif (sans opérateur), € son anneau d’endomor-
phismes ; nous considérons dans ce qui suit diverses structures de groupe
abélien & opérateurs définies sur £ par la donnée de sous-ensembles de €
(généralement des sous-anneaux) dont les éléments sont pris comme opé-
rateurs sur & . Lorsqu’on considere sur £ une telle structure, définie par
la donnée d’une partie 2 de E, 'anneau d’endomorphismes du groupe
abélien d opérateurs E ainsi défini n’est autre que le sous-anneau de €
formé des éléments qui permutent avec tous les éléments de 2; nous
dirons que c¢’est le sous-anneau de € commutant avec 2 (ou encore 'an-
neaw commutant de 2 dans €) ; il contient toujours I’élément unité de €.

Nous aurons parfois & considérer sur € la topologie de la convergence
sitmple, lorsqu’on prend sur E la topologie discréte ; autrement dit, c’est

(1) Les numéros entre crochets renvoient & la bibliographie placée & la fin de ce travail.
(2) Voir [5] et [8].
(3) Voir [2].
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la topologie induite sur € par la topologie de I’espace produit EZ de
toutes les applications de ¥ dans ¥ ; il est immédiat que € est fermé dans
E®. D’autres part, pour cette topologie, on vérifie aussitot que les appli-
cations (u,v) >u+ v, u—> —u et (u,v) >uv sont continues,
autrement dit, € est un anneawu topologique (4) ; par suite, ’'anneau com-
mutant d’une partie quelconque de € est fermé.

Commengons par rappeler le lemme suivant, cas particulier d’un résul-
tat de V. Jacobson (5) :

Lemme 1. — St K est un sous-corps de €, contenant Uélément unité de €,

et A Uanneau commutant de K dans €, K est Uanneau commutant de A
dans €.

Tout sous-corps de € contenant 1’élément unité de € est donc fermé.

Soit maintenant £ une partie de € telle que E, considéré comme groupe
a opérateurs sur £, soit complétement réductible (6), c’est-a-dire somme
directe d’une famille (finie ou non) (M ,) de sous-groupes simples ; nous
supposerons en outre qu’aucun des M, n’est annulé par 2 ; rappelons
comment on détermine la structure de I'anneau A4 commutant avec
Q (7). Soit (G)) la famille des composants homogénes de E : nous appelons
ainsi les sous-groupes de £ obtenus en faisant la somme de ceux des M,
qui sont deux & deux isomorphes ; F est somme directe des G, ; soit ¢ (x)
le composant dans G d’un élément quelconque z de E. A chaque endo-
morphisme % e A correspond de fagon biunivoque une famille (u,,), ot
u,) est la restriction de ¢, % & G ; mais si A # pu, on a nécessairement
u,) = 0, car pour tout a tel que M, c (), la restriction de u,) & M,
est un homomorphisme de M, dans G, donc est un isomorphisme ou est
identiquement nulle ; mais dans le premier cas, w,)(},) serait un sous-
groupe simple isomorphe & M, et contenu dans &, , ce qui est impossible,
puisque G, est somme directe de sous-groupes simples non isomorphes &
M,. Il y a donc correspondance biunivoque entre e A et la famille
(u))) ; uyy est la restriction de u & G, et est un endomorphisme de @, ; on
Pidentifiera d’ailleurs & I’endomorphisme c)ucye 4, identique & wuy)

(4) Voir N. Bourbaki, Eléments de Mathématique, Topologie générale, chap. III,
§5 (Actual. Scient. et Ind., n° 916, Paris (Hermann), 1942).

(5) Voir [6], p. 233, th. 7.

(6) Les propriétés fondamentales des modules complétement réductibles sont rappelées
par exemple dans [3], p. 49—50. Nous dirons qu’un module complétement réductible est
semi-simple 8’il est somme directe d’un nombre fint de modules simples.

(7) Voir [9], p. 166-—169 pour le cas d’un module semi-simple, et [3], p. 55, pour le cas

général. Voir aussi N. Jacobsen, The theory of rings (Math. Surveys, n° 2, 1943),
p- 25, th. 11 et 12.
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dans @), & 0 dans les autres G, ; si 4, est 'anneau des u,, (identifié &
I'anneau des endomorphismes de (), A est donc isomorphe au produst
des anneaux 4,.

Etudions chacun des 4 ). Désignons par M un des sous-groupes simples
M, dont G est somme directe, et pour chacun des indices «, soit ¢, un
isomorphisme de M sur M. Soit L le corps des endomorphismes du sous-
groupe simple M, et e un élément 2 0 de M ; si pe L, la relation
o e = 0 entraine p = 0 puisque tout endomorphisme de M qui n’est pas
un automorphisme est nul; donc # = L-e est un espace vectoriel &
gauche sur L, de dimension 1; I’ensemble des endomorphismes de cet
espace vectoriel est un corps L°® opposé & L, et I est aussi un espace vec-
toriel de dimension 1 sur L°. Si on pose F, = ¢,(F), F, est un espace
vectoriel de dimension 1 sur le corps L, = ¢, L ¢, ' des endomorphismes
de M, et son corps d’endomorphismes est L% = ¢, L°¢,'; on peut
considérer chacun des F, comme espace vectoriel de dimension 1 sur L°,
en posant, pour tout peL® et tout =z, = @ (z) eF,, oz, = p,(0x).
La somme directe N des F, est donc un espace vectoriel sur L°; nous
allons voir que les restrictions des endomorphismes u ¢ 4, & N sont des
endomorphismes de cette structure d’espace vectoriel de N, et que réci-
proquement, chacun endomorphisme de cette structure est restriction
d’un endomorphisme et un seul appartenant & 4,. En effet, soit A, (x) le
composant dans M, d’un élément quelconque x ¢, ; un endomorphisme
quelconque wu e 4, est entierement déterminé par la donnée de ses res-
trictions u, aux M, et chaque u, est entiérement déterminé par la donnée
des wg, = hgu,, représentation de M, dans Mg ; comme, pour tout
%, 7 0 dans M, on a u,(x,) = 3 hg (u,(2,)) et que la somme du second

8

membre n’a qu'un nombre fini de termes non nuls, on a ug, = 0 sauf
pour un nombre fini d’indices § (pour chaque indice «). Cela étant, v, =
Pa Pz ' Ug, st un endomorphisme de M, ; il applique donc F, dans lui-
méme, donc ug, applique ¥, dans Fg; en outre, pour tout z, = ¢,(z),
avec xeF, et tout geL° on a par définition v,(ox,) = v, (p.(0%)),
d’olt ug,(0z,) = @g(v(ex)) ot v = @;" v, @, est un endomorphisme de
M; on a par suite v(px)= gv(x), et par définition ¢g (ov(x)) =
e 9g(v(2)), ce qui montre que u est bien un endomorphisme de 1’espace
vectoriel V. Inversement, tout endomorphisme de cet espace vectoriel
est la restriction d’un endomorphisme u e 4, et d’'un seul; en effet, si
ug, est une application linéaire de I’espace vectoriel F, dans I’espace vec-
toriel Fg, on voit comme ci-dessus que ug, = @gv ¢z, olt v est un endo-
morphisme de ’espace vectoriel F ; par suite, v appartient au corps L,
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et ug, est bien la restriction & ¥, d’'un endomorphisme de M, dans My ;
ce dernier est d’ailleurs unique, puisqu’un endomorphisme de M, dans My
qui s’annule en un point # 0 de M est identiquement nul.

Nous avons ainsi prouvé que A, est isomorphe & 'anneau de tous les
endomorphismes de I'espace vectoriel N sur le corps L° ; cherchons mainte-
nant, dans I’anneau €, le sous-anneau B commutant avec 'anneau A4 =
ITA, . Pour cela, remarquons que M est un espace vectoriel sur le
A

corps L ; soit (e,) une base de cet espace, dont e est un des éléments, et
pour chaque y, soit IV, la somme directe de tous les sous-groupes ¢, (L- e,)
(« variable) ; il est clair que G, est somme directe des N, et d’aprés ce
qui précede, chaque N, est un module simple sur I'anneau 4, (car, étant
donné deux éléments £ 0 d’un espace vectoriel, il existe toujours un endo-
morphisme de cet espace qui transforme 1'un en I’autre) ; en outre, deux
quelconques des N, sont isomorphes (en tant que A4)-modules), car
Phypotheése que M est simple pour les opérateurs de £ entraine qu’il
existe un opérateur w € 2 au moins (ou un élément du sous-anneau de
€ engendré par 2, élément qu’on peut encore désigner par w) tel que
ey= w-¢, ce quientraine N, = w- N, et 'application # > w-x de Nsur N,
est un isomorphisme pour la structure de 4)-module, puisque % (w-z) =
w-u () pourtout u €4 par hypothése. Comme d’autre part, pour tout u e A
et tout x e @), ona u(z) = u),(x), on voit que & est un 4-module compléte-
ment réductible. La premiére partie du raisonnement montre alors que B
est isomorphe au produit des anneaux B), ou B, est I'anneau des endo-
morphismes du 4 )-module @) ; en outre, d’apres le lemme 1, le corps des
endomorphismes du 4)-module simple N est isomorphe & L°; donc B)
est isomorphe & I’anneau des restrictions &4 M des endomorphismes v € B),
et ce dernier anneau est identique & 'anneau de tous les endomorphismes
de Uespace vectoriel M sur le corps L.

L’anneau des endomorphismes £ (M) d’un espace vectoriel M sur un
corps L est un anneau primitif dans la terminologie de N. Jacobson (8).
Nous dirons que c¢’est un anneau primitif complet (9) : on sait (10) qu’il
admet un socle S qui est un anneau simple, et qu’il est entiérement déter-
miné (& un isomorphisme prés) par la donnée de son socle. Nous dirons

(8) Voir [7], p. 312.

(9) Un tel anneau peut effectivement étre caractérisé intrinsdéquement (parmi les an-
neaux primitifs) par la propriété d’étre complet pour la structure uniforme de la conver-
gence simple, quand on considére 'anneau primitif comme anneau d’endomorphismes d’un
de ses idéaux & gauche minimaux, muni de la topologie discréte. Voir [3], p. 68, et N. Ja-
cobson, On the theory of primitive rings, Annals of Mathematics, t. 48 (1947), p. 7—21.

(10) Pour la définition et les propriétés du socle d’un anneau, voir [3], p. 51 et suiv.
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qu’un produit d’anneaux primitifs complets est un anneawu semi-simple (11)
complet ; on voit aisément que son socle la somme directe des socles
des anneaux facteurs. Cela étant, soit 4 un anneau semi-simple complet,
contenu dans ¢, et contenant I’élément unité de €. Si § est le socle de A4
le sous-groupe S-E de E (engendré par les u(x), ou u parcourt S et x
parcourt E) est un S-module complétement réductible, car S étant somme
de ses idéaux minimaux, S-F est somme des sous-modules [-x, ou |
parcourt ’ensemble des idéaux minimaux de 8, et « parcourt ¥ ; mais
[-z est nul ou est un S-module simple isomorphe & [, donc S-E est
somme de S-modules simples et par suite complétement réductible; a
fortiori, 8-E est un A-module complétement réductible, car chaque [-z
est un A-module simple. On en conclut que, si S-¥ = &, E est un
A-module complétement réductible, auquel s’applique donc la théorie
précédente : ’anneau commutant de 4 est un anneau semi-simple com-
plet B ; inversement, 4 est 'anneau commutant de B. En effet, il suffit de
démontrer ce dernier point lorsque A4 est primitif complet ; si M est un
sous-module simple de £, isomorphe & un idéal minimal de 4 , L son corps
d’endomorphismes, M est un espace vectoriel sur L et ’ensemble des
restrictions des endomorphismes v e 4 4 M est identiquea ’anneau de tous
les endomorphismes de cet espace vectoriel (12) ; cet ensemble est donc,
d’aprés ce qu’on a vu plus haut, identique & ’ensemble des restrictions & M
des endomorphismes appartenant & ’anneau commutant de B ; cela ayant
lieu pour tout sous-module simple de ¥, la proposition est bien établie.
La condition 8-F = E peut encore s’exprimer en disant que A est
contenu dans 'adhérence de son socle S dans € ; cette derniére condition
entraine en effet S-F = E de fagon évidente ; réciproquement, si S-E
= I est vérifiée, pour tout endomorphisme % e 4, et un nombre fini
quelconque d’éléments z; e B, il existe un v eS tel que v(x,) = u(x;)
pour tout ¢ ; en effet, £ est alors somme directe de S-modules simples M, ;
on peut se borner au cas ou chacun des x; appartient & un M ; en grou-
pant ceux des M, qui sont isomorphes, et tenant compte de la définition
du socle d’un anneau primitif complet, on se raméne finalement & prouver
qu’étant donné un endomorphisme u, d’un espace vectoriel F, il existe
toujours un endomorphisme v, de F', de rang fint, qui coincide avec u, en

(11) La définition générale des anneaux semi-simples est due & N. Jacobson (voir [7],
p- 304). Un anneau semi-simple complet peut encore étre caractérisé intrinséquement
parmi les anneaux semi-simples par le fait d’étre représenté isomorphiquement comme
anneau d’endomorphismes de son socle S, et d’étre complet pour la structure de la con-
vergence simple dans S (muni de la topologie discréte).

(12) Voir [4], p. 61.
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un nombre fini d’éléments donnés, ce qui est immédiat. En résumé, on a
done prouvé le théoréme suivant :

Théoréme 1. — Pour tout sous-anneau semi-simple complet A de €, con-
tenant Uélément unité de €, et contenu dans Uadhérence de son socle (dans ),
le sous-anneau B de € commutant avec A est un anneau ayant les mémes
propriétés, et A est le sous-anneau de € commutant avec B.

Les conditions de 1’énoncé entrainent en particulier que 4 est fermé
dans ¢, donc non seulement contenu dans I’adhérence de son socle, mais
identique & cette adhérence. Ces conditions sont en particulier remplies
de fagon évidente lorsque A est un anneau semi-simple de longueur finie
(c’est-a-dire un anneau semi-simple au sens classique), puisqu’il est alors
identique & son socle. Par contre, on peut aisément donner des exemples
d’anneaux semi-simples complets 4 contenus dans un anneau ¢, mais
non contenus dans I’adhérence de leur socle par rapport & €. Considérons
en effet un espace vectoriel ¥ de dimension infinie, et prenons pour E
P’anneau de tous ses endomorphismes, pour 4 ’anneau (dont la structure
est isomorphe & la structure d’anneau de E) des homothéties & gauche
v —>uv de K ;si S est lesocle de 4, il est clair que S-Z est le socle de
I’anneau E, donc distinct de E .

Nous dirons pour abréger qu’un sous-anneau de € qui est semi-simple,
complet, contient 1’élément unité de € et est identique & ’adhérence de
son socle, est distingué.

Il résulte de la démonstration du théoréme 1 que, lorsque A est un
anneau primitif complet (distingué), il en est de méme de B. Soient 4, 4’
deux anneaux primitifs complets (distingués) tels que A’ < A; nous
allons préciser le théoréme 1 en montrant comment certaines relations
entre 4 et 4’ donnent, par «dualité », des relations analogues entre les
anneaux commutants B et B’'.

De fagon générale, soient 4, A’ deux anneaux primitifs complets tels
que 4’ c A et que A’ contienne 1’élément unité de 4 ; un raisonnement
d’Artin et Whaples pour les anneaux simples de longueur finie (13)
s’étend au cas général, et montre que si [, et [, sont deux idéaux minimaux
& gauche (nécessairement isomorphes) de A, A-1, et A-l, sont deux
idéaux isomorphes dans 4 ; si un idéal minimal [ de A’ est donc tel que
A -1 soit un idéal de longueur finie de 4, tout autre idéal minimal de 4’
a la méme propriété, et la longueur des idéaux de A ainsi obtenus est un
invariant, que nous appellerons ’indice (3 gauche) de A’ par rapport & 4 ;

(13) Voir [1], p. 102.
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lorsque A4-1 est somme directe d’une infinité d’idéaux minimaux de 4,
nous dirons que l'indice de A’ par rapport & A est infini ; enfin, 'indice
n’est pas défini si 4.1 n’est pas somme directe d’idéaux minimaux.
D’autre part, tout idéal minimal & gauche de 4 (ou, ce qui revient au
méme, tout 4-module simple isomorphe & un tel idéal) est un A’-module
a gauche, et deux idéaux minimaux de A4 sont des 4’-modules iso-
morphes ; si un idéal minimal de 4 est un A’-module de longueur finie,
cette longueur est un nouvel invariant, que nous appellerons la hauteur
(& gauche) de 4 par rapport & A’; si un idéal minimal de 4 est un A4’-
module complétement réductible, somme directe d’une infinité de A4’-
modules simples isomorphes & un idéal minimal de A’, nous dirons que
la hauteur de 4 par rapport & 4’ est infinie ; enfin, la hauteur n’est pas
définie lorsqu’un idéal minimal de 4 n’est pas un 4’-module compléte-
ment réductible. Il est immédiat que I'indice et la hauteur sont multipli-
catifs lorsqu’ils sont finis, c’est-a-dire que si 4 5 A'> A”, Pindice de 4”
par rapport & 4 est le produit de celui de A’ par rapport & 4 et de celui
de A” par rapport & A’, et de méme pour les hauteurs. Le produit de
I'indice et de la hauteur (quand tous deux sont finis) n’est autre, dans
le cas classique, que le degré (4 gauche) de A par rapport a A’, tel qu’il
est défini par Artin et Whaples (13) ; dans le cas général, dire que ce degré
est fini et égal & n signifie que, pour tout idéal minimal [ de 4', A -1 est
un 4’-module de longueur =.

Lorsque A et A’ sont deux anneaux primitifs complets distingués dans
€, et tels que 4’ c 4, la hauteur de 4 par rapport & A’ est toujours
définie ; en effet, £ est alors somme directe de A-modules simples M, iso-
morphes & un idéal minimal de 4 ; si 8’ est le socle de 4, on a par hypo-
thése §’-E = E, et a fortiori S’- M, = M,, puisque S’- M, c M, ;
donc M, est un 8’-module complétement réductible, et a fortiori un
A’-module complétement réductible, somme directe de A’-modules sim-
ples isomorphes aux idéaux minimaux de 4’.

Cela étant, on a la relation de dualité suivante :

Théoréme 2. — Soient A, A’ deux sous-anneaux primitifs complets dis-
tingués dans €, B et B’ leurs anneaux commutants respectifs. St A > A,
et st la hauteur de A par rapport a A’ (resp. Uindice de A’ par rapport ¢ A)
est finie, U'indice de B par rapport & B’ (resp. la hauteur de B’ par rapport @
B est fine et lut est égal.

Supposons en effet que la hauteur de 4 par rapport & A’ soit égale & p ;
conservons les notations de la démonstration du théoréme 1, en permu-
tant simplement les roles de 4 et B. Chacun des 4-modules simples M,
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est somme directe de p 4’-modules simples M}, ; en particulier, soient
M, (1 <i<p) les p A-modules simples en lesquels se décompose M .
Soit [ I'idéal & gauche minimal de B, formé des endomorphismes » du
A-module E qui sont nuls dans tous les M, distincts de M ; on peut
écrire | = Bu,, ou u, est 'endomorphisme (idempotent) nul dans les
M, distinct de M, et dont la restriction & M est 'application identique.
On a donc B’I = B’u,, et il est immédiat que cet idéal est formé des
endomorphismes u’ ¢ B’ du 4’-module E qui sont nuls dans tous les
M;, distincts des M (1 <7 < p); on voit donc que cet idéal est de lon-
gueur p dans B’, autrement dit que B est d’indice p par rapport & B’.
Le méme raisonnement montre que, si A est de hauteur infinie par rap-
port & A’, V'indice de B par rapport & B’ n’est pas défini ; de ces deux
propriétés, et de la réciprocité des sous-anneaux commutants dans €, on
déduit le théoreme.

Corollaire. — Si le degré de A par rapport a A’ est fini, le degré de B’ par
rapport & B est fini et lut est égal.

On notera que si I'indice de 4’ par rapport & A est un nombre fini ¢,
et si A’ est de longueur finie 7, 4 est de longueur finie m = nq; et réci-
proquement, si 4 est de longueur finie, » et ¢ sont nécessairement finis ;
par contre, la hauteur de 4 sur A’ peut étre infinie lorsque A est de
longueur finie.

On peut étendre les considérations qui précédent au cas ou 4 et 4’
sont des anneaux semi-simples complets (distingués dans ) quelconques ;
nous nous bornerons sur ce point & de breves indications auxquelles le
lecteur suppléera sans peine. Soit A4 =€I Ay, A'=1I14, les dé-

®

compositions de 4 et A’ en produit d’anneaux primitifs complets, B =
IIB,, B'=IIB L les décompositions analogues de leurs anneaux
A

commutants re’gpeotifs. E est somme directe de sous-groupes G, qui sont
& la fois des A-modules et des B-modules, @) étant annulé par tous les
anneaux facteurs de 4 et de B autres que A) et B). Comme A’'c 4,

@) est un 4’-module ; si H . st la partie de () qui est annulée par tous
les facteurs de 4’ sauf A H e €st un B)-module, et on vérifie aussitot
que G) est somme directe de ceux des H), (4 fixe, u variable) qui ne sont
pas nuls. Soit alors A P’anneau (pnmltlf complet) des endomorphismes
du B)-module H Ao dans I'anneau €,, des endomorphismes du groupe
additif H g A et B) admettent des représentations isomorphes AA et
B),, et A” est Panneau commutant de BM ; si By, désigne Ianneau
commutant de AM dans €,,, on est ramené, en ce qui concerne I'étude
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des quatre anneaux A;{u’ ;w Bj,» ;’F , au cas examiné dans le théo-

réeme 2. D’autre part, si G"L est la somme (directe) de ceux des H,, (4 va-
riable, 4 fixe) qui ne sont pas nuls, ¥ est somme directe des GL , qui sont
a la fois des 4’-modules et des B’-modules, G,', étant annulé par tous les
facteurs de 4’ et de B’ autres que 4, et B,,.

Lorsque A et A’ sont des produits d’un nombre fini d’anneaux primitifs
complets, nous dirons encore, pour abréger, que A est de degré fini sur A’
si chacun des A;’” est de degré fini sur A;F (pour les H,, non réduits
a 0); alors chacun des B;’F est de degré fini par rapport & B),. Dans le
cas particulier oi B est un corps et par suite 4 est primitif complet cela
signifie que B’ est de dimension finie quand on le considére comme un
espace vectoriel (& gauche) sur le corps B.

2. Sous-anneaux semi-simples complets d’un anneau primitif complet.
Nous allons & présent supposer que E est muni d’une structure d’espace
vectoriel par rapport & un corps K contenu dans ’anneau € et contenant
Iélément unité de € (14), et nous désignerons par 4 I'anneau primitif
complet (contenu dans ) formé de tous les endomorphismes de 1’espace
vectoriel £ ; K et A sont donc deux sous-anneaux commutants de €
(lemme 1), leur intersection Z est leur centre commun. Nous allons con-
sidérer les sous-anneaux B de A qui sont distingués dans € ; le sous-
anneau C de € commutant avec un tel anneau est lui aussi un anneau
distingué, d’apreés le théoréme 1, et contient évidemment K. Il y a donc
correspondance biunivoque et réciproque entre les sous-anneaux distin-
gués contenus dans A4 et ceux qui contiennent K. En particulier, si on
prend pour B ’anneau 4 lui-méme, ’anneau commutant C est identique
4 K ; si on prend pour B un sous-corps R de 4, contenant 1’élément unité
de 4, C est identique & I’anneau U (R) de tous les endomorphismes de £
considéré comme espace vectoriel sur le corps R.

Lorsque B et C sont des anneaux primitifs complets, 'indice de K par
rapport & C est identique & la longueur de C, et la hauteur de C par rap-
port & K est la dimension sur K (& gauche) d’un idéal minimal (& gauche)
de C. Le théoréme 2 montre donc que la longueur de C est égale a la
hauteur de A par rapport & B, et la dimension d’un idéal minimal de C
égale & I'indice de B par rapport & A (lorsque ces nombres sont finis). De
méme, si R et S sont deux sous-corps de 4 tels que S c R, Pindice de
S par rapport & R est 1, la hauteur de R par rapport & S égale au degré

(14) Ceci n’est 6videmment pas possible pour un groupe abélien quelconque E; on voit
aussitét que E doit étre muni d’une structure d’espace vectoriel par rapport & un corps
premier (corps des rationnels ou corps fini ayant un nombre premier d’éléments).
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(& gauche) de R sur S, d’ou les valeurs (faciles d’ailleurs & déterminer
directement) de la hauteur de U (S) sur U (R) et de I'indice de U (R) dans
U (S).

Lorsque E est de dimension 1 sur K, A est un corps isomorphe & I’op-
posé K°de K, et tout sous-anneau distingué de A est un sous-corps B de
K°; Panneau commutant C' de B est alors un anneau primitif complet,
de hauteur 1 sur K, de longueur égale au degré (a4 gauche) de K sur B:
on retrouve ainsi le résultat fondamental de Jacobson-Cartan, en tenant
compte de ce que, dans ce cas particulier, tout sous-anneau de € conte-
nant K et qui est de dimension finie sur K (& gauche) est automatiquement
un anneau simple de longueur finie (15) (naturellement, ce dernier résultat
est inexact lorsque la dimension de £ sur K est >1). Il serait intéressant
d’avoir (toujours dans le cas ol & est de dimension 1 sur K) un critére qui
caractériserait de méme les anneaux primitifs complets C' contenant K :
on peut par exemple se demander si tout anneau C contenant K et fermé
dans € est nécessairement un anneau primitif complet ?

Revenons maintenant au cas général.

Lemme 2 (16). — a) St u; (1 <i¢ < n) sont des applications semi-
linéaires (17) de E dans lui-méme, relatives a un méme automorphisme o du
corps K, et qui sont linéairement indépendantes par rapport au centre Z de
K, elles sont linéairement indépendantes par rapport @ K .

b) Soit F' un sous-espace vectoriel de € par rapport a K , engendrée par un
ensemble T d’applications semi-lindaires de E dans lui-méme. Pour chaque
classe 0 d’automorphismes de K modulo le groupe des automorphismes inté-
rieurs de K , on désigne par F, le sous-espace de F engendré par les applica-
tions semi-lindaires w e T relatives & un automorphisme appartenant a la
classe 0 ; Uespace F est alors somme directe de ceux des sous-espaces Fy qui
ne sont pas réduits a 0.

Nous démontrerons d’un seul coup les deux parties du lemme. Consi-
dérons un nombre fini d’applications semi-linéaires u; de E dans lui-
méme, non identiquement nulles, et relatives respectivement aux auto-
morphismes ¢, de K (1 <7 < p). Supposons que les u, soient linéairement

dépendantes par rapport & K, et soit ¥ A, u; = 0 une relation primor-
B

(15) Voir [8], p. 28, th. 2.
(16) Voir [8], p. 29, lemma 1 et p. 29, lemma 2, et [2], p. 68, lemme 1.

(17) Rappelons qu’une application » d’un espace vectoriel E (par rapport & un corps K)
dans lui-méme est dite semi-linéaire relativement & un automorphisme ¢ de K si on a
u(2 + y) = u(x) + u(y) et u(Ax) = A%u(x) quels que soient z, y dans E et 1 dans K.
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diale (18) entre les u,, & coefficients 4, ¢ K. Pour tout x ¢ £, on a donc
> A, u;(x) =0, donc aussi, pour tout ueK, ¥ 4, u,(ux) =0, c’est-a-
; i

1)
dire 3 4, u% u;(x) = 0; cette derniére relation ayant lieu pour tout

?
x ek, signifie que ¥ 4, u% u, = 0; en vertu de ’hypothése, il existe
i

doncun g e K tel que A; u’ = p A; pour tout ¢ tel que 4, = 0; comme
il y a par hypothése un de ces indices k tel que 4, =1, ona o = u’*,
d’ott u% = A7' u°% 2, pour tout s tel que 1, # 0 et tout ue K. Sion
prend tous les ¢, égaux & un méme o, cela montre que les 4, = 0 sont
dans le centre de K, et établit la premiére partie du lemme. Pour dé-
montrer la seconde, il suffit de supposer que ceux des u, qui correspondent
a des o, d’'une méme classe 0 sont linéairement indépendants; on voit
alors que ceux des 4, = 0 doivent correspondre & des o; d’'une méme
classe, et on obtient une contradiction en supposant les u, linéairement
dépendantes.

La premieére partie du lemme 2 montre aussitot que :

Théoréme 3. — Dans €, U'anneau A et le corps K sont linéairement dis-
joints (19) par rapport a leur centre commun Z .

Le sous-anneau de € engendré par K et A est donc identique & l’en-
semble des combinaisons linéaires d’éléments de A & coefficients dans K,
et isomorphe au produit tensoriel K Q) A de K et de A par rapport a Z.
I’anneau commutant de K ) 4 dans € est évidemment ’intersection
des anneaux commutants de K et de 4, autrement dit est identique & Z ;
nous savons que 'anneau U(Z) commutant de Z est 'anneau de tous
les endomorphismes de £ considéré comme espace vectoriel sur Z ; lors-
que A est de degré fini sur Z, le calcul des degrésde K ) A et de U (Z)
par rapport & Z donne aussitot le résultat classique KQ 4 = U(Z);
mais il n’en est pas de méme en général. De fagon plus précise, prenons
dans Z une base (e¢)) par rapport & K ; pour tout « € K, désignons par 4,
Pendomorphisme de I’espace vectoriel £ tel que hy(e)) = a e, pour tout
A («matrices diagonales ») ; on vérifie aussitét, que d’une part les A, for-
ment un sous-corps de 4 contenant Z, isomorphe & 'opposé K° de K,

(18) Voir N. Bourbaki, Eléments de Mathématique, Algébre, chap. I1, § 5 (Actual.
Scient. et Ind., n° 1032, Paris (Hermann), 1947).

(19) On dit que deux sous-algdbres G, H d’une algébre F sur un corps commutatif S
sont lindairement disjointes par rapport & S si: 1° elles ont un élément unité commun;
20 tout élément de G est permutable avec tout élément de H; 3° toute base de H par
rapport & S est linéairement indépendante par rapport a G.
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et que nous noterons K°; d’autre part, que le sous-anneau L de 4 commu-
tant avec K° est I’ensemble des endomorphismes u de E tels que u(e))
soit combinaison linéaire des e, & coefficients dans Z (si F est le sous-espace
de K par rapport au corps Z, engendré par les e, L est isomorphe & I’an-
neau des endomorphismes de cet espace vectoriel, et est donc un anneau
primitif complet). Cela étant, soit (6,) une base de K par rapport & Z;
pour tout endomorphisme we A, ona u(e) = X o, ¢, (e, = 0 sauf

N
pour un nombre fini d’indices x, dépendant de 1) ; si gy, = X y,,, 0,, ol
1 4

Vv € Z, on peut écrire u(e)) = X 0, v,(e)), ot v,(e)) = Xy, €, les
v 2

v, appartenant donc & L ; si K ou L est de degré fini sur Z, ceci montre que
4 = K°Q) L; au contraire, si K et L sont de degré infini sur Z, on ne

peut plus écrire (au sens usuel de l’algebre) v = ¥ 6,v,, caril y aura en
4
général une infinité d’indices » tels que v, #% 0; mais cette relation est

exacte si on interpréte le second membre comme une somme infinie dans
Panneau topologique € ; autrement dit, A est alors 'adhérence dans € du
produit tensoriel K°Q) L.

Cela étant, si K est de degré finisur Z,ona KQ A = (KQ KR L,
et K& K° peut étre identifié & 'anneau de tous les endomorphismes
d’un des espaces vectoriels K ey de dimension finie sur Z ; d’ou on déduit
aisément (’espace vectoriel £ sur Z pouvant étre considéré comme pro-
duit tensoriel de F et d’un des Ke)) que I'on a dans ce cas KKXA=U (Z).
Au contraire, cette relation est inexacte par exemple lorsque K est de
degré infini sur Z et £ de dimension 1 sur K (autrement dit, lorsque
A = K9 ; en effet, on sait alors (20) que K &) K° est un anneau simple
ayant un élément unité ; mais un tel anneau ne peut avoir d’idéaux mini-
maux, donc ne peut étre identique & U (Z). On peut se demander si dans
ce cas U (Z) est ’adhérence de K X K° dans € : on vérifie aisément qu’il
en est ainsi lorsque K est localement fini sur Z, c’est-a-dire que toute
partie finie de K engendre un sous-corps de K de degré fini sur Z ; mais
nous ne savons pas répondre & la question dans le cas général.

3. Sous-anneaux galoisiens d’un anneau primatif complet. Nous dirons
qu’un sous-anneau distingué B de 1’anneau primitif complet 4 est galoi-
sien (respectivement fortement galoisien) si tout élément de 1’anneau C
commutant de B dans § est combinaison linéaire & coefficients dans K,
d’applications semi-linéaires de I’espace vectoriel E (sur K) dans lui-méme

(20) Voir [1], p. 98, th. 7.
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(respectivement de di-automorphismes de K, c’est-a-dire d’applications
semi-linéaires biunivogques de E sur E). Nous dirons que B est un anneau
galoisien (respectivement fortement galoisien) intérieur si C est formé de
combinaisons linéaires d’endomorphismes (respectivement d’automorphis-
mes) de I’espace vectoriel £ sur K.

Le théoréme suivant généralise un résultat de Cartan-Jacobson (21):

Théoréme 4. — Si¢ B est un sous-anneau galorsien de A, tout sous-
anneau distingué B’ de A tel que Bc B’ < A, est galoisien.

Par hypothése, ’'anneau C' commutant de B dans € admet une base
(par rapport & K, & gauche) formée d’applications semi-linéaires u, ; nous
désignerons par ¢, l'automorphisme du corps K correspondant & u,.
L’anneau C’ commutant de B’ dans € est un sous-espace vectoriel de C
(par rapport & K); comme il est engendré par ses éléments primordiaux
par rapport & la base (u,) de C (17), il suffira de prouver qu’un tel élément
v est nécessairement une application semi-linéaire de £ dans lui-méme.

Par hypothése, on a v = ¥ ay u), d'out v(ux) = 3 oy u? uy(x) pour
A A
tout ue K, ce qui s’écrit aussi v p = ¥ ay u’ u). Comme C’ contient
A

K, vy appartient & C’; comme o) = 0 entraine que le coefficient de u,
dans v, est 0, il résulte des propriétés des éléments primordiaux qu'’il
existe o e K tel que ayu’® = pay pour tout 4; comme il existe un
indice » tel que «, =1, ona g = u’», et par suite v(ux) = u’vv(2)
pour tout zeE et tout ue K, ce qui démontre la proposition.

L’anneau 4 est évidemment galoisien ; il en est de méme de Z lorsque
K est de degré fini sur Z : on a vu en effet au n° 2 qu'on a alors U(Z) =
KQ® A, ce qui prouve que Z est alors un anneau galoisien intérieur ;
lorsque K est de degré infini sur Z, Z ne peut certainement plus étre tou-
jours un anneau galoisien intérieur, puisqu’en général K Q A +# U(Z);
nous ignorons s8’il peut encore étre galoisien.

La notion d’anneau galoisien intérieur se rattache a la théorie des sous-
anneaux commutants de l'anneau A (et non plus de €) par le théoréme
suivant :

Théoréme b. — Pour qu’un sous-anneau distingué B de A soit galoisien
intérieur, il faul et il suffit qu’il soit Uanneau commutant dans A , d’un sous-
anneau D contenant Z et tel que K Q D soit un sous-anneau distingué de
& ; D est alors Uanneau commutant de B dans A.

(21) Voir [8], p. 34, th. 7, et [2], p. 66, th. 2.
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La condition est nécessaire, car si B est galoisien intérieur, son anneau
commutant C' dans € est formé des combinaisons linéaires & coefficients
dans K des éléments de 'anneau D = CN 4, donc (théoréme 3) est
identique & K @ D, et on sait (théoréme 1) qu’il est distingué dans € ;
D contient évidemment Z = KN A; son anneau commutant dans A
est 'intersection de A et de I’anneau commutant de D dans € ; comme A
est anneau commutant de K dans €, ’anneau commutant de D dans A4
est anneau commutant, dans €, de ’anneau engendré par K et D, c’est-
a-dire de K @ D, donc (théoréme 1) il est identique & B. La réciproque
est immédiate ; en outre, ’anneau commutant de B dans A est ’inter-
section de C et, de 4, donc D.

On a en particulier les corollaires suivants, qui généralisent des résultats
classiques (22):

Corollaire 1. — Pour qu'un sous-anneau B de A soit galoisien intérieur
dans A, et tel que A sort de degré fine sur B, il faut et il suffit qu’tl soit
Panneau commutant, dans A, d’un sous-anneau semi-simple D de degré finz
sur Z .

En effet, si D est semi-simple et de degré fini sur Z, KX D est semi-
simple de longueur finie, donc distingué dans €. Inversement, si K QD
est semi-simple et de degré fini sur K, D est de degré fini sur Z et est semi-
simple, car 8’il contenait un idéal nilpotent a = (0), K X a serait un
idéal nilpotent %0 dans K @ D.

Corollaire 2. — 87 K est de degré fint sur Z, pour tout sous-anneau D de
A, distingué dans € et contenant Z , Uanneau commutant de D dans 4 est un

sous-anneau galoisien intérieur B de A, et D est Uanneau commutant de B
dans A4 .

En effet, D est par hypothése un produit II D) d’anneaux primitifs
A

complets, et £ se décompose en somme directe de D-modules £, qui sont
aussi des espaces vectoriels sur K, et sont tels que £ est annulé par tous
les D, d’indice # A, et que I'on ait S)-E) = E,, en désignant par S, le
socle de D) (cf. n® 1). Soit (6,) une base de K par rapport & Z ; par défini-
tion, tout élément de K@ D s’écrit d’une seule maniére u = X 0, v,,

1]
ol v, e D; la restriction de u & E) est donc uy = ¥ 0, v;,, ol v;, est la

13
restriction de v, & K ; par suite u) est un endomorphisme de £, qui ap-
partient &4 K X D,, si on identifie & D) I’anneau des restrictions a E)

(22) Voir [1], p. 104, th. 13 et p. 105—1086, th. 16.
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des endomorphismes v e D; réciproquement, si pour chaque 4, on se
donne arbitrairement un endomorphisme u,e¢ K Q D, de E,, I'endo-
morphisme u de £ dont la restriction a chaque E, est u), appartient &
K@ D; on peut donc considérer K @ D comme I’anneau produit des
K Q@ D,, et la proposition sera démontrée si on établit que K & D, est
un anneau primitif complet, distingué dans I’anneau €, des endomor-
phismes du groupe Z,.

En d’autres termes, on est ramené & démontrer le corollaire lorsque D
est primitif complet. £ est somme directe de D-modules simples M, iso-
morphes & un idéal minimal de D; et si M est I'un d’eux, tout endo-
morphisme u ¢ D est entiérement déterminé par sa restriction & M. Si H
est le corps des endomorphismes du D-module M, (e,) une base de M
considéré comme espace vectoriel sur H, F 1’espace vectoriel sur Z en-
gendré par les e,, on voit comme & la fin du n® 2 que D est 'adhérence,
dans €, du produit tensoriel H°) L, ou L est ’anneau des endomor-
phismes de 1’espace vectoriel ' (H° et L pouvant étre considérés comme
formés d’endomorphismes de £, et non seulement de M, au moyen d’iso-
morphismes de M sur les M,). Comme K est de degré fini sur Z, il est
clair quen KQ D est I’adhérence, dans €, de KQQ (H°QL) =
(KQ H*) Q L; d’autre part, K Q) H° est un anneau simple de longueur
finie ; si [ est un idéal & gauche minimal de K X H°, nous allons voir que
la somme P des (K & H°-modules simples [ e, est directe. Il suffit pour
cela de voir que les e, sont linéairement indépendants par rapport &
K @ H?; or, la démonstration du théoréme 1 montre que, si G est 'an-
neau commutant de D dans €, les G-modules N, = G-e, sont simples,
et £ somme directe des NV, ; comme G contient K, et que H%e, = He,
est contenu dans N ys (K Q) H°) e, est contenu dans N y» C& qui établit
notre assertion. Soit alors R le corps des endomorphismes de 1’idéal [ ; il
existe un nombre fini d’éléments w; de I tels que les w; e, forment une
base de I’espace vectoriel P sur le corps R. Nous allons voir que, dans
I’anneau d’endomorphismes du groupe P, les restrictions & P des endo-
morphismes % ¢ K Q) H°Q L forment un anneau partout dense dans
I’anneau 8 de tous les endomorphismes de ’espace vectoriel P sur le
corps R. Il suffit pour cela, comme on le voit aisément, de montrer que,
quels que soient les indices j, k, v, 6, et g ¢ R, il existe un endomor-
phisme e K Q H'Q L tel que u(w;e,) = pw,es, et u(w,e) =20
pour (k,e) # (j,y); or, il existe v” e L tel que v”(ey) = e5, et v"(e;)
= 0 pour & # y; d’autre part, comme K ) H°® peut étre identifié &
I’anneau d’endomorphismes de 1’espace vectoriel [ sur R, il existe
v' e K H® tel que v'(w;) = pw, et v'(w,) = 0 pour h £ §; en pre-
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nant u = v’v” onrépond & la question. Ce raisonnement montre en méme
temps que P est un module simple sur K Q H*Q L. Or, on peut a
partir de chacun des M,, définir ainsi un module simple P, sur
KQ® H*Q L, isomorphe & P ; E étant somme des M «> est aussi somme
des P,, donc somme directe d’une sous-famille des P, ; en raison de I’iso-
morphie des P, 'anneau S peut étre considéré comme anneau d’endo-
morphismes de chacun des P,, donc aussi de £ ; ce qui précéde montre
que S est un anneau primitif complet, distingué dans €, et que KQ H'Q L
est partout dense dans §; on a donc § = K@ D, ce qui achéve le
raisonnement.

On notera qu’il ne suffit pas, pour que B soit galoisien intérieur, qu’il
admette dans 4 un anneau commutant D contenant Z et tel que K & D
soit distingué : c’est ce que montre déja la théorie de Cartan-Jacobson
lorsque A est un corps et B un sous-corps galoisien de 4, tel que le
groupe des automorphismes de 4 par rapport & B contienne des auto-
morphismes extérieurs de 4.

En outre, si B est un sous-anneau galoisien intérieur de 4, son anneau
commutant D dans 4 n’est pas nécessairement un anneau galoisien inté-
rieur, comme le montre le cas ou on prend B = A4, lorsque K est de
degré infini sur Z.

Il est naturel de se demander si la distinction que nous avons intro-
duits entre anneaux galoisiens et anneaux fortement galoisiens est réelle,
¢’est-a-dire §’il existe des anneaux galoisiens mais non fortement galoi-
siens. Nous ne savons malheureusement pas répondre & cette question ;
il est classique que dans ’anneau d’endomorphismes d’un espace vectoriel
de dimension finie tout élément est combinaison linéaire d’automorphis-
mes de I’espace vectoriel ; autrement dit, tout sous-anneau primitif com-
plet B de 4 qui est galoisien intérieur et tel que son anneau commutant
C dans € (ou son anneau commutant D dans A) soit de longueur finie
(ce qui revient & dire que la hauteur de 4 par rapport & B est finie) est
fortement galoisien ; mais nous ignorons si la méme propriété est vraie
pour tout sous-anneau galoisien intérieur (cela reviendrait & prouver que
tout endomorphisme d’un espace vectoriel de dimension infinie est com-
binaison linéaire d’automorphismes de cet espace, ce qui ne parait pas
pouvoir se faire par les mémes procédés que dans le cas des espaces de
dimension finie). Dans la théorie de Jacobson-Cartan (E de dimension 1
sur K) la distinction entre sous-corps galoisiens et sous-corps fortement
galoisiens n’a pas de raison d’étre, toute application semi-linéaire de E
dans lui-méme qui n’est pas identiquement nulle étant ipso facto une
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application biunivoque de £ sur lui-méme. Enfin, nous allons indiquer
un autre cas, qu’on peut considérer comme & ’opposé de celui des anneaux
galoisiens intérieurs, ol un anneau galoisien B est nécessairement forte-
ment galoisien. Il résulte du lemme 2b) que 'anneau C, commutant de
B dans €, peut (en tant qu’espace vectoriel sur K) étre décomposé en
somme directe de sous-espaces ('), les éléments de C) étant combinaisons
linéaires (& coefficients dans K) d’applications semi-linéaires telles que
deux quelconques d’entre elles u, ' soient relatives & des automorphis-
mes o, ¢’ de K congrus modulo le groupe des automorphismes intérieurs
de K (autrement dit, tels que o’ ¢! soit un automorphisme intérieur) ;
chaque application semi-linéaire de £ dans lui-méme qui appartient a
C appartient nécessairement & un des C) ; en particulier, nous désignerons
par C, celui des sous-espaces C', qui est engendré par les applications
linéaires de B dans lui-méme (c’est naturellement un anneau, intersection
de C et de K A). Cela étant, nous allons considérer le cas ot C, se
réduit & K (cas ol on peut dire que B est un sous-anneau galoisien exte-
rieur) (23):

Théoréme 6. — Lorsque Cy = K et que A et C sont des anneaux simples
de longueur finie, chacun des C) est de la forme Ku,, ou u) est un diauto-
morphisme de Uespace vectoriel E , relatif a un automorphisme oy de K ; en
outre, les o) et les automorphismes intérieurs de K engendrent un groupe I'
tel que le groupe des automorphismes intérieurs de K ait par rapport a I' un
wndice fins égal au degré de C sur K.

En effet, soit ) # 0 une application semi-linéaire de £ dans lui-méme
appartenant & un C, distinct de K. Comme C est un anneau simple de
longueur finie, 1’idéal bilatére Cu)C de C est nécessairement identique &

C; il existe donc une relation de la forme 1= ¥ o, v, u) w,;, ou les a,
s

appartiennent & K et ol les v, et w, sont des applications semi-linéaires
de £ dans lui-méme. Cela étant, chacun des produits v, u)w,, étant une
application semi-linéaire de £ dans lui-méme, appartient & un des C);
comme (' est somme directe des C,, il résulte de la relation 1 = ¥ o,;v,u)w;

L
que I'un au moins des produits v, u) w,; appartient & K et est 0 ; cela
signifie que v, uy w; est un diautomorphisme de Z, et comme E est de
dimension finie sur K par hypothése, on sait que cela n’est possible que
lorsque chacun des facteurs v,, u),w,; est un diautomorphisme ; autre-
ment dit, toute application semi-linéaire de £ dans lui-méme appartenant

(23) Lorsque E est de dimension 1 sur K, ce cas est celui étudié par N. Jacobson dans[5]).
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a C et 70 est un diautomorphisme. L’hypothése que 4 et C sont de lon-
gueur finie entraine que C est de degré fini n sur K, c’est-a-dire un espace
vectoriel de dimension n (& gauche) sur K; comme v —vu) est une
application linéaire biunivoque de cet espace dans lui-méme, c’est un
automorphisme de cet espace vectoriel, donc ;' appartient & C'; Pappli-
cation v — v u;' applique C) dans K et ’application v — v u, applique
K dans ('), ce qui montre que C) est de dimension 1 sur K, autrement dit
C) = K uy pour tout 4;le produit u) u, étant de la forme o« wu, (x € K),
la fin de la démonstration est triviale.

Avec les mémes hypothéses sur ’anneau galoisien «extérieur » B (c’est-
a-dire que A4 et B sont simples de longueur finie, et 4 de degré fini sur B),
on voit que si on désigne par s, 'automorphisme v — u) v u;! de 4, les
§) forment un groupe fini § d’ordre n, et B est le sous-anneau de 4 formé
des éléments invariants par ® ; on peut donc appeler ® le groupe de Galois
de A par rapport & B. Il est facile de voir que, réciproquement, tout auto-
morphisme de 4 laissant invariants les éléments de B, appartient & ® :
en effet, on sait (24) que tout automorphisme de 4 est de la forme
v —>uvul, ouu est une application semi-linéaire de E dans lui-méme ;
comme u doit étre permutable avec tout élément de B, u appartient a C
et est donc nécessairement de la forme «u,, d’ou la proposition. Le
théoréme 4 montre ici que tout anneau simple B’ tel que Bc B'c A4,
est aussi un anneau galoisien extérieur, et qu’il y a correspondance biuni-
voque entre ces anneaux et une certaine famille de sous-groupes de ®
(savoir ceux tels que la somme des Ku), correspondants soit un sous-
anneau simple de C).

Etudions maintenant de plus prés la structure des sous-anneaux galoi-
siens B de 4, en conservant les notations du théoréme 6. Nous ne pour-
rons dire que peu de choses dans le cas général oi on ne suppose pas B
fortement galoisien, méme lorsque A est de longueur finie et de degré fini
sur B; nous ignorons si dans ce cas les classes des automorphismes o,
(modulo le groupe des automorphismes intérieurs de K) forment un
groupe, car il n’est pas exclu que l'on ait C),-C, = (0) pour certains
couples d’indices ; nous ne pouvons méme dire si le groupe engendré par
ces classes est fini, ni si le sous-anneau C, de C est semi-simple. Pour les
sous-anneaux B fortement galoisiens, nous avons des renseignements plus
précis. Chacun des C) admet alors par hypothése une base (par rapport &
K) formée de diautomorphismes ; dans I’hypothése ot C est de degré fini
sur K (c’est-a-dire 4 de degré fini sur B, mais pas nécessairement de lon-

(24) Voir [3], p. 89—71 et [4], p. 59—60.
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gueur finie), pour chacun de ces diautomorphismes u,, on voit comme
dans le théoréme 6 que v — v u) est une application biunivoque de C sur
Iui-méme ; par suite, les classes des automorphismes o), (modulo le groupe
des automorphismes intérieurs de K) forment un groupe fint ® d’ordre n,
et chacun des (', a méme dimension d sur K, d’ou résulte que le degré de
Csur K est égal & nd.

Les o) induisent sur le centre Z de K un groupe fini d’automorphismes
G (isomorphe & un groupe quotient de ®); ’ensemble des éléments de Z
invariants par G, qui est identique & BNZ = BN K, est donc un
sous-corps de Z tel que Z soit galoisien sur BN Z (méme lorsque B n’est
pas fortement galoisien et que C' est de degré infini sur K, BNZ est
I’ensemble des éléments de Z invariants par une famille d’automorphismes

de ce corps, et est donc toujours un corps). En outre :

Théoréme 7. — Le corps K et Uanneau B sont linéairement disjoints sur
le corps BN Z.

En effet, soit (v;) une famille finie d’éléments de B, linéairement in-
dépendants sur le corps BN Z ; supposons qu’ils ne soient pas indépen-
dants par rapport & Z ; il existerait alors entre les v, une relation primor-

diale ¥ o, v, = 0 a coefficients dans Z. Pour chacun des «,, on a donc
i

aussi X u) a; v; = 0, ce qui équivaut & I o2 uy v, = 0, et comme u,
i i

est permutable avec chacun des v,, on a aussi (¥ af*v;) uy = 0 ; enfin,
B

u) étant inversible dans € par hypothése, cette relation est équivalente
a X ajrv, = 0. En vertu de ’'hypothése, il existe donc g ¢Z tel que
i

ajr = g a; pour tout ¢, et comme on a «;, = 1 pour un indice ¢ au
moins, on & ¢ = 1, «, est invariant par chacun des automorphismes a,,
et par suite appartient & BN Z, ce qui est contraire & I’hypotheése. Les
v, sont donc linéairement indépendants par rapport & Z, et par suite aussi
par rapport a K d’apres le théoréeme 3.

On notera que le théoréme 7 est valable méme lorsque A4 est de degré
infini sur B (B étant toujours supposé fortement galoisien).

Le sous-anneau de A engendré par B et Z est donc identique & leur
produit tensoriel B Z (par rapport au corps BN Z); supposons
que Z soit de degré fini n sur BNZ (c’est-a-dire que le groupe G
engendré par les restrictions des o), a Z soit fini, ce qui est toujours
le cas, d’aprés ce qui précede, lorsque A est de degré fini sur B);
Z est alors une extension galoistenne de B N Z ; en outre, le raisonnement
du corollaire 2 du théoréme 5 (tenant compte du fait que Z est une exten-
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sion séparable de B N Z) montre que B X) Z est un anneau semi-simple
complet distingué dans €; d’aprés le théoréeme 4 c’est donc un sous-
anneau galoisien de A4 . Mais rien ne permet d’affirmer en général que son
anneau commutant dans € soit identique &4 C,=Cn (KX A4); on
peut seulement dire qu’il contient C,. Toutefois, C, est bien I’anneau
commutant de B ) Z lorsque parmi les automorphismes oy, seuls les
automorphismes intérieurs laissent invariants tous les éléments de Z (ce
qui sera en particulier le cas lorsque tout automorphisme de K laissant
invariants les éléments de Z est intérieur, et plus particuliérement encore
lorsque K est de degré fini sur Z) ; en effet, ’'anneau C; commutant de
B®Z est engendré par des applications semi-linéaires de E dans E
(théoreme 4) ; 8’il était distinct de C,, il contiendrait donc une applica-
tion semi-linéaire v # 0, relative & un automorphisme ¢ non intérieur
(congru & un des ¢}) ; comme v est permutable avec Z par hypothése, on
aurait v(x x) = av(x) pour tout x e F et tout aeZ, ce qui équivaut
a a’v(x) = av(zr), et comme il y a au moins un z tel que v(zx) # 0,
o’ = a pour tout « e€Z contrairement & ’hypotheése. Dans le cas con-
sidéré, C, est donc un anneau semi-simple distingué, et B ) Z un anneau
fortement galoisien intériewr. Les restrictions & B Z des applications
v —uy v u; " sont des automorphismes de cet anneau laissant invariants
les éléments de B ; le groupe engendré par ces automorphismes est iso-
morphe & G, auquel on peut I'identifier, et B est I’ensemble des éléments
de B Z invariants par @. Supposons en outre que Bet B Z soient
des anneaux primitifs complets ; soit F' un sous-module simple de £ con-
sidéré comme (B Z)-module, H son corps d’endomorphismes, et soit
& Panneau d’endomorphismes du groupe additif ¥ ; Bet B Z peuvent
étre considérés comme des sous-anneaux de §, et ’hypothése que B est
distingué dans € entraine aussitét qu’il est distingué dans . Les auto-
morphismes du groupe G sont de la forme v —w, v w;*, ol les w, sont
des diautomorphismes de F (considéré comme espace vectoriel sur H);
comme Z est contenu dans le centre de BX) Z, et qu’aucun des auto-
morphismes du groupe G autre que I'identité ne laisse invariants tous les
éléments de Z, les w,, sont linéairement indépendants par rapport a H
(lemme 2b)) ; comme leur nombre est égal au degré n de B Z sur B,
ils engendrent I’anneau commutant R de B dans § ; autrement dit, par
rapport & B Z, B est un sous-anneau fortement galoisien extérieur.
Dans les mémes hypothéses, il y a alors correspondance biunivoque entre
tous les sous-groupes du groupe @ et fous les sous-anneaux distingués B’
de 4 tels que Bc B'c BRZ. En effet, & tout sous-groupe G’ de @
correspond un sous-corps Z’ de Z tel que BNZc Z'cZ, formé des

173



éléments de Z invariants par G’; 'anneau B Z’, engendré par B et
Z’, est un sous-anneau primitif complet, distingué dans § ; on voit aussi-
t6t que le degré de B Z sur B Z’ est égal & Pordre du groupe G,
et par suite que les w, correspondant aux automorphismes du groupe G’
forment une base (par rapport & H) de 'anneau R’ commutant de B Z’
dans §. Inversement, si B’ est un sous-anneau distingué tel que B c B’
c BQ Z, son anneau commutant R’ dans § a une base (par rapport &
H) formé d’un certain nombre m des w, (d’aprés le théoreme 4), et le
raisonnement du théoréme 6 prouve que les automorphismes v —w, v w,*
correspondants forment un sous-groupe G’ d’ordre m du groupe G ; si
B Z' est le sous-anneau de B Z correspondant & G’, donc formé
des éléments invariants par G, on a B’ c B Z’ et les degrés de
B Z par rapport & B’ et &4 BX Z’ sont égaux ;donc B’ = BR Z'.
On notera aussi que, lorsque 4 est de degré fini nd par rapport & B, il est
de degré fini md par rapport & B’, et que B’ est fortement galoisien par
rapport @ A, car son anneau commutant dans € est somme directe des

C) correspondant aux automorphismes du groupe G'.

Soit maintenant B” un sous-anneau distingué de 4 tel que Bc B’
c A; B” est un sous-anneau galoisien de A (théoréme 4), mais en géné-
ral, nous ne savons pas démontrer qu’il est fortement galoisien par rap-
port & A. Si nous faisons donc I’hypothése supplémentaire que B” est
fortement galoisien par rapport & A, B” et Z sont linéairement disjoints
sur le corps Z’' = B"NZ (théoréme 7); on en déduit que ’anneau
B'= B"'n(BQZ) estidentique 3 B Z’; en effet, il contient évi-
demment ce dernier, et s’il en était distinct, il existerait dans B’ un élé-
ment a = B, + X y, &;, ou B, et les y, sont dans B, les &, forment, avec

()
1, une base de Z sur Z’, et un au moins des y; n’est pas nul ; mais alors
les &, et 1 seraient linéairement dépendants par rapport & B”, ce qui est
absurde. L’anneau B’ est done, d’aprés ce qu’on a vu plus haut, un an-
neau primitif complet ; si B” Q) Z est un anneau primitif complet, il en
est de méme de B”, et le degré m de B”(X) Z sur B” est égal a celui de
ZsurZ'et a celuide B Z sur B’;en outre, si 4 est de degré fini d par
rapport & B Z, son degré par rapport & B” X Z est un diviseur de d.

Remarquons enfin que, lorsque A est de degré finisurZ, le corps BnZ
est fortement galoisien par rapport & 4. En effet, si on choisit un diauto-
morphisme %, dans chacun des C,, et si (v;) est une base par rapport a
Z de 'anneau U (Z), commutant de Z dans &, on voit d’aprés le lemme
2b) que les ), v; sont linéairement indépendants par rapport & K ;
comme leur nombre est égal au degré de 4 sur BnZ, ils engendrent
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I’anneau commutant de BN Z dans € ; d’ou la proposition, puisqu’on
peut toujours supposer que les v, sont des automorphismes de ’espace
vectoriel E .

4. Isomorphismes des sous-anneaux d'un anneau primitif complet.
Soient 4, A’ deux sous-anneaux isomorphes de €, # —u un isomor-
phisme de 4 sur A’; cet isomorphisme permet de definir sur £ une
seconde structure de A-module, en posant u-z = u (x); si les deux
structures de 4-module de E ainsi obtenues sont isomorphes, il existe une
application biunivoque ¢ de E sur lui-méme telle que ¢@(x + y) =
¢(x) + ¢(y) et ¢ (u(z)) =u (p(z)), ; autrement dit, on a u = pup!.
En outre, si B, B’ sont les anneaux commutants de 4 et 4’ dans €, et
si ve B, v = @uvgl appartient & B’ et vice-versa, car on a v (u(z)) =
prue(r) =gpuve(z)=u(v(z)) pour tout wed; lapplication
v - @ v ¢! est donc un isomorphisme de B sur B’'.

Reprenons les notations des numéros antérieurs, K désignant un corps
d’endomorphismes de £, 4 'anneau primitif complet des endomorphis-
mes de I’espace vectoriel £ sur K. Une premiére application des remar-
ques qui précedent redonne la caractérisation connue (24) des automor-
phismes de A : si w — u est un automorphisme de A4, les deux structures
de A-module sur £ que permet de définir cet automorphisme, sont iso-
morphes, puisque pour chacune, E est isomorphe & un idéal minimal de
I'anneau 4 ; on a donc u = g u ¢~ ; en outre 1 — ¢ A p~! est un auto-
morphisme ¢ du corps K ; autrement dit, on a ¢(A z) = A° p(x) pour
tout x € B, ce qui signifie que ¢ est un diautomorphisme de ’espace vec-
toriel £

Nous allons chercher, dans ce qui suit, des conditions qui assurent
qu’un isomorphisme d’un sous-anneau primitif complet distingué B de
A sur un sous-anneau distingué B’ de A, peut se prolonger en un auto-
morphisme de 4 . Nous considérerons d’abord le cas ou I'isomorphisme de
B sur B’ laisse tnvariants les éléments du centre Z de A, supposé contenu
dans B et B’.

Théorédme 8 (25). — Soient B, B’ deux sous-anneaux primitifs complets
de A, distingués dans € et contenant le centre Z . Soit @ un isomorphisme de
B sur B’, laissant invariants les éléments de Z . L’isomorphisme ¢ peut se
prolonger en un automorphisme intérieur dans les deux cas susvants :

a) B est de degré fini sur Z ;

(25) Voir (1], p. 101, th. 12.
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b) K est de degré fini sur Z, et les hauteurs de A par rapport ¢ B et B’
sont finies et égales.

En effet, 'isomorphisme ¢ se prolonge évidemment en un isomorphisme
(que nous noterons encore ¢) de K@ B sur K@ B’, laissant inva-
riants les éléments de K. Dans le cas a), KX B et KX B’ sont des
anneaux simples isomorphes, de longueur finie ; les dimensions par rap-
port & K d’un idéal minimalde K X B et d’un idéal minimalde K X B’
sont finies et égales ; d’ou on déduit aussitét que E est somme directe de
deux familles équipotentes, 'une formée de (K & B)-modules simples,
Pautre de (K & B’)-modules simples. On déduit évidemment de 1,
comme il a été expliqué plus haut, deux structures de (K & B)-module
isomorphes sur £, au moyen de I'isomorphisme ¢, et par suite il existe
une application additive biunivoque v de E sur lui-méme telle que ¢ (u)
= vu v pour tout u e KX B; en particulier, v est permutable avec
tout élément de K, et par suite appartient & 4, ce qui démontre dans ce
cas le théoréme.

Dans le cas b), 'anneau B peut étre considéré comme ’adhérence,
dans €, de 'anneau H° ) L, ou L est 'anneau d’endomorphismes de
I’espace vectoriel par rapport & Z engendré par une base (par rapport a
H) d’un B-module simple ¥ contenu dans £ . Alors le méme raisonnement
que dans le corollaire 2 du théoréme 5 montre que K X B est un anneau
primitif complet, distingué dans € ; la hauteur de K ) B par rapport &
B étant finie et égale 3 celle de K (X B’ par rapport & B’, les hauteurs
de 4 par rapport & K& B et K & B’ sont égales ; on conclut le raison-
nement comme dans le cas a).

On arriverait & la méme conclusion (toujours en supposant K de degré
fini) en supposant que les hauteurs de 4 sur B et B’ sont infinies et égales,
en ce sens que F est somme directe de deux familles équipotentes, 1'une
de B-modules simples, I’autre de B’-modules simples. Par contre, lorsque
E est de dimension infinie sur K, il est facile de donner des exemples de
sous-anneaux primitifs complets isomorphes B, B’, contenant Z, mais tel
que A ne soit pas de méme hauteur par rapport & B et par rapport & B’.

On notera aussi que le théoréme 8 cesse d’étre vrai lorsqu’on ne sup-
pose plus que K ou B est de degré fini sur Z, puisqu’on sait qu’il existe
des corps non commutatifs K de degré infini sur Z, admettant des auto-
morphismes laissant invariants tous les éléments de Z et qui ne sont pas
intérieurs.

Nous allons maintenant supposer que l'isomorphisme ¢ laisse inva-
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riants les éléments d’un sous-anneau B” de BN B’, qui est galoisien
dans A4 (26).

Théoréme 9. — Soit B” un sous-anneau galoisien de A ; soient B, B’
deux sous-anneaux primitifs complets de A, distingués dans €, contenant
B et tels que les hauteurs de A par rapport & B et B’ soient finies et égales.
Si @ est un isomorphisme de B sur B’, laissant invariants les éléments de
B’, il existe une application semi-linéaire v % 0 de E dans lui-méme telle
qu’on ait identiquement @(u)v = vu pour tout w e B.

En effet, I’hypothése faite sur les hauteurs de 4 par rapport & B et B’
entraine, par le raisonnement du début de ce numéro, que l’on a identi-
quement ¢@(u) = twut, outest une application additive biunivoque de
E sur lui-méme permutable avec tous les éléments de B”, donc apparte-
nant & 'anneau C” commutant de B” dans € (on aurait la méme conclu-
sion en supposant que les hauteurs de 4 par rapport & B et B’ sont in-
finies et égales). Par hypothése les éléments de C” sont combinaisons
linéaires (& coefficients dans K) d’applications semi-linéaires de £ dans
lui-méme ; on peut donc (lemme 2b)) décomposer I’espace vectoriel (&
gauche) C” en somme directe de sous-espaces (), correspondant aux diffé-
rentes classes 0 des automorphismes de K modulo le groupe des automor-

phismes intérieurs. Posons alors ¢ = X t,, ol t, € Cy ; pour tout u e B,
]

on a }E, (p(u) tg — to u) = 0 ; or, pour chaque ue B, ¢(u)t, —t, u est

une combinaison linéaire, & coefficients dans K, d’applications semi-
linéaires de £ dans lui-méme relatives & des automorphismes de K appar-
tenant & la classe 6 ; d’aprés le lemme 2b), on a donc ¢ (u)ty, — tpu =0
pour chaque 0 et tout « e B; il existe d’ailleurs au moins un ¢, # 0.
Considérons, dans le sous-espace Cy correspondant, 'ensemble V des é1é-
ments v eCy tels que @(u)v = vu pour tout u e B; ce qui précéde
montre que V ne se réduit pas & 0, et on voit aussitét que c’est un sous-
espace vectoriel de O} (parce que ¢(u) est permutable avec tout u e K).
Or, C, a une base par rapport & K formée d’applications semi-linéaires w,
relatives 4 un méme automorphisme ¢ (de la classe 6); considérons un

élément, primordial » = ¥ A, w; du sous-espace V (par rapport & cette
B

(26) Lorsque B = B’ = A, @ étant donc un automorphisme de A laissant invariants
les éléments d’un sous-anneau galoisien intérieur B” de A, on a @(u) = vuv™1, ou v est
un diautomorphisme de E; comme v est permutable avec tous les éléments de B”, il résulte
du lemme 2b) que v est un diautomorphisme de E relatif & un automorphisme intérieur
A—>a Aa! de K; mais alors w = a~lv est un automorphisme de ’espace vectoriel E,
et on a encore @(u) = wuw™1; autrement dit, @ est un automorphisme intérieur de 4. Ce
résultat généralise le th. 17 de [1], p. 107.
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base) ; comme % est permutable avec tout u ¢ K, v u appartient aussi
aV,orona vu= ¥ A, u°w;, donc comme v est primordial par hypo-

%
thése, il existe p € K tel que A, u® = p 4; pour tout indice ¢ ; il y a par
hypothése un de ces indices tel que 4, =1, doncon a g = u°, et par
suite A, u® = u° A;; comme u est arbitraire dans K, cela entraine que
les A; appartiennent tous au centre Z de K, et par suite que v est une
application semi-linéaire relative a l’automorphisme ¢ de K, ce qui
achéve la démonstration.

Corollaire 1. — On suppose que B et B’ vérifient les hypothéses du théo-
réme 9, et en outre que, st D et D’ sont les sous-anneaux de € engendrés par
KyUB et Ky B’ respectivement, E est un D-module semi-stmple homo-
géne et un D’'-module semi-simple homogéne, ces deux modules ayant méme
longueur. Alors ¢ se prolonge en un automorphisme de A.

Eneffet, £ est somme directe de p D-modules simples M, deux & deux iso-
morphes, et aussisomme directede p D’-modulessimples N, deux & deuxiso-
morphes. Cela étant, remarquons quesi v (x) = 0 pour unélément x 0 ap-
partenant aun M,, v est identiquement nul dans ce module ; en effet, pour
tout ue B et tout pe K, ona v(u(u ) =v(uu()) = uv(u()=
peo(u) (v(x))=0; si w= 3 u,u,;, oules u, sont quelconques dans B,

les u,; quelconques dans K,,on a aussi v(w(x))= 0, et on peut par
hypothése prendre w tel que w(x) soit un élément quelconque de M,.
Comme par hypothése » 7 0, il y a au moins un M, dans lequel » ne
s’annule que pour x = 0; on peut supposer que ce module est M.
D’autre part, pour tout zeE, on peut écrire v(z) = }f‘, v, (),
=1

v;(x) e N;; comme ¢(u)e B, ona ¢(u)(v,(x))eN,, d’ol on tire que
I'on a identiquement ¢(u)v, = v,u pour tout ¢ ; les v, sont des applica-
tions semi-linéaires (puisque les N, sont des sous-espaces vectoriels de &
par rapport & K) dont une au moins n’est pas nulle, on peut toujours sup-
poser que c’est v,; restreinte & M,, v, est done un isomorphisme de
I’espace vectoriel M, dans 'espace vectoriel NV, ; en outre, c¢’est un iso-
morphisme de M, sur N, car on voit comme ci-dessus que si y % 0 ap-
partient & v, (M,) c N,, w’(y) appartient aussi & v,(M,), pour w' =
‘i‘: piuj, ot pu, e K et u;eB’; comme N, est simple par hypothése, on
peut prendre w’ tel que w’(y) soit un élément quelconque de N,. Soit
alors y; un isomorphisme du D-module simple M, sur M,, v; un isomor-
phisme du D’-module simple N, sur N, ; on définit une application semi-
linéaire biunivoque v, de E sur lui-méme en posant v,(2) = y; (v, (v;* (2) )
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pour tout x e M, (1 < ¢ < p), et on vérifie aussitét qu’on a bien ¢ (u)v,
= v,u, autrement dit ¢(u) = vyuvy! pour tout u e B.

Les hypothéses du corollaire 1 sont en particulier remplies lorsque E
est lui-méme un D-module simple et un D’-module simple ; d’aprés la
démonstration du théoréme 1, cela correspond au cas ou les idéaux mini-
maux des anneaux commutants C', C’ de B, B’ dans § sont de dimen-
sion 1 sur K, et par suite au cas ol les indices de B et B’ par rapport &
4 sont tous deux égaux @ un ; c’est toujours le cas lorsque A4 est un corps,
et on retrouve ainsi un résultat de H. Cartan (27).

Corollaire 2. — On suppose que B et B’ vérifient les hypothéses du théo-
réeme 9, et en outre que B” est un sous-anneau fortement galoisien extérieur

de A, et que A est de degré fini sur B". Alors ¢ se prolonge en un auto-
morphisme de A .

En effet, toute application semi-linéaire de £ dans lui-méme contenue
dans C” et non identiquement nulle est alors un diautomorphisme.

Corollaire 3. — On suppose que B et B’ vérifient les hypothéses du théo-
réme 9, et que, st R’ désigne le sous-anneau de A engendré par B’ et Z , E est
un R’-module semi-simple homogéne. Alors Uimage du corps BNZ par
Pisomorphisme @ est B' N Z.

En effet, £ est somme directe de R’-modules simples isomorphes N
p P i

(1 <7 <q). Pour tout xeZ on peut écrire v(zx) = Lq‘ v;(x), ou w,(x)
j=1

appartient & N, ; comme les N, sont des espaces vect(:riels par rapport a
Z, les v, sont des applications semi-linéaires de E dans lui-méme, relatives
& 'automorphisme ¢, quand on considére E comme espace vectoriel sur Z .
D’autre part, on a ¢ (u)v; = v;u# pour tout indice §, et il y a au moins
un indice j tel que v; = 0; comme N, est un module simple par rapport
& R’, on voit comme dans la démonstration du corollaire 1 que v, applique
E sur N,. Cela étant, pourtout pe BNZ ettout z e E, ona ¢(u)v,(x)
= v;(u x) = u°v;(x), autrement dit ¢(u)y = u°y pour tout yelN,;;
tenant compte de ce que les N, sont des R’-modules isomorphes, on en
déduit qu'on a aussi @(u)y = u’y pour tout yeE, c’est-d-dire que
®(u) = u®, d’ou le corollaire.

On notera que les hypothéses du corollaire 3 sont en particulier remplies
lorsque B’ est un sous-anneau fortement galoisien de A4, tel que Z soit de

(27) Voir (2], p. 68, th. 3.
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degré fini sur B'NZ, et que R’ (alors égal & B’ X Z) est un anneau
primitif complet. Alors, si B est aussi fortement galoisien dans 4, comme
la restriction de ¢ & BN Z coincide avec la restriction d’un automor-
phisme de Z, on voit que ¢ peut se prolonger en un isomorphisme (noté
encore p) de B Z sur B’ Z. Sion suppose en outre que K est de
degré fini sur Z, les hypothéses du corollaire 1 sont remplies pour les
anneaux BQZ et B’ Z, car le raisonnement du corollaire du théo-
réme 5 montre alors que K Q) BX Z et KK B’ K Z sont des anneaux
primitifs complets de méme hauteur sur BX) Z et B’ Q Z respective-
ment, et que E est semi-simple, & la fois comme (K & B ) Z)-module
et comme (K @ B’ ) Z)-module. On peut donc dans ce cas prolonger ¢
en un automorphisme de 4.

5. Appendice: Sous-anneaux galoisiens extérieurs et systémes de fac-
teurs. Nous nous proposons de montrer comment les théories développées
ci-dessus permettent en particulier de donner un exposé trés simplifié de
la théorie classique des «systemes de facteurs » des algébres simples (28).

Soit 4 une algébre simple de rang fini sur son centre Z, 7' un «corps de
décomposition » de A4, c’est-a-dire (29) un surcorps commutatif de Z, de
degré fini sur Z, tel que le produit tensoriel 4 @) T' = B (par rapport &
Z) soit isomorphe & une algébre de matrices sur le corps 7'. On peut donc
supposer que B est identifié & I’anneau des endomorphismes d’un espace
vectoriel £ sur le corps 7'; nous désignerons par ¢ I’anneau des endo-
morphismes de la structure de groupe additif de £ : B est donc un sous-
anneau simple de §, de centre 7. Soit alors C ’anneau commutant de 4
dans €: c’est un anneau simple (théoréme 1) qui contient 7', et on a
(corollaire du théoréme 2) [C : Tl = [B: A]l = [T : Z]. Le centre de C
est 'intersection C N A4 des deux anneaux commutants 4 et C, et c’est
aussi le centre de 4, donc Z ; autrement dit, 7" est un sous-corps commu-
tatef maximal de l’algébre simple C, tel que [C:Z]= [T :Z]*. En
outre, si K est le corps des endomorphismes des idéaux minimaux &
gauche de A4, le corps des endomorphismes des idéaux minimaux & gauche
de C est isomorphe & K° (n°1). Ces remarques montrent aussitét que
I’algébre C ne dépend que des corps K et 7', & une isomorphie prés : elle
correspond donc de fagon biunivoque & la classe des algébres simples de
centre Z ayant méme corps K d’endomorphismes de leurs idéaux & gauche

(28) Les exposés les plus récents de cette théorie sont ceux de N. Jacobson, Theory of
rings, p. 107—109, et Artin-Nesbitt-Thrall, Rings with minimum condition (Ann
Arbor, 1944) chap. VIII.

(29) Artin-Nesbitt- Thrall, p. 76.
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minimaux (élément du «groupe de Brauer » des classes d’algébres simples
de centre Z (30)).

Inversement, d’ailleurs, si C' est une algébre simple de centre Z, contenant
un sous-corps commutatif 7' >Z tel que [C:Z]= [T:Z]2, on peut identi-
fier C' a I'anneau des endomorphismes d’un espace vectoriel F sur le corps
K?°; soit §§ 'anneau des endomorphismes du groupe additif F. Les corps
T et K° sont linéairement disjoints sur Z (théoréme 3) dans § ; comme K°
et C sont anneaux commutants dans §, ’'anneau commutant de 7' X) K°
dans § n’est autre que I’anneau commutant de 7' dans C, c’est-a-dire 7'
lui-méme ; par suite, 7' K° est ’anneau des endomorphismes de F
considéré comme espace vectoriel sur 7', autrement dit, 7' est corps de
décomposition de K°.

Ayant ainsi démontré la caractérisation classique des corps de décom-
position, supposons qu’un tel corps 7' soit galoisien sur Z, de degré =, et
soit I" son groupe de Galois par rapport & Z. Pour tout automorphisme
o eI, il existe un élément w, e C tel que 'automorphisme ¢ de T soit
restriction & T de ’automorphisme intérieur z - u,z u;' de C; on a
done wugtug' ==t pour tout te T, ce qui signifie que u, est une appli-
cation semi-linéaire biunivoque de £ sur lui-méme, relative & ’automor-
phisme o de T'. Les n applications semi-linéaires u, sont linéairement in-
dépendantes par rapport & 7' (lemme 2b), donc, comme [C : T] = n,
elles forment une base de C par rapport & 7', et par suite A est un sous-
anneaw galoisien extérieur de B = A Q) T ; toute application semi-
linéaire de E dans lui-méme, relative & o, et contenue dans C, est de la
forme tug(teT). On en déduit aussitét qu'on a wu,u, = a, , %, ol
8, € T ; le «systéme de facteurs » (a, ;) satisfait aux conditions d’associa-
tivité

Qo.6Qp0,c = ag‘,-ra’e,tn (1)

et si on remplace la base (u,) par une base formée de multiples scalaires
Cs Uy = Uy, le nouveau systéme de facteurs (a, ) est donné par e, =
€y Cp Cop Gy .. Si A désigne le groupe multiplicatif des applications
(0,7) ->a,, de I'xI" dans T, satisfaisant & (1), € le sous-groupe de A
formé des systémes de facteurs dégénérés de la forme (c, ¢? c; ), & toute
classe d’algébres simples de centre Z admettant 7' comme corps de décom-
position, on fait ainsi correspondre un élément bien déterminé du groupe
quotient A/E. Cette correspondance est biunivogue, car la structure de
Panneau C est entiérement déterminée & une isomorphie prés par 1’é1é-
ment correspondant de /C, et nous avons vu que deux classes d’algébres

(30) Artin-Nesbitt- Thrall, p. 75.
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simples ne peuvent donner des algébres C' isomorphes que si elles sont
identiques. On montre aisément d’autre part (31) que tout élément du
groupe A/C correspond & une classe d’algébres décomposées par 7. Le
point qui, dans les exposés classiques, se démontre par des calculs assez
pénibles, est le fait que la correspondance ainsi établie est un isomorphisme
entre le groupe A/C et le groupe des classes d’algébres décomposées par
T (32). Or, soient 4 et A’ deux algébres simples de centre Z, décomposées
par T; B=AQT et B'=A'"XQ T sont les anneaux d’endomor-
phismes de deux espaces vectoriels B, E’ sur le corps T'; B B’ (pro-
duit tensoriel pris par rapport au corps 7') est isomorphed (4 Q A" )Q T
(produits tensoriels par rapport au corps Z) et peut étre considéré comme
anneau d’endomorphismes de 1’espace vectoriel E” = E Q E’, produit
tensoriel de et E’ (par rapport & T') (33). Faisons maintenant usage du
lemme suivant de la théorie des produits tensoriels (33) :

Lemme 3. — Sotent E, B’/ deux espaces vectoriels sur un corps T, E” =
E Q E’ leur produit tensoriel ; si u (respectivement u’) est une application
semi-linéaire de E (respectivement E’) dans lui-méme, relative a I'auto-
morphisme o de T, l’application u” de E” dans lui-méme, définie par

”(2 z; @ ;) -E u(z;)Qu’(x}) (et notde u@Q u') est une application

semz-hne’azre relatwe a l’autamm'phzsme ag.

Soient alors €, €’ E” les anneaux d’endomorphismes des groupes addi-
tifs £, E’, E”, et soient C, C’/, C” les anneaux commutantsde 4, 4’, A”
=A@ A’ dans €, €/, €” respectivement. Si u, (respectivement u,,) est
une application semi-linéaire de E (respectivement E’) dans lui-méme,
relative 4 ’automorphisme o, et permutable avec A (respectivement A’),
le lemme 3 montre que u, = u, ) u, est une application semi-linéaire
de E” dans lui-méme, permutable avec 4”, donc appartenant a 0" sl u,
et u, sont biunivoques, il en est évidlemment de méme de %, . Comme on
sait a priori que dans C” les applications semi-linéaires relatlvement ao
se déduisent toutes de 'une d’elles & un facteur prés appartenant & 7', on
peut prendre les 4, comme base de ¢ sur T cela etant 8l UgU, = Ay Uq,
u, ul = a,,,, ug,,, il est clair que wu, u! = a, a, ,Us,: c'est le « ‘théo-
réme de multiplication » des systémes de facteurs qui achéve d’établir
I’isomorphisme cherché.

(31) Artin-Nesbitt-Thrall, p. 82—83.

(32) La présentation la plus simple des calculs classiques est sans doute celle de Jacobson,
Theory of rings, p. 108.

(33) Voir H. Whitney, Tensor products of abelian groups, Duke M. Journ., t. 4
(1938), p. 495—528.
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De la méme maniére on traite I’extension du corps de décomposition T'
a un sur-corps S (galoisien sur Z). Nous désignerons ici par I" le groupe de
Galois de 8 par rapport & Z, par ¢ — ¢ ’homomorphisme canonique de

I’ sur le groupe de Galois I'de T par rapport & Z. Le produit tensoriel
A Q@ 8 (par rapport & Z) est identique au produit tensoriel B Q) § (rela-
tif & 7T'); or ce dernier peut étre considéré comme ’anneau d’endomor-
phismes du produit tensoriel £’ = E Q) S (relatif & 7', S étant considéré
comme espace vectoriel sur 7T), E’ étant considéré comme espace
vectoriel sur S. Cela étant, ¢ est une application semi-linéaire biuni-
voque de l'espace vectoriel S (relatif & 7') sur lui-méme, relative a
Pautomorphisme ¢ de 7'; si u; est une application semi-linéaire de
E sur lui-méme, relative 3 I'automorphisme ¢, et permutable avec 4,
ul, = uz @ o est, d’aprés le lemme 3, une application semi-linéaire de E’
sur lui-méme, relative 4 'automorphisme o de 7', et permutable avec 4 ;
mais quand on considére B’ comme espace vectoriel sur S, u., est aussi
une application semi-linéaire de E’ sur lui-méme, relative & I'automor-
phisme o du corps 8. On en conclut que les u, forment une base par rap-
port & S du commutant de 4 dans ’anneau des endomorphismes du
groupe E’, et que le systéme de facteurs correspondant est a, , = az; (34).

Voyons enfin comment on passe d'un systéme de facteurs d’une algébre
A, décomposée par 7', & un systéme de facteurs de l'algébre 4, =
A Q@ U, obtenue par extension du corps des scalaires Z & un surcorps
commutatif U de Z (contenu, ainsi que 7', dans une extension fixe 2 de
Z); Ay, est une algébre simple de centre U, et elle est décomposée par
I'extension galoisienne 7'U de U ; il s’agit naturellement d’un systéme de
facteurs de A4, par rapport & 7'U. On voit aussitét (35) qu’on peut se
borner & traiter deux cas particuliers (parce que 7' est galoisien sur Z);
celui o U et T sont linéairement disjoints sur Z, et celui ou U est un
sous-corps de 7'. Dans le premier cas, tout automorphisme o de 7' par
rapport & Z s’étend d’une seule maniére & un automorphisme (noté encore
o) de T'U par rapport & U ; soit E’ ’espace vectoriel sur T'U obtenu par
extension & 7'U du corps des scalaires 7' de E ; si u, est une application
semi-linéaire de £ sur lui-méme, relative a4 1’automorphisme ¢ de 7' et
permutable avec 4, il est immédiat que u, se prolonge d’une seule
maniére en une application semi-linéaire de E’ sur lui-méme, relative &
Pautomorphisme o de 7' U, et permutable avec 4 @ U ; donc le systéme
de facteurs ne change pas.

(34) Cf. Artin-Nesbitt- Thrall, p. 91—93.
(35) Artin-Nesbitt- Thrall, p. 89—91.
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Au contraire, dans le second cas,ona T U = T ; 'anneau commutant
de AQ U dans € n’est autre que 'anneau C’ commutant de U dans
lPanneau C, évidemment engendré par les u, permutables avec U, c’est-
a-dire correspondant aux ¢ du groupe 4 de T par rapport & U ; le systéme
de facteurs est alors formé des g, , ou o et v parcourent seulement le
groupe 4.
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Note ajoutée pendant la correction des épreuves: Pendant I'impression de ce
travail est paru un article de 7. Nakayama et G.Azumaya: On irreducible rings, Ann.
of Math. t. 48 (1947) p. 949—965, qui aborde la théorie des anneaux simples dans le méme
esprit que le présent travail, et contient un certain nombre de résultats communs, notam-
ment nos théorémes 1, 5 et 8a.
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