Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 21 (1948)

Artikel: Un théorème concernant le nombre total des bases d'un groupe d'ordre

fini.

Autor: Piccard, Sophie

DOI: https://doi.org/10.5169/seals-18603

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Un théorème concernant le nombre total des bases d'un groupe d'ordre fini

Par Sophie Piccard, Neuchâtel

Soient $B_1 = [a_1, a_2, \ldots, a_v]$ et $B_2 = [b_1, b_2, \ldots, b_v]$ deux bases de G. Nous dirons que ces bases sont distinctes si un élément au moins de l'ensemble $\{a_1, a_2, \ldots, a_v\}$ ne fait pas partie de l'ensemble $\{b_1, b_2, \ldots, b_v\}$ et vice versa. Nous dirons que les bases B_1 et B_2 sont indépendantes si $B_1 \neq a B_2 a^{-1}$, quel que soit l'élément a de G.

Nous dirons que les bases B_1, B_2, \ldots, B_m d'un groupe G constituent un système complet de bases indépendantes de G si elles sont indépendantes deux à deux et si, pour toute base G de G, il existe un indice G compris au sens large entre G et un élément G de G, tels que G = G de G de

Remarque 1. Soit G un groupe d'ordre fini N à base d'ordre v et soit $B = [a_1, a_2, \ldots, a_v]$ une base de G. Soit E l'ensemble des éléments de G qui transforment la base B en elle-même. Montrons que E est un groupe.

¹⁾ Dont aucun ne peut être obtenu par composition finie des autres.

²⁾ Les éléments successifs de la composition sont à effectuer de droite à gauche.

En effet soient a et b deux éléments quelconques de E. On a donc $a B a^{-1} = B$ et $b B b^{-1} = B$, d'où $b a B a^{-1} b^{-1} = b B b^{-1} = B$, ce qui prouve que $b a \in E$. Donc E est bien un groupe. Soit v l'ordre de E. On a $v \ge 1$, puisque E contient en tout cas l'élément unité de G. Comme E est un sous-groupe de G, n est un diviseur de N. Soit E_c le centre de G et soit μ l'ordre de E_c . Montrons qu'on a $v \le v! \mu$. En effet, soit i_1, i_2, \ldots, i_v une permutation quelconque des nombres $1, 2, \ldots, v$ et soit $E_{i_1 i_2 \ldots i_v}$ l'ensemble des éléments de E qui transforment a_1 en a_{i_1}, a_{i_2} en a_{i_2}, \ldots, a_{i_v} en a_{i_v} .

Si l'ensemble $E_{i_1 i_2 \ldots i_v}$ n'est pas vide, il comprend μ éléments. En effet, supposons que cet ensemble n'est pas vide et soit c un élément quelconque de $E_{i_1 i_2 \ldots i_v}$. On a donc $ca_h c^{-1} = a_{i_h}$, quel que soit h = 1, $2, \ldots, v$, et, quel que soit l'élément d de E_c , on a $cda_h d^{-1}c^{-1} = ca_h c^{-1} = a_{i_h}$.

Donc $cd \in E_{i_1 i_2 \dots i_v}$ et, comme les éléments $cd (d \in E_c)$ sont au nombre de μ , il s'ensuit que $\overset{=}{E}_{i_1 i_2 \dots i_v} \geq \mu^3$). Soient maintenant c un élément fixe et c' un élément quelconque de $E_{i_1 i_2 \dots i_v}$. Montrons qu'il existe un élément d de E_c , tel que c' = cd. En effet, comme c et c' appartiennent à $E_{i_1 i_2 \dots i_v}$, en a $ca_h c^{-1} = a_{i_h}$ et $c'a_h c'^{-1} = a_{i_h}$, $h = 1, 2, \dots, v$. Donc $ca_h c^{-1} = c'a_h c'^{-1}$. D'où $c^{-1}c'a_h c'^{-1}c = a_h$, $h = 1, 2, \dots, v$. Donc $c^{-1}c'$ est permutable avec a_h , quel que soit $h = 1, 2, \dots, v$. Et comme $B = [a_1, a_2, \dots, a_v]$ est une base de G, il s'ensuit que $c^{-1}c'$ est permutable avec tous les éléments de G. Donc $c^{-1}c \in E_c$. Soit $c^{-1}c' = d$, $d \in E_c$. On a donc bien c' = cd, où $d \in E_c$. On voit donc bien que si l'ensemble $E_{i_1 i_2 \dots i_v}$ n'est pas vide, $\overset{=}{E}_{i_1 i_2 \dots i_v} = \mu$. Et comme $E = \sum E_{i_1 i_2 \dots i_v}$, la sommation $\sum s$ s'étendant à toutes les permutations possibles i_1, i_2, \dots, i_v des nombres i_1, i_2, \dots, i_v , et que les ensembles i_1, i_2, \dots, i_v sont disjoints deux à deux, il s'ensuit que l'ordre i_1 de i_2 vérifie bien l'inégalité i_1 verifie.

Proposition 1. Quel que soit le groupe G d'ordre fini N, il existe un entier n diviseur de N et tel que le nombre total des bases de G est un multiple de $\frac{N}{n}$.

 $D\'{e}monstration$. — En effet, soit G un groupe d'ordre fini N à base d'ordre v, soit m l'ordre d'un système complet de bases indépendantes de G et soit B_1, B_2, \ldots, B_m un système complet de bases indépendantes de G.

 $[\]overline{E}$ désigne la puissance de l'ensemble E.

Soit E_i l'ensemble des éléments de G qui transforment la base B_i en elle-même et soit n_i l'ordre de E_i $(i=1,2,\ldots,m)$. D'après la remarque I, on a $1 \le n_i \le v! \mu$, où μ désigne l'ordre du centre de G, E_i est un groupe et n_i est un diviseur de N.

Soit i un nombre quelconque de la suite 1, 2, ..., m. Montrons que le nombre total de transformées distinctes de la base B_i par les éléments de G est égal à $\frac{N}{n_i}$.

En effet, soit c un élément de E_i . On a $cB_ic^{-1}=B_i$, par définition de E_i . Soient maintenant d un élément quelconque de $G - E_i$ et soit $dB_id^{-1} = B_i'$. On a $B_i' \neq B_i$, puisque $d \in E_i$ et, quel que soit l'élément c de E_i , on a $dc B_i c^{-1} d^{-1} = dB_i d^{-1} = B_i'$. Donc les n_i éléments dc $(c \in E_i)$ de $G - E_i$ transforment B_i en B'_i . Montrons maintenant que si un élément f de $G - E_i$ transforme B_i en B'_i , il existe un élément c de E_i , tel que f = dc. En effet, par définition de f, on a $fB_if^{-1} = B_i'$. D'autre part, on a $dc B_i c^{-1} d^{-1} = B'_i$, quel que soit $c \in E_i$. Soit c_1 un élément fixe quelconque de E_i . On a donc $fB_if^{-1}=dc_1B_ic_1^{-1}d^{-1}$. On en déduit $f^{-1}dc_1B_ic_1^{-1}d^{-1}f = B_i$. Donc $f^{-1}dc_1 \in E_i$. Soit h l'élément de E_i , tel que $\,f^{-1}dc_1=h\,.\,$ On a donc $\,f=dc_1h^{-1}\,$ et, comme $\,c_1\,\epsilon\,E_i,\,$ $h\,\epsilon\,E_i$ et que E_i est un groupe, on a $h^{-1} \in E_i$ et $c_1 h^{-1} \in E_i$. Soit $c_1 h^{-1} = c$. On a donc bien f = dc, où $c \in E_i$. Ainsi n_i éléments et n_i seulement de $G - E_i$ transforment B_i en B_i' . On peut donc répartir les éléments de Gen $\frac{N}{n}$ ensembles $G_1 = E_i, G_2, \ldots, G_{\underline{N}}$, disjoints deux à deux, comprenant chacun n_i éléments et tels que tous les éléments de G_i transforment B_i en la même base $B_i^{(l)}$ de G, quel que soit $l=1,2,\ldots,\frac{N}{n_i}$ et les bases $B_i^{(1)} = B_i,\, B_i^{(2)},\dots,\, B_i^{\left(rac{N}{n_i}
ight)}$ sont toutes distinctes. Notre assertion est ainsi démontrée.

Et comme les bases B_1, B_2, \ldots, B_m forment un système complet de bases indépendantes du groupe G, le nombre total $\mathfrak n$ des bases de G est

$$\mathfrak{n} = \frac{N}{n_1} + \frac{N}{n_2} + \cdots + \frac{N}{n_m} . \tag{2}$$

Soit n le plus petit commun multiple des nombres n_1, n_2, \ldots, n_i et soit $n = n_i n'_i$, $i = 1, 2, \ldots, m$.

Comme n_1, n_2, \ldots, n_m sont les diviseurs de N, il en est de même de n et on a, d'après 2),

$$n = (n'_1 + n'_2 + \cdots + n'_m) \frac{N}{n},$$

ce qui démontre la proposition 1.

Remarque 2. Si le groupe G est abélien, quelle que soit la base B de G et quel que soit l'élément a de G, on a $aBa^{-1}=B$. Dans ce cas $n_1=n_2=\cdots=n_m=n=N$ et la proposition 1 ne donne aucune indication sur le nombre total n de bases de G.

D'autre part, si G est tel que toute base de G admet N transformées distinctes au moyen des éléments de G, on a $n_1 = n_2 = \cdots = n_m = n = 1$ et le nombre total des bases de G est un multiple de N. Tel est, par exemple, le cas du groupe G d'ordre 18 engendré par trois éléments a, b, c liés par les relations fondamentales $a^2 = b^2 = c^2 = 1$, aba = bab, aca = cac, bcb = cbc, $(abc)^2 = 1^4$.

Ce groupe est à base du troisième ordre et chacune de ses bases admet 18 transformées distinctes au moyen des éléments de G. Donc, d'après la proposition démontrée, le nombre total des bases de ce groupe doit être un multiple de 18. Et, en effet, ce nombre est $504 = 18 \times 28$.

Pour le groupe symétrique d'ordre N=k!, où k est un entier ≥ 3 (le groupe alterné d'ordre $N=\frac{k!}{2}$, $k\geq 4$) on a n=2 et le nombre total des bases de ce groupe est un multiple de $\frac{k!}{2}\left(\frac{k!}{4}\right)$.

D'une façon générale, il résulte de la proposition 1 et de sa démonstration que le nombre total $\mathfrak n$ de bases d'un groupe G d'ordre fini N vérifie les inégalités $\frac{m\,N}{v\,!\,\mu} \leq \mathfrak n \leq m\,N$.

Pour le groupe symétrique d'ordre $N \ge 6$, on a v=2, $\mu=1$ et il existe des bases de deux espèces : les unes admettent N transformées distinctes au moyen des éléments de G, les autres n'en admettent que N/2, de sorte que l'on a en tout cas les inégalités $\frac{mN}{2} < n < mN$. Si G est abélien, en a $\mu=N$ et n=m.

(Reçu le 10 juin 1947.)

⁴⁾ Il existe un groupe de substitutions caractérisé par ces relations.