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Uber einen Algorithmus
zur Bestimmung der Raumgruppen

Von Hans Zassenhaus, Hamburg

Die diskreten Bewegungsgruppen des euklidischen Rn mit endlichem
Fundamentalbereich (Raumgruppen in n Dimensionen) enthalten n un-
abhângige Translationen. Fur n 3 wurde dies von Schonflief} [1] durch
geometrische Ûberlegungen gezeigt. Bieberbach [2, 3] bewies den Funda-
mentalsatz auf arithmetischem Wege fur beliebige Werte von n. Von
Frobenius [5] wurde der Beweis vereinfacht.

Aus dem Fundamentalsatz ergibt sich, daB die Translationen in einer
gegebenen Raumgruppe © einen Normalteiler X mit endlicher Faktor-
gruppe bilden, so daB X eine freie abelsche Gruppe von n Erzeugenden
ist. Die Translationsuntergruppe X ist eindeutig bestimmt als grôBter
abelscher Normalteiler. Jede umfassendere Untergruppe von © ist nieht
mehr abelsch.

Zwei Raumgruppen heiBen âquivalent, wenn sie sich durch eine Affi-
nitât ineinander transformieren lassen. Bieberbach [3] zeigt, daB dieÂqui-
valenz zweier Raumgruppen mit ihrer Isomorphie gleichbedeutend ist.

In dieser Arbeit wird zunâchst der Satz bewiesen, daB eine Gruppe ©,
die als Erweiterung einer freien abelschen Gruppe X aus endlich vielen

Erzeugenden Tl9 T2,..., Tn mit endlicher Faktorgruppe konstruiert
worden ist, in der nur der Einheitsrestklasse X selbst der identische Auto-

morphismus von X (beim Transformieren) entspricht, zu einer
Raumgruppe isomorph ist.

Die Bestimmung der Klassen âquivalenter Raumgruppen des Rn lâuft
gemàB dem bereits Gesagten auf das von Speiser [6] gestellte Problem
hinaus, aile Typen nicht isomorpher Erweiterungen der freien abelschen

Gruppe X von n Erzeugenden mit endlicher Faktorgruppe 5 zu finden,

so daB nur dem Einheitselement aus 5 der identische Automorphismus

von X zugeordnet ist.
Bieberbach [4] zeigt, daB dièse Aufgabe nur endlich viele Lôsungen hat.
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Die Klassifikation der Raumgruppen ist bisher nur fur n ^ 3 dureh-
gefûhrt, und zwar auf geometrischem Wege.

In dieser Arbeit wird eine algebraische Méthode zur Klassifikation der
Raumgruppen entwickelt, die es gestattet, die bisher auf geometrischem
Wege erhaltenen Resultate rechnerisch zu kontrollieren und einen
gangbaren Weg zeigt, die Klassifikation auch fur mehr als drei Dimen-
sionen auszufûhren.

__

Wir machen uns zunâchst klar, da8 sich die den Elementen aus g zu-

geordneten Automorphismen von X als eine zu g isomorphe Gruppe g
von ganzzahligen Substitutionen in n Variabeln darstellen lassen. Dabei
ist die Gruppe 5 durch © bis auf eine Transformation mit einer
ganzzahligen Matrix der Déterminante ± 1 d. h. bis auf arithmetische
Âquivalenz, eindeutig bestimmt.

Vorausgesetzt wird die Kenntnis aller Klassen endlicher ganzzahliger
Substitutionsgruppen bei arithmetischer Âquivalenz. Wie Bieberbach [4]
gezeigt hat, gibt es nur endlich viele Klassen. In einer frûheren Arbeit
habe ich [7] gangbare Methoden zur Beherrschung dieser Klassen angege-
ben. Weitere Untersuchungen darûber sind im Gange. Wir denken uns
aus jeder KJasse eine Vertretergruppe JÇ ausgewâhlt und lôsen fur dièse
das Erweiterungsproblem.

Um die Rechnung zu erleichtern, ist es zweckmâBig, fur die Substitu-
tionsgruppe 5 endliche viele Erzeugende Ax, A2,..., Av mit endlich
vielen definierenden Relationen :

wobei En die n-reihige Einheitsmatrix ist, anzugeben.
Mit Hilfe der Matrizen aus g und der Relationen B>i wird eine Matrix 9î

mit rn Zeilenund n-v Spalten konstruiert. Das Produkt der von Null
verschiedenen Elementarteiler der Matrix 91 ist im wesentlichen gleich
der Anzahl der zu 3f gehôrenden Raumgruppen. Eine Reduktion kann
nur eintreten durch die Existenz von ganzzahligen Substitutionen der
Déterminante i 1 (unimodularen Matrizen), die g in sich transformieren.
Aile Matrizen dieser Art bilden eine Gruppe N%, die nach einem Satz von
Siegel endlich viele Erzeugende Xlf X2,..., X^ besitzt. Durch eine zu-
sâtzliche Rechnung lâBt sich leicht finden, welche Reduktion der oben

gefundenen Anzahl durch die X{ eintritt. An Beispielen wird der Gang
des Algorithmus klargemacht.

Eine systematische Ûbersicht ûber die Rechnungen fur n 3 ist als

Nachtrag zu dieser Arbeit vorgesehen. Eine Auseinandersetzung mit der
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bisher in der Minéralogie gebrâuchlichen Nomenklatur ist dabei unver-
meidlich. Die von Schonfliefi [1] angegebene Anzahl von 230 Raum-

gruppen im B3 bestàtigt sich.

§ 1. Es sei X die freie abelsche Gruppe mit n Erzeugenden T1, T2,...
Tn, © sei eine Obergruppe von X, die X als Normalteiler mit der Faktor-

gruppe 5 enthalte. Die Elemente A aus g ^d Restklassen von ©
nach X :

A XSj

wobei die Elemente Sj ein Vertretersystem von © nach X bilden. Durch
die Festsetzung

¥" """^ (Tausï)

ist A eindeutig ein Automorphismus von X zugeordnet, so daB dem

Produkt zweier Restklassen nach X das Produkt der ihnen entsprechenden

Automorphismen von X zugeordnet ist. Dabei wird der Einheitsrest-

klasse X der identische Automorphismus zugeordnet. Setzen wir

so finden wir, daB der zugeordnete Automorphismus eindeutig durch die

n-reihige Matrix A (ocik(A)) bestimmt ist. Man rechnet nach, daB
dem Produkt zweier Automorphismen das Produkt der Matrizen ent-

spricht. Aile Matrizen A bilden eine zu 5 homomorphe Gruppe 2r von
unimodularen Matrizen.

Satz 1. Wenn die Gruppe % endlich und zu Ç isomorph ist, so ist © zu
einer Raumgruppe in n Dimensionen isomorph.

Beweis : Nach Voraussetzungen besteht der Isomorphismus

A->A

zwischen 5 und 5. Wir stellen einen weiteren Isomorphismus zwischen X
und der Gruppe X der ganzzahligen Translationen im Bn her durch die

Zuordnung
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TÏ,. ..,Tl:=T, wobei

und tj tz, tn ganz rational ist.

__-=•_ i n 2 n 2J ot,,(A)tk
=(En,At)

Sj-Sj^Ta^Sjb mit T^)jB aus Z

Aus dem Assoziativgesetz S-j(8^8-^) (8-jS-^)8q- ergeben sich fur das

Faktorensystem aus den Elementen TA B die Assoziativitatsrelationen

m® A m m m-1 B,C±A,BC— X A,B±AB,C '

Setzenwir TAB (En,ïAtB) so folgt

Die Mittelbildung iiber g ergibt :

m^ + AmB t^B + m^B (1)

wobei

2 t

gesetzt ist und die Ordnung der Faktorgruppe 3f mit N bezeichnet ist.
Die Zuordnung

T8?-+T. {A,mA) {A,t + mA)

bildet (5 isomorph auf eine affine Grappe © ab. Als Homomorphie
Bedingung ergibt sich, dafi der Gleichung

TSA • T'8j. ^
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gemâÛ jener Zuordnung die Gleichung

{A', Y + mA.) (AA\ ï+Aï' + tA%A,

entsprechen muB, die in der Tat aus (1) folgt. Als Isomorphie-Bedingung
ergibt sich, daB aus

folgen muB, daB T8j 1. In der Tat ergibt sich A En, 8j €%,

Die affine Gruppe © ist aber affin verwandt zu einer Raumgruppe. Sie
ist nâmlich diskret und enthâlt n unabhângige Translationen. Es muB
also nur noch gezeigt werden, daB sie in eine Bewegungsgruppe transfor-
miert werden kann. Nach dem Satz von Maschke kann die endliche
Gruppe 5 von ?i-reihigen reellen Matrizen durch eine réelle Matrix X in
eine Gruppe aus orthogonalen Matrizen transformiert werden. Also ist
(X, 0) • © • (X, 0)-1 eine Bewegungsgruppe, womit ailes gezeigt ist.

Jede Raumgruppe ist affin verwandt zu einer der Gruppen aus allen
Affinitâten (^4, QA +9), wobei g den Modul F aller ganzzahligen Vek-
toren durchlâuft und

&AB (5A + A<5B (modT) (2)

ist, wâhrend A die endliche unimodulare Gruppe 5 durchlâuft, und um-
gekehrt gibt es zu jeder Gruppe dieser Art eine affin verwandte
Raumgruppe. Da nun zwei Raumgruppen genau dann isomorph sind, wenn sie

affin verwandt sind, so gilt dasselbe auch fur die Gruppen der letzt-
genannten Art. Welches sind aber die Bedingungen fiir affine Verwandt-
schaft zweier Gruppen :

© erzeugt aus % und den Vertretern (A, QA von © nach %

©* erzeugt aus % und den Vertretern (A*, ©*•) von ©* nach %

Wir prûfen also, wann

ist. Da % gekennzeichnet ist als maximaler abelscher Normalteiler,
so muB

sein. Folglich muB die Matrix X unimodular sein. Ferner ergibt sich die
Bedingung :
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ja, es muB sogar bei passender Bezeichnung

(X, &)(A,<5A)(X, S)-1 (il*, SI. +

mit qa aus F und
A* XAX~l

sein. Folglich ist die Gruppe JÇ* unimodular âquivalent zu 5, und es ist

©2. X <5A + (En - XAX-i) S (mod F)

Wir haben nun aus jeder Klasse arithmetisch àquivalenter ganzzahliger
endlicher Substitutionsgruppen eine Vertretergruppe Ç gewâhlt. Wenn
(5* zu © affin verwandt ist, so kônnen wir (5* so affin transformieren,
daB auch die transformierte Gruppe noch zu 5 gehôrt. Gesucht werden
aile untereinander nicht isomorphen zu 5 gehôrigen Raumgruppen.

Es gehôre also (5 und ®* zu g. Dann miissen wir uns die Frage stellen,
wann

(X,©)©(Z,S)-1 ©*

ist. Als notwendige Bedingung erhalten wir gemâB den oben schon aus-
gefuhrten Rechnungen :

$ a)

d. h. X muB zu der Gruppe N% aller unimodularen Matrizen, die Ç auf
sich transformieren (Normalisator von Ç in der Gruppe aller unimodu-
larer Substitutionen) gehôren. Ferner muB

©!• X QA + (En - XAX~i) S (mod D

sein. Etwas anders ausgedrûckt ergibt sich die Bedingung :

&Ï X © x +(E-A)& (mod F) b)

Ersichtlich sind die angegebenen Bedingungen auch hinreichend fur die
affine Verwandtschaft zwischen © und ©*.
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Wenn wir also zwei Gruppen © und (5* zu der gegebenen Grappe 5
bestimmt haben durch Angabe eines Vektorsystemes (SA) bzw. (<£>*•),

so findet Âquivalenz genau daim statt, wenn sich die unter b) angegebene
Kongruenz mit Hilfe eines festen Vektors S und einer Matrix aus N%
lôsen lâBt. Dabei ist noch zu bedenken, da8 die Vektorensysteme nieht
ganz beliebig sind, sondern an die Kongruenzbedingungen

<5AB SA + AGB

gebunden sind. Wir sprechen in diesem Falle von (gewôhnlicher)
Âquivalenz zwischen (zulâssigen) Vektorsystemen. Dièse Âquivalenz hat offen-
bar die drei ublichen Eigenschaften. Dasselbe gilt auch fur die starke
Âquivalenzbeziehung, von der wir dann sprechen, wenn sich sogar die
Kongruenzen

SJ QA + (E -A) S (mod F)

simultan lôsen lassen. Aus der starken Âquivalenz folgt naturlich die
Âquivalenz im gewôhnlichen Sinne, wâhrend das Umgekehrte nicht not-
wendig der Fall ist. Unsere Aufgabe ist es, die Klassen âquivalenter
Vektorensysteme anzugeben. Wir wollen aber zunâchst die Klassen stark
âquivalenter Vektorensysteme mit Hilfe eines explicit zu bestimmenden
Vertretersysternes aufstellen.

§ 2. Wir suchen irgendein System von Erzeugenden Al9 A2,*.., Av
mit endlich vielen Relationen

Rt(Al9At9...9Av) En (j l,2,...9v)

der Gruppe g &uf. Zum Beispiel kônnen wir einfach die endlich vielen
Elemente aus $ &ls Erzeugende nehmen und als definierende Relation
die aus der Gruppentafel folgenden J\f2 Relationen. Um aber ûberflûssige
Rechenarbeit zu ersparen, ist es zweckmâBig, ein System von môglichst
wenig Erzeugenden mit môglichst wenig definierenden Relationen auf-
zusuchen.

Sei zunâchst ein zulâssiges Vektorensystem (<5A) gegeben. Wirbehaup-
ten, daB sich aile Vektoren des Systèmes mod F ausrechnen lassen,

wenn die Vektoren <5At, QAi,..., QAy bekannt sind. Nâmlich aus

s*
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und ans 0 <5En SA A-i <5A + A QA-i

folgt S^-i =—A~XQA insbesondere QAi-i — Af1QA(

Wenn ferner W A\\ A\\ A\\ (e4 ± 1)

ein Potenzwort in den Erzeugenden Ax, A2, -4V ist, und

den durch Weglassung des vordersten Faktors entstehenden Abschnitt
bezeichnet, so ergibt sich

Qw SAe} + A* <5Wl (mod D (3)

und daraus ergeben sich durch vollstândige Induktion Formeln von der
Bauart

<Sw=ZW"><5Ai, (4)

wobei die Matrix W{i) aufiervon denMatrizen Al9A2,.. ,,AV nurvon W
und i abhângt. Ferner zeige man durch vollstândige Induktion nach der
Lange des Wortes W, das bei der eben angegebenen Konstruktion von
Qw sich ergibt, da8 die Bedingungen

<5WW, <3W+ WQW,

von selbst miterfûllt sind. Welche Bedingungen ergeben sich aber fur die
Vektoren QAi, QA2,..., QA wenn wir fordern, daB sie ein zulâssiges

Vektorensystem im Sinne der eben angegebenen Konstruktion erzeu-
gen? Notwendige Bedingungen sind jedenfalls, daB

^,...,Av) £Hf<SA. O (» l,2,...r) (5)

Dièse r Bedingungen sind aber auch hinreichend. Wenn nâmlich

W(Alt A,,. ..,AV) W'(Alt A2,. ..,AV)

ist, so ist dies gleichbedeutend mit
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und hier ist QRj 0

TP" Rj W" W Rj
J

W»

S + ÏF" S E — TF/;^- ÏF"-1 S
W Rj

J W

0 (mod T)

\MT "XKT t TT"\À.T y> ^\ ¦*/ ëm/ 9W W ILW-^Rj^W-^ W

Man beachte, daB sich bei Kûrzungen in einem Wort, z. B. W
W1 W2 Wf Ws -> Wx W3 der gemàB (4) gebildete Vektor mod T nicht
àndert :

S—— f** I TXT f^* I TX7* TXT* /^ i TXT" TXT* TXr—1 /"*''(^^ ,n [ fM ^V v^^ j \/\f \f\f v!^^ i | l/y l'y l/y ¦*• iy**) |

— ^îfx i i ^Wg TFX W3 *

Wir bemerken noch einmal, daB sich vermôge der Formel (3) und der
Formel (4) zu jedem Wort W ein Vektor Qw eindeutig aus der Kenntnis
der Vektoren S^1? S^2,..., ®^ heraus konstruieren lâBt, wobei die
charakteristische Bedingung fur zulâssige Vektoren sicher erfùllt ist.
Eben wurde noch gezeigt, daB die Konstruktion in dem Sinne eindeutig
ist, daB fur zwei Worte aus den Erzeugenden Al9A2,..., Av, die in der
Gruppe 5 dasselbe Elément darstellen, auch derselbe Vektor heraus-
kommt.

Zum Beispiel finden wir ausgehend von den Vektoren

GAi (E - A,) Q

das zulâssige Vektorensystem

<SW={E-W)<S.

Wir kônnen uns dies entweder durch Induktion nach der Lange von W
klarmachen oder auch uns ûberlegen, daB die aus den Elementen

Z und (^4,0) (A aus g)
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erzeugte Gruppe dureh Transformation mit der Translation (En, Q) in
die aus den Elementen

% und (A, (E - A) S) (A aus g)

erzeugte Gruppe xibergeht.
Durch die vorherigen Ûberlegungen haben wir uns klargemacht, daB

wir ein vollstàndiges System von zulàssigen Vektoren (<5A) ersetzen
dûrfen durch ein Teilsystem bestehend aus den Vektoren <5Al, &At,

QA das durch die Bedingungen (5) eingeschrânkt ist. Gewôhnliche

Âquivalenz findet zwischen diesen Teilsystemen ((5Ai) und (QA{) genau
dann statt, wenn die Kongruenzen

S* =IS x-i+ (E - A4) S (mod D
Ai Ai

mit X aus N% und einem festen Vektor S losbar sind, wàhrend starke
Âquivalenz zwischen zulàssigen Teilsystemen mit der simultanen Lôsbar-
keit der Kongruenzen

63, SAi+(E- A,) S (mod D
gleichbedeutend ist.

Wir behandeln zunâchst die starke Âquivalenz.
Aile zulàssigen Vektorsysteme (QA) bilden einen Modul M gemàB der

Addition
(<5a) + (&a>) &a + <5a>)

denn die charakteristischen Kongruenzbedingungen sind ja linear in den
Argumenten QA Aile Vektorensysteme

((E-A)Q + qa) (qa aus D

bilden einen Untermodul Mo von M. Die starke Âquivalenz zulâssiger
Vektorsysteme ist ersichtlich gleichbedeutend mit der Kongruenz der
Vektorsysteme nach dem Teilmodul M0. Unsere Aufgabe ist es, ein Ver-
tretersystem von M nach Mo zu bestimmen.

Hilfssatz 1 : Mo besteht aus allen zulâssigen Vektorensystemen (QA),
ftir die es ein System (g^ von Gittervektoren mit der Eigenschaft, daB
auch noch das System A(&A — qa) mit beliebigem reellen A zulâssig
ist, gibt.
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Beweis des Hilfssatzes : Wenn

SA (E — A) S + QA mit g^ aus F ist,

so bilden die Vektoren

ebenfalls ein zulàssiges Vektorensystem. Wenn aber das Vektorensystem
(QA) zulâssig ist und ein System von Gittervektoren qa existiert, so da8
auch das System der Vektoren X(QA — g^) (X beliebig reell) noch ein
zulâssiges System ist, so setzen wir

und finden

XtAB XïA + A • XïB

und da A eine beliebige réelle Zahl sein darf, so muB der Vektor tAB —

— tA— AïB verschwinden. Man bilde uber die so entstehenden Gleichun-

gen den Mittelwert uber aile B Setzen wir noch

2 *

so erhalten wir
m~ti-im 0

tA (E-A)m
w. z. b. w.

Wir bilden das Vektorensystem (&A) durch die Zuordnung

auf ein Teilsystem ab und erhalten dadurch eine isomorphe Abbildung
von M auf einen anderen Modul M. Dabei wird Mo isomorph auf die

Menge Mo der Vektorensysteme

((E ~Ai)Q + qa.) (qA{ aus D
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abgebildet. Nun fûhren wir an Stelle eines Systèmes von v Vektoren mit
n Komponenten einen Ûbervektor mit n • v Komponenten ein :

S

\
Um die Bedingung der Zulâssigkeit fur dièse Ûbervektoren auszudrucken,
fûhren wir die m, vn-Matrix

ein und erhalten als Bedingung :

9î 8 ist ganzzahlig.

Aile Ûbervektoren S, fur die ${8 ganzzahlig ist, bilden einen zu M iso-

morphen Modul M. Insbesondere enthàlt M aile ganzzahligen

Ûbervektoren. Bei dem Isomorphismus zwischen M und M wird Mo gemâB

dem Hilfssatz auf jenen Untermodul Mo von M abgebildet, der aus allen
Ûbervektoren So besteht, fur die es einen ganzzahligen Ûbervektor 0 mit
der Eigenschaft, dafi auch aile Ûbervektoren A (So — G) mit beliebigem
reellen A noch zulàssig sind, gibt. Gleichbedeutend damit ist offenbar die
Lôsbarkeit der Gleichung

durch einen ganzzahligen Ûbervektor G. Man bringe nun die Matrix 9?

durch elementare Umformungen in Elementarteilergestalt :
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wobei ty eine nr-reihige unimodulare Matrix und Q. eine wv-reihige uni-
modulare Matrix ist. _

Dieser Umformung entspricht der Ûbergang von M zu dem isomorphen

Modul ZrxM. Denn aus der Tatsache, daB 91S ganzzahlig ist, folgt,
daB ^J9l£i • Q~1aS ganzzahlig ist und umgekehrt. Q.~xM besteht aber aus
allen tJbervektoren der Form

9x < \

wobei die Zahlen gt ganzrational sind und die Sterne beliebige réelle

Zahlen bedeuten sollen. Der Modul Qr1 Mo besteht aus allen Vektoren,
die sich als Summe eines ganzzahligen t)bervektors und eines von
annullierten Vektors darstellen lassen, das sind aber die Vektoren :

92

Als Vertretersystem von SOi^

die e1-e2...eQ Ûbervektoren
nach Q- erhalten wir demgemâB

\
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Entsprechend finden wir als Vertretersystem von M nach Modie exe2.. .eQ

Vektoren

die sich auf Grund der Kenntnis der elementaren Spaltenumformungen,
die von 9î nach *P$RQ fiihrten, leicht berechnen lassen. Ûbrigens ist es

nicht absolut notwendig, grade die Elementarteilergestalt herzustellen. Es
genxigt schon die Herstellung einer monomialen Gestalt, wobei also in
jeder Zeile und Spalte von ?$ 5RQ hôchstens eine von Null verschiedene
Zahl steht. Das Produkt der von Null verschiedenen Zahlen dx, d2,..., dQ

in der Matrix ^ 9?£i ist dann die gesuchte Anzahl der Restklassen von
M nach Mo, und die Vertreter erhalten wir in der Form

lt 0, 1, df - 1

Q.
»= 1,2,

wobei durch die Punkte Nullen angedeutet werden. Die Zahl q ist gleich
dem Rang der Matrix 9t. Die Zahl e± • e2 eQ dx • d2 dQ ist
gleich dem g. g. T. aller g-reihigen Unterdeterminanten von 5R. Wenn

keine von Null verschiedenen Elementarteiler vorkommen, so ist M=M0,
und es gibt nur den Nulliibervektor als Vertreter.

§ 3. Es ist uns jetzt môglich, vermôge elementarer Umformungen
einer gewissen Matrix die starke Âquivalenz zulâssiger Vektorensysteme
vollstàndig zu beherrschen. Wir wenden uns nun der gewôhnlichen
Âquivalenz zu.

In der Gruppe N%, die aus allen unimodularen Matrizen X besteht, fur
die XfÇ-X*"1 5 ist, liegt der Normalteiler Z%, der aus allen unimodularen

Matrizen X besteht, fiir die sogar XAX~X — A fur aile A aus 5
ist. Z% ist aber gerade die Einheitengruppe des Ringes V% aller mit $
elementweise vertauschbaren ganzzahligen w-reihigen Matrizen. V% be-
sitzt eine Basis liber dem Ring o der ganzen rationalen Zahlen. Dièse
Basis ist zugleich eine Basis des Vertauschungsringes F aller rationalen
mit 3f elementweise vertauschbaren Matrizen bezuglich des Kôrpers R

130



der rationalen Zahlen. V% ist also eine Ordnung des hyperkomplexen
Systèmes V ûber R. Da F aber zugleich der Vertauschungsring des von
den Matrizen aus 3f erzeugten 2?-Schiefringes g* i^> und 5* ûber R voll
reduzibel ist, so ist g* halb einfach. Und daher ist der Vertauschungsring

V nach einem bekannten Satze von E. Noether ebenfalls halb
einfach. Z% ist also die Einheitengruppe in einer Ordnung eines halbein-
fachen Systèmes liber R. Siegel [8] hat eine Méthode skizziert, um ein
System von endlich vielen Erzeugenden Xx, X2,..., X^ von Z% anzu-
geben. Ûbrigens lâBt sich in den Fâllen n ^ 3 dies stets auf sehr ein-
fache Weise tun.

Bei Transformation von Qf mit X aus N% entsteht der Automorphismus

von 5 • Die ZuordnungI a x I

bewirkt eine homomorphe Abbildung von N% auf eine Untergruppe U
der Automorphismengruppe von 5> welche die Gruppe 3 der inneren
Automorphismen von $ stets enthàlt, da ja 5 zu N% gehôrt. Bei dieser

Zuordnung entsprechen dem identischen Automorphismus von 5 genau
die Elemente aus Z%. Nach dem ersten Isomorphiesatz ist Z% ein Normal-
teiler von N% und die Faktorgruppe isomorph zu U :

Da nun 5 endlich ist, so ist auch U endlich. Es gibt also endlich viele
Matrizen X^+1,..., X^ aus N%, die zusammen mit Z% ganz N% er-
zeugen: _
Wir finden ein Vertretersystem von N% nach Z% z. B. dadurch, dafi wir
die arithmetische Âquivalenz zwischen den ganzzahligen Darstellungen
A -> A A (A) und A -> J.a A*(A) (oc beliebiger Automorphismus
von g) der durch g bestimmten abstrakten Gruppe untersuchen. Immer
dann, wenn A zu Ja arithmetisch àquivalent ist, finden wir gemâB der
in diesem Falle bestehenden Gleichungen

eine Matrix X aus N%. Aile dièse Matrizen zusammen bilden aber gerade
das gesuchte Vertretersystem.

Hilfssatz 2 : Der Ûbergang
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bewirkt einen Automorphismus des Moduls M der zulâssigen Vektoren-
systeme, der den Teilmodul MQ auf sich abbildet.

Beweis von Hilfssatz 2 : Es ist

womit ailes gezeigt ist.

Bei der gewôhnlichen Àquivalenz werden also aile diejenigen starken
Âquivalenzklassen zusammengefaBt, die durch einen der tîbergànge
(<5 W(IS ^ mit X aus N% aus der zu (QA) gehôrigen starken

Âquivalenzklasse entstehen. Anders gesagtentspricht jeder Matrix X aus

N% eine Permutation X* der endlich vielen starken Âquivalenzklassen,
so dafi aile dièse Permutationen zusammen eine zu JV| homomorphe end-
liche Permutationsgruppe N% bilden und die gewôhnlichen Âquivalenzklassen

bestehen einfach aus dem System von unter Nd konjugierten
starken Âquivalenzklassen.

Dem Automorphismus

von M entsprechen nun bei dem Isomorphismus zwischen M und M bei

operator-isomorpher Ûbertragung der Automorphismus

8

\ x^r
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von M, wobei dem Elément X die w^-reihige Matrix

X
xUf''T

T ...lUfT
zuzuordnen ist. Dem Automorphismus 8 -> XS von M entspricht aber

bei dem Ùbergang von M zu £rx M im Sinne der operator-isomorphen
tîbertragung der Automorphismus

von Q^M. Bei diesem Automorphismus wird
gebildet. Wir kônnen der Matrix

(6)

auf sich ab-

(yik(X)) (y,,)

direkt die zu (6) gehôrige Permutation der Restklassen von Q-1 M nach

Q^Mq entnehmen.
Wenn etwa ^fJlRCi Elementarteilergestalt hat, so ist mit den fruheren
Bezeichnungen

i e

€

und dieser Ûbervektor ist stark âquivalent zu Ptf t'... tr wobei die
1 2

Zahlen Zj eindeutig bestimmt sind durch die Kongruenzbedingung
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k ti ' S Vache? (mode,)

und die Ungleichung

0<l't< e, (i= 1,2,..., g)

Somit finden wir als die zugeordnete Permutation :

(»"»¦¦¦*)*(»
Es genûgt dabei, sich auf die endlich vielen Matrizen Xt, X2,..., X^,
die den Erzeugenden Xx, X%,..., X^ von N% zugeordnet sind, zu be-
schrânken, denn die sàmtlichen Permutationen nx entstehen durch
endlich oftmalige Zusammensetzung der Permutationen nXi, %2
7tx Ausgehend von einer starken Âquivalenzklasse, die etwa durch den

Ûbervektor Q,Plil2...t reprâsentiert werde, fassen wir aile starken

Âquivalenzklassen, die aus ihr durch wiederholte Anwendung der
Permutationen nXi, nx% nx entstehen, zu einer gewôhnlichen
Âquivalenzklasse zusammen. Die gewôhnlichen Âquivalenzklassen reprâsen-
tieren aber genau aile Typen nicht isomorpher zu % gehôriger Raum-

gruppen. Damit ist das Speisersche Problem gelôst.

§ 4. Fur die praktische Anwendung ist bemerkenswert, daB die den
Elementen X aus 2f zugeordneten Automorphismen

von M die starken Âquivalenzklassen einzeln festlassen. In diesem Falle
ist namlich

X S x + S + A Sx A A

Q^ + (E - A) ¦ - <5X (mod T)

Also ist (X-S _^ stark Equivalent zu (SA). Dieser Bemerkung ent-

nehmen wir nun die nûtzliche Feststellung, daB die in 5 liegenden Er-
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zeugenden von N% bei dem im § 3 erklârten Reduktionsverfahren nicht
berueksichtigt zu werden brauchen.

Ferner tragen wir der Existenz von — En in N% gerade dadurch Reeh-

nung, daB stets der Ûbervektor CiPill2 i zu dem Ûbervektor

CiJP.^ -i2 î • • • > -i âquivalent ist.
Als Beispiel behandeln wir die Ebenengruppen. Wir setzen dabei die

Kenntnis aller endlichen unimodularen Substitutionsgruppen von zwei
Variabeln voraus. Durch den hier geschilderten Allgorithmus finden wir,
wie zu erwarten stand, tatsàchlich 17 Typen :

Vorerst noch zwei allgemeine Bemerkungen.
Die zu JDP00.. .0 gehôrige starkeÂquivalenzklasse ist zugleich eine ge-

wôhnliche Àquivalenzklasse.
Man stelle die Matrix 31 und die Matrizen 36X, X2,..., X^ zu einer

kombinierten Matrix zusammen, in der wir den oberen Teil 9t und den
unteren Teil

unterscheiden.

Man bringe die Matrix 9t durch elementare Umformungen in mono-
miale Gestalt, beteilige aber zugleich den unteren Teil der kombinierten
Matrix an den Spaltenumformungen der Matrix 9î. Wenn also in der
oberen Matrix das a-iache der j-ten Spalte zur h-ten Spalte addiert wird,
so soll dasselbe auch in der unteren Matrix geschehen. Danach aber ist in
jedem der fi Teile der unteren Matrix das a-fache der A-ten Zeile von der
j-ten Zeile zu subtrahieren. Notiere dièse Zeilenumformungen der Reihe

nach, wie sie vorkommen, etwa A'^1^, A^*J2,..., A~kag'jg Suche das

Vertretersystem der Pz t t auf Bestimme die Permutationen

nXi, nx%,..., nx mit Hilfe der umgeformten unteren Matrix, die ja ge-
mâ6 Konstruktion gerade

e2Q
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ist. Man fasse die Vertreter !Q,Pl z ...j der starken Àquivalenzklassen

in Système von unter ivtxi > • • • > nx konjugierten, abgesehen von
starker Àquivalenz, zusammen. Wâhle aus jedem dieser Système einen
Ûbervektor aus Die erhaltenen tîbervektoren bilden gerade ein voiles
System nicht aquivalenter, zulâssiger, zu Qr gehôriger Vektorensysteme.
Beachte bei dieser Rechnung, da8 der Weg von PliÎ2.. .t nach QPilÏ2.. .t
ùber die vorhin notierten Zeilenumformungen, aber in umgekehrter
Reihenfolge und mit entgegengesetzt gleichen Exponenten fuhren, also
iiber

~a8 ~ aS-l "~ al
h8, js ' ^«-i » ig-i ' * * * ' ^1 » il

Beispiel :

p? /JL A. } A i1 A (-1

&1 Ai Jb2 It2 Jk2 ËJ2 M3 (^ Ji2) Hj2

Da A2 + Ez 0, so kommen in 91 zwei Nullzeilen vor. NuUzeilen
durfen aber fortgelassen werden, so dafi eine Matrix

\ A1A2 + E%, A1 + A%

mit nur vier Zeilen ubrigbleibt. Ferner ist

^g <Jf,gf>! X (/),

X
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2

1

— 1

1

1

— 2

1

Addiere die 4. zur 2. Spalte Notiere die Zeilenumformung A^ von X
Wir finden

% (poo) (^u) (^10^01) jPoi seheidet aus

Die drei zu % gehôrigen Ebenengruppen werden jeweils aus %2 und

a) (^x,0) {A2,0)

c) (A19 |ex), (^42, |c2)
erzeugt.

Bei der Ableitung der Bewegungsgruppen der Ebene mit endlichem
Fundamentalbereich (Symmetriegruppen der Flâchenornamente) arbei-
ten wir mit den folgenden unimodularen Matrizen :

Wir geben jeweils die Bezeichnung der Gruppe gemâfi Speiser [6] § 29 und
daneben die Erzeugenden der Gruppe, die zu %2 hinzutreten, an.
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I. Allgemeines ebenes Gitter :

1) At E ; A\ E 5R E ; <EX : (E, 0)

2) 41=-^ ; ^î'=J5, »=(41 + ^) 0;

II. Rechtwinkliges Gitter :

3) bis 4) A1 B ; 4J £

Gf : (5,0)

E) (20)

5) bis 7) ^4! ^,
spiel

=:~^; siehe das zuerst behandelte Bei-

<£/, : (5,0), (-E,0)
<%{ : (5, |d), (-E,0)
&»: (B, \Zl), (--B, Je,)

III. Rhombisches Gitter :

S)A1 A; Al E, 91 (A± + E)

9) Ax A,
5) bis 7)

— J5 ; Relationen und Bildung von 91 wie unter

1

1

1

— 1

1

1

— 1 -

1

-1
1

1

— 1
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IV. Quadratisches Gitter :

10) At D; A\ E, 5R {A* + A\ + A, + E) 0

11) bte 12) Al D, A2 B; A\ E A\ E, {AxAtf E

Man beachte, dafi A\-{¦ A\-\- A1-\- E verschwindet. Lasse die beiden
ersten Zeilen, die ja Nullzeilen sind, fort

Notiere

0

0

0

0,1

Wende der Reihe nach Ait, A\\, A2\ an

(B,0)

V. Hexagonales Gitter :

13) ^x (7 ; A\ (4J + Ax + E) 0

x (7, ^42 A ; JJ E A\ E (A,, A^ E
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91

Lasse die ersten beiden Zeilen, die ja versohwinden, fort

aoi

1 1

1 1

—12 2—1

$L : (#,0), (.4,0)

Relationen und Bildung von 91, 91^ wie unter 14).

9t'
2

1

1

— 1

— 1

1

2

— 1

16) A1 UD -
: (0,0), (-

17) A1 U\) E

91

E

Lasse die beiden ersten Nullzeilen fort

A
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6V : (-0,0), (A,0)
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Zusatz bei der Korrektur :

In dem Bûche ,,Die Bewegungsgruppen der Kristallographie" von J. J.
BurJchardt, Basel 1947, wird im Prinzip dasselbe Verfahren wie von mir angegeben fiir
die Herleitung der Raumgruppen im R3.

Zcwsenhaus

(Eingegangen den 14. Mai 1947.)
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