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Uber einen Algorithmus
zur Bestimmung der Raumgruppen

Von Haxs ZassenHAus, Hamburg

Die diskreten Bewegungsgruppen des euklidischen R, mit endlichem
Fundamentalbereich (Raumgruppen in n Dimensionen) enthalten n un-
abhingige Translationen. Fir » = 3 wurde dies von Schonflief [1] durch
geometrische Uberlegungen gezeigt. Bieberbach [2, 3] bewies den Funda-
mentalsatz auf arithmetischem Wege fiir beliebige Werte von n. Von
Frobenius [5] wurde der Beweis vereinfacht.

Aus dem Fundamentalsatz ergibt sich, dal die Translationen in einer
gegebenen Raumgruppe & einen Normalteiler T mit endlicher Faktor-
gruppe bilden, so daBl T eine freie abelsche Gruppe von n Erzeugenden
ist. Die Translationsuntergruppe I ist eindeutig bestimmt als groBter
abelscher Normalteiler. Jede umfassendere Untergruppe von ® ist nicht
mehr abelsch.

Zwei Raumgruppen heiflen dquivalent, wenn sie sich durch eine Affi-
nit#t ineinander transformieren lassen. Bieberbach [3] zeigt, daB die Aqui-
valenz zweier Raumgruppen mit ihrer Isomorphie gleichbedeutend ist.

In dieser Arbeit wird zunichst der Satz bewiesen, dal3 eine Gruppe G,
die als Erweiterung einer freien abelschen Gruppe ¥ aus endlich vielen
Erzeugenden T,,T,,...,T . it endlicher Faktorgruppe konstruiert
worden ist, in der nur der Einheitsrestklasse T selbst der identische Auto-

morphismus von 37 (beim Transformieren) entspricht, zu einer Raum-
gruppe isomorph ist.

Die Bestimmung der Klassen dquivalenter Raumgruppen des R, lduft
gemdf dem bereits Gesagten auf das von Speiser [6] gestellte Problem
hinaus, alle Typen nicht isomorpher Erweiterungen der freien abelschen
Gruppe ¥ von 7 Erzeugenden mit endlicher Faktorgruppe & zu finden,
so daB nur dem Einheitselement aus § der identische Automorphismus
von I zugeordnet ist.

Bieberbach [4] zeigt, daB diese Aufgabe nur endlich viele Losungen hat.
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Die Klassifikation der Raumgruppen ist bisher nur fiir » <3 durch-
gefiihrt, und zwar auf geometrischem Wege.

In dieser Arbeit wird eine algebraische Methode zur Klassifikation der
Raumgruppen entwickelt, die es gestattet, die bisher auf geometrischem
Wege erhaltenen Resultate rechnerisch zu kontrollieren und einen
gangbaren Weg zeigt, die Klassifikation auch fiir mehr als drei Dimen-
sionen auszufiihren. _

Wir machen uns zunéchst klar, daB sich die den Elementen aus ¥ zu-

geordneten Automorphismen von T als eine zu {57 isomorphe Gruppe §
von ganzzahligen Substitutionen in n Variabeln darstellen lassen. Dabei
ist die Gruppe & durch ® bis auf eine Transformation mit einer ganz-
zahligen Matrix der Determinante 4 1, d.h. bis auf arithmetische
Aquivalenz, eindeutig bestimmt.

Vorausgesetzt wird die Kenntnis aller Klassen endlicher ganzzahliger
Substitutionsgruppen bei arithmetischer Aquivalenz. Wie Bieberbach [4]
gezeigt hat, gibt es nur endlich viele Klassen. In einer fritheren Arbeit
habe ich [7] gangbare Methoden zur Beherrschung dieser Klassen angege-
ben. Weitere Untersuchungen dariiber sind im Gange. Wir denken uns
aus jeder Klasse eine Vertretergruppe § ausgewihlt und 16sen fiir diese
das Erweiterungsproblem.

Um die Rechnung zu erleichtern, ist es zweckméBig, fiir die Substitu-
tionsgruppe & endliche viele Erzeugende A,, 4,,..., 4, mit endlich
vielen definierenden Relationen :

'Ri(A13A2:"')Av):En (j:1,2,...,7') s

wobei K, die n-reihige Einheitsmatrix ist, anzugeben.

Mit Hilfe der Matrizen aus & und der Relationen R, wird eine Matrix R
mit r-n Zeilen und n-» Spalten konstruiert. Das Produkt der von Null
verschiedenen Elementarteiler der Matrix R ist im wesentlichen gleich
der Anzahl der zu § gehoérenden Raumgruppen. Eine Reduktion kann
nur eintreten durch die Existenz von ganzzahligen Substitutionen der
Determinante + 1 (unimodularen Matrizen), die § in sich transformieren.
Alle Matrizen dieser Art bilden eine Gruppe N, die nach einem Satz von
Siegel endlich viele Erzeugende X,, X,,..., X, besitzt. Durch eine zu-
sitzliche Rechnung 148t sich leicht finden, welche Reduktion der oben
gefundenen Anzahl durch die X, eintritt. An Beispielen wird der Gang
des Algorithmus klargemacht.

Eine systematische Ubersicht iiber die Rechnungen fiir n = 3 ist als
Nachtrag zu dieser Arbeit vorgesehen. Eine Auseinandersetzung mit der
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bisher in der Mineralogie gebrduchlichen Nomenklatur ist dabei unver-

meidlich. Die von Schonflieff [1] angegebene Anzahl von 230 Raum-
gruppen im R; bestétigt sich.

§ 1. Essei T die freie abelsche Gruppe mit n Erzeugenden T P PY
, © sei eine Obergruppe von ¥, die T als Normalteiler mit der Faktor-

gruppe 'i? enthalte. Die Elemente A aus & sind Restklassen von ]
nach T :

— — —

A=I87,

wobei die Elemente gz ein Vertretersystem von ® nach T bilden. Durch
die Festsetzung

T

A—>(S—-TSA ) (_1—’ a.usf)

ist A eindeutig ein Automorphismus von T zugeordnet, so dall dem Pro-
dukt zweier Restklassen nach ¥ das Produkt der ihnen entsprechenden
Automorphismen von T zugeordnet ist. Dabei wird der Einheitsrest-
klasse T der identische Automorphismus zugeordnet. Setzen wir

(5:7,55) — 7™ |
i=1
so finden wir, da der zugeordnete Automorphismus eindeutig durch die

n-reihige Matrix 4 = (aik(Z)) bestimmt ist. Man rechnet nach, dag
dem Produkt zweier Automorphismen das Produkt der Matrizen ent-

spricht. Alle Matrizen A bilden eine zu 5 homomorphe Gruppe § von
unimodularen Matrizen.

Satz 1. Wenn die Gruppe & endlich und zu {:5' tsomorph ist, so ist G zu
etner Raumgruppe in n Dimensionen isomorph.

Beweis : Nach Voraussetzungen besteht der Isomorphismus
A—>A
zwischen § und & . Wir stellen einen weiteren Isomorphismus zwischen T

und der Gruppe T der ganzzahligen Translationen im R, her durch die
Zuordnung
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e 2 pre=nd .
JT"= T, wobei

n

= (B, h~>T T",. ..

.y
t= :2 und ¢, %,,...,¢, ganz rational ist.
t,
Dann ist
——— —_ —— T no__ 2 o (ANt
T*‘-‘:—;S;;TS;;-—:H(SIT,,S;)" HT"l =(E,,4t)
k=1

Sz -8g=1T4 pSqz mit Ty 5 aus T

S=) = (81S5)Sg ergeben sich fiir das

Aus dem Assoziativgesetz :S’-;; (:S%
Faktorensystem aus den Elementen T, p die Assoziativitdtsrelationen

T3AT, yo=T4 3Tupe -

Setzen wir T, p = (E,,t, 5), so folgt

t4,30+ AtB,C = tA,B + tAB,C .

Die Mittelbildung iiber § ergibt : i
my+Amp=1, p+myp, (1)

wobei )
TN e

gesetzt ist und die Ordnung der Faktorgruppe § mit N bezeichnet ist

Die Zuordnung
TS8z—~>T-(A,my)=(4,t+m,)

bildet @ isomorph auf eine affine Gruppe ® ab. Als Homomorphie
Bedingung ergibt sich, daBl der Gleichung

igz'ilﬁzr————-q_’i ZTA A'SAA'
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gemiB jener Zuordnung die Gleichung
(A, t + mA) . (A,, t, + mA,) - (AA,, t +A t, + tA,A’ + mAAr)

entsprechen muB, die in der Tat aus (1) folgt. Als Isomorphie-Bedingung
ergibt sich, dafl aus

T (4, my)=(,,0)

folgen muB, daf3 i’gz = 1. In der Tat ergibt sich 4 = E,, 53 eX,
t4+my =0.

Die affine Gruppe ® ist aber affin verwandt zu einer Raumgruppe. Sie
ist ndmlich diskret und enthilt » unabhidngige Translationen. Es muf}
also nur noch gezeigt werden, daB sie in eine Bewegungsgruppe transfor-
miert werden kann. Nach dem Satz von Maschke kann die endliche
Gruppe § von n-reihigen reellen Matrizen durch eine reelle Matrix X in
eine Gruppe aus orthogonalen Matrizen transformiert werden. Also ist
(X,0)-® (X, 0) ! eine Bewegungsgruppe, womit alles gezeigt ist.

Jede Raumgruppe ist affin verwandt zu einer der Gruppen aus allen
Affinitdten (4, S, + g), wobei g den Modul I" aller ganzzahligen Vek-
toren durchlduft und

Syp=6,+465 (modI) (2)

ist, wihrend A die endliche unimodulare Gruppe & durchlduft, und um-
gekehrt gibt es zu jeder Gruppe dieser Art eine affin verwandte Raum-
gruppe. Da nun zwei Raumgruppen genau dann isomorph sind, wenn sie
affin verwandt sind, so gilt dasselbe auch fiir die Gruppen der letzt-
genannten Art. Welches sind aber die Bedingungen fiir affine Verwandt-
schaft zweier Gruppen :

® erzeugt aus I und den Vertretern (4, S,) von ® nach I
®* erzeugt aus T und den Vertretern (4*, S%.) von G* nach I ?

Wir priifen also, wann

X, 5)6(X, &) = 6*

ist. Da T gekennzeichnet ist als maximaler abelscher Normalteiler,
80 mul

(X,6)TX,8) =%

sein. Folglich muB die Matrix X unimodular sein. Ferner ergibt sich die
Bedingung :
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G/TG*ZT
T~ F*

ja, es mub sogar bei passender Bezeichnung
(X, )4, GA)(X’ S) = (4%, GI* + 64)

mit g, aus I'und
A*¥ = XAX1

F* = XFX1
sein. Folglich ist die Gruppe §* unimodular dquivalent zu &, und es ist
C*t.=X6C,+ (B, — XAX)S (modT).

Wir haben nun aus jeder Klasse arithmetisch dquivalenter ganzzahliger
endlicher Substitutionsgruppen eine Vertretergruppe & gewéhlt. Wenn
®* zu ® affin verwandt ist, so konnen wir ®* so affin transformieren,
daBl auch die transformierte Gruppe noch zu & gehort. Gesucht werden
alle untereinander nicht isomorphen zu § gehdrigen Raumgruppen.

Es gehore also ® und G* zu §. Dann miissen wir uns die Frage stellen,
wann

(X) G) ®(X> 6)—1 = (5*
ist. Als notwendige Bedingung erhalten wir gemédfl den oben schon aus-
gefiihrten Rechnungen :
XFX1=§, a)
d.h. X muBl zu der Gruppe N aller unimodularen Matrizen, die ¥ auf
sich transformieren (Normalisator von § in der Gruppe aller unimodu-
larer Substitutionen) gehdren. Ferner mufl
C =XG, + (B, —XA4X) S (mod I')

sein. Etwas anders ausgedriickt ergibt sich die Bedingung :

cE = XGAx-l +(E—4)8 (mod 1) . b)

Ersichtlich sind die angegebenen Bedingungen auch hinreichend fiir die
affine Verwandtschaft zwischen ® und G*.

122



Wenn wir also zwei Gruppen ® und ®&* zu der gegebenen Gruppe &
bestimmt haben durch Angabe eines Vektorsystemes (S,) bzw. (S%.),
so findet Aquivalenz genau dann statt, wenn sich die unter b) angegebene
Kongruenz mit Hilfe eines festen Vektors G und einer Matrix aus Ny
losen ldft. Dabei ist noch zu bedenken, daBl die Vektorensysteme nicht
ganz beliebig sind, sondern an die Kongruenzbedingungen

GABESA+AGB (mOdF)

gebunden sind. Wir sprechen in diesem Falle von (gewohnlicher) Aqui-
valenz zwischen (zulissigen) Vektorsystemen. Diese Aquivalenz hat offen-
bar die drei iiblichen Eigenschaften. Dasselbe gilt auch fiir die starke
Aquivalenzbeziehung, von der wir dann sprechen, wenn sich sogar die
Kongruenzen

C*=6,+(E—A)S (mod )

simultan losen lassen. Aus der starken Aquivalenz folgt natiirlich die
Aquivalenz im gewohnlichen Sinne, wihrend das Umgekehrte nicht not-
wendig der Fall ist. Unsere Aufgabe ist es, die Klassen dquivalenter
Vektorensysteme anzugeben. Wir wollen aber zunichst die Klassen stark
dquivalenter Vektorensysteme mit Hilfe eines explicit zu bestimmenden
Vertretersystemes aufstellen.

§ 2. Wir suchen irgendein System von Erzeugenden A,, 4,,..., 4
mit endlich vielen Relationen

1 4

‘Rj(Al’Az""’Av):En (j:].,z,...,'l’)

der Gruppe & auf. Zum Beispiel kénnen wir einfach die endlich vielen
Elemente aus § als Erzeugende nehmen und als definierende Relation
die aus der Gruppentafel folgenden N2 Relationen. Um aber iiberfliissige
Rechenarbeit zu ersparen, ist es zweckmiflig, ein System von moglichst
wenig Erzeugenden mit moglichst wenig definierenden Relationen auf-
zusuchen.

Sei zunéchst ein zulédssiges Vektorensystem (S ,) gegeben. Wir behaup-
ten, daB sich alle Vektoren des Systemes mod I" ausrechnen lassen,
wenn die Vektoren &,,, S,,,..., ©, bekannt sind. Némlich aus

Cp, = Cpp, =Cp, + £,85, =265, (mod!)

folgt Cp, =0

" ]

i
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und aus 0._:'..:: GEnE 6AA—IEGA+A64~1

folgt Sya=—A41G, , insbesondere G, 1= —4,1G,, .

Wenn ferner W=A434%,..., 432 (,==+1)
ein Potenzwort in den Erzeugenden A4,,4,,...4, ist, und
Wy=Ap2A3 .. .. A

den durch Weglassung des vordersten Faktors entstehenden Abschnitt
bezeichnet, so ergibt sich

6W = GAE} + A:i 6W1 (mOd F) ’ (3)
und daraus ergeben sich durch vollstindige Induktion Formeln von der
Bauart

GW == z W(i) eAi ’ (4:)
i=1
wobei die Matrix W® aufler von den Matrizen 4,, 4,,...,4, nurvon W

und ¢ abhéngt. Ferner zeige man durch vollstindige Induktion nach der
Liange des Wortes W, das bei der eben angegebenen Konstruktion von
Sy sich ergibt, daB die Bedingungen

GWWI = GW + WGW/

von selbst miterfiillt sind. Welche Bedingungen ergeben sich aber fiir die
Vektoren S, ,8,,,..., S 4, Wenn wir fordern, daf3 sie ein zuldssiges

Vektorensystem im Sinne der eben angegebenen Konstruktion erzeu-
gen? Notwendige Bedingungen sind jedenfalls, dafl

) _ .
Cr, 4y, 4y ap =S RSy, =0 (=1,2,...9). (5)

i=1
Diese r Bedingungen sind aber auch hinreichend. Wenn némlich
WA, A,,...,A)= W' (A,,A4,,..., A)
ist, so ist dies gleichbedeutend mit
W=WIW,R} W;>
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und hier ist S, =0

— 1 ——
—_ " 7 pe
wr RS W 6W” +W GR;- + B CEW”‘1
=6 + W&, —WERW-'6S
wr R; wr

=0 (modlrl)
— / s

6W _‘ 6W' + W 6I[WAR;5§WA_1 T 6W' )

Man beachte, daB sich bei Kiirzungen in einem Wort, z. B. W =
W, W, W;'W, >W, W, der gemiB (4) gebildete Vektor mod I' nicht
dndert :

Cp =Cw, + WSy, + Wi W, Cpa+ W W, W' Sy, =
=Gy, + W6y, = Gy, w, !

Wir bemerken noch einmal, dafl sich vermoge der Formel (3) und der
Formel (4) zu jedem Wort W ein Vektor Sy eindeutig aus der Kenntnis
der Vektoren S, ,S,,,..., S 4, heraus konstruieren ld8t, wobei die
charakteristische Bedingung fiir zuldssige Vektoren sicher erfiillt ist.
Eben wurde noch gezeigt, dafl die Konstruktion in dem Sinne eindeutig
ist, daB fiir zwei Worte aus den Erzeugenden A4,, 4,,..., 4,, die in der
Gruppe & dasselbe Element darstellen, auch derselbe Vektor heraus-
kommt.

Zum Beispiel finden wir ausgehend von den Vektoren
gAi = (B — Az) S
das zuldssige Vektorensystem

Wir konnen uns dies entweder durch Induktion nach der Linge von W
klarmachen oder auch uns iiberlegen, daB die aus den Elementen

T und (4,0) (4 aus §F)
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erzeugte Gruppe durch Transformation mit der Translation (£,, S) in
die aus den Elementen

T und (4,(E—A4)6) (4 aus )

erzeugte Gruppe iibergeht.

Durch die vorherigen Uberlegungen haben wir uns klargemacht, daf3
wir ein vollstindiges System von zuldssigen Vektoren (S,) ersetzen
diirfen durch ein Teilsystem bestehend aus den Vektoren S, , G,,,
.+, @4 , das durch die Bedingungen (5) eingeschrénkt ist. Gewohnliche

Aquivalenz findet zwischen diesen Teilsystemen (S 4;) und (S%,) genau
dann statt, wenn die Kongruenzen

6: =X GAX_l +(B—A4)6 (mod I')
mit X aus Ny und einem festen Vektor & losbar sind, wihrend starke
Aquivalenz zwischen zuléissigen Teilsystemen mit der simultanen Losbar-
keit der Kongruenzen

GA’-EGA‘_'—(E———A,;)G (mOdF)

gleichbedeutend ist.

Wir behandeln zunichst die starke Aquivalenz.

Alle zuldssigen Vektorsysteme (S ,) bilden einen Modul M geméf der
Addition

(GA) + (GA') = (GA + GA') s

denn die charakteristischen Kongruenzbedingungen sind ja linear in den
Argumenten S,,... Alle Vektorensysteme

(B —4)S+g4) (a4 aus I)

bilden einen Untermodul M, von M. Die starke Aquivalenz zulissiger
Vektorsysteme ist ersichtlich gleichbedeutend mit der Kongruenz der
Vektorsysteme nach dem Teilmodul M,. Unsere Aufgabe ist es, ein Ver-
tretersystem von M nach M, zu bestimmen.

Hilfssatz 1: M, besteht aus allen zuldssigen Vektorensystemen (S,),
fiir die es ein System (g,) von Gittervektoren mit der Eigenschaft, dafl
auch noch das System A(S, — g,) mit beliebigem reellen A4 zulédssig
ist, gibt.
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Beweis des Hilfssatzes : Wenn

Sy,=(E—-A4)S+g, mit g, aus [ ist,
so bilden die Vektoren
MBS y—9g4)=(E—4)16
ebenfalls ein zulidssiges Vektorensystem. Wenn aber das Vektorensystem
(S,4) zuléssig ist und ein System von Gittervektoren g, existiert, so dafl
auch das System der Vektoren A(S, — g,) (2 beliebig reell) noch ein
zuldssiges System ist, so setzen wir
1y =064— 04

und finden

Atpg=At,+ 4. Aty ,

}'(tAB_tA_AtB)era

und da A eine beliebige reelle Zahl sein darf, so muf3 der Vektor t, —
—t, — A tp verschwinden. Man bilde iiber die so entstehenden Gleichun-
gen den Mittelwert iiber alle B! Setzen wir noch

1
M o= — t
N 2=t

so erhalten wir
m—tA —'—'Am - 0 ’

w.z. b. w.

Wir bilden das Vektorensystem (S,) durch die Zuordnung
(B4) > (S, ,-)

auf ein Teilsystem ab und erhalten dadurch eine isomorphe Abbildung
von M auf einen anderen Modul M. Dabei wird M, isomorph auf die
Menge M, der Vektorensysteme

(B —4,) 6+ g4,) (g4; aus I)
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abgebildet. Nun fiihren wir an Stelle eines Systemes von » Vektoren mit
n Komponenten einen Ubervektor mit 7-» Komponenten ein :

S,
S,

§=1 :

Sy,

Um die Bedingung der Zulissigkeit fiir diese Ubervektoren auszudriicken,
fithren wir die r#n, yn-Matrix

1 2
R‘I’R‘l’ Ce R‘l’”
1 2 (
ROR® ... RY

...........

ein und erhalten als Bedingung :
RS ist ganzzahlig.

Alle Ubervektoren S, fir die RS ganzzahhg ist, bilden einen zu M iso-
morphen Modul M. Insbesondere enthélt M alle ganzzahhgen Uber-
vektoren. Bei dem Isomorphismus zwischen M und M wird M, gemifl

dem Hilfssatz auf jenen Untermodul M, von M abgebildet, der aus allen
Ubervektoren S, besteht, fiir die es einen ganzzahligen Ubervektor G mit
der Eigenschaft, daB auch alle Ubervektoren A(S, — &) mit beliebigem
reellen 4 noch zuldssig sind, gibt. Gleichbedeutend damit ist offenbar die
Losbarkeit der Gleichung

RS, —G)=0

durch einen ganzzahligen Ubervektor G'. Man bringe nun die Matrix R
durch elementare Umformungen in Elementarteilergestalt :

€
1ez

R>PRAQ =

erfef ... [eg>0
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wobei P eine nr-reihige unimodulare Matrix und L eine nw-reihige uni-
modulare Matrix ist.

Dieser Umformung entspricht der Ubergang von M 2u dem isomorphen
Modul Q-'M. Denn aus der Tatsache, daB RS ganzzahlig ist, folgt,

daB PRY - Q18 ganzzahlig ist und umgekehrt. Q-1 M besteht aber aus
allen Ubervektoren der Form

-1
g, ¢,

-1
gz €,

go e
%k
*x
*
wobei die Zahlen g, ganzrational sind und die Sterne beliebige reelle

Zahlen bedeuten sollen. Der Modul Q! 117 o besteht aus allen Vektoren,
die sich als Summe eines ganzzahligen Ubervektors und eines von PRQ
annullierten Vektors darstellen lassen, das sind aber die Vektoren :

g1
g

9e
%*
*

*
Als Vertretersystem von QM nach Q-'M, erhalten wir demgemiB
die e,-¢e,...e, Ubervektoren

l, et
ly 1y’
li=0,1,2...6,~——1
Pun e loeg ' t=1,2,...0
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Entsprechend finden wir als Vertretersystem von M nach M odie e e,. . .
Vektoren '
D Pll 12 o o o le y

e

die sich auf Grund der Kenntnis der elementaren Spaltenumformungen,
die von R nach PRQ fiihrten, leicht berechnen lassen. Ubrigens ist es
nicht absolut notwendig, grade die Elementarteilergestalt herzustellen. Es
geniigt schon die Herstellung einer monomialen Gestalt, wobei also in
jeder Zeile und Spalte von PRQ hochstens eine von Null verschiedene
Zahl steht. Das Produkt der von Null verschiedenen Zahlen d,,d,,..., d,
in der Matrix PLRQ ist dann die gesuchte Anzahl der Restklassen von

M nach M, o> und die Vertreter erhalten wir in der Form

L dit
: li:O,l, di”_l
Q - l, d;! ,
: 1=1, 2, 0
oo

wobei durch die Punkte Nullen angedeutet werden. Die Zahl g ist gleich
dem Rang der Matrix R. Die Zahl e,-.e,..... eg =dy-dy. ....d, ist
gleich dem g. g. T. aller p-reihigen Unterdeterminanten von R. Wenn

keine von Null verschiedenen Elementarteiler vorkommen, so ist M =M, -
und es gibt nur den Nulliibervektor als Vertreter.

§ 3. Es ist uns jetzt moglich, vermoge elementarer Umformungen
einer gewissen Matrix die starke Aquivalenz zulissiger Vektorensysteme
vollstindig zu beherrschen. Wir wenden uns nun der gewohnlichen
Aquivalenz zu.

In der Gruppe N, die aus allen unimodularen Matrizen X besteht, fiir
die XFX-! = § ist, liegt der Normalteiler Zg, der aus allen unimodu-
laren Matrizen X besteht, fiir die sogar XAX-* = A4 fiir alle 4 aus &
ist. Zy ist aber gerade die Einheitengruppe des Ringes Vg aller mit §
elementweise vertauschbaren ganzzahligen n-reihigen Matrizen. Vg be-
sitzt eine Basis iiber dem Ring p der ganzen rationalen Zahlen. Diese
Basis ist zugleich eine Basis des Vertauschungsringes ¥V aller rationalen
mit § elementweise vertauschbaren Matrizen beziiglich des Korpers R
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der rationalen Zahlen. Vg ist also eine Ordnung des hyperkomplexen
Systemes V iiber B. Da V aber zugleich der Vertauschungsring des von
den Matrizen aus § erzeugten R-Schiefringes §* ist, und {* iiber R voll
reduzibel ist, so ist F* halb einfach. Und daher ist der Vertauschungs-
ring V nach einem bekannten Satze von E. Noether ebenfalls halb ein-
fach. Zg ist also die Einheitengruppe in einer Ordnung eines halbein-
fachen Systemes iiber R. Siegel [8] hat eine Methode skizziert, um ein
System von endlich vielen Erzeugenden X,, X,,..., X, von Zg anzu-
geben. Ubrigens 1aBt sich in den Fillen n < 3 dies stets auf sehr ein-
fache Weise tun.

Bei Transformation von § mit X aus Ng entsteht der Automorphismus

A
( Ax) von §. Die Zuordnung

X — ( j ¥ )
bewirkt eine homomorphe Abbildung von Ng auf eine Untergruppe U
der Automorphismengruppe von &, welche die Gruppe § der inneren
Automorphismen von § stets enthilt, da ja & zu Ny gehort. Bei dieser
Zuordnung entsprechen dem identischen Automorphismus von § genau

die Elemente aus Zg . Nach dem ersten Isomorphiesatz ist Zy ein Normal-
teiler von Ny und die Faktorgruppe isomorph zu U :

Ng/|Zg~U .

Da nun § endlich ist, so ist auch U endlich. Es gibt also endlich viele
Matrizen X,,,,..., X, aus Ng, die zusammen mit Zg ganz Ng er-
aengen : Ny= X1, Xy, Xy

Wir finden ein Vertretersystem von Ny nach Zg z. B. dadurch, daBl wir
die arithmetische Aquivalenz zwischen den ganzzahligen Darstellungen
A—>A=4(A) und A — A* = A*(A) (x beliebiger Automorphismus
von &) der durch § bestimmten abstrakten Gruppe untersuchen. Immer
dann, wenn A zu A* arithmetisch dquivalent ist, finden wir gemd8 der
in diesem Falle bestehenden Gleichungen

A%(4) = X-A(4)- X1

eine Matrix X aus Ng. Alle diese Matrizen zusammen bilden aber gerade
das gesuchte Vertretersystem.

Hilfssatz 2 : Der Ubergang
(64> — (XGAx-l) (X aus Ng)

131



bewirkt einen Automorphismus des Moduls M der zulidssigen Vektoren-
systeme, der den Teilmodul M, auf sich abbildet.

Beweis von Hilfssatz 2 : Es ist

XS

-1 ___
X(6, 4. +476 ) =XC  ,+4X6

ApXt X 6AX—IBX_1

X(6 0+6 ,4)=X6 ,+X6E .,

;

X1 (Xe =S,

(AX'I)X)
(X((E — AN e+ gAx_l)) - ((E— AHXGS+ XgAX_l) M, ,
womit alles gezeigt ist.

Bei der gewohnlichen Aquivalenz werden also alle diejenigen starken
Aquivalenzklassen zusammengefaBt, die durch einen der Uberginge
(64) — (X GA x—l) mit X aus Ng aus der zu (S,) gehorigen starken

Aquivalenzklasse entstehen. Anders gesagt entspricht jeder Matrix X aus
Ny eine Permutation X* der endlich vielen starken Aquivalenzklassen,
so daB alle diese Permutationen zusammen eine zu N'g homomorphe end-
liche Permutationsgruppe Ng bilden und die gewohnlichen Aquivalenz-
klassen bestehen einfach aus dem System von unter Ny konjugierten
starken Aquivalenzklassen.

Dem Automorphismus

(0~ (X6, )

von M entsprechen nun bei dem Isomorphismus zwischen M und M bei
operator-isomorpher Ubertragung der Automorphismus

S, X 6Af,1
S, X .,

S = - A3 — X8
S,, XSA £
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von M, wobei dem Element X die nw-reihige Matrix

XA x[4x71® . x[4X7]®
x4 x[az™® .. x[4x7]®

............................

............................

X4 P x[4x1® ... x[4x]®

zuzuordnen ist. Dem Automorphismus S — XS von M entspricht aber

bei dem Ubergang von M Q! M im Sinne der operator-isomorphen
Ubertragung der Automorphismus

Q18 > Q11X Q- Q18 (6)

von Q-1M. Bei diesem Automorphismus wird Q1M o auf sich ab-
gebildet. Wir konnen der Matrix

QXQ = (Yik(X)) = (Vix)

direkt die zu (6) gehorige Permutation der Restklassen von Q“lﬂ:i nach

Q-1 M, entnehmen.
Wenn etwa PRLQ Elementarteilergestalt hat, so ist mit den friiheren
Bezeichnungen

e
-1
S vl

Q1X9 'Plllz o I

und dieser Ubervektor ist stark dquivalent zu P, ..., , wobei die
12 e

Zahlen I; eindeutig bestimmt sind durch die Kongruenzbedingung
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e
ls{ =¢€ - k}: Vir be €5 (mod e;)
=1

und die Ungleichung
0<li<e (t=1,2,...,90).

Somit finden wir als die zugeordnete Permutation :

“&z( QP‘I‘z"“e >

QP .

Es geniigt dabei, sich auf die endlich vielen Matrizen X,, X,,..., X s
die den Erzeugenden X,, X,,..., X, von Ng zugeordnet sind, zu be-
schrinken, denn die séimtlichen Permutationen =z, entstehen durch
endlich oftmalige Zusammensetzung der Permutationen sz 7y, ,...,
T, Ausgehend von einer starken Aquivalenzklasse, die etwa durch den
Ubervektor QP ... o repréasentiert werde, fassen wir alle starken
Aquivalenzklassen, die aus ihr durch wiederholte Anwendung der Permu-
tationen my ,m, ..., g, entstehen, zu einer gewohnlichen Aqui-

valenzklasse zusammen. Die gewohnlichen Aquivalenzklassen reprisen-
tieren aber genau alle Typen nicht isomorpher zu § gehoriger Raum-
gruppen. Damit ist das Speisersche Problem gel6st.

§ 4. Fiir die praktische Anwendung ist bemerkenswert, dafl die den
Elementen X aus § zugeordneten Automorphismen

G~ (X6 .

von M die starken Aquivalenzklassen einzeln festlassen. In diesem Falle
ist ndmlich

XG ,,=XG,,, =X(S,,+ X6 + X146,

“14x
= XGX_I—i— 64 + 46,
= GA —{-AGX—-GX

EGA+(E—A)~—-6 (mod I')

D. ¢

Also ist (X- S £-1) stark équivalent zu (S,). Dieser Bemerkung ent-

nehmen wir nun die niitzliche Feststellung, dafl die in § liegenden Er-
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zeugenden von Ny bei dem im § 3 erkldrten Reduktionsverfahren nicht
beriicksichtigt zu werden brauchen.

Ferner tragen wir der Existenz von — &, in N gerade dadurch Rech-
nung, dafl stets der Ubervektor szlzz- ey, ZUW dem Ubervektor
QP_ , 4, - ©r 1, dquivalent ist.

Als Beispiel behandeln wir die Ebenengruppen. Wir setzen dabei die
Kenntnis aller endlichen unimodularen Substitutionsgruppen von zwei
Variabeln voraus. Durch den hier geschilderten Allgorithmus finden wir,
wie zu erwarten stand, tatsédchlich 17 Typen :

Vorerst noch zwei allgemeine Bemerkungen.

Die zu Q P,,..., gehorige starke Aquivalenzklasse ist zugleich eine ge-
wohnliche Aquivalenzklasse.

Man stelle die Matrix R und die Matrizen X,, X,,..., X, zu einer

kombinierten Matrix zusammen, in der wir den oberen Teil R und den
unteren Teil

X,
X,
xl’-
unterscheiden.

Man bringe die Matrix R durch elementare Umformungen in mono-
miale Gestalt, beteilige aber zugleich den unteren Teil der kombinierten
Matrix an den Spaltenumformungen der Matrix R. Wenn also in der
oberen Matrix das a-fache der j-ten Spalte zur A-ten Spalte addiert wird,
so soll dasselbe auch in der unteren Matrix geschehen. Danach aber ist in
jedem der u Teile der unteren Matrix das a-fache der h-ten Zeile von der
j-ten Zeile zu subtrahieren. Notiere diese Zeilenumformungen der Reihe

. . -a -a -G
nach, wie sie vorkommen, etwa A4;°; , 4;% ,..., 4;°; ! Suche das
Vertretersystem der P, ... o auf ! Bestimme die Permutationen

Tog s gy se v os g, mit Hilfe der umgeformten unteren Matrix, die ja ge-
mif Konstruktion gerade

QX Q
21X, Q2

Q1%,0
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ist. Man fasse die Vertreter Q P, ,, ... o der starken Aquivalenzklassen
in Systeme von unter <(my,..., T, konjugierten, abgesehen von

starker Aquivalenz, zusammen. Wihle aus jedem dieser Systeme einen
Ubervektor aus! Die erhaltenen Ubervektoren bilden gerade ein volles
System nicht dquivalenter, zuldssiger, zu § gehoriger Vektorensysteme.
Beachte bei dieser Rechnung, dall der Weg von P, , .. 1, nach QP, ;. .. 1

iiber die vorhin notierten Zeilenumformungen, aber in umgekehrter
Reihenfolge und mit entgegengesetzt gleichen Exponenten fiihren, also
iiber

—ag —@g 3 —-ay

A"s,fs ? hg 1,017 " " Ahl»jl

Beispiel :
F=<4,,4), A4=0.), 4d,=(1.),

R1=A§=E27 R2=A§=E2, R3=(A1A2)2=E2
A1+Ez
R = 4, + E,
4,4, + E,, 4, + 4,

Da A,+ E, =0, so kommen in R zwei Nullzeilen vor. Nullzeilen
diirfen aber fortgelassen werden, so daf3 eine Matrix

m,z( 4, + E, )
44, + By, 4, + 4,

mit nur vier Zeilen ibrigbleibt. Ferner ist

Ne=<KX,¥, X=(Y), XA4,X1=A4,4,,

XA2X~1=A2, X6A1A22X641+XA16A2,

(X XAl)
X =
X
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R 2 —2 —2
Y - 1 —1 ~ —1
1 1 1 1
1 1 1
1 —1

Addiere die 4. zur 2. Spalte ! Notiere die Zeilenumformung 43!, von X!
Wir finden

31 — 31
01 %l]_ OSlz<2
P1112=QP1112= 0 ’ Qﬁle'Plllzz %l 1 9
2 i =1,
bl L

e = (Poo) (Py) (P1oPo) » Py scheidet aus !

Die drei zu § gehorigen Ebenengruppen werden jeweils aus I, und

a) (4,,0), (4;,0)

b)  (4;,3e) . (4,,0) €= ((1)) SRCh ((1))

c) (4;, %31) , (4, ‘l‘ez)
erzeugt. )
Bei der Ableitung der Bewegungsgruppen der Ebene mit endlichem
Fundamentalbereich (Symmetriegruppen der Flichenornamente) arbei-
ten wir mit den folgenden unimodularen Matrizen :

A=(1l), Bz(l-l): O:(l:i); D=(1-1): E:(ll)

Wir geben jeweils die Bezeichnung der Gruppe gemé8 Speiser [6] § 29 und
daneben die Erzeugenden der Gruppe, die zu I, hinzutreten, an.
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I. Allgemeines ebenes Gitter :
1) A4, =F ; Ai=E, R=E; ¢, :(E,0)

9) Aj=—E; A2=E, R=(4,+E) =0; G,:(—E,0).

II. Rechtwinkliges Gitter :

3)bis4) A, =B; Al=E, R=(4,+ E)= (%
¢l : (B,0)
@fI: (B3%e1)

5)bis 7) A,= B, A,= — K ; siehe das zuerst behandelte Bei-
spiel !

¢L : (B,0), (—E,0)
Ggg : (B: %el)a (_an)
GgiI: (B: %el)’ (_E’ %ez) ®

ITI. Rhombisches Gitter :

8) 4, =A; A*=E, R= (4, +E) = (}})

¢HL. (4,0)
9) A, = A, A, = —E; Relationen und Bildung von ‘R wie unter
5) bis 7) !
1 1 1
1 1
1 —1—1 1|7
—1 1 1 —1 —1

C;, : (4,0), (—E,0) .
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IV. Quadratisches Gitter :

10) A, =D; A'=E, R=(AL4+A42+4,+E =0
C : (D,0)
11) bis 12) 4,=D, A,=B; A*=E, A =E, (4,4,)'=E
A+ A1+ A+ E

R = A, + E
A 4, + E A, + A4,

Man beachte, daB A3 +4 A2 + 4, + E verschwindet. Lasse die beiden
ersten Zeilen, die ja Nullzeilen sind, fort !

2 2 .
Notiere :
R’ = —
111—1 1 Ay Ayy, 4341
111 —1
0
P, — ,}Oz 1=0,1.
0

Wende der Reihe nach 4,,, 43}, 4;} an!
¢i, : (D,0), (B,0)
Gﬁ, : (D’ _%el) ’ (B’ %el) .
V. Hexagonales Gitter :

13) 4,=C; Ai=E, R=(A41+4,+E)=0
¢3:(0,0)

14) A, =C, A, =A; A*=E, A2=E, (A4, 4) =K
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A} + A, + E
R — 4, + E
A A, + E A, + A,

Lasse die ersten beiden Zeilen, die ja verschwinden, fort !

9{/

I
v

—122 —1 —1

¢, : (C,0), (4,0)

15) 4,=C, A,=—A4 ;

Relationen und Bildung von R, R’ wie unter 14).

1 —1 —1
—1 1
R = —
— 2
1 —1 1

Ggi : (0»0) ’ ('—‘A,O)

16) 4,= -11):'"‘0: Ag:E: m=(Ai+A§+Ai+A%+A1+E)=O
(562(—0,0)

17) A,=L)=—C, A,=A; A=E, Aj=E, (4,4,*=FE

A+ A+ A7+ A1+ A, + B
R = 4, + B
A4, + E A4, + 4,

Lasse die beiden ersten Nullzeilen fort !
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I

Ges : (_C’O): (A,O)
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Zusatz bei der Korrektur:

In dem Buche ,,Die Bewegungsgruppen der Kristallographie* von J. J.
Burkhardt, Basel 1947, wird im Prinzip dasselbe Verfahren wie von mir angegeben fir
die Herleitung der Raumgruppen im R, .

Zassenhaus

(Eingegangen den 14. Mai 1947.)

141



	Über einen Algorithmus zur Bestimmung der Raumgruppen.

