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Eine Verallgemeinerung des
Sturmschen Wurzelzéhlverfahrens

Von WaLTER HaBIcHT, Schaffhausen

Einleitung

Es sei f(x) ein Polynom in einer Variablen mit reellen Koeffizienten,
dessen reelle Nullstellen alle einfach sind. Dann besagt der Sturmsche
Satz die Existenz einer Kette von Polynomen absteigender Grade mit den

Anfangsgliedern f und f' = % von folgender Eigenschaft :
Ist a,a, ein reelles Intervall, in dessen Endpunkten f nicht verschwindet,
z die Anzahl der Nullstellen von f auf a,a,, w() die Anzahl der Vor-

zeschenwechsel in der Kette an der Stelle x = &, so gilt
— 2= w(ay) — wiay) . (a)

Die Sturmsche Kette besteht aus Restpolynomen, welche aus f und f’
durch Anwendung des Euklidischen Algorithmus im Ring der Polynome
mit reellen Koeffizienten hervorgehen ; die Ausfithrbarkeit dieser Kon-
struktion ist nicht an die spezielle Eigenschaft des zweiten Ausgangs-
polynoms, Ableitung des ersten zu sein, gebunden. Man kann durch das-
selbe Verfahren zu zwei beliebigen Polynomen f(z) und g(x) eine zur
Sturmschen Kette analoge Polynomkette und die entsprechende Vor-
zeichenfunktion bilden, falls nur der Grad des zweiten nicht groBer als der
Grad des ersten Ausgangspolynoms ist. Diese Vorzeichenfunktion w(z)
hat, wie leicht zu sehen, folgende Bedeutung fiir das Polynompaar

(F(2), g(2))?):

Man trage in einer Ebene den variablen Vektor mit den Komponenten
f(x) und g(x) vom N ullpunkt aus ab und lasse die Variable x ein reelles
Intervall a,a,, auf welchem f und g keine gemeinsame Nullstelle besitzen,
vm positiven Sinne durchlaufen. Es seien &,,. .., &, die Nullstellen von f auf
a,a, ; man setze c(&)) = +1 oder —1, je nachdem der Vektor (f, g)

1) Vgl. etwa Q. Valiron, Théorie des fonctions, 109—111.
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beim Ubergang iber die Stelle &) von einem ungeradzahligen in einem gerad-
zahligen Quadranten dbertritt oder wmgekehrt. Bleibt der Vektor beim Uber-
gang im selben Quadranten, so setze man c(&)) = 0. Dann gilt

= o(6) = wla) — wle) - (b)

Die linksstehende Summe wird funktionentheoretisch als Index des Quo-

f

tienten -— zwischen a, und a, bezeichnet (vgl.a.a.0.1)); wir werden sie

in § 3 als Indikator des Polynompaares (f, g) beziiglich a,a, bezeichnen,
da wir die Bezeichnung Index im Hinblick auf die in einer andern Arbeit2)
behandelte n-dimensionale Verallgemeinerung in einem andern, ndmlich
im abbildungstheoretischen Sinne gebrauchen werden (vgl. § 3, Def. 2
und 3).

Offenbar ist die Sturmsche Formel (a) in der Formel (b) enthalten (vgl.
auch § 3), so daBl wir uns im folgenden auf die letztere beschrinken
kénnen.

Das Resultat (b) kann in zweifacher Hinsicht verallgemeinert bzw.
prézisiert werden :

1. Da es sich bei der Bestimmung des Indikators eines Polynompaars
um ein rein algebraisches Problem handelt, scheint es vom axiomatischen
Standpunkt aus angemessen, einen rein algebraisch charakterisierten
Korper als Koeffizienten- und Variablenbereich zugrundezulegen ; anders
ausgedriickt : es soll untersucht werden, was fiir Eigenschaften des
Grundkorpers bei der Herleitung von (b) beniitzt werden.

Dementsprechend werden wir in § 3 die Giiltigkeit von (b) fiir einen
beliebigen reell-abgeschlossenen Grundkérper im Sinne von Artin-
Schreier nachweisen?) ; auler den Anordnungseigenschaften werden wir
dabei nur beniitzen, da8 fiir Polynome iiber einem solchen Korper das
Bolzanosche Prinzip gilt (vgl. § 3, 1).

2. Mit Hilfe der oben konstruierten Kette 148t sich wohl der Indikator
tiir ein speziell vorgegebenes Polynompaar bestimmen. Indessen hat die
Methode den Nachteil, dall bei formaler Ausfiihrung des Euklidischen
Algorithmus die Koeffizienten der Kettenpolynome als gebrochen ratio-
nale Funktionen der Koeffizienten der Anfangspolynome erscheinen. Dies
hat zur Folge, daB je nach der Wahl der Anfangskoeffizienten vollig ver-

2) W. Habicht, Zur inhomogenen Eliminationstheorie, Comm. Math. Helv.

3) Vgl. B. L.v.d. Waerden, Moderne Algebra I, Kap. 11, §§ 67, 68, sowie Artin-
Schreier, Algebraische Konstruktionreeller Kérper, Hamb. Abh. 5 (1927), 85—99.
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schiedene Ketten auftreten; zum mindesten gibt uns das Verfahren
keinen Einblick in die Abhéngigkeit der Kette von den Anfangskoeffi-
zienten, wenn alle moglichen Spezialfdlle mit eingeschlossen werden.
Gerade dieses Problem ist aber fiir viele reell-algebraische Unter-
suchungen wichtig und interessant?). — So wird man auf folgendes
Problem gefiihrt :

Esseien f(x) und g(x) die allgemeinen Polynome (d. h. die Polynome,
deren Koeffizienten Unbestimmte sind) der Gradzahlen n» 4+ 1 und = 5).
Zu ihnen soll eine mit f und g beginnende Kette von Polynomen abstei-
gender Grade in x konstruiert werden, welche aullerdem ganz rational von
den unbestimmien Koeffizienten von f und g abhdngen. Bei einer beliebigen
Spezialisierung der Koeffizienten in einem reell-abgeschlossenen Korper
K, bei welcher nur nicht die Anfangskoeffizienten von f und g zugleich
verschwinden ¢), soll die Kette dieselbe charakteristische Eigenschaft wie
die gewohnliche, nach dem Euklidischen Algorithmus hergestellte Kette
besitzen, d. h. es soll fiir ein beliebiges Intervall @, a, aus K die Formel
(b) gelten, wobei Indikator und Vorzeichenfunktion in analoger Weise
wie oben zu definieren sind.

Dieses Problem soll in der vorliegenden Arbeit gelost werden. In § 1
gehen wir aus von zwei allgemeinen Polynomen f und g der Grade n + 1
und 7 und geben direkt die explizite Darstellung der Kettenglieder (§ 1,
1, (5), (6)). Aus ihr leiten wir in den beiden folgenden Abschnitten gewisse
rekursive Beziehungen zwischen je drei Kettengliedern ab ; als Spezial-
fille sind in ihnen jene Rekursionen zwischen je drei aufeinanderfolgenden
Kettengliedern enthalten, welche dem Euklidischen Algorithmus ent-
sprechen (§ 1, 3 (10), (11)). — In § 2 wird das Verhalten der Kette bei
Spezialisierung zundchst in einem beliebigen Korper K untersucht (§ 2, 1,
Satz 1) und sodann fiir den Fall, dafl K angeordnet ist, die Haupteigen-

4) Als Beispiel sei erwihnt E. Artin, Uber die Zerlegung definiter Funktionen
in Quadrate, Hamb. Abh. 5 (1927), 2. Teil, S. 104. Dort wird folgende Tatsache beniitzt:
Ist f(x) = uy2™ +.--+ u, das allgemeine Polynom n-ten Grades und K ein reell-
abgeschlossener Korper, so gibt es eine Kette von endlich vielen ganzen rationalen Funk-
tionen ¢, (u) der u mit rationalen Koeffizienten von der Art, daB fiir spezielle u, aus K
die Vorzeichenverteilung in der Kette ¢ (u) AufschluB gibt iiber die Anzahl der ver-
schiedenen reellen Wurzeln der fiir diese u, spezialisierten Funktion f(z). — Dies ent-
spricht dem Spezialfall ¢ = f* unseres Reduktionssatzes (vgl. § 3, 2) (anstatt die Werte
der Kettenpolynome in zwei festen Punkten zu bilden, nehme man deren Anfangskoeffi-
zienten, mit geeigneten Vorzeichen versehen).

8) Die Forderung iiber die Grade ist nur scheinbar speziell; in Wirklichkeit umschliet
sie alle moglichen Falle als Spezialfalle (vgl. auch § 2, 1),

8) Diese einzige Bedingung, welche wir an die Spezialisierung kniipfen, bedeutet fiir
die spateren Anwendungen ebenfalls keine Einschrénkung.
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schaft der Kette hergeleitet: jedem &,e K mit f(&) 5% 0 1dBt sich eine
Umgebung U (§,) zuordnen, innerhalb welcher die Vorzeichenfunktion
w(&) konstant ist (§ 2, 3, Satz 3).

SchlieBlich wird in § 3 als weiteres Postulat die reelle Abgeschlossen-
heit von K hinzugenommen und der Begriff des Indikators eingefiihrt
(§ 3, 1, Def. 2, 3). Der Sturmsche Satz 148t sich dann dahin verallgemei-
nern, dafl der Indikator bei beliebiger Spezialisierung von f und ¢ in K
durch die Vorzeichenverteilung der Kette, gebildet in den Endpunkten
des Intervalls, vollig charakterisiert ist (§ 3, 2, Reduktionssatz).

§ 1. Die verallgemeinerte Sturmsche Kette von zwei Polynomen
in einer Variablen

1. Es seien
n+1

f@) = X up-a™%, gx) = kf}; vy, - K (1)

zwei Polynome von den Graden » 4 1 und = in einer Variablen x mit
unbestimmten Koeffizienten 7). Wir wollen zu jeder ganzen Zahl r mit
0<r<n zwei Polynome

n—r—1 n—r
@) = X a, "1k, g(@) = ¥ b, amr-k )
k=0 k=0

von den Graden n — r — 1 und » — r mit Koeffizienten aus dem Ring
I'[u, v] bestimmen 8), so dafl das Polynom

Prf 4 arg
nur vom Grade r in x 18t.

Bilden wir letzteren Ausdruck rein formal aus (1) und (2), so wird er
vom Grade 2n — r. Wir fordern, daf} hierin die ersten 2(n — r) Koeffi-
zienten verschwinden und haben dafir 2(» — r) 4+ 1 zu bestimmende
GroBen a,, b, zur Verfiigung. Das beziigliche Gleichungssystem lautet

Ug * Ay + v, b =0

Uy - Qy + Uy Ay + vy by + V- by = U
. ' . ’ (3)
L. + Upey Oy + PN + Vpepey bpy = 0.

7) Vgl. Anm. 5.

8) I' bedeutet den Ring der ganzen Zahlen, R den Koérper der rationalen Zahlen.
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Das Hauptglied des ersten 2(n — r)-reihigen Minors der Koeffizienten-
matrix lautet wuy~"-v;”, # 0, und dieses Glied liefert die hochsten
Potenzen von u, und v,_,, die in der Entwicklung des Minors auftreten ;
der Rang des Gleichungssystems ist also 2(n — r) und die Losung dem-
nach bis auf einen Proportionalitidtsfaktor bestimmt.

Sei nun b (k41)

6, =(—1) 2 (k=0,1,...)
Die Vorzeichen ¢, erfiillen die beiden Relationen
0p 0 = (— DF1 und 6y pys = — 1. (4)

Wir wihlen als Losung des Gleichungssystems (3) die mit dem Vorzeichen
d,_, versehenen Minoren, d. h. wir nehmen fiir die Polynome p, und ¢,
die beiden folgenden Determinanten :

2 1.1 0....0 0...0 ztr...1
Pr = R Uy - " y G =Op—y - | - Uy
® ,UO vo
- & F un_T . e e . v’n“‘r—‘l . .« . . uﬂ"‘f . . ,v'n—r—-l

(r=n-—1,...,0)

p, und ¢, sind demnach gewisse Funktionale des Polynompaares (f, g);
dies wollen wir durch die symbolische Schreibweise p, = ¢, ,(f,9),
9, =, -(f,9) ausdriicken. ¢, , und y, , sind dabei als Operatoren
aufzufassen, welche sich auf ein beliebiges Polynompaar der Grade
n + 1 und n ausiiben lassen (vgl. 3).
Wir setzen jetzt
frzpr'f""qr'g:kzcr,k'xrhk (7‘=n—~1,...,0). (6)
=0

Hierin spielen die hochsten Koeffizienten spéter eine besondere Rolle ;
deshalb fiihren wir fiir sie eigene Buchstaben ein :

¢, o = R, r=n-—1,...,0)
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und bezeichnen sie als Nebenresultanten. Beriicksichtigt man die aus dem
Gleichungssystem (3) hervorgehende Definition von p, und g¢,, so ergibt
sich aus (6) unmittelbar (da die Determinanten (5) ungerader Ordnung
sind) :

n—r n—r-+4+1
Uy Yo
Uy .
. 2
R, =6, : (7)
* Uyt Tt Uyy

Insbesondere ist also R, = R bis auf das Vorzeichen die Sylvestersche
Resultante von f und g. — Man erkennt sofort, dal keiner der Ausdriicke
R, identisch verschwindet (etwa wieder durch Betrachtung des Haupt-
glieds). Ferner ergeben sich aus (7) und (5) durch leichte Rechnung unter
Beniitzung der ersten Relation (4) die beiden bemerkenswerten Formeln

Vo B, = —a, ;o (8)

uO'Rr: br—-l,o s
wobei a,_; o bzw. b,_, , die hochsten Koeffizienten von p,_; bzw. ¢,_i
bedeuten.

2. Wir haben zu jedem Index r mit 0<r<n je eine Gruppe von drei
Polynomen p,, ¢,, f, konstruiert ; mit abnehmendem Index wachsen die
Grade der ersten beiden Polynome, diejenigen der letzten hingegen
nehmen ab, und zwar je um eins. Wir verkniipfen jetzt je zwei Gruppen
mit benachbartem Index durch drei grundlegende Formeln, welche wir
sinngemdB als Umkehrformeln bezeichnen. Sie lauten

Pr Pra — R? , Pr Pra — R? g, 9r 9r—1 o ___Rif . (9)

9 9r fr f'r—-l !fr fr——l

Bewezrs. Aus den beiden Formeln
fr :pr'f +Qr'g (6/)
frer = Proaf + @ra-g

erhilt man zunéchst
Pr Pra Pr Pra "
= g - (67)

fr fr-—l Qr qr-—l
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Hierin ist die linke Seite ein Polynom vom Grad »n, denn p,_,-f, ist vom
Grad n, p,-f,_, sogar nur vom Grad n — 2. Da aber auch ¢ vom Grad
n ist, so ist die rechtsstehende Determinante eine Konstante aus dem
Koeffizientenring I'[u, v], und zwar gleich dem Quotienten der héchsten
Koeffizienten von —p,_,-f, und g, also nach der ersten Formel (8)
gleich R?, q.e.d.

Die Formeln (9) gelten ihrer Herleitung gemdf fiir simtliche Indices r
zwischen 7 — 1 und 1. Wir kénnen sie aber ohne weiteres auf die In-
dices » und 7 4+ 1 ausdehnen, indem wir setzen

pn—{-l = 1? qn-{-l = O’ fn—{-l:f ’
. =0, ¢, =1, [, =g¢g.

Bei dieser Wahl bleiben die Formeln (6") und (6”) weiter giiltig ; wegen
Ppn1 = — V2= — R2 gelten dann die Formeln (9) unverindert fiir den
Index n, wihrend man fiir den Index » 4 1 rechts an Stelle von R,
die Zahl 1 zu setzen hat.

Damit bilden die Polynome f=f{,.,, ¢ =1f., fos1:--->fo = B eine
vollstindige Kette, zwischen deren Gliedern die Relationen (9) bestehen
(wobei fiir den Index n + 1 rechts an Stelle von R?_, die Zahl 1 steht).
Wir wollen diese Kette im néchsten Abschnitt genauer untersuchen.

3. Wir leiten jetzt eine rekursive Beziehung zwischen f,_;, f, und
fr—1 resp. allgemeiner zwischen f,,,, f, und f, (s<r) her, welche fiir
simtliche Indices r mit 1<r<n — 1 gilt und die Verwandtschaft unse-
rer Kette mit der Sturmschen Kette aufzeigt.

Bildet man die beiden letzten Gleichungen (9) fiir den Index » + 1
r=n-—1,...,1):

Priv-fr— P frn= Ri-9
Qi1 Sfr — @ frn=—Ri [,

multipliziert die erste dieser Identitdten mit q,_,, die zweite mit p,_,
und subtrahiert, so erhdlt man

pr pr——l
Qr q‘r—l

[
Prt1 Pr-1 f, — frmn=R: 1 Py [+ 419) >

q‘r+l q'r-—l

also wegen der Formeln (9) :
R3+1 Jraa = — RE 'fr+1 e Qrfr . (10)

Hierin ist @, ein Polynom aus I'[%, v, ], welches sich durch die Koeffi-
zienten von f,.; und f, ausdriicken laBlt : vergleicht man némlich in (10)
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die Koeffizienten der Potenzen 2'+! und 2", so erhilt man mit den
Bezeichnungen von 1 (6):

Q.= R, Rr+1'x + (R, Cri10 — Rr+1 cr,l) .

Mit Hilfe der in 1. eingefiihrten Operatoren 148t sich damit (10) in folgen-
der Gestalt schreiben :

Razf+1 ’fr—l = @r,r1 (fr+1 :fr) 'fr+1 + '/)r,r—l (fr+1’fr) 'fr . (10/)

Diese Formel fiihrt uns auf die angekiindigte Verallgemeinerung von (10).

Sie lautet R
Hfls fs"‘“prs'fr+l+QTs'fr’
Prs = (Prs(fr-H ’ fr) y Grs = '/’ra(fr+1 ’fr) (11)

O<r<m; 0=s<r7).

Beweis. Wir halten r fest, bilden zunichst die Polynome
77‘:f1‘; .fszprs'fr-i»l-f‘Qn'fr (s=r—1,...,0),

setzen sodann zur Abkirzung R?, , = A und bilden iiber dem Koeffi-
zientenkorper R(u,v) die Polynome

fs*'_‘:lr._ fs (s:r’.._,());

die hochsten Koeffizienten bezeichnen wir mit B, resp. R¥ . Wir beweisen
nun, daB fiir alle Indices s mit 1<s<r — 1 zwischen £ ,, f¥ und f*,
die rekursive Beziehung (10) besteht; da f¥ = f, und wegen (10'):
f¥ .= f,_1 gilt, kann man dann sukzessive schlieBen, daB auch f* = f,
sein muf} fir s=7r —2,...,0.

DaB die rekursive Beziehung (10) zunichst fiir die f, gilt, d. h. daB

Ry for=—Ri fon+Q-f (s=r—1,...,1),

folgt aus der Bedeutung der Operatoren ¢,, und vy,, durch wortliche
Wiederholung der in 1. gemachten Schliisse. L ividiert man nun fiir jeden
Index s die entsprechende dieser Identitdten durch

22(1’-—3-—1) o ATsHl lz(r—s) . Ar—s-1 ,

80 kommt
R*sl fs 1=-—-—R*2 fs+1+Q*fa (8_‘:7"“‘1?-‘-:1)’ qed
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§ 2. Die Haupteigenschaft der Kette

1. Es sei K ein beliebiger Korper, f und g zwei Polynome in einer
Variablen x mit Koeffizienten aus K, n, und n, ihre Grade in . Wir
setzen n =n, — 1 fir n,=n, + 1, n = n, fir n,<n, und denken
uns f und g aus zwei allgemeinen Polynomen der Grade n» + 1 und =
durch Spezialisierung der unbestimmten Koeffizienten hervorgegangen :
u; —u; resp. v; >v; (¢ =0,...,n + 1 resp. n); dabei sind insbeson-
dere u, und v, nicht beide gleich Null. Die Querstriche lassen wir im fol-
genden wieder weg. Bei der Spezialisierung geht die in § 1 konstruierte
Kette iiber in eine Kette von Polynomen f, g, f,._;,..., f, mit Koeffi-
zienten aus K. Wir bezeichnen die Koeffizienten dieser Polynome durch
die gleichen Buchstaben wie in § 1, wobei immer zu beachten ist, dag es
sich jetzt um spezielle Groflen aus dem Korper K handelt.

Wir setzen im folgenden R, , = u,, R, = v, und untersuchen zu-
nichst, wie sich das Verschwinden einer oder mehrerer Nebenresultanten
bei der Spezialisierung auf die Kette auswirkt. Wir stiitzen uns dabei
wesentlich auf die Formel (11) in § 1, 3.

f. sei ein Polynom der Kette mit 0<r<mn; es sei R, ; # 0 und
R,=0, ¢,=0,...,¢ ,6.=0, ¢ ,,7#0;

f sei also vom Grade s=<r. Dann folgt aus (11) bzw. (im Fall r = n)
direkt aus (6) (man hat, um p,, und ¢,, zu bilden, in den Determinanten
(56) n durch r, r durch o und die u, v durch die Koeffizienten von f,,, und
f, zu ersetzen):

1. f_1s- .., fs41 Vverschwinden identisch.
2. Prs = 0, Qs = 6 R:-{—; :rs——s >

f+1 fs:dr rrs fr ('r<n)
(12)
fs:: 67._8?)2:‘;-?1;{:—.8*9 (r-:n) .

Das bedeutet : f, und f, sind proportional, und der Proportionalitéts-
faktor ist £ 0 ; also ist auch f, vom Grad s und deshalb R, #% 0. Ver-
schwinden insbesondere nach R,,, alle Nebenresultanten, so ver-
schwinden die Polynome f,,...,f, alle identisch.
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o r—s r—8 r 842
3. pr,s—~1 - r~s—|—1 (‘“ ]-) Rr+1 rr—s ’

also wegen (4) (§1,1.):
R:+;+2 fs—-l = 6r—s+2 : 78‘:2 fr+1 + qr s§—1 fr (T < n)

. (13)
Joo1 = On_ oo  Vn s ugT" - f 4 qpy - (r=mn) .
Dabei bedeutet ¢, , das Polynom, welches aus g, ,_, durch Division
mit dem Faktor R;.] entsteht.

Wir heben noch den Fall u, = 0 hervor. Dann ist v, = R, 5 0, und
die Formeln (5), (6) (cf. § 1, 1) liefern direkt :

fn—lz_v(z)'f+ul'v0'g; (13%)

ist insbesondere =, <<n,, so ist also f,_, vom Grad =,.

Die volle Bedeutung der Formeln (12) und (13) wird sich in Abschnitt 3
ergeben ; an dieser Stelle wollen wir die Resultate zunédchst nur teilweise
zusammenfassen, insoweit sie uns einen Uberblick iiber die moglichen
Strukturen der Kette gestatten.

Ein Polynom f, der Kette heille wvollstindig, wenn R, # 0, defekt,
wenn R, = 0. Schreiben wir einem identisch verschwindenden Poly-
nom formal den Grad — 1 zu und setzen noch f_, = 0, so haben wir

Satz 1. Folgt auf exn vollstindiges Polynom f,, , der Kette ein defektes
fr vom Grade s, so verschwinden f,_,,..., f.,, tdentisch und f, ist voll-
stindig und proportional zu f,; ist n,<n,, soist f,_, vom Grade n,.

Satz 1 146t sich durch ein Kettenschema veranschaulichen, indem man
ein Polynom durch einen Strich von der Lidnge I + 1 symbolisiert, wo [
den Grad des Polynoms bedeutet. Das Schema kann etwa folgende Ge-
stalten annehmen :

oder
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Die Formeln (12) und (13) kénnen iibrigens zur Bestimmung der Kette
dienen. f, ;,...,f,;1, [, seien ndmlich schon bestimmt; f,,, sei voll-
standig. Ist f, defekt, so bestimmt man f, nach (12); weiter ist nach (13)
foo1 gleich dem Rest von 6, ,.,-¢;7°%%f,,, mod.f,, dividiert durch
R;7+®. Fir die praktische Rechnung ist es bequem, bei dieser Division wie
beim Sturmschen Verfahren die (iibrigens quadratischen) Faktoren aus K
zunichst wegzulassen. Man erhilt dann eine Kette, deren Glieder bis auf
Faktoren aus K mit den vollstindigen Polynomen unserer Kette iiberein-
stimmen und welche als gewdhnliche Sturmsche Kette des Paares (f, g) be-
zeichnet werden kann. Es ist dann leicht, mit Hilfe von (12) die Faktoren

nachtriglich rekursiv zu bestimmen.

Beispiele. t bedeutet einen unbestimmten Parameter, von dem die
Polynome ganz rational abhingen.

1. f=a2—22+ x—1
g == x>+ 2x — 3
= — 10z + (¢ + 9)
fo = (2 + 38t — 39)

Die Resultante verschwindet fiir £ = — 39 und ¢ = + 1.

2. f o= 2t — ta? + 1
g = @ - 4
fo= t—1)a? — 1
fr = — (@t —Dr+ (¢ —1)
fo = — =13 4+1

Die Resultante verschwindet fiir ¢ = 2. Fiir ¢t = 1 wird f, defekt vom
Grad 0 und f, verschwindet identisch.

3. f = a4 ta?
p + @t — 1 + 1
—tx* 4+ (t — 1z +1

I

I

9
fa

= —B—-t+ e —-EFE+t—1)
fo = ¢+ 12¢—1)
Die Resultante verschwindet fiir ¢ = —1 und ¢ = 1. Fiir { = 0 wer-

den f, und f, proportional mit dem Proportionalitidtsfaktor -+ 1; an den
Nullstellen von # —¢ -4 1 werden wegen —¢(t+ 12((—1)=
—(®+t—12+—t+1 f und f, proportional mit dem Faktor
24t —1: —t.
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2. Wir setzen jetzt voraus, dal der Korper K angeordnet sei ®) und
lassen die Variable x die Elemente aus K durchlaufen. Ist &, ein fester
Wert aus K, so verstehen wir unter einer ¢-Umgebung U, (&,) von &, die
Menge der Elemente & aus K mit

'50“—8|§§§_i§o+81 s

wobei ¢ ein positives Element aus K bedeutet.

Seien f, g zwei Polynome in x mit Koeffizienten aus K ; wir setzen im
folgenden voraus, daB f nicht identisch verschwinden soll. Ein Element &
aus K heille singuldr (beziiglich f, g), wenn an der Stelle £ eines der nicht
identisch verschwindenden Polynome der zu f, g gehorigen Kette ver-
schwindet, sonst regulir. Es gibt in K nur endlich viele singuldre Ele-

mente. — Ein Element aus K heifle kritisch, wenn in ihm das Anfangs-
polynom f verschwindet. Die kritischen Elemente sind singulir.
Nun sei &, ein beliebiges Element aus K und f,, «=kFk,,..., k

(m+ 1=k,>--->k,) seien diejenigen Glieder der zu f, g gehorigen
Kette, welche an der Stelle &, nicht verschwinden. Diese Menge ist offenbar
dann und nur dann leer, wenn &, eine gemeinsame Nullstelle von f und g
ist. Dann heifle eine e-Umgebung von &, eine zuldssige Umgebung, falls
in ihr jedes einzelne f, konstantes Vorzeichen besitzt und &, — e, &, + ¢
regulire Elemente sind.

Satz 2. Jedes Element &, aus K besitzt eine zuldssige Umgebung.

Beweis. Ist f,.(&) # 0, so entwickle man f, nach aufsteigenden Po-
tenzen von y = x — &,:

fx =fx(50) + glcxv ) yv
und setze -

Jie (&)

Ry
2. EI‘ cxvl

& =min. [ 1,

dann ist fir | & — & |<Ze,:

Man wihle nun ein positives ¢<min.¢, so, daB & — e und &, + ¢
K

%) Wegen der Anordnungseigenschaften und der Beziehungen vgl. B. L. v. d. Waerden,
Moderne Algebra I, Kap. 10, § 63, 209 ff.
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reguldr sind (dies ist moglich, da K von der Charakteristik 0 ist). Dann
ist U,(&,) eine zuldssige Umgebung von &,.

3. Definition 1. & set reguldr beziiglich f, g. Dann verstehen wir unter
w(§) die Anzahl der Vorzeichenwechsel in der Kette f,q,f,_1,..., [, an

der Stelle x = &. Bei der Zdihlung sind eventuell auftretende Nullen weg-
zulassen.

Satz 3. Ist &, ein nicht kritisches Element aus K und U_(&,) eine zu-
lissige Umgebung von &, so qilt w(&y — €) = w(&, + ¢€).

Dieser Satz bringt die Haupteigenschaft der Kette zum Ausdruck.

Beweis. Wir betrachten die nicht identisch verschwindenden Poly-
nome der Teilkette ¢, f, ;,..., fo- Unter diesen kommen nach Satz 1
jeweils hochstens zwei von gleichen Gradzahlen vor, welche zueinander
proportional sind und demnach die gleichen Nullstellen haben. Falls
solche Paare auftreten, verstehen wir im folgenden unter f, das in der
Kette vorangehende der beiden Paarglieder. Dann gilt fiir séimtliche be-
trachteten Polynome f, auller eventuell firg: R, , 5~ 0.

Nun sei f,(£,) = 0 und zunéchst r<n. Dann folgt wegen R, , 7% 0
aus der dritten Umkehrformel (9): f,,,(&) # 0. Ist nun f, vollstindig,
so folgt aus der ersten Formel (13), angewandt auf s = r (oder auch
direkt aus (10), § 1, 3): f,_,;(%,) # 0 und

sgn (fr+1(§0) : fr-l(fo)) =—1. (14)

Ist aber f, defekt vom Grad s, so folgt aus (12) und (13) in Verbindung
mit der zweiten Formel (4)in § 1, 1:

sgn (fry2(8) - fo1(8)) = — sgn (f,(8) - f+(8)) (15)

fir alle reguldren & aus U, (&,).

Die Vorzeichenrelationen (14) und (15) gelten nun aber auch noch fiir
r=mn, d.h. g(§) = 0: denn ist u,= 0, also v, # 0, so folgt aus
(13), daB f,_,(&,) # O ist und (14) (mit r = n) erfiillt ; ist aber u, 5% 0
und g vom Grad s<n, so folgt (14) resp. (15) genau wie oben aus der
zweiten Formel (13).

Ist schlieBlich f, das letzte nicht identisch verschwindende Polynom
der Kette, so ist wegen Satz 1 (cf.1) R, 5 0, und daraus folgt f,(&,) # 0.

Aus dieser Tatsache und aus den Relationen (14) und (15) ergibt sich
Satz 3 fiir alle singuliren, nicht kritischen Elemente ohne weiters durch
Zerlegung in Teilketten. — Fiir regulire Elemente ist der Satz trivial.
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Betspiele. Wir kniipfen an die Beispiele in 1 an.

1. Wir setzen in Beispiel 1: ¢ = 1. Die Stelle « = 1 ist eine ge-
meinsame Nullstelle von f und g, und an ihr verschwinden alle Polynome
der Kette. An der Stelle x = — 3 wird die Kette zu (— 40,0,40,0)
mit der Vorzeichenverteilung (—, 0, +, 0).

2. Wir setzen in Beispiel 2:¢ = 5. An der Stelle x = } erhilt man
folgende Vorzeichenverteilung: (—, —,0, 4, —). Es ist an dieser

Stelle f, = — 16g.

3. Wir setzen in Beispiel 3:¢ = 0. Die Kette lautet dann

f =2

g=x3 e xr + 1
fo= — z + 1
hh= — z + 1
fo= — 1

Fir 2 = 1 erhdlt man die Vorzeichenverteilung (4, +, 0, 0, —), und
in einer zuléissigen Umgebung von 1 hat man an allen regulidren Stellen

die Verteilungen (4, +, —, —, —) resp. (+, +, +, +, —).

Satz 3 erlaubt, die Definition 1 auf die singuldren, nicht kritischen
Elemente von K auszudehnen :

Definition 1a. Ist &, singuldr, aber nicht kritisch, so set w(&,) = w(§),
wo & ein beliebiges regulires Element aus einer zuldssigen Umgebung von &,
bedeutet.

Dadurch ist w eindeutig bestimmt. Fiir die Berechnung ergibt sich aus
(15) folgende Regel : man nehme die Kette der nicht identisch verschwin-
denden Polynome und bestimme zunéchst die Anzahl der Vorzeichen-
wechsel an der Stelle &, unter Weglassung der Nullen. Treten dabei ein-
oder mehrmal zwei Nullen hintereinander auf, so bestimme man fiir jedes
solche Paar das Vorzeichen J des Produkts der benachbarten Werte in
der Kette und addiere zur erhaltenen Anzahl die Summe aller Zahlen
1+ 4.

w(&,) ist also auch in diesem Fall durch die Vorzeichenverteilung der
Kette an der Stelle &, vollig bestimmt.
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§ 3. Index und Indikator

1. Im folgenden setzen wir voraus, daBl der Korper K im Sinne von
Artin-Schrever reell-abgeschlossen seil®) ; das heilt, da K angeordnet ist
und durch Adjunktion einer Wurzel ¢ des Polynoms 2% 4+ 1 in einen

algebraisch-abgeschlossenen Korper iibergeht. In einem solchen Kérper
gilt das Bolzanosche Prinzip :

Ist f(x) ein Polynom mat Koeffizienten aus K, sind ferner a, und a,
(@, <ay) zwei Werte aus K und ist f(§) # 0 fir a,=<&<a,, so ist

sgn f(a,) = sgn f(a,) .

Unter einer Strecke a,a, verstehen wir die Menge der Elemente & aus
K, welche die Ungleichung

a,<t(<a, (@, 0,e K; a,<a,) (16)

erfiillen. ¢, und a, heilen ihre Randpunkte. Eine Strecke heillt orientiert,
wenn fiir ihre Randpunkte eine Reihenfolge ausgezeichnet ist, und zwar
positiv orientiert, wenn dies die natiirliche GroBenreihenfolge ist, andern-
falls negativ orientiert. In der durch die Orientierung gegebenen Reihen-
folge bezeichnen wir die Randpunkte als Anfangspunkt a, und Endpunkt

: N o
a, und schreiben fiir die orientierte Strecke: a_a, .
Ist

all a’lz’ a21a22" st a’plapz (17)

(@ =3 <@y <+ <Ay =0y Ay =10, , *=1,...,p—1)

. ——— * . -—_-.—‘> . -
eine Zerlegung der Strecke a, @, in Teilstrecken, und @ ,a, eine Orien-

tierung von a,a,, so heiBt die Menge der mit Ea—a: gleichorientierten
Strecken

> > —_—

R R I/

a 2a "2e " pa " pe

laa

eine Unterteilung von a,a,, die orientierten Teilstrecken deren Elemente.
Gehort ein Wert aus K zu zwei Elementen der Unterteilung, so ist er End-
punkt des einen, Anfangspunkt des andern dieser Elemente.

Sei f(x) ein nicht identisch verschwindendes Polynom mit Koeffi-
zienten aus K, £, eines der endlich vielen kritischen Elemente aus K
(cf. § 2, 2). Dann verstehen wir unter einer kritischen Umgebung U,(£))

10) Vgl. Anmerkung 3.
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von &) eine solche e-Umgebung von &), welche auBler &) kein weiteres
kritisches Element enthilt. Kritische Umgebungen existieren trivialer-
weise (man setze ¢ = min| &, — £,|, wo &, die kritischen Elemente
# &) durchlduft). v

Definition 2. Unter dem Index j(&, f, E;i:) des Polynoms f beziiglich
der orientierten Strecke E;dt an evner kritischen Stelle & C a, a, verstechen

wir die Zahl
_—% (Sgn f(be) — Sgn f(ba)) ’ (18)

wober b, und b, Anfangs- und Endpunkt einer orientierten kritischen Um-

gebung von & bedeuten, welche zugleich Element einer U nlerterlung von
a,a, 18L.
Der Index ist fiir alle £ mit a, <& <a, definiert, und zwar eindeutig :
—— —_—
denn sind b,b, und &, &, zwei orientierte kritische Umgebungen, so

folgt aus dem Bolzanoschen Prinzip :

sgn f(b,) = sgnf(b;) wund sgnf(b,) = sgn f(b))1) .

Offenbar ist der Index eine ungerade Funktion der Orientierung der zu-

grunde gelegten Strecke.
Nun seien f, g zwei Polynome mit Koeffizienten aus K, von denen das

erste nicht identisch verschwinden soll. Besitzen f und ¢ auf einer Strecke
a a, keine gemeinsame Nullstelle, so heie das Paar (f,g) auf a,a,
definit.

Definition 3. Das Polynompaar (f, g) sei auf einer Strecke a,a, de-
finit, und f ses in den Randpunkten a, und a, von Null verschieden. Dann
verstehen wir unter dem Indikator y(f, g, E:&:) des Paares beziiglich der

orientierten Strecke a_a, die Summe
_ ;
v(f 9, 8,8) = = j(Er [, a,a) smg(E) | (19)
=]

erstreckt iber alle beziiglich f kritischen Stellen auf a, a,.

. . . . . . ————
Der Indikator ist eine ungerade Funktion der Orientierung von a,a,.

Seine geometrische Bedeutung haben wir schon in der Einleitung ausein-
andergesetzt.

11) Es sei bemerkt, daB das Bolzanosche Prinzip hier noch nicht wesentlich in unsere
Betrachtungen eingreift; man kénnte namlich den Index auch ohne das Postulat der
reellen Abgeschlossenheit mit Hilfe der Ableitungen des Polynoms definieren. Hingegen
ist dies bei der n-dimensionalen Verallgemeinerung des Begriffes, welche in einer spiteren
Arbeit behandelt werden soll, nicht mehr mdéglich.
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2. Sei aaa: eine orientierte Strecke, und das Polynompaar (f, g)

erfillle beziiglich a,a, die Voraussetzungen von Definition 3. Sei
f,9, fu_1s- .., fo dienach § 1 und § 2, 1 zu f, g gehorige Kette und w(x)
die nach den Definitionen 1 und la (cf. § 2, 3) fiir alle nicht kritischen
Werte definierte ganzzahlige Funktion. Insbesondere sind also w(a,)
und w(a,) definiert, und es gilt

Satz 4. Fiur den Indikator des Polynompaars (f, g) beziiglich Zz:z gelt

wi(f, g, a,0,) = wa,) — wa,) . (20)

Bewers. Wir wihlen als Elemente einer Unterteilung von c—z-;ai ;

1. Orientierte zulidssige Umgebungen (cf. § 2, 2) der beziiglich (f, g) sin-
guldren, nicht kritischen Punkte von a,a, bzw. deren Durchschnitte
mit a,a, (falls ein Randpunkt selbst singulir ist).

2. Orientierte zuldssige Umgebungen der beziiglich (f, g) kritischen
Punkte von a,a,.

3. Die orientierten iibrigbleibenden Strecken.

Die Randpunkte der Elemente der Unterteilung seien mit &,,, b,, be-

zeichnet. Fiir die Strecken der 1. Kategorie gilt nach Satz 3 :

ie

w(b;,) — w(by,) =0 ;

auf den Strecken der 2. Kategorie ergibt sich durch Betrachtung der
beiden ersten Kettenglieder

w(bia) - w(bia) = - % * (Sgl’l f(bie) — 8gn f(bia)) * 8gn g(‘fz) ’

wobei &, die kritischen Punkte bedeuten. Auf den Strecken der 3. Kate-
gorie haben alle nicht identisch verschwindenden Polynome der Kette
konstantes Vorzeichen!?), also gilt fiir sie

w(bs) — w(bi) =0 .

Durch Addition aller dieser Gleichungen ergibt sich die Behauptung unter
Beniitzung der Definitionen 2 und 3.

12) Hier wird das Bolzanosche Prinzip zum erstenmal wesentlich beniitzt.
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Es sei noch auf den Spezialfall hingewiesen, wo g die Ableitung des
Polynoms f ist. Ist &, eine einfache Nullstelle von f, so lauten die Ent-

af

wicklungen von f und f' = M nach Potenzen von y =z — &, :
f=cy+  (c#0).
f’ = ¢ + I

Durch eine ihnliche Uberlegung wie in § 2, 2 (Beweis von Satz 2) ver-
schafft man sich eine solche kritische Umgebung von &,, innerhalb
welcher fir & # &, :

sgn f = c-sgn (§ — &)

gilt. Daraus folgt aber, falls f auf a,a, nur einfache Nullstellen besitzt
und in den Randpunkten nicht verschwindet, durch Summation iiber alle
kritischen Stellen auf a,a, nach den Definitionen 2 und 3:

g = — 6w(f’f,aa’—;a7:) s

wo z die Anzahl der Nullstellen von f auf a,a,, ¢ das Vorzeichen der

Orientierung von E;Z bedeutet. Satz 4 liefert dann im wesentlichen den
Sturmschen Satz von der Wurzelzéhlung.

Die Resultate der vorliegenden Arbeit konnen folgendermaflen zu-
sammengefa(t werden :

Reduktionssatz (verallgemeinerter Sturmscher Satz). Zu zwet allgemeinen
Polynomen f, g von den Graden n + 1 und n in einer Variablen x gibt es
eine endliche Kette von Polynomen in x und den unbestimmien Koeffizienten
mit folgender Eigenschaft: werden die Koeffizienten in einem reell-abge-
schlossenen Korper K spezialisiert, verschwinden dabei die Anfangskoeffi-
zienten von f und g nicht zugleich und ist der Indikator des spezialisierten

Paares beziiglich einer orientierten Strecke Z;;it aus K definiert, so ist letz-
terer durch die Vorzeichenverteilung der spezialisierten Kette in den Rand-
punkten a, und a, véllig bestimmt.

(Eingegangen den 14. Mai 1947.)

116



	Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens.

