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Zur inhomogenen Eliminationstheorie
Von WaLTeER HaBIicHT, Schaffhausen

Einleitung

Die formale Eliminationstheorie geht aus von einem System von n
allgemeinen Polynomen f,,...,f, in m Variablen z,,...,z, von vor-
geschriebenen Graden und sucht nach Kriterien fiir die Losbarkeit des
Gleichungssystems f, =0 (k= 1,...,n) bei Spezialisierung der un
bestimmten Koeffizienten in einem algebraisch-abgeschlossenen Kor-
per A'). Das Hauptresultat dieser Theorie bezieht sich auf den Fall
m=mn —1; es besagt, daB in diesem Fall ein Polynom in den unbe-
stimmten Koeffizienten existiert, dessen Verschwinden bei einer Speziali-
sierung in 4 notwendig und hinreichend ist dafiir, dafl entweder die Poly-
nome f, oder ihre hochsten homogenen Bestandteile %,2%) im affinen
Koordinatenraum iiber A eine gemeinsame Nullstelle besitzen.

Dieses Polynom, die Resultante des Systems (f,,...,f,), wird auf
formalem Wege durch Elimination aller z; (¢ =1,...,n — 1) gefun-
den. Ist I' der Korper der rationalen Zahlen und fassen wir die unbe-
stimmten Koeffizienten unter der Sammelbezeichnung % zusammen, so
ist die Resultante R(u) einerseits im Polynomring I'[u, z,,..., %, ]
als lineare Verbindung der f, darstellbar, d. h. sie ist Element des Ideals
f=(f1,...,f,); anderseits ist jedes Polynom aus f, das nur von den u
abhdngt, in I'[u] durch R(u) teilbar (vgl. § 1, 1, 2).

Es ist naheliegend, den EliminationsprozeB beim zweitletzten Schritt
abzubrechen und nach solchen Polynomen des Ideals f zu fragen, welche
nur noch von einer der Variablen z;, und zwar linear, abhingen. Unter
diesen gibt es ,triviale“, welche durch Multiplikation von R(u) mit
einem Linearpolynom aus I' [u, z,,...,%,_,] entstehen. Im ersten
Paragraphen der vorliegenden Arbeit werden wir zeigen, daBl es auch
nichttriviale gibt, falls nicht alle f, Konstanten aus I'{u] sind. — Dies
ist an sich bemerkenswert, denn es bedeutet, wie man sich leicht iiber-

1) Wir schlieBen uns hier und im folgenden an die Darstellung der Eliminationstheorie
in B. L.v.d. Waerden, Moderne Algebra II (Berlin 1940), Kap. XI, an.

2) Entweder-oder im nicht ausschlieBenden Sinn. Unter einer Nullstelle des Formen-
systems (hy,..., h,) verstehen wir immer eine nichttriviale Nullstelle.
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zeugt, die Existenz eines mit R(u) teilerfremden Polynoms S(u) in
den u allein, so dal gewisse dieser Linearpolynome zusammen mit R (u)
das Ideal S(u)-f erzeugen.

Wichtig und interessant wird unser Ergebnis aber erst durch die An-

wendung auf Systeme von n allgemeinen Polynomen f,,...,f, n =
Variablen z,,...,z, (n=2) mit unbestimmten Koeffizienten v (§ 2). —
Aus dem Resultat von § 1 wird die Existenz von » Polynomen der Ge-
stalt Fo=cmtdife)  G=1..,n—1)

F’n = dﬂ(x'ﬂ)
hergeleitet, welche einerseits im Ideal { = (f,,...,f,) des Polynomrings
I'[v, z,,...,x,] enthalten sind, andererseits bis auf einen von Null ver-

schiedenen Faktor aus I'[v] eine Basis dieses Ideals bilden. Ein der-
artiges System (F,,...,F,) hat noch eine wesentliche Eigenschaft : ist
nédmlich g ein weiteres allgemeines Polynom in den x; mit unbestimmten
Koeffizienten w, so gibt es einen (rein quadratischen) Faktor a aus
I'[v] und ein Polynom @ aus I'[v,w, z,], so daBl a-g und G derselben
Restklasse des Ideals (#,,...,F,) aus I'[v,w, x,...,2,] angeho-
ren. — Diese rein formalen Ergebnisse sind im ersten Reduktionssatz
(cf. § 2, 4) zusammengestellt.

Im dritten Paragraphen wenden wir die Sitze des § 2 an auf spezielle
Polynomsysteme mit Koeffizienten aus einem Koérper K. Wir denken
uns ein solches spezielles System (f*) = (f¥,...,f¥) aus dem allge-
meinen System (f) = (f,,...,f,) durch Spezialisierung der unbestimm-
ten Koeffizienten in K hervorgegangen; zu (f) konstruieren wir das
System (F) = (F,,...,F,) nach §2 und fithren die Spezialisierung
der v sodann in den Koeffizienten der F; durch, wodurch wir ein System
(F*) = (F¥,...,F¥) mit Koeffizienten aus K erhalten. Man erkennt
nun den Sinn unserer Konstruktion aus der Tatsache, dal die Systeme
(f*) und (F*) bei ,fast allen“ Spezialisierungen3) im n-dimensionalen
affinen Koordinatenraum R” iiber K genau dieselben, endlich vielen Null-
stellen haben, welche iiberdies beziiglich beider Systeme einfach sind und
sich aus den F} explizit bestimmen lassen (§ 3, 2, Satz 7).

Wir haben damit das System (f*) Jdurch ein anderes, (F'*), ersetzt,
welches in viel einfacherer Weise von den Variablen abhingt und eine
wesentliche Eigenschaft mit (f*) teilt. — In Weiterverfolgung dieses
Gedankengangs stellt sich natiirlicherweise die Frage, ob sich feinere

3) Das soll heiBen: es gibt ein von Null verschiedenes Polynom @ (») in den v allein,
dessen Nichtverschwinden bei einer Spezialisierung der v fiir die erwahnten Eigenschaften
hinreichend ist.
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Eigenschaften eines Polynomsystems ebenfalls in einem so einfach struk-
turierten Ersatzsystem widerspiegeln. Diesem Problem ist der restliche
Teil von § 3 gewidmet ; und zwar tragen die untersuchten Eigenschaften
reell-algebraischen Charakter. Dementsprechend werden wir von hier an
den Korper K als angeordnet voraussetzen?).

Wir betrachten nun nebeneinander Systeme (f*) von n Polynomen
und Systeme ((f*)) von n + 1 Polynomen in n Variablen mit Koeffi-
zienten aus K . Sie definieren Punktabbildungen des R™ iiber K in den R™
resp. R"t! iiber K, indem dem Punkt &= (&,,...,¢&,) der Punkt
1¥(&) = (ff (&),...,f% (&) (m =mn resp. n + 1) zugeordnet wird ; wir
wollen sie kurz als (n, n)-Abbildungen resp. (n, n 4+ 1)-Abbildungen be-
zeichnen. Als Projektion einer (n,n -+ 1)-Abbildung f* bezeichnen wir
die (n, n)-Abbildung f*, die aus f* durch Weglassung der letzten Kom-
ponente fr. , entsteht.

Sei f* = (ff,..., f*) eine (n,n)-Abbildung und ¢ eine einfache Null-
stelle von f* im R" iiber K5). Dann verstehen wir unter dem Index
j(f*,£) von f* im Punkte £ das Vorzeichen der Funktionaldeterminante
des Systems (f¥,..., f¥) im Punkte £¢). — Weiter sei f* eine (n,n -+ 1)-
Abbildung, f* ihre Projektion und ¢ eine Punktmenge des R", auf welcher
f* keine und 7* hochstens endlich viele, und zwar lauter einfache Null-
stellen besitzt (diese Bedingungen sind fiir fast alle (vgl. Anm. 3) Poly-
nomabbildungen erfiillt ; vgl. § 3, 3, Satz 8). Dann verstehen wir unter
dem Indikator von f* beziiglich @ die Summe

p(f*,Q) = § j(f*, & -sgn f¥,(8) .

erstreckt iiber alle auf @ liegenden Nullstellen von f*. Der Indikator ist
also im Sinne der Abbildungstheorie eine doppelte Schnittzahl?), ge-
nauer : die Summe der Schnittzahlen des Bildes f*(@)) mit zwei dia-
metralen Halbstrahlen vom Nullpunkt des R"*! aus.

Beispiele : K sei der reelle Zahlkorper, f* eine (2,2)-Abbildung, & eine
einfache Nullstelle von f* Dann ist der Index +1 oder —1, jenachdem
ein positiv umlaufenes infinitesimales Quadrat um & durch f* in ein posi-

4) Vgl. hierzu: B. L.v.d. Waerden, Moderne Algebra I (Berlin 1941), Kap. X.
) D. h. es ist ff (§ =0 (k=1,...,n), und die Nullstelle ist beziiglich des
Systems (f;_k, cees f:) einfach.

%) Wir definieren den Index also nur fiir einfache Nullstellen und vernachlaBigen
ein durch die Orientierung des R”™ gegebenes Vorzeichen. Dies geniigt fur die Zwecke
der vorliegenden Arbeit; iibrigens laBt sich der in § 3 beschriebene Reduktionsproze
bei Spezialisierungen mit mehrfachen Nullstellen iiberhaupt nicht mehr durchfiihren.

") Vgl.: A. Alexandroff - H. Hopf, Topologie, Kap. XIII.
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tiv oder negativ umlaufenes Parallelogramm um den Nullpunkt iiber-
fithrt wird (positive oder negative Uberdeckung des Nullpunkts durch
f* im Punkte &). — Sei f* eine (2,3)-Abbildung, @ eine Punktmenge der
euklidischen Ebene, p*(¢)) die Zentralprojektion von f*(@Q) auf die
Oberfliche einer Kugel um den Nullpunkt des R?. Dann ist der Indikator
gleich der algebraischen Anzahl der Uberdeckungen des Nordpols und
des Siidpols (fFf = f¥ = 0) durch p*(Q).

Wir konstruieren nun in § 3, 3, 4 zu einem System ((f)) von = + 1 all-
gemeinen Polynomen ein Ersatzsystem ((¥')), welches wieder sehr einfach
von den Variablen abhingt, so dal bei fast allen Spezialisierungen die
zugehorigen Abbildungen f* und F* beziiglich einer beliebigen Punkt-
menge ) des R" denselben Indikator haben. — Daraus ziehen wir in
§ 3, 4 eine wichtige Konsequenz : aus ((F)) 1la6t sich némlich ohne weite-
res ein System (%) von n Polynomen ableiten, so daf bei allen zulédssigen
Spezialisierungen der Indikator der (n,n + 1)-Abbildung f* gleich der
Indexsumme der (n, n)-Abbildung h* , erstreckt iiber Q, ist (§ 3, 4, speziel-
ler Reduktionssatz). Aus diesem Resultat ergeben sich im Falle eines
reell-abgeschlossenen Korpers K #) interessante Folgerungen fiir die
Theorie der Polynomabbildungen, welche in einer spiteren Arbeit aus-
fithrlich dargestellt werden sollen. An dieser Stelle diene lediglich das
obige Beispiel zur Erlduterung :

Wir betrachten eine (2,2)-Abbildung f* im Innern und auf dem Rand
eines einfach geschlossenen Polygons der euklidischen Ebene ; auf dem
Rand liege keine, im Innern hochstens endlich viele Nullstellen von f*.
Dann ist nach dem Kroneckerschen Abbildungssatz ?) die Indexsumme,
erstreckt iiber das Innere des Polygons, gleich der Schnittzahl des Rand-
bildes mit einem Halbstrahl vom Nullpunkt der Bildebene aus; nun
definiert aber f* gewisse (1,2)-Abbildungen der Randstrecken, und die
vorige Schnittzahl ist gleich der halben Summe der Indikatoren dieser
Abbildungen beziiglich der Randstrecken. — Der Kroneckersche Ab-
bildungssatz fiihrt also die Indexsumme einer (2,2)-Abbildung zuriick
auf die Indikatoren gewisser (1,2)-Abbildungen, und analog fiir hohere
Dimensionen. — Unser Reduktionssatz fiir Polynomabbildungen stellt
ein Gegenstiick zum Abbildungssatz dar ; beide Sétze zusammen erlauben
es, unter gewissen Voraussetzungen iiber die geometrische Beschaffenheit
der Punktmenge ¢ den Indikator einer (2,3)-Abbildung auf eine Summe
von Indikatoren gewisser (1,2)-Abbildungen zuriickzufiihren, und analog
fiir hohere Dimensionen.

8) Vgl a. a. 0.4), Kap. XI, § 67.
9) Vgl a. a. 0.%).
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§ 1. Systeme von n Polynomen in n—1 Variablen
119). Es seien

szukl'xik+uk2 .xik—l,% it Uy - (B=1,...,m) (1)
n allgemeine Polynome in m Variablen x,,...,z, von den Graden
ly,...,1,; d.h. es sollen in ihnen alle moglichen Potenzprodukte mit

unbestimmiten Koeffizienten auftreten. Die letzten Koeffizienten sind da-
bei durchwegs mit dem zweiten Index w bezeichnet. Die u,; resp. z,

fassen wir im folgenden unter der Sammelbezeichnung u resp. = zu-
sammen.

Definition 1't). Ewn Polynom t in den u und den x, welches sich in der
Form

-

t= X 4 f% (2)

1

b

k

It

darstellen lif3t, wober die q, ebenfalls Polynome tn den u und den x bedeuten,
heifle ein Trigheitspolynom des Systems (fy,..., fn)-

Die Trigheitspolynome bilden im Polynomring ITu, x]'?) das Ideal

f= (f1,...,f,)- Der Grad eines Trigheitspolynoms in den z heille seine
Ordnung.

2. Unter den Trégheitspolynomen nehmen diejenigen nullter Ordnung
eine besondere Stellung ein. Zunidchst kann man zeigen, dal} sie fiir
m <n — 1 im Ring I'[u] ein nichtverschwindendes Hauptideal bil-
den13). Weiter gilt

Satz 1. = allgemeine Polynome in n — 1 Variablen haben eine Resul-
tante R, die etn unzerlegbares ganzzahliges Polynom in thren unbestimmien
Koeffizienten ist, und als Basis des Ideals der Trigheitspolynome nullter
Ordnung definiert werden kann. Die Resultante ist homogen in den Koeffi-
zienten von f, vom Grade L, =1,...1, wusw. zyklisch ; sie ist der grofte
gemeinsame Teiler in I'Tu] von n bekannten Determinanten D,,..., D,.
Das Verschwinden von R ber einer Spezialisierung der w in etnem alge-

10) Vgl. zu den ersten drei Abschnitten: a.a. 0.1), §§ 81, 82 (9—15).

1) Etwas allgemeiner als bei v. d. Waerden (a. a. O. 70); vgl. auch: A. Hurwitz, Uber
die Tragheitsformen eines algebraischen Moduls, Ann. mat. 20 (1913).

12) T’ bedeute hier und im folgenden den rationalen Zahlenkorper.

13) Diese und die folgenden leicht beweisbaren Tatsachen, welche in Satz 1 zusammen-
gestellt sind, zitieren wir ohne Beweis nach v.d. Waerden (a.a. O. 1, 9—15), mit dem
Unterschied, daB wir sie nicht fiir Formen, sondern fiir Polynome aussprechen.
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braisch-abgeschlossenen Korper A ist notwendig und hinreichend dafiir, daff
entweder die spezialisierten Polynome oder thre héchsten homogenen Be-
standteile'*) eine Nullstelle mit Koordinaten aus A besitzen.

3. Die in Satz 1 genannten Determinanten D,,..., D, gehen aus-
einander durch zyklische Vertauschung der Polynome f,,..., f, hervor.
D, = D wird dabei folgendermaBen erhalten 15).

Wir setzen

Sh—1)=1—1.

k=1

Die Gesamtheit der Potenzprodukte der x; vom Grade <! 14Bt sich
folgendermaflen anordnen :

Zuerst alle Potenzprodukte, die z!* enthalten ;

sodann alle, die !, aber nicht z!* enthalten ;

usw. ; schlieBlich alle iibrigbleibenden.

Die so erhaltenen Potenzprodukte bezeichnen wir mit
! 1 !
.Hlj'xll, sz . x22, e ey H?’l-l,f . xnn_—i y H”j . (3)

Insbesondere kommen in der letzten Kategorie nur Potenzprodukte von
einem Grad <!, in z,,...,<!, ; in =z, ; vor; die letzte Kategorie
umfaft also genau [;-l,...l,_;, Potenzprodukte. Unter diesen kommt
genau eines, nimlich

B O R Ing—1
H,y=a2r" 22 . . xm17t |

vom Grade
n—1

X (h—1)=1—-1,
k=1

vor, welches wir als singuldres Potenzprodukt fiir spitere Zwecke aus-
zeichnen wollen ; alle iibrigen Potenzprodukte der letzten Kategorie sind
von kleinerem Grad. — Wir bilden nun alle Polynome

Hky"fk;

dies sind gleich viel Polynome wie Potenzprodukte (3), und sie sind alle
von Graden <=1, ihre Koeffizientenmatrix ist also eine quadratische,

14) Vgl. Anmerkung 2.

15) Die folgende Konstruktion, fast wortlich zitiert nach v. d. Waerden (a. a. O. 13),
ist fiir das Folgende grundlegend und setzt keine Vorkenntnisse voraus.
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deren Determinante bei der Spezialisierung f, = zi¢t (k= 1,...,n — 1),
f., =1 den Wert 1 erhilt, also nicht identisch verschwinden kann. Mul-
tipliziert man die Gleichungen

ij'flc: Euk.‘iv‘HV (5)
v=1

mit den Minoren M,; der letzten Spalte von D und addiert, so kommt
kZ_Mijkj'fk:D ’ (6)
'Y

D ist demnach ein Trigheitspolynom nullter Ordnung des Systems
(fis- .- f,), homogen in den Koeffizienten jedes einzelnen Polynoms f,,
und zwar insbesondere in den Koeffizienten von f, vom Grad L, =

bl

4. Satz 2. Ist (f,,...,[,) e System von n allgemeinen, nicht simt-
lich konstanten Polynomen in x,,...,%,_,, so qibt es n — 1 Trigheits-
polynome der Gestalt

t; = co(u) - ; + c;(u) G=1,...,n—1); (7)

dabei hingt t, aufer von den w nur von x,; ab, und der gemeinsame Linear-
koeffizient c,(u) der t; besitzt in I'[u] mit der Resultante R(u) keinen
gemeinsamen Teiler.

Beweis. Wir kénnen annehmen, daf3 f, nicht vom Grade 0 ist. —
Unter den Minoren M ,,; der letzten Spalte von D (cf. 3) greifen wir den
zum singuldren Potenzprodukt H ,, gehorigen M ,, heraus und bezeichnen
ihn als stnguldren Minor. Wir beweisen zunichst den

Hilfssatz.
Der singulire Minor M, verschwindet nicht identisch.

Wir spezialisieren wie in 3 f, zu «!* (k = 1,...,n — 1), hingegen f,
nur zu
n—1
- E v, 2, + 1 >
v=1

wo die v, unbestimmt bleiben. Bezeichnen wir die spezialisierten Deter-
minanten durch Sterne, so geht (6) dabei iiber in

n—1 n—1
k}:l( - M;"‘j : H,”-) : a:ilc_{_(}_;M:‘j.HM) . (.___ S vz, + 1):D* . (6%)
= J 7 v=1
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Wir fassen nun die H,; nach absteigenden Graden in Kategorien zu-
sammen :

H,,=H{™, ..., HY, ... HO)=1.
Dabei enthilt die erste und die letzte Kategorie nur je esn Potenzprodukt.
Jetzt vergleichen wir in der Identitdt (6*) links und rechts die Koeffi-
zienten aller Potenzprodukte HY) (A =1—1,,...,1) und erhalten so
fiir jeden Minor M{)* eine rekursive Beziehung

(A—1)
MP* = ¥ v Maj, *, (8)
K

wobei « gewisse Zahlen zwischen 1 und # — 1 durchliuft und die
Summe nicht leer ist, und fiir den letzten

MO * — D* | (8%)
Aus (8*) erhdlt man durch sukzessive Anwendung von (8) :
M:‘o = @V, - -0 Vpy) - D¥;

dabei bedeutet ¢ eine nicht verschwindende Form in den v mit natiir-
lichen Zahlenkoeffizienten. D* verschwindet auch nicht, da es bei der
Spezialisierung v, =---=v,_, = 0 den Wert 1 erhilt (cf. 3). Also ver-
schwindet M, * und somit auch M ,, nicht identisch, womit der Hilfs-
satz bewiesen ist.

Wir suchen nun unter den Polynomen (4) diejenigen heraus, welche in
den xz; vom Maximalgrad [ sind. — Unter den Potenzprodukten (3) vom
Grad <! sind diejenigen vom Grad [ alle in den ersten n — 1 Katego-
rien ; in der letzten Kategorie kommt
genau eines, nimlich das singulére, mit
dem Grad ! — 1, vor, wihrend die
andern von kleinerem Grade sind. Ist
deshalb r die Anzahl aller moglichen
Potenzprodukte vom Grad I, so gibt es
genau 7+ 1 Polynome (4) vom Gradl,
welche wir im Gleichungssystem (5) an
den Anfang stellen wollen. Ist s die
Ordnung der Koeffizientenmatrix, so
bilden dann die letzten s —r — 1-
Zeilen eine Teilmatrix, welche nur in
den letzten s —r Spalten von Null verschiedene Glieder enthilt.

Q
Yt/

s 222
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Die aus diesen Zeilen und Spalten gebildete Matrix heie €, der Minor
ihrer letzten Spalte ¢, (vgl. das nebenstehende Schema). Nun entsteht
aus D durch Streichung der singulidren Zeile und der letzten Spalte der
singuldre Minor M ,,, und nach Vorigem zerfillt er in das Produkt zweier
Determinanten, wovon eine ¢, ist : M ,, = @-¢,. Da nach dem Hilfssatz
M, nicht verschwindet, kann also auch c, nicht verschwinden.

Multiplizieren wir nun die s — r — 1 letzten Gleichungen (5) mit den
(s — r — 2)-reihigen Minoren von ¢,, welche durch Streichung der zu =z,
(¢t=1,...,n — 1) gehorigen Spalte entstehen, und addieren, so erhalten
wir n — 1 Gleichungen

}:l%kfk::co‘xi‘l”ci t=1,...,2—1); (9)
P

dabei bedeuten die g¢,, Polynome aus I'[uw, xz], die ¢; Formen aus
I'lu], und zwar insbesondere ¢; (# = 1,...,n — 1) den zur Spalte z; ge-
hoérigen Minor von €. Die Polynome c¢,-z; + ¢; sind demnach nicht ver-
schwindende Tragheitspolynome des Systems (f,,. .., f,), welche wir mit
t; bezeichnen.

Da unter den letzten r — s — 1-Gleichungen (5) genau [,-1,...7,_,—1
mit dem linksseitigen Faktor f, auftreten, ist der Homogenitéitsgrad von
¢o in den Koeffizienten von f, gleich [,-1,...l,_, — 1. Andererseits ist
die Resultante R in diesen Koeffizienten vom Grad I,-1,...l,_, und un-
zerlegbar (cf. 1, Satz 1); also haben ¢, und R im Ring I'[u] keinen
gemeinsamen Teiler. Damit ist Satz 2 bewiesen.

§ 2. Systeme von n Polynomen in n Variablen; Transformationssitze

1. Sei (f) = (f;,...,f,) (n=2) ein System von n allgemeinen Poly-
nomen n n Variablen x,,..., z,, deren unbestimmte Koeffizienten mit
v bezeichnet seien. Ein solches System geht aus einem System (1) von
Polynomen in n — 1 Variablen mit denselben Gradzahlen folgender-
mafen hervor : gehort der unbestimmte Koeffizient u,) in (1) zu einem
Potenzprodukt vom Grade m, so ersetze man ihn durch ein allgemeines
Polynom des Parameters z, vom Grade I, — m; so verfahre man mit
allen Koeffizienten von (1). Man bemerkt, daB die hochsten homogenen
Bestandteile &,,..., h, der Polynome (1) von dieser Substitution un-
beriihrt bleiben (genauer : ihre Koeffizienten werden durch algebraisch-
dquivalente Unbestimmte ersetzt); sie bilden ein System von n allge-
meinen, vom Parameter z, unabhingigen Formen in » — 1 Variablen.
Ist deshalb A ein beliebiger algebraisch-abgeschlossener Erweiterungs-
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korper von I'(v), so haben h,,...,hk, bei keiner Spezialisierung des
Parameters z, aus 4 eine gemeinsame nichttriviale Nullstelle im R»-!
iber 4.

Bei dieser Substitution geht die Resultante R des Systems (1) iiber in
ein Polynom R(x,) der Variablen z, mit Koeffizienten aus I'[v], dessen
Verschwinden bei spezieller Wahl von «, aus 4 nach Satz 1 (cf. §1, 2)
und dem Vorigen hinreichend ist dafiir, daf} die spezialisierten Polynome
f¥ im R”-! eine gemeinsame Nullstelle haben.

Die in § 1, 4 konstruierten Polynome ¢, (¢ = 1,...,n — 1) gehen bei
der Substitution iiber in Polynome der Gestalt

ti(xi? xn) = CO(U’ xn)'xi + Ci(’U, xn) ; (7,)

sie sind Trigheitspolynome des Systems (f). Wir fassen nun R(z,) und
¢o(x,) auf als Polynome in z, mit Koeffizienten aus I'[v] und beweisen :

Hilfssatz 1. R(x,) ist iiber dem Koeffizientenkorper I'(v) irreduzibel
und nicht durch c,(x,) tetlbar.

Beweis. Waire eine der beiden Behauptungen nicht erfiillt, so wire
R(x,) auch im Ring I[Tv, z,] zerlegbar resp. durch ¢, (z,) teilbar;
R(0) wire alsoin I'[v] zerlegbar resp. durch c,(0) teilbar ; dies ist nicht
der Fall, da diese Ausdriicke aus den urspriinglichen R(u), cq(u) da-
durch hervorgehen, dafl man das System der Unbestimmten » durch ein
algebraisch-dquivalentes System gewisser anderer Unbestimmten (der
Absolutglieder der oben eingesetzten Polynome) ersetzt.

2. Definition 2. Unter einem Fundamentalpolynom (beziiglich x,) des
Systems (f) verstehen wir etn Trigheitspolynom des Systems von der Gestalt

cm(v)'xi+d(v’xn) ’ (10)

wober c¢(v) eim micht verschwindendes Polynom aus I'[v], d(v, x,) ein
Polynom aus I'lv, x,] und ¢ esnen Index zwischen 1 und n — 1 bedeutet.
Zu den Fundamentalpolynomen rechmen wir ferner noch die Resultante
R(z,) des Systems.

Den Faktor c(v) bezeichnen wir oft kurz als Linearkoeffizient.

Die Fundamentalpolynome zerfallen nach dem Index ¢ in » — 1-
Klassen ; dazu kommt noch die aus R(z,) allein gebildete Klasse. Ein
System (F)= (¥,,F,,...,F,) von n Fundamentalpolynomen heifle ein
Fundamentalsystem von (f), wenn es aus jeder Klasse einen Reprisen-
tanten enthilt.
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Satz 3. Sind nicht alle Polynome des Systems (f) konstant, so gibt es ein
zugehoriges Fundamentalsystem (F').

Beweis. Wir konstruieren nach Satz 2 (cf. § 1, 4) die Polynome (7’)
(cf. 1). Nach dem zweiten Teil von Hilfssatz 1 verschwindet die Sylvester-
sche Resultante c(v) der beiden Polynome R(z,) und ¢,(x,) nach z,
nicht. Nun gibt esin I'[v, x,] zwei Polynome p(z,) und ¢(z,), so daB

Wir bilden nun die Trégheitspolynome

Fi(xwxn)=p(xn)'ti(xi?xn) +q(xn)'R(xn):C(’U)'xi"}—di(v?xn) ’
(e=1,...,n—1);

sie bilden zusammen mit R(z,) ein Fundamentalsystem.

3. Definition 3. Ein System von m Polynomen (P,,..., P,) aus
I'fv, x] heife eine I'(v)-Bastis des Systems (f), wenn sich jedes Polynom f,
i der Form

a; fk = 12 Qu P,
=1

darstellen Lifit, wobei die a, michtverschwindende Polynome aus I'[v], die
Q. Polynome aus Iv, x] bedeuten.

Satz 4. Jedes Fundamentalsystem des Systems (f) st I'(v)-Basis von (f).

Wir beweisen zuerst den

Hilfssatz 2. Diejentgen Trigheitspolynome von (f), welche aufer von den
v nur von x, abhingen, bilden tn I'[v, z,] ein Hauptideal mit der Basis

R(z,).

Beweis. Das Polynom P (v, z,) erfiille die Voraussetzungen des
Hilfssatzes. Ist 4 ein algebraisch-abgeschlossener Korper iiber I'(v) und
&, eine beliebige Nullstelle von R(v, z,) aus A4, so besitzen die speziali-
sierten Polynome f,(v, ,,..., Z,_y, &,) nach 1 im R~ iiber 4 eine ge-
meinsame Nullstelle ; da P (v, x,) sich als Trigheitspolynom in I'[v, z]
als lineare Verbindung der f, darstellen liBt, so muB P(v,&,) ver-
schwinden ; demnach ist P(v, x,) in I'(v)[z,], also auch in I'[v, z,]
durch R(v, z,) teilbar, q. e. d.
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Nun sei
F, =c,x; + d,(x,) (e=1,...,n—1)
F,= R (x,)

ein Fundamentalsystem und zunéchst p;(v, ) ein beliebiges Polynom
aus [v, z], welches auller von den v nur von z,,...,z, abhingt
(1=£2=<mn — 1). Dann gibt es eine natiirliche Zahl p und ein Polynom ¢
aus I'[v, x], so da3

& Pi—q-Fi=p;, (11)
wobei p,., auller von den v nur noch von z,.,,..., z, abhingt.
Ist nun f, ein Polynom des Systems (f) (¢ = 1,...,n), so erhilt man

durch sukzessive Anwendung des Reduktionsprozesses (11):

@y - fr=c{k:1- ¢lk2 ... c2k.m—1 Ji=Qu - Fi+ -+ Q@ Fos + P
(k=1,...,n). (12)

Dabei sind die ¢,;, und P, Polynome aus (v, ], und zwar hidngt P,
auller von den v nur von z, ab. Da die f, und die ¥, Trigheitspolynome
sind, so auch die P, ; also sind die letzteren nach Hilfssatz 2 in ITv, z,]
durch R(z,) = F, teilbar:

P,=Q, .- F, (k=1,...,n). (13)

Aus den Gleichungen (12) und (13) folgt nach Definition 3 die Behaup-
tung von Satz 4.

Zusatz zu Satz 4. Die Faktoren a,, (cf. Def. 3) konnen als Potenzprodukte
der Linearkoeffizienten c; des Fundamentalsystems gewdihlt werden.

Sei (F) ein Fundamentalsystem von (f), g ein weiteres allgemeines Poly-
nom in den z mit unbestimmten Koeffizienten w, und § das von den
Polynomen F'; im Ring I'[v, w, z] erzeugte Ideal. Dann folgt durch das-
selbe Reduktionsverfahren wie oben :

Satz b. Zu dem allgemeinen Polynom g gibt es in I'[v] ein Polynom a
und tn I'v, w, x] ein aufer von den v, w nur von x, abhingiges Poly-
nom G, so dafy in I'lv, w, x] die Kongruenz

a-g=0G@¢ (mod. §)
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gilt. Daber kann a als Potenzprodukt der Linearkoeffizienten c; des zugrunde-
gelegten Fundamentalsystems gewdhlt werden, und zwar etwa mit lauter ge-
raden Exponenten.

Wir fassen die Ergebnisse dieses Paragraphen zusammen im

1. (allgemeinen) Reduktionssatz. Zu n allgemeinen, nicht simtlich
konstanten Polynomen f,....,f, in n Variablen z,,..., x, mit unbe-
stimmten Koeffizienten v gibt es n Polynome F,,..., F, in den v und den
x mat folgenden Higenschaften :

1. ) .
Hs st ¥, =czx,+ d;(z,) t=1,...,n —1),
Fn = R(xn) >
wobes die ¢, von den x, die d, und R von z,,..., x,_, unabhingig sind ;
R(x,) st die Resultante von f,,...,f, nach x,,..., 2, ;.

2. In I'lv, x] gelten zwer Systeme von Identititen

FzZZszfk (i:]5°"’n)a
k=1

a’k'fk:'lEle'Fl (k=1,...,mn),
=1

wobet die a,, nicht verschwindende Polynome aus I'[v] bedeuten.

3. Jedes weitere allgemeine Polynom g in den x mit unbestimmten Koeffi-
zienten w laft sich in I'[v, w, x] bis auf einen micht verschwindenden
Faktor a aus I'[v] mod. (F,,...,F,) auf esn von z,,...,x, , unab-
hingiges Polynom G reduzieren :

a-9g=0G Fy, ..., F) .

a kann dabei als Potenzprodukt der c, mit lauter geraden Exponenten ge-
wdhlt werden.

Der Satz gilt trivialerweise auch noch fiir n = 1.

§ 3. Anwendungen

1. Im folgenden sei K ein Korper von der Charakteristik 01%) und
(f*) ein System von n Polynomen f¥,...,f¥ in n Variablen z,,...,z,
mit Koeffizienten aus K (n=2).

16) Man konnte auf diese Voraussetzung verzichten, da in den Koeffizienten der in § 2
konstruierten Polynome nur ganze Zahlen auftreten. Dies ist jedoch fiir die Anwendungen
unwesentlich.
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Definition 4. Das System (f*) heife reduzibel, wenn es tm Ring K[x]
n Polynome der Gestalt

¥ = of -z, + df (=,)

*+0,¢=1,...,n—1 10*
Fy = aa) 7 >0

gibt, welche in K[x] das Ideal (f*,...,[¥*) erzeugen:

- f)=EF, ..., Fy) .
Das System (F'*) heille ein zugeordnetes Linearsystem.

Satz 6. Ist das System (f*) reduzibel und (F*) etn zugeordnetes Linear-
system, so haben die Systeme (f*) und (F*) im n-dimensionalen affinen
Koordinatenraum R™ iiber K genau dieselben Nullstellen.

Denn aus Definition 4 folgt, daB sich in K[z] die ff linear in die F
und umgekehrt die F¥ linear in die ff transformieren lassen.

Ist ein zugeordnetes Linearsystem durch (10*) gegeben, so lassen sich
simtliche Nullstellen von (F*) und damit von (f*) explizit bestimmen :
man wihle ndmlich fiir £, irgendeine Wurzel des Polynoms F} = d* (z,)
aus K ; diese laBt sich auf genau eine Weise zu einer Nullstelle (£) von
(F*) ergénzen, indem man setzt

df (&)

*
C;

§i=““

G=1,...,n—1) . (14)

Die Reduzibilitdt impliziert also, dal das System in einer Hyperebene
z, = &, hochstens eine Nullstelle besitzt.

2. Definition 5. Das System (f*) heifle einfach, wenn es reduzibel ist
und vm R™ lauter einfache Nullstellen besitzt17).

Satz 7. Zu einem System (f) von n allgemeinen, nicht simtlich konstan-
ten Polynomen existieren zwei Polynome ®,(v) resp. @(v) in den unbe-
stimmten Koeffizienten, deren Nichtverschwinden fiir spezielle Werte der v
aus K hinreichend ist fiir die Reduzibilitit resp. Einfachheit des spezialisier-
ten Systems (f*). Hin zugeordnetes Linearsystem erhilt man in beiden Fillen
durch Spezialisierung aus einem Fundamentalsystem (F) von (f).

17) Eine Nullstelle heiB3t einfach, wenn in ihr die Funktionaldeterminante des Systems
nicht verschwindet.
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Beweis. Sei (F) ein Fundamentalsystem von (f) (cf. § 2, 2) und ¢, (v)
seine Linearkoeffizienten. Dann gelten im Polynomring I'(v)[x] iiber
dem rationalen Funktionenkorper I'(v) zwei Reihen von Identitdten

F,= X qu- [e (e=1,...,n)

e (15)
fk:,ZQ;cz‘Fz k=1, ...,n);

=1

Nenner aus Iv] treten dabei nur in den Koeffizienten der @;, auf, und
zwar konnen diese nach dem Zusatz zu Satz 4 (cf. § 2, 3) als Potenz-
produkte der c,(v) gewidhlt werden. Man setze nun

n—1

D,(v) =11 c,(v) .

i=1
Verschwindet @, bei einer Spezialisierung der v in K nicht, so auch kein
¢;(v), und die Identitéten (15) gehen iiber in Identitdten in K[x]; (F'*)
wird also zugeordnetes Linearsystem von (f*), womit der erste Teil von
Satz 7 bewiesen ist.

Es ist insbesondere F, = R(v,z,) die Resultante von (f) nach
Zyy..., £, 1. Nach dem ersten Teil von Hilfssatz 1in § 2, 1ist R(v, x,)
irreduzibel iiber I'(v); seine Diskriminante @,(v) ist also von Null ver-
schieden. Verschwindet @, bei einer Spezialisierung der » in K nicht, so
besitzt das spezialisierte Polynom R(x,) in K nur (endlich viele) einfache
Wurzeln. Wir setzen nun

D (v) = D, (v) - Py(v)

und betrachten eine solche Spezialisierung von (f), bei welcher @ (v)
nicht verschwindet. Fiir die spezialisierten Polynome gelten dann in
K[x] die Identitdten

ngzkzq;;c.f;: G=1,...,n) (15%)
=1

sowie die Formeln (10%) (cf. 1), wobei insbesondere d¥ (x,) = R(z,) zu
setzen ist ; nach Konstruktion besitzt d¥ (x,) hochstens endlich viele
Wurzeln, welche alle einfach sind.

Ist nun (&) = (§,,..., &,) eine Nullstelle von (f*) und (#*) im R", so
fithren wir neue Variable y ein durch

Yy, = x; — & (t=1,...,n)
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und entwickeln die Polynome f¥, F¥, ¢¥% nach aufsteigenden Potenzen
der y18):

fF= Xahy o (modv) (h=1,...,n—1)
=1
Ff= cfy,+bfy, (mod. 9p?) (¢f#0,i=1,...,2—1) ) (1)
F¥ = c¥y, (mod. n?) (cn #0)
q;;E Yik (mOdl))

Aus (15*) folgt nun durch Vergleichung der Glieder ersten Grades :
C:yi+b?=yn:k217ikalfl'yl (¢e=1,...,n—1)
Cp Yn = kzl ynka;:l Y

und daraus ergibt sich durch Koeffizientenvergleichung fiir die Determi-
nanten ||y || und ||ag]]:

Ivall - llagll =cfef ...cp #£0, (17)

also insbesondere || af;|| # 0; da || af;|| die Funktionaldeterminante
des Systems (f*) an der Stelle (&) ist, so ist damit Satz 7 bewiesen.

Zusatz 1. Verschwindet @ bei einer Spezialisierung micht, so sind die
Nullstellen von (f*) und (F'*) auch beziiglich (F'*) einfach.

Denn mit den gleichen Bezeichnungen wie oben ist die Funktional-
determinante von (F*) an einer Nullstelle gleich ¢ ¢ ,...,¢¥ # 0.

Zusatz 2. Ist A(v, x) die Determinante der linearen Polynomiransfor-
mation, welche (f) in (F) iberfihrt, und verschwindet @ ber einer Spezialisie-
rung nicht, so verschwindet A*(x) an keiner Nullstelle von (f*) und (F*).

Denn es ist cf. 2 ((15) und (15%)): 4 = || ¢, ||, also 4* = || ¢%||; an
einer Nullstelle wird also mit den obigen Bezeichnungen nach Formel
(7): 4* = || yall #0.

3. Im folgenden nehmen wir zu einem System (f*) von » Polynomen
aus K[xz] (n=2) ein weiteres Polynom f, , aus K[«] hinzu, betrachten
also Systeme (ff,...,fx,fr.;) von n + 1 Polynomen in n Variablen.

18) 1y bedeutet das Ideal (y;,...,¥,) aus K[y].
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Wir werden ein solches System durch eine Doppelkammer symbolisieren :
(1F .- fo) = ((f*)). Das System (f*) = (ff,..., f¥) bezeichnen wir
als Projektion, das Polynom f , zuweilen als Applikate des Systems
(%))

( Dgs System ((f*)) heile beziiglich einer Punktmenge Q des R™ iiber K
definit, wenn an keiner Nullstelle seiner Projektion in ¢ seine Applikate
verschwindet ; ein beziiglich des ganzen R” definites System heie kurz
definit.

Wir setzen von nun an voraus, daBl der Korper K angeordnet seil?).

Definition 6. Das System ((F*)) heife ein dquivalentes Linearsystem
von ((f*)), wenn folgende Bedingungen erfullt sind :

1. Beide Systeme sind definit.

2. Die Projektion (F*) ist zugeordnetes Linearsystem der Projektion (f*),
und die gemeinsamen Nullstellen sind beziiglich (f*) und (F'*) einfach.

3. Die Applikate F.f , hingt nur von z, ab.
4. An jeder Nullstelle (&) von (f*) und (F*) gilt

a(f*) *
2@ - sgn fr., = sgn @) sgn Fn+1 ,

9 (f*) J (F¥)
0 (x) ung 0 (x)

Projektionen bedeuten.

sgn

wober die Funktionaldeterminanten der beiden

Nun sei ((f)) ein System von = 4 1 allgemeinen Polynomen in n
Variablen ; die unbestimmten Koeffizienten seien wieder mit v bezeich-
net. Die Projektion sei nicht konstant.

Satz 8. Zu ((f)) gebt es ein System ((F')) von n + 1 Polynomen aus
I'lv, ] und ein Polynom ¥ aus I'[v] mait folgenden Eigenschaften :
1. Die Projektion (F') ist ein Fundamentalsystem der Projektion (f).
2. Die Applikate F, ., hingt aufer von den v nur von x, ab.

3. Bei jeder Spezialisierung der v in einem angeordneten Korper K, bei
welcher W (v) nicht verschwindet, sind die spezialisierten Systeme ((f*))
und ((F'*)) dquivalent.

19) Vgl. a.a. 0. 9).
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Bewets. Sei (F') ein Fundamentalsystem von (f) und 4 (v, ) die De-
terminante der linearen Polynomtransformation, welche (f) in (F') iiber-
fithrt. Wir bilden nun in I'[v, ] das Polynom

g=A4@, ) fpr1(v, x) ; (18)

es geht aus einem allgemeinen Polynom g vom selben Grad mit unbe-
stimmten Koeffizienten w durch Spezialisierung der w in I'[v] hervor.
Zu g konstruieren wir nach dem allgemeinen Reduktionssatz (cf. § 2, 3)
das Polynom @ und den rein quadratischen Faktor a aus I[v]. Bei der
Spezialisierung von g zu § geht @ iiber in ein Polynom @ aus I'[v, z,],
wahrend a von dieser Spezialisierung nicht beriihrt wird. Wir setzen nun
F,.=@; esgilt dannin I'[v, z] die Kongruenz

a"A(x)'f'n+l(x)EF'n+l(xn) (F].:"':Fn) . (19)

Nun sei @,(v) die Resultante des Systems ((f)) (cf. § 1, 2, Satz 1, an-
gewandt auf den Index » -+ 1) und

Y (v) = D(v) - Dy(v) ,

wobei @ (v) dieselbe Bedeutung hat wie in Satz 7 (cf. 2). Ferner liege
eine Spezialisierung der v in K vor, bei welcher ¥ (v) nicht verschwindet ;
es verschwinden dann weder @ (v) noch @;(v). Wir haben nachzu-
weisen, daB die spezialisierten Systeme die vier Eigenschaften von Defi-
nition 6 erfiillen. — 3) ist nach Konstruktion erfiillt, ebenso der erste Teil
von 1) wegen der Bedeutung der Resultante. 2) ergibt sich aus der Be-
deutung von @ nach Satz 7 und dem Zusatz 1.

Nach der Konstruktion von @ (cf. 2, Beweis von Satz 7) und der Be-
deutung von a (cf. § 2, 3, allgemeiner Reduktionssatz) verschwindet a*
nicht und ist ein positives Element von K ; an einer beliebigen Nullstelle
(&) von (f*) und (F*) kann A4* nach dem Zusatz 2 zu Satz 7 nicht ver-
schwinden, und aus (19) folgt : F5 (&) % 0 und

sgn A4*(£) - sgn f:+1 (§) = sgn F:-}-I(E) .

Daraus und aus Formel (17) (cf. 2) ergibt sich die Behauptung 4) durch
22 (6) = sgn 2D ()
d () = %N o) '

Multiplikation mit sgn 4* (&) - sgn
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4. Die Bedeutung des Aquivalenzbegriffs liegt in den Anwendungen
auf die Theorie der Polynomabbildungen (vgl. die Einleitung). Ein
System ((f*)) resp. (f*) definiert eine Abbildung f* resp. f* des R* iiber
K in den R"+! resp. R" iiber K. Ist das System (f*) Projektion des
Systems ((f*)), so ist die Abbildung f* Projektion der Abbildung f*.

Definition 7. Sei (f*) ein System von n Polynomen in n Variablen iiber
Kund &= (&,...,§,) eine einfache Nullstelle des Systems im R™ ither K .
Dann verstehen wir unter dem Index der zugehorigen Abbildung f* im
Punkte & das Vorzeichen

:’(f s 5) = 8gn "a(x)_ (5) .

Im folgenden bedeute ¢ eine beliebige Punktmenge des R™ iiber K.

Definition 8. Ist exn System ((f*)) von n 4+ 1 Polynomen in n Varia-
blen iber K beziiglich Q definit und besitzt seine Projektion (f*) in Q hochstens
endlich viele Nullstellen, welche alle etnfach sind, so verstehen wir unter dem
Indikator der zugehorigen Abbildung f* beziiglich Q die ganze Zahl

p(f*, Q) = %‘7(7*,5) - sgn fa 1 (8)

wobei die Summe iber die in Q liegenden Nullstellen der Projektion zu er-
strecken ist.

2. (spezieller) Reduktionssatz. Zu eimem System ((f)) von n + 1 allge-
meinen Polynomen in n Variablen x (n = 2) mat unbestimmiten Koeffi-
zienten v gibt es ein Polynom Y (v) und ein System (k) von n Polynomen
aus I'[v, ] mit folgender Eigenschaft: bei jeder Spezialisierung der v in
einem angeordneten Korper K, bei welcher W(v) micht verschwindet, be-
sitzen (h*) und die Projektion (f*) wvon ((f*)) im R dber K dieselben
endlich vielen Nullstellen ; diese sind beziiglich (f*) und (h*) einfach, und
an keiner von thnen verschwindet die Applikate fY . ; der Indikator der
Abbildung f* beziiglich einer beliebigen Punktmenge @ des R™ ist gleich der
Indexsumme der Abbildung h*, erstreckt itber die auf Q liegenden Null-
stellen.

Beweis. Seien zuniichst nicht alle Polynome der Projektion (f) Kon-
stanten aus I'[v]. Wir konstruieren zu ((f)) das System ((¥)) und das
Polynom ¥(v) nach Satz 8. Dann gilt bei jeder zuldssigen Spezialisie-
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rung beziiglich einer beliebigen Punktmenge @ des R™ nach den Defini-
tionen 6, 7 und 8: y(f*, Q) und y(F* Q) sind definiert, und es ist

p(*, Q) = p(F*Q) . (20)

Jetzt setzen wir

I

hl Fl’Fn+1 S
h, = F, (v=2,...,n) .

!

Da F} und FY , nurvon der einzigen Variablen x, abhdngen, haben sie
in K keine gemeinsame Wurzel ; denn eine solche kénnte man nach 1.
zu einer Nullstelle des Systems ((#)) im R"™ ergiénzen, wihrend doch
dieses System definit ist. Daraus folgt unmittelbar, daB das spezialisierte
System (k*) und die Projektion (F*) (also nach Satz 6 auch (f*)) im
R™ genaw dieselben Nullstellen haben?®). Weiter gilt an jeder dieser Null-
stellen :

I(Y) _ AF) | o

0 (x) 0 (x) me

Daraus und aus der Formel (20) ergibt sich die Behauptung nach den
Definitionen 7 und 8.

Der Satz gilt auch noch, falls die Projektion (f) von ((f)) aus lauter
Konstanten besteht ; man setze dann einfach (k) = (f) und nehme fiir
¥ das Produkt dieser Konstanten.

Hingegen ist der Satz fiir n» = 1 nicht mehr richtig ; um den Indikator
eines Systems von zwei Polynomen in einer Variablen auf dhnliche Weise
zu charakterisieren, geniigt ein einzelnes Polynom % nicht, sondern es
tritt an dessen Stelle eine ganze Polynomkette. Diesen Fall habe ich in
einer andern Arbeit behandelt??).

(Eingegangen den 14. Mai 1947.)

20) Hier beniitzen wir zum erstenmal, da n == 2 sein soll.

21) W. Habicht, Eine Verallgemeinerung des Sturmschen Wurzelzéhlverfah-
rens, Comm. Math. Helv. dieses Heft, p. 99, insbesondere § 3, Reduktionssatz.
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